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Abstract
Nonlinear edge preserving smoothing often is performed

prior to medical image segmentation. The goal of the nonlinear
smoothing is to improve the accuracy of the segmentation by
preserving changes in image intensity at the boundaries of
structures of interest, while smoothing random variations due
to noise in the interiors of the structures. Methods include
median filtering and morphology operations such as gray scale
erosion and dilation, as well as spatially varying smoothing
driven by local contrast measures.

Rather than irreversibly altering the image data prior to
segmentation, the approach described here has the potential to
unify nonlinear edge preserving smoothing with segmentation
based on differential edge detection at multiple scales. The
analysis ofn-D image data is decomposed into independent
1-D problems that can be solved quickly. Smoothing in various
directions along 1-D profiles through then-D data is driven by
a measure of local structure separation, rather than by a local
contrast measure. Isolated edges are preserved independent of
their contrast, given an adequate contrast to noise ratio.

I. I NTRODUCTION

Nonlinear edge preserving smoothing often is performed
prior to medical image segmentation. The goal of the nonlinear
smoothing is to improve the accuracy of the segmentation by
preserving changes in image intensity at the boundaries of
structures of interest, while smoothing random variations due
to noise in the interiors of the structures. Methods include
median filtering and morphology operations such as gray scale
erosion and dilation [1], as well as spatially varying smoothing
driven by local contrast measures [2, 3]. By comparison, linear
smoothing via spatially invariant convolution uniformly blurs
structure boundaries, as well as noise. The benefits of noise
reduction can be offset by deformations of the boundaries that
adversely affect the accuracy of the subsequent segmentation.

Rather than irreversibly altering the image data prior to
1This work was supported by US Department of Health and Human

Services grant P01-HL25840, by US Department of Energy contract
DE-AC03-76SF00098, and by the University of California MICRO
program. This work was developed in part using the resources at
the US Department of Energy National Energy Research Scientific
Computing (NERSC) Center.

segmentation, the approach described here has the potential to
unify nonlinear edge preserving smoothing with segmentation
based on differential edge detection at multiple scales. The
analysis of multidimensional (n-D) image data is decomposed
into independent 1-D problems that can be solved quickly.
Smoothing in various directions along 1-D profiles through
the n-D data is driven by a measure of local structure
separation, rather than by a local contrast measure. Isolated
edges are preserved independent of their contrast, given an
adequate contrast to noise ratio (CNR). In addition, analytic
expressions are obtained for the derivatives of the edge
preserved 1-D profiles. Using these expressions, one can
compose multidimensional edge detection operators such as
the Laplacian or the second derivative in the direction of the
image intensity gradient.

Future applications of these methods include 4-D
spatiotemporal segmentation of respiratory gated cardiac
positron emission tomography (PET) transmission images to
improve the accuracy of attenuation correction [4, 5], and
4-D spatiotemporal segmentation of dynamic cardiac single
photon emission computed tomography (SPECT) images
to facilitate unbiased estimation of time activity curves and
kinetic parameters for left ventricular volumes of interest [6].

II. T HE 1-D ALGORITHM

A. Recursive Multiscale Blending
Given linearly smoothed versions of a 1-D signalf(x)

and its first two derivatives atJ scales, one can perform
nonlinear edge preserving smoothing as follows. The linearly
smoothed versions off(x) are denoted bȳf(x, aj), and the
linearly smoothed first and second derivatives are denoted
by f̄(1)(x, aj) and f̄(2)(x, aj), respectively, forj = 1, . . . , J .
The scale coordinatea controls the width of the convolution
kernels used in the linear filtering. The kernels are based on
the uniform cubic B-spline basis function and its first two
derivatives [7, 8]. The cubic B-spline has a support of4a
and approximates a Gaussian with a standard deviation,σ,
of

√
1/3 a. Dyadic sampling of the scale coordinatea is used,

yieldingaj = 2j−1a1.

The nonlinearly smoothed versions off(x), denoted
by f̃(x, aj), are obtained by recursively blending the linearly
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smoothed versions:

f̃(x, aj) =




f̄(x, a1) j = 1

[1− Cj(x)] f̃(x, aj−1)
+ Cj(x) f̄(x, aj)

j = 2, . . . , J.

(1)

The blending functions{Cj(x); j = 2, . . . , J} play a role
similar to that of the spatially varying diffusion coefficients
used in typical implementations of edge preserving smoothing
via inhomogeneous diffusion (e.g., [2]). WhenCj(x0) = 0,
smoothing stops in the neighborhood ofx0 and f̃(x0, aj)
remains unchanged from the valuef̃(x0, aj−1) obtained using
nonlinear smoothing at the previous, finer scale. Conversely,
whenCj(x0) = 1, smoothing is unabated andf̃(x0, aj) is set
to the valuēf(x0, aj) obtained using linear smoothing at the
current, coarser scale.

B. Defining the Blending Functions
The blending functions{Cj(x); j = 2, . . . , J} are defined

via the following analysis of the augmented scale-space
fingerprint for f(x). The augmented scale-space fingerprint
(Figure 1) is a graphical depiction of the locations of the
zero-crossings of the first two derivatives of the linearly
smoothed signal as a function of scale [8]. At a particular
scaleaj , each zero-crossing location off̄(2)(x, aj) is labeled
as either a local maximum (edge) or local minimum (ledge)
in gradient magnitude, depending on its proximity to nearby
zero-crossing locations of̄f(1)(x, aj) (i.e., ridges and troughs).
For each of the resulting edge locations{xjk; k = 1, . . . , Kj},
the distance∆xjk separating the ridge, trough, or ledge
on either side of the edge is calculated. The blending
function Cj(x) is then assigned values ranging between
zero and one at the edge locations, based on the separation
distances{∆xjk; k = 1, . . . , Kj}.

The value assigned toCj(x) at the edge locationxjk

is denoted byγjk and is selected using a monotonically
decreasing function that maps larger separation distances
to smaller values. This heuristic mapping is based on the
observation that the separation distance∆x tends to be larger
for an isolated true edge, than it is for a random second
derivative zero-crossing associated with noise (Figure 1). For
simplicity, a piecewise linear mapping is used:

γjk =




1 ∆xjk < αj

1− ∆xjk−αj

βj−αj
αj ≤ ∆xjk < βj

0 βj ≤ ∆xjk,

(2)

where αj and βj are selected as follows. The separation
distances{∆xjk; k = 1, . . . , Kj} are first sorted in ascending
order, and thenαj andβj are set to values corresponding to a
lower and an upper percentile of the sorted values, respectively.
The lower and upper percentiles can be selected based on the
expected numbers of true and random edges at thejth scale. In
practice, the expected number of random edges due to noise
in the linearly smoothed signal̄f(x, aj) will vary roughly

−20 0 20

1

2

4

8

x

a

Figure 1: Augmented scale-space fingerprint for an isolated edge
of width four and a CNR of 2.5. Solid fingerprint lines depict the
zero-crossing locations of̄f(2)(x, a) (i.e., edge and ledge locations)
over a continuum of scales. Dashed lines depict the zero-crossing
locations of̄f(1)(x, a) (i.e., ridge and trough locations). The noiseless
signal is shown with the noisy signal below the fingerprint.

inversely with the scaleaj , while the number of isolated true
edges will remain roughly constant.

Given the values{γjk; k = 1, . . . , Kj} at the edge
locations, the blending functionCj(x) can be defined for
all x as follows. The blending functionCj(x) must be
continuous through at least its second derivative, in order for
the nonlinearly smoothed signalf̃(x, aj) to have continuous
first and second derivatives. Rearranging the factors in
equation (1) and denoting the first and second derivatives
of Cj(x) by C(1)

j (x) andC(2)
j (x), respectively, one obtains the

following expressions for the first and second derivatives of the
nonlinearly smoothed signalf̃(x, aj):

f̃(1)(x, aj)

=




f̄(1)(x, a1) j = 1

f̃(1)(x, aj−1)

+ Cj(x)
[
f̄(1)(x, aj)− f̃(1)(x, aj−1)

]
+ C

(1)
j (x)

[
f̄(x, aj)− f̃(x, aj−1)

] j = 2, . . . , J

(3)

f̃(2)(x, aj)

=




f̄(2)(x, a1) j = 1

f̃(2)(x, aj−1)

+ Cj(x)
[
f̄(2)(x, aj)− f̃(2)(x, aj−1)

]
+ 2C

(1)
j (x)

[
f̄(1)(x, aj)− f̃(1)(x, aj−1)

]
+ C

(2)
j (x)

[
f̄(x, aj)− f̃(x, aj−1)

]
j = 2, . . . , J.

(4)

To achieve the desired continuity in a relatively straightforward
fashion, the blending functionCj(x) is defined to be the
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Figure 2: The smooth step functionSjk(x) given by equation (6).

piecewise quartic function

Cj(x)

=




γj1 x < xj1

γj(k−1) +
[
γjk − γj(k−1)

]
Sjk(x)

xj(k−1) ≤ x < xjk;
k = 2, . . . , Kj

γjKj xjKj ≤ x,

(5)

whereSjk(x) is a smooth step function obtained by integrating
the uniform cubic B-spline basis function on which the linear
smoothing is based:

Sjk(x) =
∫ x

xj(k−1)

1
vjk

Π∗4
(

u− ujk

vjk

)
du, (6)

where ujk =
[
xj(k−1) + xjk

]
/2, vjk =

[
xjk − xj(k−1)

]
/4,

andΠ∗4(u) denotes the uniform cubic B-spline basis function.
The function Sjk(x) is zero at x = xj(k−1) and increases
monotonically to one atx = xjk (Figure 2). It is continuous
through its third derivative, and its first through third derivatives
are all zero at bothx = xj(k−1) and x = xjk. Thus, using
this construction one obtains a blending functionCj(x) that
ranges between zero and one and is continuous through its
third derivative.

III. T HE n-D ALGORITHM

Edges can be preserved in multidimensional image data by
applying the 1-D algorithm independently along the coordinate
axis directions, as well as along the diagonal directions of the
2-D planes spanned by the coordinate axes, and averaging the
results. This builds on the work described in [2], in which
processing was performed only along the coordinate axis
directions.

By processing the diagonal directions, additional
information is obtained that allows one to characterize the
first and second order differential properties of the data
in any direction [8]. Using this additional information,
multidimensional edge detection operators such as the
Laplacian or the second derivative in the direction of the
gradient can be composed and used to segment the data [8].

IV. RESULTS

A. Simulated 1-D Edge
To test the performance of the 1-D algorithm, Gaussian

white noise was added to a simulated signal composed of
a single ramp transition of width four and a CNR of 2.5
(Figure 1). Linear smoothing was performed at four scales
using uniform cubic B-spline basis functions with scale
parametersa1 = 1, a2 = 2, a3 = 4, and a4 = 8. Nonlinear
smoothing was performed at the scalesa2, a3, anda4, using
equation (1). Results at the scalea4 are shown in Figure 3(a).

The blending functionsC2(x), C3(x), and C4(x) were
defined using values forβ2, β3, and β4 in equation (2)
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Figure 3: Results for a simulated 1-D edge of width four and a CNR
of 2.5. In (a), the dashed line and the solid line depict the linear and
nonlinear smoothing results, respectively, at the scalea4 = 8. The
dotted line depicts the unsmoothed signal, which is shown also in
Figure 1 with its scale-space fingerprint. The blending functions used
to perform the nonlinear smoothing are shown in (b).
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corresponding to the94th, 89th, and 80th percentiles of the
sorted separation distances, respectively [Figure 3(b)]. The
upper percentile forβ4 was selected so that four out of every
five edges would undergo some smoothing at the coarsest
scale,a4 = 8. Then, using the heuristic that the expected
number of random edges due to noise varies roughly inversely
with scale, the upper percentiles forβ3 andβ2 were selected
so that eight out of nine edges and 16 out of 17 edges would
undergo some smoothing at the finer scalesa3 = 4 anda2 = 2,
respectively. The lower percentiles associated withα2, α3,
and α4 in equation (2) were selected to be one-half of the
upper percentiles, i.e., the47th, 44th, and 40th percentiles,
respectively.

The nonlinear smoothing yielded a sharper edge than did
the linear smoothing, and provided comparable smoothing
away from the edge [Figure 3(a)]. The blending functions
consistently reached their minimum near the edge, thus
reducing the amount of smoothing in the neighborhood of the
edge [Figure 3(b)]. Away from the edge, the blending functions
increased, thus increasing the amount of smoothing.

B. Respiratory Gated PET Transmission Images
A 3-D version of the n-D algorithm was applied to

respiratory gated PET transmission images analyzed previously
in [5]. The images were reconstructed from 1.3 min of data
(190,000 counts per transverse plane) acquired during the
end-expiration respiratory phase [Figure 4(a)]. As a reference,
Figure 4(b) shows results obtained using linear smoothing with
a 7×7×7 operator that approximates a 3-D Gaussian.

The 1-D algorithm was applied independently along thex,
y, andz coordinate axis directions of the 128×128×41 dataset,
using the same linear filters that were used to process the
simulated 1-D edge in Section IV.A. Six diagonal directions
in the xy (transverse),xz (coronal), andyz (sagittal) planes
were also processed. Figure 4(c) shows the results of simply
averaging the outputs of the nine large scale (1×35) 1-D linear
filters, corresponding to the scale parametera4 = 8. For
independent, identically distributed Gaussian noise, this linear
filtering operation would yield noise reduction comparable
to that of the 7×7×7 operator used to obtain the results
in Figure 4(b). For the case of these transmission images,
averaging the outputs of the nine large scale 1-D linear filters
appears to do a better job of decorrelating the noise, at the
expense of blurring the edges.

Figure 4(d) shows the results of nonlinear smoothing at the
scalea4 = 8. The blending functionsC2(x), C3(x), andC4(x)
were defined using values forβ2, β3, andβ4 in equation (2)
corresponding to the80th, 67th, and50th percentiles of the sorted
separation distances, respectively. The upper percentile forβ4

was selected so that one out of every two edges would undergo
some smoothing at the coarsest scale,a4 = 8. Then, using the
heuristic that the expected number of random edges due to noise
varies roughly inversely with scale, the upper percentiles forβ3

andβ2 were selected so that two out of three edges and four
out of five edges would undergo some smoothing at the finer
scalesa3 = 4 anda2 = 2, respectively. The lower percentiles

(a) (b)

(c) (d)

Figure 4: Results for respiratory gated PET transmission images.
(a) Original images; (b) 7×7×7 linear smoothing; (c) average of
large scale (1×35) 1-D linear smoothing operators applied along
the three coordinate axis directions and six diagonal directions; and
(d) large scale nonlinear smoothing. The top, middle, and bottom
rows show transverse, coronal, and sagittal cross sections, respectively.

associated withα2, α3, andα4 in equation (2) were selected
to be one-half of the upper percentiles, i.e., the40th, 33rd, and
25th percentiles, respectively.

The nonlinear smoothing results shown in Figure 4(d)
were obtained in only 9.3 min using a 195 MHz MIPS
R10000-based Silicon Graphics workstation. These images
are sharper and noisier than those shown in Figure 4(c). The
nonlinear smoothing results appear to be sharper than, but not
noisier than, the results shown in Figure 4(b).

V. FUTURE DIRECTIONS

Ultimately, the figure of merit for this methodology will
be the accuracy of the segmentations obtained in conjunction
with the nonlinear edge preserving smoothing, when applied
to time sequences of noisy volumetric nuclear medicine
images. We are working to implement the edge preserving
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smoothing in 4-D, as well as to compose 4-D edge detection
operators using the analytic expressions for the directional
derivatives of the nonlinearly smoothed images. The University
of North Carolina Mathematical Cardiac Torso (MCAT)
phantom [9] will be used to validate the accuracy of the
resulting spatiotemporal segmentations.
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