
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Parsing Sequentially Presented Commands in a Large-Scale Biologically Realistic Brain
Model

Permalink
https://escholarship.org/uc/item/69b5x2xh

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 35(35)

ISSN
1069-7977

Authors
Stewart, Terrence
Eliasmith, Chris

Publication Date
2013

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/69b5x2xh
https://escholarship.org
http://www.cdlib.org/

Parsing Sequentially Presented Commands
in a Large-Scale Biologically Realistic Brain Model

Terrence C. Stewart (tcstewar@uwaterloo.ca)
Chris Eliasmith (celiasmith@uwaterloo.ca)

Centre for Theoretical Neuroscience, University of Waterloo
200 University Avenue West, Waterloo, Ontario N2L 3G1 Canada

Abstract

We present a neural mechanism for interpreting and executing
visually presented commands. These are simple verb-noun
commands (such as WRITE THREE) and can also include
conditionals ([if] SEE SEVEN, [then] WRITE THREE). We
apply this to a simplified version of our large-scale functional
brain model “Spaun”, where input is a 28x28 pixel visual
stimulus, with a different pattern for each word. Output
controls a simulated arm, giving hand-written answers.
Cortical areas for categorizing, storing, and interpreting
information are controlled by the basal ganglia (action
selection) and thalamus (routing). The final model has
~100,000 LIF spiking neurons. We show that the model is
extremely robust to neural damage (40% of neurons can be
destroyed before performance drops significantly).
Performance also drops for visual display times less than
250ms. Importantly, the system also scales to large
vocabularies (~100,000 nouns and verbs) without requiring an
exponentially large number of neurons.

Keywords: neural engineering; parsing; cognitive control;
spiking neurons; whole-brain systems; cognitive architecture

Large-Scale Functional Brain Modelling
Our goal is to produce models of human cognition that are
specified down to the neural level. That is, we want to
know how the low-level neural details (including spikes and
various neurotransmitters) give rise to human behaviour via
their complex interconnections and interactions. We have
previously published our first step in this direction, which is
currently the world's largest functional brain model
(Eliasmith et al., 2012). This model, “Spaun”, has 2.5-
million spiking neurons, includes twenty different brain
areas, and can perform eight different cognitive tasks
(including digit recognition, list memory, addition, and
pattern completion). Input is through a single eye with a 28
by 28 retina, and the output controls a simulated three-joint
six-muscle arm, allowing it to write its answers. Spaun is
told what task to perform via its visual input, so it must
selectively re-route information between brain areas as
appropriate for different tasks. This uses the cortex-basal
ganglia-thalamus loop, where the basal ganglia performs
action selection by comparing the current brain state to the
ideal brain state for each action, and the chosen action
activates cortical communication channels via the thalamus.

One limitation with Spaun is that it cannot learn new
tasks. The eight tasks it can perform are set by the synaptic
connections between cortex and basal ganglia. To address
this, the work presented here adds a new general-purpose
task for Spaun: one where it can be visually presented with
commands for it to follow.

Parsing Visual Commands
To provide new instructions to a model that only has a
visual input, we need the model to process a sequential set
of images and convert that into an internal representation of
a command. This is a simplified language comprehension
task, within a fairly restricted domain.

Basic commands can be thought of as verb-noun pairs,
such as WRITE NINE. However, because the visual system
is limited to 28x28 pixels, it does not have the visual acuity
to interpret full words at a time. Rather than flashing each
letter in each word up individually (a fairly non-typical
reading strategy), we use a single symbol for each word, and
present those symbols sequentially. So, for the command
WRITE NINE, we present a “W” followed by a “9”.

Valid commands are limited by the set of basic actions
that the model knows how to do. While the full Spaun
model can perform many operations including mental
arithmetic, keeping track of elements in a list, and pattern
completion, for simplicity in this paper we only consider the
actions WRITE (W), REMEMBER (R), and INCREASE
(C). For example, the model could be told to remember a
two, increase it, and write the result (“R 2, C #, W #”, where
is a general-purpose indexical referring to the number
currently being remembered, and a comma is a slight pause
between instructions). The correct result from this command
would be the written number 3.

Furthermore, instructions can also include conditional
clauses based on what the model can currently SEE (“S”).
For example, “S 4, W 9” is interpreted as “if you see a four,
then write a nine”. To do this, the model must be capable of
representing structured relationships.

The goal of this work is to give a spiking neuron
implementation of this parsing process, integrated within an
existing spiking neuron model of the rest of the brain
(including vision, motor, working memory, and cognitive
control areas). To argue that this is a plausible model, we
show that a) its performance degrades gracefully as neurons
die, b) it fails on uninterpretable grammatical structures, and
c) it scales to human-sized vocabularies, dealing with the
exponential growth of vocabulary combinations.

That said, there are considerable limitations to this work.
It does not deal with token separation, since the symbols are
shown to it one at a time. It also does not handle ambiguous
terms (all symbols have exactly one meaning). We are also
not specifying the full developmental and learning process
that results in this model (although existing learning rules
could be used, given a detailed error signal and large
amounts of time).

3460

The Neural Engineering Framework
The Neural Engineering Framework (NEF; Eliasmith &
Anderson, 2003) transforms a high-level description of the
variables being represented and the operations on those
variables into a detailed spiking-neuron model subject to
neurobiological constraints.

In the NEF, neurons are organized into groups, and each
group forms a distributed representation of a particular
variable. Different patterns of activity across the group
correspond to different values for that variable. These
values are, in general, vectors, so a particular group of 2,000
neurons might represent a 64-dimensional variable. While
the NEF supports any neuron type, for this paper we use
standard leaky integrate-and-fire (LIF) neurons whose
parameters (refractory period, capacitance, neurotransmitter
time constant, etc.) are set to be consistent with the details
of the particular brain regions being modelled.

Within a population of neurons, each neuron has a
particular preferred direction vector. This is the vector for
which that neuron will fire most strongly. These vectors e
are randomly chosen along with the neuron gain α and bias
Jbias to produce a heterogeneous population of neurons. The
current flowing into a neuron when representing a vector x
is given by Equation 1.

Given a pattern of activity, we can estimate the currently

represented x value as ∑ d i a i where ai is the neuron
activity and d is a decoder given by Equation 2. This is the
optimal least-squares linear estimate of x (the value being
represented) given a (the current activity of the neurons).

The key part of the NEF is that this decoder also allows us
to determine the synaptic connection weights between
neural groups that will force them to compute a desired
function. For example, if we want to connect a neural group
representing x to a neural group representing y such that
y=Mx (where M is an arbitrary matrix), then the synaptic
connection weights between neuron i in the first population
and neuron j in the second are given by Equation 3.

For connections that compute nonlinear functions, we
adjust Equation 2 slightly as given in Equation 4. This finds
a decoder that approximates the arbitrary function f(x).

J=αe⋅x+J bias (1)

d=Γ−1Υ Γ ij=∫ ai a j dx Υ j=∫a j xdx
(2)

ωij =α j e j Mdi (3)

d f (x) =Γ−1Υ Γ ij=∫ ai a j dx Υ j=∫a j f (x) dx
(4)

It should be noted that the accuracy with which neurons will
perform the desired computation using this technique is
dependent on many factors. This includes the neuron
properties such as overall firing rate and their membrane
time constant. Accuracy can be increased arbitrarily by
increasing the number of neurons (but, of course, to be
realistic we are constrained by the number of neurons in the

brain). In general, discontinuous functions are very difficult
for neurons to approximate.

Symbol-Like Processing with Spiking Neurons
While the NEF allows us to convert algorithms that use
vectors and functions into spiking neuron models, a further
technique is needed to handle the symbol manipulation that
is the hallmark of cognitive activity. This is especially
important for parsing and representing complex commands.

The core idea is to have a particular vector for each
atomic symbol that can be represented. For this paper, these
vectors are chosen randomly, but they can also be chosen
such that semantically related symbols have similar vectors.
To combine symbols, we perform computations on these
vectors, giving new vectors that represent the combination.

There are a variety of computations that can be used to
combine these vectors (Gayler, 2003), but for our model we
follow Plate (2003). Here, symbols can be combined by
vector addition (+) and circular convolution (⊛). Both
operations are accurately approximated by the NEF method.

To demonstrate how this system works, consider
representing the command “If you see a 9, write an 8”. A
simplistic approach would be to take vectors for all the
atomic concepts (SEE, NINE, WRITE, and EIGHT) and add
them together to represent the full sentence
(SEE+NINE+WRITE+EIGHT). However, this does not
work, since the resulting sentence loses all order
information. In particular, the command “If you see an 8,
write a 9” would result in exactly the same vector.

To deal with this, we use circular convolution (⊛) and
introduce new vectors for denoting structural information.
The ⊛ operator takes two vectors and produces a new
vector that is highly dissimilar to the original two. So
instead of WRITE+EIGHT we can do VERB⊛WRITE+

NOUN⊛EIGHT. Furthermore, we can nest this process to
make more complex phrases. The full command can be
represented by the vector S=CONDITION⊛(SEE⊛NINE)+

VERB⊛WRITE+NOUN⊛EIGHT.
Importantly, given this vector S that represents a full

command, we can extract out the individual components.
Plate (2003) showed that a simple re-arranging of the
elements of a vector makes an approximate inverse
operation. For example, if we want to know the main verb
in S, we compute S⊛inv(VERB). The result will be
approximately WRITE. The accuracy of this approximation
depends on the number of terms being added and the
dimensionality of the vectors. In particular, as the number
of dimensions increases, there is an exponential growth in
representational capacity.

We refer to these vectors as semantic pointers. They are
semantic in that the vector itself has meaning about the
whole. Most usefully, the similarity between vectors
indicates the similarity of the full structure. WRITE
commands will have a higher degree of similarity to each
other than to other commands. Furthermore, they are
pointers in the computer science sense because they can be
dereferenced, recovering (an approximation of) the original

3461

data. Semantic pointers are compressed representations, in
the same way that vision models can be thought of as
compressing an image into a high-level representation.

Vision
For vision, we adapt a Deep Belief Network (Hinton, 2010).
The input is a 28 by 28 pixel retinal image, which is then
processed by four different cortical layers. Each layer
learns to extract and compress the regular patterns in the
layer before it. We convert this model to spiking neurons
by simulating each neuron in the DBN with ten realistic
spiking neurons and using Equations 3 and 4 to solve for the
connection weights that approximate the original model.

The output from the DBN (inferior temporal cortex) must
then be mapped to a semantic pointer. One way to perform
this mapping would be to use an associative cleanup
memory (Stewart, Tang, & Eliasmith, 2011), which scales
to hundreds of thousands of items but requires additional
neurons to recognize each item. For simplicity, here we use
no additional neurons, but rather compute an approximate
mapping between the compressed representation of the
visual stimulus and the desired semantic pointers (Equation
5), where vi is the average output of the Deep Belief
Network for a particular category (all the 3's, for example),
and si is the corresponding semantic pointer (THREE). As
always, Equations 3 and 4 give the synaptic connections.

(5)

Figure 1: Converting visual input into the correct semantic
pointer. For example, showing an image of a 7 to the retina
will produce the vector SEVEN in the vision population.

Simple Parsing
A first step towards parsing commands is to identify and
store noun-verb pairs. That is, given a visual input of
WRITE followed by THREE, we need one group of neurons
to represent the verb (WRITE) and another to represent the
noun (THREE). The outputs from these groups then drive a
third group of neurons to represent the full phrase
VERB⊛WRITE+NOUN⊛THREE. This is accomplished by
connecting the verb population to the phrase population
with connection weights optimized to perform the function

f(x)=x⊛VERB. Similarly, the noun population's connection
is optimized for the function f(x)=x⊛NOUN. As with all
synaptic connections in this model, this optimization is
performed using Equations 3 and 4.

Figure 2: 5760 spiking neurons combining two arbitrary 64-
dimensional vectors (noun and verb) into a single 64-
dimensional vector phrase=verb⊛VERB+noun⊛NOUN.

In order for this system to work in the context of an
overall brain model, we need a mechanism to selectively
route information from visual areas to the two populations.
When the system sees WRITE it should pass this vector into
the verb neurons, and when it sees THREE it should pass
that vector to the noun neurons. This sort of selective
routing of information is exactly what the cortex-basal
ganglia-thalamus loop is believed to perform. We use our
existing model for this loop, which is based on our spiking
version of a model of action selection in the basal ganglia
(Stewart, Choo, & Eliasmith, 2010).

The basal ganglia selects between two actions. One
action is to route information from the vision system to the
noun population, and the other is to route that same
information to the verb population. To perform these
actions the output from the basal ganglia goes to the
thalamus, where it releases the inhibition on the desired
communication channel. (A communication channel is a
connection that computes the function f(x)=x). If this is
inhibited, the neurons do not fire, and so no information is
passed. Selecting the action releases the inhibition,
allowing the information to flow.

To decide which action to perform, the inputs to the basal
ganglia must compute the utility of the two actions. For the
first action, this is a function that outputs a 1 if there is a
noun in vision, and a 0 otherwise. The second action is
similar, but for identifying verbs. This is a simple classifier
and can again be expressed as a function whose connection
weights are computed with Equations 3 and 4.

The resulting system is capable of taking a stream of
visual stimulus as input and keeping track of the most recent
noun and the most recent verb seen. This verb and noun are
then combined into a single vector representing that pair.

3462

Figure 3: Routing information from vision to the correct
noun and verb populations, depending on whether the visual
stimulus is categorized as a noun or a verb. Once routed,
the correct combined phrase is computed as in Figure 2.

3463

Responding to Commands
Once the model has formed a single representation of the
command itself, we also need to show that it can execute
that command correctly. That is, not only can the
representation be encoded by spiking neurons, but it can
also be decoded by spiking neurons to perform a task.

Since the focus of this paper is the parsing of a command,
we use a very simple system for executing commands. In
other work we show how to process significantly more
complex commands, (Choo & Eliasmith, submitted), but
those commands are directly injected into the brain model,
rather than being presented visually and parsed.

In this case, performing a command occurs via a new
action added to the basal ganglia. It has a high utility when
there is no visual input and when the phrase is similar to
VERB⊛WRITE. When selected, this action routes the
information from phrase to motor while convolving it with
the inverse of NOUN. Thus, if the phrase is
VERB⊛WRITE+NOUN⊛FOUR, the semantic pointer
inv(NOUN)⊛(VERB⊛WRITE+NOUN⊛FOUR) will be
routed to the motor area. Since NOUN and inv(NOUN)

approximately cancel, the value set to the motor area will be
close to the ideal vector for FOUR. This is mapped to a
series of hand positions using the same method as Eq. 5.

The behaviour of the model is shown in Figure 5. The
visual input is shown in the top row, and the written
responses are shown in the bottom row. The other rows
show the spiking behaviour of 50 neurons from each of the
key brain areas in the model.

The first thing to note is that the model performs
accurately. The correct response is given for each case.
Furthermore, it should be noted that the two words in the
command can be given in either order (WRITE FIVE versus
TWO WRITE). This is because we have not imposed a
particular grammatical order. While it would be possible to
do so, we note that English speakers are quite capable of

correctly interpreting TWO WRITE as a command.
However, as demonstrated in the section on Conditional
Statements, word order does matter for complex commands.

The spike patterns shown in Figure 5 provide some
insight into the performance of the model. In the vision
row, we can see different patterns of activity for each visual
input, as expected. The pattern for “W” and the pattern for
seeing nothing at all are quite distinct. Similarly, the spike
patterns in the noun and verb populations change depending
on which term is currently being memorized, and these
patterns in turn affect the phrase population.

Another feature that can be seen in Figure 5 is the
cognitive reaction time. Each symbol is shown for 0.5
seconds, but the motor output is clearly delayed slightly. For
example, the visual input is cleared at t=1.0s, but the spiking
behaviour in motor doesn't change until t=1.05s. This is the
time required for the model to notice the change in visual
input, perform action selection in the basal ganglia, release
the inhibition in the thalamus, and allow the information
from the phrase neurons to pass to the motor neurons. The
exact amount of time required is a function of the
connectivity and neurotransmitter time constants, all of
which are taken from neurological data (so they are not free
parameters). For more analysis of this feature of the basal
ganglia model, see (Stewart, Choo, & Eliasmith, 2010).

Figure 5: Behaviour of the model given three commands: WRITE THREE, WRITE FIVE, and TWO WRITE.

Figure 4: Executing a WRITE action

3464

Memory
To demonstrate that this system can parse commands other
than WRITE <number>, we add a memory action. If the
model is told to REMEMBER 4 (“R 4”), the phrase will be
similar to VERB⊛REMEMBER. We add an action for this
condition that routes the phrase information to the memory
while transforming it by inv(NOUN). As with the WRITE
action, this extracts the FOUR from the phrase. For this
action, the output vector is routed to a working memory
area. This is a group of neurons that stores a vector (like
every other group of neurons in the model), but that has a
communication channel back to itself. This recurrent
connection causes the neurons to maintain their own state
after the input is removed. This structure has been shown to
match neural behaviour of visual working memory (Singh
and Eliasmith, 2006), and is stable over long periods of time
(tens of seconds).

Finally, we show that we can extract information from
working memory by adding a special write action WRITE
NUMBER (“W #”). This action has a high utility when the
phrase is VERB⊛WRITE+NOUN⊛NUMBER and causes the
information in working memory to be routed to the motor
system.

The result (Figure 6) is a system that can respond
correctly to two different verbs and ten nouns (only ZERO
through NINE were implemented). Importantly, adding the
new action did not require any modifications to the phrase
population. This is due to the fact that the semantic pointers
used to represent the phrase are simply fixed-length vectors,
and the phrase population is capable of storing any vector.
No modifications to that population are needed to let it store
a new vector like VERB⊛REMEMBER+NOUN⊛THREE,
even if it has never seen it before.

In other words, the model does not require an exponential
growth in numbers of neurons in order to handle the
exponential growth in possible phrases that it can correctly
interpret. Adding new actions only requires adding the
neural populations needed to perform that action (in this
case, the working memory population) and new connections
between existing populations (in this case, phrase) and the
basal ganglia and thalamus.

Figure 6: A model with REMEMBER and WRITE actions.
Given an input REMEMBER SIX <long pause> WRITE
NUMBER it will write the number 6.

Model Performance
The behaviour of this model in a variety of conditions is
shown in Figure 7. For each condition, new neurons (with
preferred direction vectors, gains, and background currents)
were generated, and Equations 3 and 4 were used to solve
for all the synaptic connection weights.

First, the maximum vocabulary size (the largest number
of nouns such that there is still a 95% chance of correctly
responding) scales exponentially as the number of neurons
per population increases. This is an expected consequence
of vector representations (e.g., Plate, 2003), as the number
of dimensions accurately represented scales linearly with the
number of neurons, while the volume of a hypersphere
scales exponentially with the number of dimensions.

Second, the model is robust to destruction of neurons. To
simulate neural death, we randomly delete neurons from
every population, and then re-use Equations 3 and 4 to
compute new connection weights between the remaining
neurons. Performance decreases, but remains above well
above chance until less than 40% of the neurons remain.
This shows a gradual degradation in behaviour, rather than
catastrophic failure.

Finally, we show the model performs well for varying
stimulus presentation times, but poor performance when
symbols are seen for less than 250 milliseconds.

Figure 7: Model performance for varying vocabulary sizes,
neural destruction, and display times. Input is of the form
“R <number>, W #”, and an output is judged correct if the
model writes the correct number. Shaded area is the 95%

bootstrap confidence interval over 50 trials.

3465

Conditional Statements
The method used to add the REMEMBER action can be used
to add many new actions. For instance, an INCREMENT
action can be added which increases the number stored in
memory. However, to show that this method extends to more
complex rules, we now consider the parsing of a conditional
rule such as “if you see a six, write a one”. Using “S” to as
the symbol for SEE, we can present this to the model as “S 6
W 1”. We then add actions to the basal ganglia such that a
phrase of VERB⊛SEE will cause that phrase to be routed
to a new condition group of neurons. A global state
population is created, which gets inputs from all cortical
areas that could be used as part of a condition (in this case,
just vision), so that if vision is TWO then the value
TWO⊛SEE will be added to state. The state and
condition vectors are then compared (by computing the dot
product) in a similarity population. Finally, the go/nogo
population uses the similarity and condition values to
compute a penalty to be applied to the utilities of actions in
the basal ganglia. That is, it decreases the utility if there is a
condition but condition does not match the current state.

Importantly, once the condition is stored in a separate
neural population, we can now combine the condition and
the phrase into a single semantic pointer. For this case, the
resulting vector would be CONDITION⊛(SEE⊛SIX)

+VERB⊛WRITE+NOUN⊛ONE. This is a single vector
representing a complex, syntactically structured command
that can be successfully executed by this model. In (Choo
& Eliasmith, submitted), we develop a model capable of
following a collection of rules of this form, but the model
presented here is the first biologically realistic spiking
model capable of taking the sequential input “S 6 W 1” and
parsing it to create the correct semantic pointer vector.

Interestingly, the model supports some syntactic variation,
such as “6 S 1 W” or “6 S W 1”. However, it will not
perform correctly when one phrase is embedded in the
center of the other (“S W 6 1”, for example). This difficulty
with center embedding is a well-studied feature of natural
languages, and appears naturally in this model from the
processing available to neural populations.

Finally, in order to successfully respond to a condition
instruction in the other order (“W 1 S 6”), we must also add
an extra action rule which stores the initial phrase
(VERB⊛WRITE+NOUN⊛ONE) in memory before
processing the conditional phrase. This extra cognitive load
indicates this model finds it easier to process “If you see a
six, write a one” than “Write a one if you see a six”.

Figure 8: Additions needed for conditional instructions.

Conclusion
We have shown how a model consisting of spiking leaky-
integrate-and-fire neurons with properties and connection
patterns that match the human brain can take a visually
presented input command, parse it, and perform the correct
action. This works for simple verb-noun commands and for
more complex conditional commands, and also scales up to
a vocabulary size of hundreds of thousands of terms. The
majority of the neural components are identical those in our
previous models (e.g. Eliasmith et al., 2012).

To perform this parsing, the model builds a single
combined vector representation of the command. This
resulting structured representation is of exactly the same
form as those we have used in other neural models. As
such, this model provides a potential explanation as to how
brains can form and manipulate these symbol-like structures
that are found throughout cognition.

That said, the current model has many limitations. It does
not impose particular grammatical rules (other than avoiding
center embedding). Perhaps relatedly, it does not address
the problem of ambiguous classifications. It also does not
perform token separation, as it requires that the input be
already sequentially arranged. Fortunately, these problems
have been addressed by other researchers, and our ongoing
work is to adapt their solutions to the constraints of a
biologically realistic spiking model. In particular, Ball
(2011) provides an extensive project to process natural
language speech using the ACT-R cognitive architecture,
which may be adaptable to our neural framework.

References
Ball, J. (2011). A Pseudo-Deterministic Model of Human
 Language Processing. 33rd Cog. Sci. Society Conference.

Choo, X and Eliasmith, C. (submitted). General Instruction
Following in a Large-Scale Biologically Plausible Brain
Model. 35th Cog. Sci. Society Conference.

Eliasmith, C. (2013). How to build a brain. Oxford
University Press, New York, NY.

Eliasmith, C. & Anderson, C. (2003). Neural Engineering.
Cambridge: MIT Press.Eliasmith et al., 2012

Gayler, R. (2003). Vector Symbolic Architectures Answer
Jackendoff’s Challenges for Cognitive Neuroscience, in
Slezak, P. (ed). Int. Conference on Cognitive Science,
Sydney: University of New South Wales, 133–138.

Hinton, G.E. (2010). Learning to represent visual input.
Phil. Trans. Roy. Soc. B, 365, 177-184.

Plate, T. (2003). Holographic Reduced Representations,
CSLI Publications, Stanford, CA.

Singh, R., & Eliasmith, C. (2006). Higher-dimensional
neurons explain the tuning and dynamics of working
memory cells. Journal of Neuroscience, 26, 3667-3678.

Stewart, T.C., Choo, X., and Eliasmith, C. (2010). Dynamic
Behaviour of a Spiking Model of Action Selection in the
Basal Ganglia. 10th Int. Conf. on Cognitive Modeling.

3466

Stewart, T. C., Tang Y., & Eliasmith C. (2011). A
Biologically Realistic Cleanup Memory: Autoassociation
in Spiking Neurons. Cog.Systems Research. 12(2), 84-92.

3467

