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Parsing Sequentially Presented Commands 
in a Large-Scale Biologically Realistic Brain Model

Terrence C. Stewart (tcstewar@uwaterloo.ca)
Chris Eliasmith (celiasmith@uwaterloo.ca)

Centre for Theoretical Neuroscience, University of Waterloo
200 University Avenue West, Waterloo, Ontario N2L 3G1 Canada

Abstract

We present a neural mechanism for interpreting and executing 
visually presented commands.   These are simple verb-noun 
commands (such as WRITE THREE) and can also include 
conditionals ([if] SEE SEVEN, [then] WRITE THREE).  We 
apply this to a simplified version of our large-scale functional 
brain  model  “Spaun”,  where  input  is  a  28x28 pixel  visual 
stimulus,  with  a  different  pattern  for  each  word.   Output 
controls  a  simulated  arm,  giving  hand-written  answers. 
Cortical  areas  for  categorizing,  storing,  and  interpreting 
information  are  controlled  by  the  basal  ganglia  (action 
selection)  and  thalamus  (routing).   The  final  model  has 
~100,000 LIF spiking neurons.  We show that the model is 
extremely robust to neural damage (40% of neurons can be 
destroyed  before  performance  drops  significantly). 
Performance  also  drops  for  visual  display  times  less  than 
250ms.   Importantly,  the  system  also  scales  to  large 
vocabularies (~100,000 nouns and verbs) without requiring an 
exponentially large number of neurons.

Keywords: neural  engineering;  parsing;  cognitive  control; 
spiking neurons; whole-brain systems; cognitive architecture

Large-Scale Functional Brain Modelling
Our goal is to produce models of human cognition that are 
specified  down to the  neural  level.   That  is,  we want  to 
know how the low-level neural details (including spikes and 
various neurotransmitters) give rise to human behaviour via 
their complex interconnections and interactions.  We have 
previously published our first step in this direction, which is 
currently  the  world's  largest  functional  brain  model 
(Eliasmith  et  al.,  2012).   This  model,  “Spaun”,  has  2.5-
million  spiking  neurons,  includes  twenty  different  brain 
areas,  and  can  perform  eight  different  cognitive  tasks 
(including  digit  recognition,  list  memory,  addition,  and 
pattern completion).  Input is through a single eye with a 28 
by 28 retina, and the output controls a simulated three-joint 
six-muscle arm, allowing it to write its answers.  Spaun is 
told what  task to  perform via  its  visual  input,  so it  must 
selectively  re-route  information  between  brain  areas  as 
appropriate for different tasks.  This uses the cortex-basal 
ganglia-thalamus  loop,  where  the  basal  ganglia  performs 
action selection by comparing the current brain state to the 
ideal  brain  state  for  each  action,  and  the  chosen  action 
activates cortical communication channels via the thalamus.

One  limitation  with  Spaun  is  that  it  cannot  learn  new 
tasks.  The eight tasks it can perform are set by the synaptic 
connections between cortex and basal ganglia.  To address 
this,  the work presented here adds a new general-purpose 
task for Spaun: one where it can be visually presented with 
commands for it to follow.

Parsing Visual Commands
To provide  new  instructions  to  a  model  that  only  has  a 
visual input, we need the model to process a sequential set 
of images and convert that into an internal representation of 
a command.  This is a simplified language comprehension 
task, within a fairly restricted domain.

Basic commands can be thought of as verb-noun pairs, 
such as WRITE NINE.  However, because the visual system 
is limited to 28x28 pixels, it does not have the visual acuity 
to interpret full words at a time.  Rather than flashing each 
letter  in  each  word  up  individually  (a  fairly  non-typical 
reading strategy), we use a single symbol for each word, and 
present those symbols sequentially.  So, for the command 
WRITE NINE, we present a “W” followed by a “9”.  

Valid commands are limited by the set of basic actions 
that  the  model  knows how to  do.   While  the  full  Spaun 
model  can  perform  many  operations  including  mental 
arithmetic, keeping track of elements in a list, and pattern 
completion, for simplicity in this paper we only consider the 
actions  WRITE (W),  REMEMBER (R),  and  INCREASE 
(C).  For example, the model could be told to remember a 
two, increase it, and write the result (“R 2, C #, W #”, where 
#  is  a  general-purpose  indexical  referring  to  the  number 
currently being remembered, and a comma is a slight pause 
between instructions). The correct result from this command 
would be the written number 3.

Furthermore,  instructions  can  also  include  conditional 
clauses based on what the model can currently SEE (“S”). 
For example, “S 4, W 9” is interpreted as “if you see a four, 
then write a nine”.  To do this, the model must be capable of 
representing structured relationships.

The  goal  of  this  work  is  to  give  a  spiking  neuron 
implementation of this parsing process, integrated within an 
existing  spiking  neuron  model  of  the  rest  of  the  brain 
(including vision,  motor,  working  memory,  and  cognitive 
control areas).  To argue that this is a plausible model, we 
show that a) its performance degrades gracefully as neurons 
die, b) it fails on uninterpretable grammatical structures, and 
c)  it  scales  to human-sized vocabularies,  dealing with the 
exponential growth of vocabulary combinations.

That said, there are considerable limitations to this work. 
It does not deal with token separation, since the symbols are 
shown to it one at a time.  It also does not handle ambiguous 
terms (all symbols have exactly one meaning).  We are also 
not specifying the full developmental and learning process 
that results in this model (although existing learning rules 
could  be  used,  given  a  detailed  error  signal  and  large 
amounts of time).
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The Neural Engineering Framework
The  Neural  Engineering  Framework  (NEF;  Eliasmith  & 
Anderson, 2003) transforms a high-level description of the 
variables being  represented  and  the  operations on  those 
variables  into  a  detailed  spiking-neuron  model  subject  to 
neurobiological constraints.

In the NEF, neurons are organized into groups, and each 
group  forms  a  distributed  representation  of  a  particular 
variable.   Different  patterns  of  activity  across  the  group 
correspond  to  different  values  for  that  variable.   These 
values are, in general, vectors, so a particular group of 2,000 
neurons might represent a 64-dimensional variable.  While 
the NEF supports any neuron type, for this paper we use 
standard  leaky  integrate-and-fire  (LIF)  neurons  whose 
parameters (refractory period, capacitance, neurotransmitter 
time constant, etc.) are set to be consistent with the details 
of the particular brain regions being modelled.

Within  a  population  of  neurons,  each  neuron  has  a 
particular preferred direction vector.  This is the vector for 
which that neuron will fire most strongly.  These vectors  e 
are randomly chosen along with the neuron gain α and bias 
Jbias to produce a heterogeneous population of neurons.  The 
current flowing into a neuron when representing a vector  x 
is given by Equation 1.

Given a pattern of activity, we can estimate the currently 

represented  x value  as  ∑ d i a i where  ai is  the  neuron 
activity and d is a decoder given by Equation 2.  This is the 
optimal least-squares linear estimate of  x (the value being 
represented) given a (the current activity of the neurons).

The key part of the NEF is that this decoder also allows us 
to  determine  the  synaptic  connection  weights  between 
neural  groups  that  will  force  them to  compute  a  desired 
function.  For example, if we want to connect a neural group 
representing  x to  a  neural  group representing  y such  that 
y=Mx (where  M is an arbitrary matrix),  then the synaptic 
connection weights between neuron i in the first population 
and neuron j in the second are given by Equation 3.

For  connections  that  compute  nonlinear  functions,  we 
adjust Equation 2 slightly as given in Equation 4.  This finds 
a decoder that approximates the arbitrary function f(x).

J=αe⋅x+J bias (1)

d=Γ−1Υ Γ ij=∫ ai a j dx Υ j=∫a j xdx
(2)

ωij =α j e j Mdi (3)

d f ( x) =Γ−1Υ Γ ij=∫ ai a j dx Υ j=∫a j f ( x ) dx
(4)

It should be noted that the accuracy with which neurons will 
perform  the  desired  computation  using  this  technique  is 
dependent  on  many  factors.   This  includes  the  neuron 
properties  such  as  overall  firing rate  and  their  membrane 
time  constant.   Accuracy  can  be  increased  arbitrarily  by 
increasing  the  number  of  neurons  (but,  of  course,  to  be 
realistic we are constrained by the number of neurons in the 

brain).  In general, discontinuous functions are very difficult 
for neurons to approximate.

Symbol-Like Processing with Spiking Neurons
While  the  NEF  allows  us  to  convert  algorithms  that  use 
vectors and functions into spiking neuron models, a further 
technique is needed to handle the symbol manipulation that 
is  the  hallmark  of  cognitive  activity.   This  is  especially 
important for parsing and representing complex commands. 

The  core  idea  is  to  have  a  particular  vector  for  each 
atomic symbol that can be represented.  For this paper, these 
vectors are chosen randomly, but they can also be chosen 
such that semantically related symbols have similar vectors. 
To  combine  symbols,  we  perform computations  on  these 
vectors, giving new vectors that represent the combination.

There are a variety of computations that can be used to 
combine these vectors (Gayler, 2003), but for our model we 
follow Plate (2003).   Here,  symbols  can  be combined by 
vector  addition  (+)  and  circular  convolution  (⊛).   Both 
operations are accurately approximated by the NEF method.

To  demonstrate  how  this  system  works,  consider 
representing the command “If you see a 9, write an 8”.  A 
simplistic  approach  would  be  to  take  vectors  for  all  the 
atomic concepts (SEE,  NINE,  WRITE, and  EIGHT) and add 
them  together  to  represent  the  full  sentence 
(SEE+NINE+WRITE+EIGHT).   However,  this  does  not 
work,  since  the  resulting  sentence  loses  all  order 
information.  In particular, the command “If you see an 8, 
write a 9” would result in exactly the same vector.

To deal  with this, we use circular  convolution (⊛) and 
introduce new vectors for  denoting structural  information. 
The  ⊛ operator  takes  two  vectors  and  produces  a  new 
vector  that  is  highly  dissimilar  to  the  original  two.   So 
instead  of  WRITE+EIGHT we  can  do  VERB⊛WRITE+ 

NOUN⊛EIGHT.  Furthermore, we can nest this process to 
make more  complex  phrases.   The  full  command can  be 
represented by the vector  S=CONDITION⊛(SEE⊛NINE)+ 

VERB⊛WRITE+NOUN⊛EIGHT.
Importantly,  given  this  vector  S that  represents  a  full 

command,  we can  extract  out  the individual  components. 
Plate  (2003)  showed  that  a  simple  re-arranging  of  the 
elements  of  a  vector  makes  an  approximate  inverse 
operation.  For example, if we want to know the main verb 
in  S,  we  compute  S⊛inv(VERB).   The  result  will  be 
approximately WRITE.  The accuracy of this approximation 
depends  on  the  number  of  terms  being  added  and  the 
dimensionality of the vectors.  In particular, as the number 
of dimensions increases, there is an exponential growth in 
representational capacity.

We refer to these vectors as semantic pointers.  They are 
semantic  in  that  the  vector  itself  has  meaning  about  the 
whole.   Most  usefully,  the  similarity  between  vectors 
indicates  the  similarity  of  the  full  structure.   WRITE 
commands will have a higher degree of similarity to each 
other  than  to  other  commands.   Furthermore,  they  are 
pointers in the computer science sense because they can be 
dereferenced, recovering (an approximation of) the original 
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data.  Semantic pointers are compressed representations, in 
the  same  way  that  vision  models  can  be  thought  of  as 
compressing an image into a high-level representation.

Vision
For vision, we adapt a Deep Belief Network (Hinton, 2010). 
The input is a 28 by 28 pixel retinal image, which is then 
processed  by  four  different  cortical  layers.   Each  layer 
learns  to  extract  and compress  the regular  patterns  in  the 
layer before it.  We convert this model to spiking neurons 
by simulating  each  neuron  in  the  DBN with  ten realistic 
spiking neurons and using Equations 3 and 4 to solve for the 
connection weights that approximate the original model.

The output from the DBN (inferior temporal cortex) must 
then be mapped to a semantic pointer.  One way to perform 
this  mapping  would  be  to  use  an  associative  cleanup 
memory (Stewart, Tang, & Eliasmith, 2011), which scales 
to hundreds of  thousands of items but  requires  additional 
neurons to recognize each item.  For simplicity, here we use 
no additional  neurons, but rather compute an approximate 
mapping  between  the  compressed  representation  of  the 
visual stimulus and the desired semantic pointers (Equation 
5),  where  vi is  the  average  output  of  the  Deep  Belief 
Network for a particular category (all the 3's, for example), 
and  si is the corresponding semantic pointer (THREE).  As 
always, Equations 3 and 4 give the synaptic connections.

(5)

Figure 1: Converting visual input into the correct semantic 
pointer.  For example, showing an image of a 7 to the retina 
will produce the vector SEVEN in the vision population.

Simple Parsing
A first  step towards parsing commands is to identify and 
store  noun-verb  pairs.   That  is,  given  a  visual  input  of 
WRITE followed by THREE, we need one group of neurons 
to represent the verb (WRITE) and another to represent the 
noun (THREE).  The outputs from these groups then drive a 
third  group  of  neurons  to  represent  the  full  phrase 
VERB⊛WRITE+NOUN⊛THREE.  This is accomplished by 
connecting  the  verb population  to  the  phrase population 
with connection weights optimized to perform the function 

f(x)=x⊛VERB.  Similarly, the noun population's connection 
is optimized for the function  f(x)=x⊛NOUN.  As with all 
synaptic  connections  in  this  model,  this  optimization  is 
performed using Equations 3 and 4.

Figure 2: 5760 spiking neurons combining two arbitrary 64-
dimensional  vectors  (noun and  verb)  into  a  single  64-
dimensional vector phrase=verb⊛VERB+noun⊛NOUN.

In  order  for  this  system  to  work  in  the  context  of  an 
overall  brain  model,  we need a  mechanism to selectively 
route information from visual areas to the two populations. 
When the system sees WRITE it should pass this vector into 
the  verb neurons, and when it sees  THREE it  should pass 
that  vector  to  the  noun neurons.   This  sort  of  selective 
routing  of  information  is  exactly  what  the  cortex-basal 
ganglia-thalamus loop is believed to perform.  We use our 
existing model for this loop, which is based on our spiking 
version of a model of action selection in the basal ganglia 
(Stewart, Choo, & Eliasmith, 2010).  

The  basal  ganglia  selects  between  two  actions.   One 
action is to route information from the vision system to the 
noun population,  and  the  other  is  to  route  that  same 
information  to  the  verb population.   To  perform  these 
actions  the  output  from  the  basal  ganglia  goes  to  the 
thalamus,  where  it  releases  the  inhibition  on  the  desired 
communication  channel.   (A communication  channel  is  a 
connection  that  computes  the  function  f(x)=x).   If  this  is 
inhibited, the neurons do not fire, and so no information is 
passed.   Selecting  the  action  releases  the  inhibition, 
allowing the information to flow.

To decide which action to perform, the inputs to the basal 
ganglia must compute the utility of the two actions.  For the 
first action, this is a function that outputs a 1 if there is a 
noun in  vision, and a 0 otherwise.   The second action is 
similar, but for identifying verbs.  This is a simple classifier 
and can again be expressed as a function whose connection 
weights are computed with Equations 3 and 4.

The  resulting  system  is  capable  of  taking  a  stream  of 
visual stimulus as input and keeping track of the most recent 
noun and the most recent verb seen.  This verb and noun are 
then combined into a single vector representing that pair.
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Figure  3:  Routing  information  from vision  to  the  correct 
noun and verb populations, depending on whether the visual 
stimulus is categorized as a noun or a verb.  Once routed, 
the correct combined phrase is computed as in Figure 2.
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Responding to Commands
Once the model has formed a single representation of the 
command itself, we also need to show that it can execute 
that  command  correctly.   That  is,  not  only  can  the 
representation  be  encoded  by  spiking  neurons,  but  it  can 
also be decoded by spiking neurons to perform a task.

Since the focus of this paper is the parsing of a command, 
we use a very simple system for executing commands.  In 
other  work  we  show  how  to  process  significantly  more 
complex  commands,  (Choo  &  Eliasmith,  submitted),  but 
those commands are directly injected into the brain model, 
rather than being presented visually and parsed.

In  this  case,  performing  a  command  occurs  via  a  new 
action added to the basal ganglia.  It has a high utility when 
there is no visual input and when the  phrase is similar to 
VERB⊛WRITE.   When  selected,  this  action  routes  the 
information from phrase to motor while convolving it with 
the  inverse  of  NOUN.   Thus,  if  the  phrase  is 
VERB⊛WRITE+NOUN⊛FOUR,  the  semantic  pointer 
inv(NOUN)⊛(VERB⊛WRITE+NOUN⊛FOUR) will  be 
routed  to  the  motor area.   Since  NOUN and  inv(NOUN) 

approximately cancel, the value set to the motor area will be 
close to the ideal  vector for  FOUR.   This is  mapped to a 
series of hand positions using the same method as Eq. 5.

The behaviour of the model is shown in Figure 5.  The 
visual  input  is  shown  in  the  top  row,  and  the  written 
responses  are shown in the bottom row.  The other rows 
show the spiking behaviour of 50 neurons from each of the 
key brain areas in the model.

The  first  thing  to  note  is  that  the  model  performs 
accurately.   The  correct  response  is  given  for  each  case. 
Furthermore, it  should be noted that the two words in the 
command can be given in either order (WRITE FIVE versus 
TWO WRITE).   This  is  because  we have  not  imposed  a 
particular grammatical order.  While it would be possible to 
do so, we note that English speakers are quite capable of 

correctly  interpreting  TWO  WRITE  as  a  command. 
However,  as  demonstrated  in  the  section  on  Conditional 
Statements, word order does matter for complex commands.

The  spike  patterns  shown  in  Figure  5  provide  some 
insight into the performance of the model.  In the  vision 
row, we can see different patterns of activity for each visual 
input, as expected.  The pattern for “W” and the pattern for 
seeing nothing at all are quite distinct.  Similarly, the spike 
patterns in the noun and verb populations change depending 
on  which  term  is  currently  being  memorized,  and  these 
patterns in turn affect the phrase population.

Another  feature  that  can  be  seen  in  Figure  5  is  the 
cognitive  reaction  time.   Each  symbol  is  shown  for  0.5 
seconds, but the motor output is clearly delayed slightly. For 
example, the visual input is cleared at t=1.0s, but the spiking 
behaviour in motor doesn't change until t=1.05s.  This is the 
time required for the model to notice the change in visual 
input, perform action selection in the basal ganglia, release 
the inhibition  in  the  thalamus,  and  allow the  information 
from the phrase neurons to pass to the motor neurons.  The 
exact  amount  of  time  required  is  a  function  of  the 
connectivity  and  neurotransmitter  time  constants,  all  of 
which are taken from neurological data (so they are not free 
parameters).  For more analysis of this feature of the basal 
ganglia model, see (Stewart, Choo, & Eliasmith, 2010).

Figure 5: Behaviour of the model given three commands: WRITE THREE, WRITE FIVE, and TWO WRITE.

Figure 4: Executing a WRITE action
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Memory
To demonstrate that this system can parse commands other 
than WRITE <number>, we add a memory action.  If the 
model is told to REMEMBER 4 (“R 4”), the phrase will be 
similar to  VERB⊛REMEMBER.  We add an action for this 
condition that routes the  phrase information to the  memory 
while transforming it by  inv(NOUN).  As with the  WRITE 
action, this extracts the  FOUR from the  phrase.   For this 
action,  the  output  vector  is  routed  to  a  working  memory 
area.  This is a group of neurons that stores a vector (like 
every other group of neurons in the model), but that has a 
communication  channel  back  to  itself.   This  recurrent 
connection causes the neurons to maintain their own state 
after the input is removed.  This structure has been shown to 
match neural  behaviour of visual working memory (Singh 
and Eliasmith, 2006), and is stable over long periods of time 
(tens of seconds).

Finally,  we show that  we can  extract  information from 
working memory by adding a special write action WRITE 
NUMBER (“W #”).  This action has a high utility when the 
phrase is VERB⊛WRITE+NOUN⊛NUMBER and causes the 
information in working  memory to be routed to the  motor 
system.

The  result  (Figure  6)  is  a  system  that  can  respond 
correctly to two different verbs and ten nouns (only  ZERO 
through NINE were implemented).  Importantly, adding the 
new action did not require any modifications to the phrase 
population.  This is due to the fact that the semantic pointers 
used to represent the phrase are simply fixed-length vectors, 
and the phrase population is capable of storing any vector. 
No modifications to that population are needed to let it store 
a  new  vector  like  VERB⊛REMEMBER+NOUN⊛THREE, 
even if it has never seen it before.  

In other words, the model does not require an exponential 
growth  in  numbers  of  neurons  in  order  to  handle  the 
exponential growth in possible phrases that it can correctly 
interpret.   Adding  new  actions  only  requires  adding  the 
neural  populations  needed  to  perform that  action  (in  this 
case, the working memory population) and new connections 
between existing populations (in this case,  phrase) and the 
basal ganglia and thalamus.

Figure 6:  A model with  REMEMBER and  WRITE actions. 
Given  an  input  REMEMBER SIX <long  pause>  WRITE 
NUMBER it will write the number 6.

Model Performance
The behaviour of  this model in a variety of conditions is 
shown in Figure 7.  For each condition, new neurons (with 
preferred direction vectors, gains, and background currents) 
were generated, and Equations 3 and 4 were used to solve 
for all the synaptic connection weights.

First, the maximum vocabulary size (the largest number 
of nouns such that there is still a 95% chance of correctly 
responding) scales exponentially as the number of neurons 
per population increases.  This is an expected consequence 
of vector representations (e.g., Plate, 2003), as the number 
of dimensions accurately represented scales linearly with the 
number  of  neurons,  while  the  volume  of  a  hypersphere 
scales exponentially with the number of dimensions.

Second, the model is robust to destruction of neurons.  To 
simulate  neural  death,  we  randomly  delete  neurons  from 
every  population,  and  then  re-use  Equations  3  and  4  to 
compute  new  connection  weights  between  the  remaining 
neurons.   Performance decreases,  but  remains above well 
above chance  until  less  than 40% of the neurons remain. 
This shows a gradual degradation in behaviour, rather than 
catastrophic failure.

Finally,  we show the  model  performs  well  for  varying 
stimulus  presentation  times,  but  poor  performance  when 
symbols are seen for less than 250 milliseconds.

Figure 7: Model performance for varying vocabulary sizes, 
neural destruction, and display times.  Input is of the form 
“R <number>, W #”, and an output is judged correct if the 
model writes the correct number.  Shaded area is the 95% 

bootstrap confidence interval over 50 trials.
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Conditional Statements
The method used to add the REMEMBER action can be used 
to  add  many  new actions.  For  instance,  an  INCREMENT 
action can be added which increases the number stored in 
memory. However, to show that this method extends to more 
complex rules, we now consider the parsing of a conditional 
rule such as “if you see a six, write a one”.  Using “S” to as 
the symbol for SEE, we can present this to the model as “S 6 
W 1”.  We then add actions to the basal ganglia such that a 
phrase of  VERB⊛SEE will cause that  phrase to be routed 
to  a  new  condition group  of  neurons.   A global  state 
population  is  created,  which  gets  inputs  from all  cortical 
areas that could be used as part of a condition (in this case, 
just  vision),  so  that  if  vision is  TWO then  the  value 
TWO⊛SEE will  be  added  to  state.   The  state and 
condition vectors are then compared (by computing the dot 
product) in a similarity population.  Finally, the go/nogo 
population uses  the  similarity and  condition values  to 
compute a penalty to be applied to the utilities of actions in 
the basal ganglia.  That is, it decreases the utility if there is a 
condition but condition does not match the current state.

Importantly,  once the  condition is stored in a separate 
neural population, we can now combine the condition and 
the phrase into a single semantic pointer.  For this case, the 
resulting  vector  would  be  CONDITION⊛(SEE⊛SIX)

+VERB⊛WRITE+NOUN⊛ONE.   This  is  a  single  vector 
representing  a complex,  syntactically  structured  command 
that can be successfully executed by this model.  In (Choo 
& Eliasmith,  submitted),  we develop  a  model  capable  of 
following a collection of rules of this form, but the model 
presented  here  is  the  first  biologically  realistic  spiking 
model capable of taking the sequential input “S 6 W 1” and 
parsing it to create the correct semantic pointer vector.

Interestingly, the model supports some syntactic variation, 
such as “6 S 1 W” or “6 S W 1”.  However,  it  will  not 
perform  correctly  when  one  phrase  is  embedded  in  the 
center of the other (“S W 6 1”, for example).  This difficulty 
with center embedding is a well-studied feature of natural 
languages,  and  appears  naturally  in  this  model  from  the 
processing available to neural populations.

Finally,  in  order  to  successfully  respond to a  condition 
instruction in the other order (“W 1 S 6”), we must also add 
an  extra  action  rule  which  stores  the  initial  phrase 
(VERB⊛WRITE+NOUN⊛ONE)  in  memory before 
processing the conditional phrase.  This extra cognitive load 
indicates this model finds it easier to process “If you see a 
six, write a one” than “Write a one if you see a six”.

Figure 8: Additions needed for conditional instructions.

Conclusion
We have shown how a model consisting of spiking leaky-
integrate-and-fire  neurons  with  properties  and  connection 
patterns  that  match  the  human  brain  can  take  a  visually 
presented input command, parse it, and perform the correct 
action.  This works for simple verb-noun commands and for 
more complex conditional commands, and also scales up to 
a vocabulary size of hundreds of thousands of terms. The 
majority of the neural components are identical those in our 
previous models (e.g. Eliasmith et al., 2012).

To  perform  this  parsing,  the  model  builds  a  single 
combined  vector  representation  of  the  command.   This 
resulting  structured  representation  is  of  exactly  the  same 
form as  those we have  used in  other  neural  models.   As 
such, this model provides a potential explanation as to how 
brains can form and manipulate these symbol-like structures 
that are found throughout cognition.

That said, the current model has many limitations.  It does 
not impose particular grammatical rules (other than avoiding 
center embedding).  Perhaps relatedly,  it  does not address 
the problem of ambiguous classifications.  It also does not 
perform token  separation,  as  it  requires  that  the  input  be 
already sequentially arranged.  Fortunately,  these problems 
have been addressed by other researchers, and our ongoing 
work  is  to  adapt  their  solutions  to  the  constraints  of  a 
biologically  realistic  spiking  model.  In  particular,  Ball 
(2011)  provides  an  extensive  project  to  process  natural 
language  speech  using  the  ACT-R cognitive  architecture, 
which may be adaptable to our neural framework.
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