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Hirsutella sinensis mycelium 
attenuates bleomycin-induced 
pulmonary inflammation and 
fibrosis in vivo
Tsung-Teng Huang1,2,3, Hsin-Chih Lai1,2, Yun-Fei Ko4,5, David M. Ojcius1,6, Ying-Wei Lan7, 
Jan Martel1,3, John D. Young1,3,4,5,8 & Kowit-Yu Chong2,7,9

Hirsutella sinensis mycelium (HSM), the anamorph of Cordyceps sinensis, is a traditional Chinese 
medicine that has been shown to possess various pharmacological properties. We previously 
reported that this fungus suppresses interleukin-1β and IL-18 secretion by inhibiting both canonical 
and non-canonical inflammasomes in human macrophages. However, whether HSM may be used 
to prevent lung fibrosis and the mechanism underlying this activity remain unclear. Our results 
show that pretreatment with HSM inhibits TGF-β1–induced expression of fibronectin and α-SMA 
in lung fibroblasts. HSM also restores superoxide dismutase expression in TGF-β1–treated lung 
fibroblasts and inhibits reactive oxygen species production in lung epithelial cells. Furthermore, HSM 
pretreatment markedly reduces bleomycin–induced lung injury and fibrosis in mice. Accordingly, 
HSM reduces inflammatory cell accumulation in bronchoalveolar lavage fluid and proinflammatory 
cytokines levels in lung tissues. The HSM extract also significantly reduces TGF-β1 in lung tissues, 
and this effect is accompanied by decreased collagen 3α1 and α-SMA levels. Moreover, HSM reduces 
expression of the NLRP3 inflammasome and P2X7R in lung tissues, whereas it enhances expression of 
superoxide dismutase. These findings suggest that HSM may be used for the treatment of pulmonary 
inflammation and fibrosis.

Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible lung disease of unclear etiology that 
predominantly occurs in middle-aged and elderly adults1,2. Although several drugs have been developed 
to treat this condition, the five-year survival rate of IPF remains less than 50% and the drugs’ serious 
adverse effects pose problems during long-term treatment. For these reasons, herbal remedies and tradi-
tional Chinese medicines have emerged as attractive alternatives for the treatment of fibrotic lung disease.

IPF is characterized by failure of alveolar re-epithelialization, differentiation of fibroblasts into myofi-
broblasts, excessive deposition of extracellular matrix (ECM), and distortion of normal lung architecture, 
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processes which ultimately result in respiratory failure3. Bleomycin (BLM) is a chemotherapeutic agent 
known to produce interstitial pulmonary fibrosis in humans and experimental animal models4,5. BLM is 
widely used to induce lung fibrosis in animal models and to identify the pathogenic mechanisms under-
lying this condition as well as novel therapeutic strategies. Previous studies have shown that many proin-
flammatory cytokines and profibrotic growth factors, including interleukin-1 beta (IL-1β ), IL-6, IL-18, 
tumor necrosis factor-alpha (TNF-α ), and transforming growth factor-beta 1 (TGF-β 1) are involved in 
pulmonary inflammation and fibrosis6–8.

TGF-β 1 is one of the most studied fibrogenic cytokines that play a role in induction and development 
of pulmonary fibrosis9. This cytokine initiates the differentiation of fibroblasts into active myofibroblasts, 
which promote excessive collagen and ECM deposition, and contribute to the recruitment of inflamma-
tory cells10. Differentiation of fibroblasts into myofibroblasts is identified by the expression of α -smooth 
muscle actin (α -SMA), and both fibroblasts and myofibroblasts are primary sources of ECM proteins 
such as fibronectin and collagen11. In addition, TGF-β 1 induces fibroblast-to-myofibroblast differentia-
tion by activating the Smad2/3 and Akt signaling pathways12,13. Enhanced expression of TGF-β 1 in the 
lungs has been detected in lung fibrosis animal models and IPF patients14,15. These observations suggest 
that inhibition of the fibrogenic cytokine TGF-β 1 represents a potential strategy for pulmonary fibrosis 
therapy.

IL-1β  and IL-18 are produced intracellularly from the inactive precursors, pro-IL-1β  and 
pro-IL-1816. Mature IL-1β  and IL-18 are secreted following cleavage of pro-IL-1β  and pro-IL-18 by the 
cysteine-protease, caspase-1, originally identified as IL-1β  converting enzyme. Activation of caspase-1 
requires the assembly and activation of a cytosolic protein complex called the inflammasome, which 
consists of a nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family member, the 
adaptor protein apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), 
and pro-caspase-117. Once assembled, the inflammasome activates caspase-1, which then induces the 
cleavage and maturation of pro-IL-1β  and pro-IL-18. The NLRP3 inflammasome (for NOD-like receptor, 
pyrin domain containing-3) is activated by a wide range of stimuli, including ATP, monosodium urate 
crystals, cholesterol crystals, UV irradiation, microbes, silica, asbestos, and amyloid-β 18–22. A recent study 
performed using gene knockout mice suggests that the NLRP3 inflammasome mediates the development 
of fibrosis in systemic sclerosis23. Furthermore, NLRP3 appears to play a key role in promoting TGF-β 1 
signaling and Smad2/3 activation in kidney epithelial cells24.

BLM treatment has been shown to increase the production of reactive oxygen species (ROS) and 
induce the development of lung fibrosis25. In addition, ROS have been shown in many cases to trigger 
NLRP3 inflammasome activation18. To counteract oxidative stress induced by ROS, lung tissues express 
several antioxidant enzymes, such as superoxide dismutases (SODs), which convert superoxide radicals 
to hydrogen peroxide26. SOD expression is markedly reduced in BLM-induced lung fibrosis27. Another 
study showed that increased ATP levels were found in bronchoalveolar lavage fluid (BALF) of patients 
with IPF and in BLM–treated mice. Furthermore, the purinergic receptor P2X7R is activated by ATP, 
which is released by injured lung cells following BLM treatment, leading to activation of the NLRP3 
inflammasome, cleavage and secretion of IL-1β , and development of lung fibrosis28.

Cordyceps sinensis (also known as Ophiocordyceps sinensis) is a parasitic fungus that infects larvae 
of ghost moths29. Used for centuries in Asia as one of the most valued traditional Chinese medicines,  
C. sinensis has been shown in recent years to possess various therapeutic functions, including anti-cancer, 
anti-diabetic, anti-inflammatory, immunomodulatory, and anti-oxidant effects30–33. Owing to the rar-
ity of wild C. sinensis fruiting bodies, which grow exclusively on the Tibetan-Qinghai plateau and the 
Himalayas, the cultivation of Hirsutella sinensis, the anamorphic mycelial stage of natural C. sinensis, has 
emerged as an attractive substitute for the preparation of health supplements34. In our previous studies, 
we showed that an ethanol extract of H. sinensis mycelium (HSM) suppresses IL-1β  and IL-18 secre-
tion by inhibiting both canonical and non-canonical inflammasomes in human macrophages35. Recently,  
C. sinensis was shown to reduce liver fibrosis by inhibiting TGF-β 1, α -SMA, collagen type I and III 
expression, as well as TGF-β 1–mediated Smad2/3 signaling36,37. Other studies have shown that C. sinensis 
markedly attenuates the decline of renal function and renal fibrosis in subtotal nephrectomy rats—effects 
that were associated with reduced expression of the fibrogenic marker α -SMA and inhibition of TGF-β 1/
Smad signaling38. In addition, Chen et al. observed that C. sinensis fruiting bodies reduce lung fibrosis 
symptoms in rats39. However, the effects of HSM ethanol extract on lung fibrosis and the possible mech-
anism of action of this fungal remedy have not been investigated.

The objectives of the present study were to investigate whether oral intake of HSM ethanol extract 
attenuates lung inflammation and fibrosis in mice, in addition to examining the molecular mechanisms 
of this protective effect. Our results show that HSM protects mice against BLM–induced lung inflamma-
tion and fibrosis by inhibiting NLRP3 inflammasome activation, ROS production, and TGF-β 1–induced 
Smad2/3 and Akt signaling.

Methods
Chemicals and reagents.  BLM sulfate purified from Streptomyces verticillus was obtained from 
Sigma-Aldrich (St. Louis, MO, USA). Recombinant human TGF-β 1 was purchased from R&D Systems 
(Minneapolis, MN, USA). Minimum essential medium (MEM), Dulbecco’s modified Eagle’s medium 
(DMEM)/Ham’s F12, fetal bovine serum (FBS), penicillin, and streptomycin were purchased from Life 
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Technologies (Grand Island, NY, USA). Antibodies against Akt, phospho-Akt, Smad2/3, and phos-
pho-Smad2/3 were obtained from Cell Signaling Technology (Danvers, MA, USA); antibodies against 
ASC, caspase-1, fibronectin, IL-1β , IL-18, NLRP3, SOD, and β -actin were purchased from Santa Cruz 
Biotechnology (Dallas, TX, USA). Antibodies raised against TGF-β 1 and P2X 7R were purchased from 
Abcam (Cambridge, MA, USA). Antibodies against α -SMA and collagen, type III, alpha 1 chain (colla-
gen 3α 1) were obtained, respectively, from Sigma-Aldrich and Acris Antibodies (San Diego, CA, USA). 
Horseradish peroxidase-conjugated anti-rabbit and anti-mouse secondary antibodies were obtained from 
Santa Cruz Biotechnology.

Preparation of HSM ethanol extract.  The H. sinensis strain originally isolated and characterized 
at Chang Gung Biotechnology (Taipei, Taiwan) was identified based on DNA analysis of internal tran-
scribed spacers40. The ethanol extract was prepared as described earlier35.

Cell culture and treatment.  Fetal human MRC-5 lung fibroblasts (BCRC-60023, Bioresource 
Collection and Research Center, Hsinchu, Taiwan) and mouse MLE12 lung epithelial cells (CRL-2110, 
American Type Culture Collection, Manassas, VA, USA) were maintained in MEM and DMEM/Ham’s 
F12 supplemented with 10% FBS, 100 units/ml of penicillin, and 100 μ g/ml of streptomycin (Life 
Technologies). MRC-5 cells were cultured in 6-well plates at a density of 2 ×  105 cells/well at 37 °C in 
a humidified cell culture incubator with 5% CO2. Before experiments, MRC-5 cells were washed with 
phosphate buffered saline (PBS) and serum-starved for 24 h, prior to stimulation with HSM extract (1% 
or 2%, v/v) or with 2% ethanol as a control for the time indicated. TGF-β 1 (5 ng/ml) was used as positive 
control to induce myofibroblast differentiation. At the end of the exposure period, the cells were lysed to 
isolate proteins for Western blot analysis.

Cell viability assay.  Cell viability was determined using a commercial MTT-based in vitro toxicology 
assay (Sigma-Aldrich), which detects viable cells colorimetrically based on the production of purple for-
mazan. MRC-5 and MLE12 cells were initially seeded in 96-well plates at a density of 2 ×  104 cells/well 
and 3 ×  104 cells/well, respectively, prior to incubation for 24 h at 37 °C. Cell culture media were replaced 
by complete media containing the indicated concentration of HSM ethanol extract, prior to incubation 
for 24 h or 48 h. After incubation, 10 μ l of MTT (5 mg/ml) were added to each well, and the plates were 
incubated for 4 h at 37 °C. The content of each well was eluted and the precipitate was dissolved in 100 μ l 
of the MTT solubilization solution. Absorbance was read at 570 nm using a SpectraMax M5 multi-mode 
microplate reader (Molecular Devices, Sunnyvale, CA, USA). Cell viability (%) was calculated as the ratio 
of surviving cells in the HSM-treated group divided by that of the control group. All treated samples and 
controls were tested in triplicate.

Murine model of bleomycin-induced lung fibrosis.  Eight-week-old male C57BL/6 mice (average 
weight of 22–25 g) were purchased from the National Laboratory Animal Center (Taipei, Taiwan). The 
mice were maintained in an air-conditioned animal facility under constant temperature and humidity 
with a 12-h day-night cycle and food and water ad libitum. All experimental procedures were conducted 
under the Institutional Animal Care and Use Committee protocols (ID number: CGU12–024) approved 
by Chang Gung University and in compliance with the Animal Welfare Act and the principles set forth in 
the Guide for the Care and Use of Laboratory Animals National Research Council, National Academies 
Press, 1996. Mice were randomly divided into four treatment groups: (1) PBS+ EtOH: intratracheal PBS 
plus oral ethanol; (2) PBS+ HSM: intratracheal PBS plus oral HSM ethanol extract; (3) BLM+ EtOH: 
intratracheal BLM plus oral ethanol; (4) BLM+ HSM: intratracheal BLM plus oral HSM ethanol extract. 
The BLM sulfate stock was prepared by dissolving the compound in sterile PBS at 10 mg/ml and storing 
small aliquots at 4 °C. Mice were anesthetized using isoflurane (Abbott Laboratories, Abbott Park, IL, 
USA) and BLM was dissolved in 50 μ l of PBS and administered intratracheally (1.5 mg/kg) on day 0 as 
previously described41 while control animals received an equal volume of sterile PBS. The 10% HSM 
extract used in this experiment was prepared by dissolving HSM ethanol extract in 0.1 ml of sterile PBS. 
HSM extract (10%) or control ethanol (10%) was administered by oral gavage once daily for 7 days prior 
to the intratracheal instillation of BLM or PBS and until conclusion of the experiments. On day 7 or 21, 
animals were sacrificed using 2.5% avertin (Sigma-Aldrich).

Bronchoalveolar lavage fluid (BALF).  Seven days after BLM treatment, five mice in each group 
were killed and BALF was obtained by washing three times with 1 ml of cold sterile PBS through a 
tracheal cannula. BALF samples were centrifuged at 1,000 ×  g for 10 min at 4 °C, and the cell pellet was 
resuspended in PBS. Total BALF cell count was performed using a hemocytometer. The cells were cyto-
spun onto a microscope slide and stained with Wright-Giemsa (Sigma-Aldrich) for cell classification. 
Percentages of BALF macrophages, neutrophils and lymphocytes were obtained by counting leukocytes 
under light microscopy.

Histopathological analysis.  Tissue samples from the left lung of sacrificed mice were collected and 
immediately fixed with 4% paraformaldehyde before embedding with paraffin wax and routine process-
ing. Serial paraffin sections (4 μ m) were prepared using a rotator microtome, and deparaffinized tissue 
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sections were stained with hematoxylin and eosin (H&E, Sigma-Aldrich) to evaluate morphological 
changes in lungs.

The severity of lung fibrosis was evaluated using Masson’s trichrome staining (Trichrome Stain Kit, 
Sigma-Aldrich). Masson’s trichrome staining was used to differentiate collagen from other fibers, staining 
nuclei in black, cytoplasm and muscles in red, and collagen in blue. To determine the severity of lung 
fibrosis, each successive field was semi-quantitatively assessed based on previous protocols41. Criteria 
for grading lung fibrosis were as follows: Grade 0, normal lung; Grade 1, minimal fibrous thickening 
of alveolar or bronchiolar walls; Grade 2–3, moderate thickening of walls without obvious damage to 
lung architecture; Grade 4–5, increased fibrosis with definite damage to lung structure and formation of 
fibrous bands or small fibrous masses; Grade 6–7, severe distortion of lung structures and large fibrous 
areas (honeycomb lungs’ were classified in this category); Grade 8, total fibrous obliteration of fields. The 
mean score of all fields was used as the fibrosis score of that lung section.

Immunohistochemical staining of α-SMA, ASC, and NLRP3.  Paraffin-fixed sections were treated 
with xylene and a graded ethanol series to remove paraffin and for rehydration. The lung sections were 
microwave-heated (750 W, three 5-minute cycles) in citrate buffer (10 mM of sodium citrate, pH 6.0) 
for antigen retrieval. Endogenous peroxidase was quenched using 3% hydrogen peroxide (H2O2) for 
15 min at room temperature. The sections were immunostained with primary antibodies against α -SMA, 
ASC, or NLRP3 overnight at 4 °C, prior to incubation in EnVision Detection Systems (Dako, Glostrup, 
Denmark) according to the manufacturer’s instructions. The bound antibodies were visualized using 
diaminobenzidine, and all slides were counterstained with hematoxylin, dehydrated by gradually increas-
ing the concentration of ethanol, cleared in xylene, and mounted in glycerol-gelatin. Images from stained 
slides were acquired with HistoFAXS (Tissue FAX Plus; Tissue Gnostics, Vienna, Austria).

RNA isolation and quantitative real-time RT-PCR.  Total RNA from lung tissues were isolated 
using RNeasy Mini Kit (Qiagen, Valencia, CA, USA) according to the protocol provided by the man-
ufacturer. One microgram of total RNA was reverse-transcribed in a solution (final volume of 20 μ l) 
containing oligo dT primer, dNTP, and reverse transcriptase (SuperScript III, Invitrogen, Carlsbad, CA, 
USA). Sequences of the mouse gene-specific primers used in this study are listed in Table 1. Quantitative 
real-time PCR was performed with SYBR Green Master Mix (Roche, Mannheim, Germany) as described 
previously42. Relative quantification of gene expression was assessed using a mathematical model pro-
vided by the manufacturer. Relative mRNA levels were normalized to β -actin mRNA. Each fold expres-
sion is based on an average of at least 3–5 biological replicates per treatment group.

Western blot analysis.  Cellular proteins were isolated by resuspending cells or lung tissues in RIPA 
lysis buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.25% deoxycholic acid, 1% Nonidet P-40, 1 mM 
EDTA) (Millipore, Billerica, MA, USA) containing a protease inhibitor cocktail (Roche). Total protein 
concentrations were assessed using a commercial Bradford assay (Bio-Rad, Hercules, CA, USA). Equal 
amounts of protein were loaded and separated onto 8-to-12% SDS-PAGE. After electrophoresis, the 
resolved proteins were transferred to PVDF membranes (Millipore). Membranes were blocked with 5% 
defatted milk in TBS-T (0.1% Tween-20 in 1 ×  TBS, pH 7.4) for 1 h at room temperature, followed 
by incubation overnight with primary antibodies at 4 °C. After washing steps, the membranes were 
incubated with horseradish peroxidase-conjugated secondary antibodies for 1 h at room temperature, 
and protein signals were revealed using enhanced chemiluminescence reagents (Millipore). To adjust 

Gene Forward primer (5′–3′) Reverse primer (5′–3′)

ASC GAGCTGCTGACAGTGCAAC GCCACAGCTCCAGACTCTTC

Caspase-1 ACCCTCAAGTTTTGCCCTTTAGAA TCTGAGGTCAACTTGGACTCCAAC

Collagen 3α 1 GTTCTAGAGGATGGCTGTACTAAACACA TTGCCTTGCGTGTTTGATATTC

IL-1β  GCTCATCTGGGATCCTCTCC CCTGCCTGAAGCTCTTGTTG

IL-6 CCACTTCACAAGTCGGAGGCTTA GCAAGTGCATCATCGTTGTTCATAC

IL-18 ACAACTTTGGCCGACTTCAC GGGTTCACTGGCACTTTGAT

NLRP3 AGAGCCTACAGTTGGGTGAAATG CCACGCCTACCAGGAAATCTC

P2X7R TCTTCCGACTAGGGGACATCT ATGGGACCAGCTGTCTAGGTT

SOD GCAGGGAACCATCCACTT TGCCCAGGTCTCCAACAT

TGF-β 1 AAACGGAAGCGCATCGAA GGGACTGGCGAGCCTTTAGTT

TNF-α  GTGGAACTGGCAGAAGAGGC AGACAGAAGAGCGTGGTGGC

β -actin GATTACTGCTCTGGCTCCTAGC GACTCATCGTACTCCTGCTTGC

Table 1.   Primer sequences used for quantitative real-time RT-PCR.
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for minor loading differences, the optical density of each protein was normalized against β -actin. For 
Western blot analysis of lung tissues, 3 to 5 mice were analyzed for each group.

Measurement of ROS production.  ROS production in MRC-5 cells and MLE12 cells was meas-
ured using the Total ROS/Superoxide detection kit (Enzo Life Sciences, Farmingdale, NY, USA). Briefly, 
MRC-5 cells and MLE12 cells were seeded in 96-well black wall/clear bottom plates at a density of 2 ×  104 
cells/well and 3 ×  104 cells/well, respectively, and allowed to adhere for 24 h. Cell culture media were 
replaced by complete media containing the indicated concentration of HSM ethanol extract for 24 h, 
prior to treatment with BLM (2.5 μ M) for 24 h. In some experiments, the cells were treated with pyo-
cyanin (200 μ M) for 30 min at 37 °C. After treatment, the cells were washed with 200 μ l of 1×  washing 
buffer and loaded with 100 μ l of ROS/Superoxide detection reagent, prior to incubation at 37 °C for 1 h. 
Absorbance was read at a wavelength of 520 nm after excitation at 488 nm. Intracellular ROS production 
was determined based on the increase of relative fluorescence intensity.

Statistical analysis.  All results are shown as mean values ±  standard error of the mean (SEM) from 
at least three independent experiments with duplicate of each condition. Comparisons for multiple 
groups were performed by one-way analysis of variance (ANOVA) followed by Dunnett’s post hoc test. 
Differences between two means were evaluated using the two-tailed Student’s t-test. For all analyses, a p 
value < 0.05 was considered statistically significant.

Results
HSM ethanol extract inhibits TGF-β1–induced differentiation of lung fibroblasts into myofi-
broblasts.  We first examined the effect of HSM on the viability of lung fibroblasts. Human MRC-5 
lung fibroblasts were treated with HSM (1, 2, or 5%) or the vehicle (ethanol) for 24 h or 48 h, and cell 
viability was assessed using the MTT assay. As shown in Fig. 1a,b, HSM at 5% significantly reduced cell 
viability after 24 h and 48 h of incubation compared to control ethanol. Based on this observation, the 
experiments in cultured lung fibroblasts were conducted using 1 and 2% of HSM extract.

Myofibroblast accumulation represents an important sign of lung and liver fibrosis43. Fibroblasts 
treated with the profibrogenic cytokine TGF-β 1 show increased expression of α -SMA and fibronectin, 
which are important markers of myofibroblast differentiation. We used an in vitro model of fibroblast 
activation to examine the effects of HSM on TGF-β 1–induced fibroblast differentiation. Serum–starved 
MRC-5 fibroblasts were treated with HSM extract (0–2%) for 24 h, followed by exposure to TGF-β 1 
(5 ng/ml) for 24 h. Cell differentiation was assessed by measuring α -SMA and fibronectin using Western 
blotting. While α -SMA and fibronectin protein expression was significantly induced by TGF-β 1, pre-
treatment with HSM reduced α -SMA and fibronectin levels in a dose-dependent manner (Fig. 1c,d).

HSM inhibits TGF-β1–induced phosphorylation of Smad2/3 and Akt in lung fibro-
blasts.  TGF-β 1 induces fibroblast-to-myofibroblast differentiation by activating Smad–dependent 
and Smad–independent responses, including PI3K/Akt–mediated signaling12,13. To determine the sign-
aling pathways affected by HSM, we pretreated lung fibroblasts with the HSM extract for 24 h, prior to 
TGF-β 1 treatment (5 ng/ml) for 6 h. TGF-β 1 induced a significant increase of phosphorylated Smad2/3 
and Akt in lung fibroblasts, whereas total Smad2/3 and Akt protein levels remained constant (Fig. 1e,f). 
Pretreatment with HSM for 24 h significantly decreased phosphorylated Smad2/3 and Akt protein levels 
in TGF-β 1–treated cells, while total Smad2/3 and Akt were not affected (Fig. 1e,f). These results indicate 
that the HSM ethanol extract inhibits the effects of TGF-β 1 on Smad2/3 and Akt signaling pathways.

HSM attenuates profibrotic and inflammatory responses in a murine model of BLM–induced 
pulmonary fibrosis.  BLM–induced lung fibrosis is a well-established animal model in which oral 
intake of BLM results in airway epithelial cells damage, inflammation, fibroblast proliferation and dif-
ferentiation, and extracellular collagen deposition in lung tissues5. Figure  2a illustrates the strategy 
used to investigate the effects of HSM in male C57BL/6 mice treated with BLM. In the control group 
(PBS +  EtOH), no apparent histological change was detected in lung tissues (Fig.  2b). In contrast, the 
lung parenchyma of BLM–treated mice showed increasing alveolar wall thickness, inflammatory cell 
infiltration, vascular congestion, and alveolar space collapse (Fig.  2b). These histopathological changes 
were improved by HSM pretreatment (Fig. 2b).

To examine whether HSM produces anti-fibrotic effects, we used Masson’s trichrome staining to assess 
collagen deposition in lung tissues, 21 days following BLM administration. Lung sections from the con-
trol group showed a small amount of collagen fibers (stained blue) in the alveolar septum (Fig.  2b, 
Masson’s trichrome). The lungs of BLM–treated mice (BLM +  EtOH) displayed severe collagen depo-
sition and fibrotic lesions. Accordingly, the Ashcroft score—used to assess the severity of lung fibro-
sis—was elevated following treatment with BLM compared to the control PBS+ EtOH group (Fig.  2c). 
Notably, HSM pretreatment reduced both collagen deposition and the Ashcroft score in BLM–treated 
animals (BLM +  HSM) (Fig. 2b, c).

We also performed BALF cell counts to evaluate the effects of HSM on the inflammatory response 
induced by BLM. Administration of BLM caused extensive infiltration of inflammatory cells, as shown by 
significant increases in total cells, macrophages, neutrophils, and lymphocytes (Fig. 2d–g). On the other 
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hand, HSM reversed total cell and leukocyte accumulation in BALF of BLM–treated mice (Fig. 2d–g). 
Based on these results, we conclude that the HSM ethanol extract significantly decreases fibrosis and 
inflammatory cell infiltration in the lungs of BLM–treated mice.

Figure 1.  Anti-fibrotic effects of HSM ethanol extract on the production of myofibroblast marker 
proteins α-SMA and fibronectin through suppression of Smad2/3 and Akt signaling pathways in MRC-5 
human lung fibroblasts. Cells were treated with various concentrations (1, 2, and 5%) of HSM extract for 
24 h (a) or 48 h (b), and cell viability was measured using the MTT assay. (c,d) Cells were serum-starved 
overnight, before treatment with varying concentrations (1 and 2%) of HSM extract for 24 h and incubation 
with TGF-β 1 (5 ng/ml) for 24 h. Expression of the myofibroblast markers α -SMA and fibronectin were 
evaluated in whole cell lysates by Western blotting. β -actin was used as a loading control. Relative protein 
levels were quantified by scanning densitometry and were normalized to β -actin. (e,f) Cells were pretreated 
with HSM extract (1 and 2%), followed by treatment with TGF-β 1 (5 ng/ml) for another 6 h. Phosphorylated 
and total Smad2/3 and Akt were measured by Western blotting against phospho-Smad2/3, Smad2/3, 
phospho-Akt and Akt. Blots were analyzed by densitometry and the results were expressed as relative units. 
Data shown represent means ±  SEM of three experiments performed in duplicate. #P <  0.05 versus untreated 
or ethanol–treated cells. *P <  0.05 versus control (TGF-β 1–treated) cells.
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Figure 2.  HSM alleviates BLM–induced lung fibrosis and inflammatory cells accumulation in mice. 
(a) Experimental design: Mice were instilled intratracheally with BLM (1.5 mg/kg in 50 μ l of PBS). The 
treatment group received HSM ethanol extract (10%) orally for a week before BLM instillation. The mice 
were sacrificed on day 7 and 21 following BLM instillation, and lung samples were collected for further 
analysis. (b) Paraffin sections from lung tissues of the mice on day 21 were stained with H&E or Masson’s 
trichrome. Scale bars = 50 μ m. (c) Quantitative examination of the effects of HSM ethanol extract on 
BLM–induced lung fibrosis. (d–g) BALF was collected 7 days after BLM treatment to quantify total cells, 
macrophages, neutrophils, and lymphocytes. The values shown represent means ±  SEM (n =  5 in each 
group). #P <  0.05 versus PBS +  EtOH group. *P <  0.05 versus BLM +  EtOH group.
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HSM reduces expression of TGF-β1, collagen 3α1, and α-SMA in lung tissues of BLM–treated 
mice.  The profibrotic cytokine TGF-β 1 mediates the development of pulmonary fibrosis induced by 
BLM10. To evaluate the effects of HSM on TGF-β 1 expression, we monitored TGF-β 1 mRNA and protein 
expression levels in murine lung tissues using quantitative real-time RT-PCR and Western blotting. Our 
results showed that TGF-β 1 mRNA and protein expression was induced by BLM (Fig. 3a,b). However, 
pretreatment with HSM significantly reduced TGF-β 1 induction (Fig. 3a,b).

A previous study showed that collagen deposition in the BLM model of lung fibrosis is associated with 
enhanced expression of type III collagen44. We examined the effects of HSM on collagen 3α 1 mRNA and 
protein expression in lung tissues of BLM–treated mice. Collagen 3α 1 mRNA expression increased in 
lung tissues on day 7 following BLM treatment, whereas HSM treatment only slightly reduced collagen 
3α 1 expression (Supplementary Fig. S1a; day-7 histological lung sections are shown in Supplementary 
Fig. S2). On the other hand, HSM considerably reduced collagen 3α 1 mRNA and protein expression in 
lung tissues of BLM-treated mice when examined on day 21 (Fig. 3c,d).

Next, we used α -SMA immunohistochemical staining to measure the extent of myofibroblast activa-
tion and fibrosis in lung sections. Lungs from BLM–treated mice displayed upregulated levels of α -SMA 
and increased numbers of α -SMA-positive cells, and these effects were significantly suppressed by HSM 
pretreatment (Fig.  3e). The protein expression of α -SMA was also detected via Western blotting in 
murine lung tissues. The expression level of α -SMA increased following BLM administration, while 
HSM pretreatment significantly reduced α -SMA expression on day 21 (Fig.  3f). These results indicate 
that HSM inhibits myofibroblast activation and collagen deposition in BLM–induced lung fibrosis.

HSM attenuates the expression and production of IL-1β and IL-18 in lungs of BLM–treated 
mice.  Both IL-1β  and IL-18 play important roles in the pathogenesis of BLM–induced lung injury in 
animal models and humans6. To investigate whether HSM modulates the production of these proinflam-
matory cytokines, we examined their expression in the lungs of mice on day 7 and 21 using real-time 
RT-PCR. The mRNA level of IL-1β  increased in lungs of BLM–treated mice sacrificed on day 7, and 
pretreatment with HSM appeared to prevent this effect; however, the effect of HSM did not reach sta-
tistical significance in this case (Supplementary Fig. S1b). In addition, HSM did not significantly affect 
the mRNA level of IL-18 compared with the control group (Supplementary Fig. S1c). On day 21, HSM 
prevented the induction effects of BLM on IL-1β  and IL-18 expression (Fig. 4a,b). IL-1β  and IL-18 pro-
tein expression in lungs was also assessed using Western blotting. Similar to mRNA results, the protein 
levels of cleaved IL-1β  and IL-18 increased in BLM–treated mice (day 21), but HSM–pretreated mice 
showed significantly lower levels of the cleaved cytokines (Fig. 4c,d).

Previous studies have shown that the proinflammatory cytokines IL-6 and TNF-α  also increase fol-
lowing BLM treatment45. As shown in Supplementary Fig. S1d and e, no statistically significant differ-
ence was noted in the mRNA levels of IL-6 and TNF-α  on day 7. However, on day 21, the mRNA levels 
of both cytokines were reduced by HSM when compared to the BLM group (Fig.  4e,f). These results 
indicate that HSM regulates lung inflammation by inhibiting the expression of IL-1β , IL-18, IL-6, and 
TNF-α  in BLM–treated mice.

HSM inhibits BLM–induced caspase-1 activation and NLRP3 inflammasome expression in 
murine lungs.  Caspase-1 expression and activation is required for the cleavage and secretion of IL-1β  
and IL-18 to their active forms18. To examine the effects of HSM on caspase-1 expression and activation, 
we measured mRNA and protein expression levels of caspase-1 in the lungs of mice. While no statistical 
effect was noticed for the samples taken on day 7 (Supplementary Fig. S1f), HSM-pretreated mice showed 
markedly lower levels of caspase-1 mRNA than BLM–treated mice when analyzed on day 21 (Fig. 5a). 
Levels of active caspase-1 protein were significantly increased in the lungs of BLM–treated mice on day 
21; however, HSM significantly reduced active caspase-1 protein levels under these conditions (Fig. 5b).

The NLRP3 inflammasome is formed by three components that include the NOD-like receptor 
NLRP3, the adaptor molecule ASC, and pro-caspase-118. We examined whether HSM decreases BLM–
induced IL-1β  and IL-18 production by regulating the expression of ASC and NLRP3. As shown in 
Supplementary Fig. S1g and h, ASC and NLRP3 mRNA levels were elevated in BLM-treated mice com-
pared to the control PBS+ EtOH group (day 7). While HSM showed a tendency to reduce ASC and 
NLRP3 mRNA levels compared to the BLM+ EtOH group on day 7, the effect was not statistically sig-
nificant (Supplementary Fig. S1g, h). In contrast, HSM reduced ASC and NLRP3 mRNAs in a statistically 
significant manner in the lungs of BLM–treated mice when examined on day 21 (Fig.  5c,d). Similar 
results were obtained for the ASC and NLRP3 proteins when assessed on day 21 (Fig. 5e,f).

Immunohistochemistry analysis also demonstrated that HSM pretreatment could attenuate BLM–
induced expression of ASC and NLRP3 in lung tissues (Fig.  6a,b). Based on these results, we suggest 
that the HSM ethanol extract may attenuate BLM–induced lung inflammation by regulating the NLRP3 
inflammasome and the production of IL-1β  and IL-18.

HSM inhibits BLM–induced P2X7R expression and ROS production.  Recent studies have shown 
that BLM administration results in a large increase of ATP release and P2X7R protein expression in lung 
epithelial cells28,46. ATP binding to the purinergic receptor P2X7R activates the NLRP3 inflammasome18. 
To examine whether HSM affects the expression of P2X7R in the lungs, we performed real-time RT-PCR 
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Figure 3.  HSM inhibits TGF-β1, collagen 3α1, and α-SMA expression in lung tissues of BLM–treated 
mice. (a,c) mRNA levels of collagen 3α 1 and TGF-β 1 in lung tissues from each group of mice on day 21 
were determined by quantitative real-time RT-PCR. All data are presented as fold changes of gene expression 
normalized to β -actin. (b,d) Western blotting detection of collagen 3α 1 and TGF-β 1 expression from lung 
tissues of each group of mice on day 21. Increased collagen 3α 1 and TGF-β 1 levels were observed in BLM–
treated mice (BLM +  EtOH) compared with control mice (PBS +  EtOH). (e) Representative α -SMA staining 
of lung tissue sections from control and experimental groups at day 21. α -SMA-positive cells (myofibroblasts 
and airway smooth muscle cells) decreased in HSM-pretreated mice compared with BLM-treated mice 
(scale bars = 50 μ m). (f) Western blotting detection of α -SMA expression from lung tissues of each group of 
mice on day 21. The blots were analyzed by densitometry and normalized to β -actin. Data are presented as 
means ±  SEM of at least three separate experiments. #P <  0.05 versus PBS +  EtOH group. *P <  0.05 versus 
BLM +  EtOH group.
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and Western blotting analyses to examine P2X7R mRNA and protein expression. The levels of P2X7R 
mRNA and protein significantly increased in the lungs of BLM–treated mice (Fig.  7a,b). Notably, the 
increase of P2X7R mRNA and protein expression was largely prevented by HSM pretreatment (Fig. 7a,b).

Activation of P2X7R by ATP increases the production of ROS, which are involved in some cases in 
inflammasome activation and secretion of IL-1β  and IL-1820,47. ROS are not only produced in response 
to BLM but are also thought to contribute to the development of pulmonary fibrosis25. To ensure that the 
inhibition of ROS production was not due to cytotoxic effects produced by HSM, we cultured murine 
MLE12 lung epithelial cells for 48 h with different concentrations of HSM extract (1, 2 and 5%), prior to 
monitoring cell viability using the MTT assay. While a significant decrease of viability was observed in 
cells treated with 5% HSM compared with control ethanol–treated cells, the HSM extract produced no 

Figure 4.  HSM reduces transcription and cleavage of IL-1β and IL-18 in lung tissues of BLM-treated 
mice. IL-1β  (a) and IL-18 (b) mRNA expression levels in lung tissues from each group of mice on day 
21 were examined by real-time RT-PCR. (c,d) Western blotting was performed to detect the cleaved 
products of IL-1β  and IL-18 in lung tissues on day 21. Histograms show densitometry analysis of cleaved 
IL-1β  and IL-18 normalized to β -actin. (e,f) Levels of IL-6 and TNF-α  mRNA expression in lung tissues 
were examined on day 21 by real-time RT-PCR. Data are presented as means ±  SEM. #P <  0.05 versus 
PBS +  EtOH group. *P <  0.05 versus BLM +  EtOH group.
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cytotoxic effect at 1% or 2% (data not shown). We used a fluorescence detection kit to examine the pro-
duction of intracellular ROS in MLE12 lung epithelial cells and MRC-5 lung fibroblasts pretreated with 
HSM extract (1 or 2%) for 24 h, prior to treatment with BLM (2.5 μ M) for 24 h. As shown in Fig. 7c,d, 
treatment of MLE12 lung epithelial cells and MRC-5 lung fibroblasts with BLM increased ROS produc-
tion; however, pretreatment with HSM significantly reduced ROS production under these conditions. 
Taken together, these results show that HSM inhibits NLRP3 inflammasome activation in the lungs of 
BLM–treated mice, at least in part, by reducing P2X7R expression and ROS production.

Figure 5.  HSM suppresses BLM–induced activation of caspase-1 and expression of ASC and NLRP3 in 
lung tissues. (a) mRNA expression levels of caspase-1 in lung tissues were examined on day 21 by real-time 
RT-PCR. (b) Lung tissues from each group of mice were processed on day 21 for Western blotting to detect 
pro-caspase-1 p45 and caspase-1 subunit p20. (c,d) ASC and NLRP3 mRNA expression in mouse lung 
tissues were determined on day 21 by real-time RT-PCR. (e,f) Protein levels of ASC and NLRP3 in lung 
tissues were determined on day 21 by Western blotting. β -actin was used as a loading control. Data from 
three separate experiments are presented as means ±  SEM. #P <  0.05 versus PBS +  EtOH group. *P <  0.05 
versus BLM +  EtOH group.
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HSM enhances SOD expression.  SOD catalyzes the breakdown of superoxide radicals into oxygen 
and hydrogen peroxide in the cytoplasm, thereby acting as a potent antioxidant enzyme26. Decreased 
SOD expression has been observed in BLM-treated animals with pulmonary fibrosis27. To evaluate 
whether HSM pretreatment can modulate SOD expression in the lungs of BLM–treated mice, we exam-
ined SOD mRNA and protein expression in lung tissues. On day 21, SOD mRNA and protein levels 
were significantly reduced in the lungs of BLM-treated mice (BLM+ EtOH) compared with control mice 
(PBS+ EtOH) (Fig. 8a,b). However, pretreatment with HSM increased SOD mRNA and protein expres-
sion to levels similar to that of the control PBS group (Fig. 8a,b).

TGF-β 1 has been shown to suppress the expression of SOD in a previous study48. We examined the 
effects of HSM on TGF-β 1–regulated SOD expression in human MRC-5 lung fibroblasts. SOD protein 
expression was markedly reduced in human lung fibroblasts treated with recombinant human TGF-β 1 
(Fig. 8c). Notably, pretreatment with HSM restored SOD protein levels in TGF-β 1–treated cells (Fig. 8c). 
These findings suggest that the inhibitory effects of HSM on ROS production may be due at least in part 
to modulation of SOD expression.

Discussion
The most studied fibrosis model is based on the administration of BLM to laboratory animals, a process 
which induces lung injury through two distinct phases. The first phase involves inflammation of the 
lungs and is characterized by an influx of inflammatory cells, in particular, macrophages, neutrophils, 
and lymphocytes. The second phase involves lung fibrosis which is characterized by ECM remodeling 
and extensive collagen deposition49.

We show here that an ethanol extract of HSM produces anti-fibrotic activities as shown by the inhi-
bition of TGF-β 1-induced myofibroblast differentiation and myofibroblast marker expression (α -SMA 
and fibronectin) in human MRC-5 lung fibroblast cells. TGF-β  signaling is essential for profibrotic pro-
cesses which include fibroblast activation, differentiation into myofibroblasts, and ECM deposition. The 
signaling pathways activated by TGF-β  consist of Smad-dependent and Smad-independent signaling 
pathways12,13. The Smad-dependent signaling pathway is necessary but not sufficient for a full response 
to TGF-β . Previous studies have shown that TGF-β 1-induced α -SMA and fibronectin expression may 
be partially mediated by the PI3K/Akt pathway12,13. In the present study, we first determined that the 
inhibitory effects of HSM on TGF-β 1–mediated α -SMA and fibronectin expression occurs through 

Figure 6.  Immunohistochemical staining of ASC and NLRP3 in lungs of BLM-treated mice. Lung tissues 
from mice were obtained 21 days after BLM administration and cross-sections of left lung tissues were 
stained for ASC (a) or NLRP3 (b). Representative images show expression of ASC and NLRP3 in alveolar 
macrophages and lung epithelial cells. Increased ASC and NLRP3 expression was observed in lungs of 
BLM–treated mice (BLM +  EtOH), and expression of ASC and NLRP3 was significantly reduced in lungs of 
HSM–pretreated mice (BLM +  HSM). Scale bars=50 μm.



www.nature.com/scientificreports/

13Scientific Reports | 5:15282 | DOI: 10.1038/srep15282

reduction of Smad-dependent (Smad2/3) and Smad-independent (Akt) signaling transduction in human 
lung fibroblasts. We also verified the effects of HSM in the murine model of BLM–induced pulmonary 
fibrosis in vivo. Administration of BLM caused destruction of the lung architecture and led to pulmonary 
fibrosis characterized by increased TGF-β 1 expression and collagen deposition in the lungs. Pretreatment 
with HSM reduced the biochemical and histological signs of lung fibrosis, including collagen deposition, 
and α -SMA, TGF-β 1 expression. These data are in agreement with previous studies which demonstrated 
that down-regulation of α -SMA, collagen and TGF-β 1 expression, and inhibition of TGF-β 1/Smad sign-
aling pathways are involved in mediating the effects of C. sinensis against renal and liver fibrosis36–38. On 
the other hand, we cannot rule out the possibility that the anti-fibrotic effects of HSM may also involve 
decreased expression of the TGF receptor in lung fibroblasts.

The pathogenesis of IPF begins with alveolitis which is characterized by the accumulation of inflam-
matory cells within lung parenchyma. Neutrophils and mononuclear cells accumulate and cytokines 
(e.g., TGF-β 1) are released to induce fibroblast proliferation and migration into the areas of acute lung 
injury, eventually leading to enhanced secretion of collagen and other ECM proteins50. We found that 
HSM produces anti-inflammatory activities in vivo, as shown by reduced inflammatory cell counts in 
BALF following BLM administration, and reduced IL-1β  and IL-18 expression levels in the lungs of 
BLM-treated mice. Our findings suggest that HSM inhibits the infiltration of inflammatory cells into 
lung tissues, which is an important anti-inflammatory effect in this murine model of BLM-induced lung 
fibrosis. Consistent with these results, our previous study showed that HSM inhibits ATP–induced IL-1β  
and IL-18 secretion in LPS–primed macrophages35.

Several cytokines such as IL-6 and TNF-α  are thought to promote the development of lung fibro-
sis8,51. We found that lung IL-6 and TNF-α  levels were significantly increased after BLM administration 
in the BLM–induced murine pulmonary fibrosis model. HSM significantly suppressed the production of 
IL-6 and TNF-α  in the lungs, possibly contributing to its anti-inflammatory effects. In addition, IL-1β –
dependent IL-6 upregulation plays a critical role in fibroblast activation and proliferation in human acute 
lung injury52. IL-6 trans-signaling activates canonical TGF-β  signaling via Smad 3 activation which leads 
to collagen expression in dermal fibroblasts53. Moreover, both IL-1β  and TNF-α  treatment induced the 

Figure 7.  Inhibitory effects of HSM on BLM–induced P2X7R expression and ROS production.  
(a) P2X7R mRNA expression levels in mouse lung tissues were measured on day 21 by real-time RT-PCR. 
(b) P2X7R protein expression in lung tissues was analyzed on day 21 by Western blotting. ROS production in 
MLE12 cells (c) and MRC-5 cells (d) was measured using a ROS detection kit and a fluorescence microplate 
reader. Pyocyanin (200 μ M) was used as a positive control for ROS formation. Data are representative of three 
separate experiments and are expressed as means ±  SEM. #P <  0.05 versus PBS+ EtOH group or untreated 
(ethanol-treated) cells. *P <  0.05 versus BLM +  EtOH group or control (BLM–treated) cells.
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Figure 8.  HSM restores SOD expression in the lungs of BLM-treated mice and lung fibroblasts. (a) SOD 
mRNA expression in the lung tissues was measured on day 21 by real-time RT-PCR. Data are presented 
as fold changes in gene expression normalized to β -actin. (b) SOD protein expression in the lung tissues 
was measured on day 21 by Western blotting. Quantitative results are from three independent experiments. 
(c) Western blotting of SOD protein in MRC-5 cells pretreated with 1% or 2% of HSM extract, prior to 
treatment with TGF-β 1 (5 ng/ml) for 24 h. Relative protein levels were quantified by densitometry and 
normalized to β -actin. #P <  0.05 versus PBS +  EtOH group or untreated (ethanol-treated) cells. *P <  0.05 
versus BLM +  EtOH group or control cells (TGF-β 1–treated).
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secretion of large amounts of TGF-β 1 in rat pulmonary artery endothelial cells54. Therefore, our obser-
vation that HSM inhibits BLM–induced pulmonary injury and TGF-β 1 expression may occur through 
down-regulation of IL-1β , IL-6, IL-18, and TNF-α .

It has been reported that BLM-induced IL-1β  production and lung inflammation are dependent on 
the inflammasome-adaptor protein, ASC55. Furthermore, uric acid released from injured cells exposed to 
BLM represents a major danger signal that activates the NLRP3 inflammasome, leading to IL-1β  produc-
tion and lung inflammation and fibrosis56. These authors also found that BLM-induced enhancement of 
lung collagen production was attenuated in mice lacking either NLRP3 or caspase-1, and that NLRP3– 
and ASC–deficient mice were resistant to BLM-induced skin and lung fibrosis. Inhibition of caspase-1 in 
dermal and lung fibroblasts significantly inhibited the expression of IL-1β , IL-18, collagen, and α -SMA23. 
Recently, TGF-β  signaling and Smad2/3 activation in renal tubular epithelial cells was reported to depend 
on NLRP3 independently of its ability to form a caspase-1–activating inflammasome24. NLRP3 expres-
sion increased in response to TGF-β 1 stimulation and was associated with expression of the myofibro-
blast marker α -SMA. Furthermore, TGF-β 1–induced expression of α -SMA significantly decreased in 
NLRP3–deficient renal tubular epithelial cells. Taken together, these findings suggest the involvement 
of the NLRP3 inflammasome in BLM–induced lung inflammation and fibrosis. We observed that pre-
treatment with HSM extract significantly reduced caspase-1 activation and NLRP3 and ASC expression 
in the lungs of BLM–treated mice. This observation correlated with decreased levels of IL-1β , IL-18 and 
TGF-β 1 in the lungs of HSM–pretreated mice.

Prior studies have demonstrated that BLM–induced pulmonary fibrosis is associated with marked 
increase of ROS production11,25. In pulmonary fibrosis, TGF-β  activation is considered a hallmark of 
disease progression57. In vitro studies have shown that ROS enhance the release of TGF-β 1 from human 
alveolar epithelial cells58. TGF-β 1 also increases ROS production through activation of NADPH oxidase 
in human lung fibroblasts59. Recently it was shown that mitochondria-derived ROS can activate the 
NLRP3 inflammasome18, and that ATP–induced P2X7R activation promotes the rapid production of 
ROS, which in turn activate the NLRP3 inflammasome47. Thus, inhibition of ROS production and P2X7R 
expression might play a role in the anti-fibrotic and anti-inflammatory activities of HSM extract in BLM–
induced pulmonary fibrosis. We observed that BLM caused a significant increase in the production of 
ROS in lung epithelial cells. Of note, pretreatment of the cells with HSM can inhibit BLM–induced ROS 
production. We found that HSM pretreatment can also inhibit P2X7R expression in the lungs of BLM–
treated mice. Similar observations were made in our previous study as HSM inhibited P2X7R expression 
and ROS production in LPS–primed macrophages35, indicating that the HSM ethanol extract may have 
the general ability to reduce inflammation in different mammalian cells.

In mammals, there are three different SODs: intracellular copper-zinc SOD (Cu/Zn-SOD), mitochon-
drial manganese SOD (Mn-SOD), and extracellular SOD (EC-SOD); these enzymes can be detected in all 
classes of lung cells26. Administration of lecithinized SOD (PC-SOD), a synthesized lecithinized human 
recombinant Cu/Zn-SOD, can significantly attenuate BLM–induced pulmonary inflammatory responses 
and fibrosis in mice14. In addition, mice lacking EC-SOD display a marked increase in lung inflamma-
tion and fibrosis in response to BLM60. In the present study, BLM induced a significant decrease in SOD 
expression, and pretreatment with HSM prevented the inhibitory effects of BLM and increased SOD 
levels. These findings suggest that the decreased levels of SOD in the lungs of BLM–treated mice may 

Figure 9.  Diagram illustrating the mechanisms of action of HSM ethanol extract in inhibiting the 
development of BLM-induced pulmonary inflammation and fibrosis. HSM inhibits the production of 
proinflammatory and profibrotic cytokines, P2X7R expression, ROS production, NLRP3 inflammasome 
activation, and TGF-β 1-mediated Smad-dependent and Smad-independent signaling pathways, in addition 
to stimulating the production of SOD in the experimental model of lung fibrosis.
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produce oxidative stress that further promotes the fibrotic response, whereas the HSM ethanol extract 
can inhibit oxidation and alleviate lung fibrosis by increasing SOD expression.

In conclusion, we demonstrate that the HSM ethanol extract can efficiently ameliorate BLM–induced 
lung inflammation and fibrosis by inhibiting infiltration of inflammatory cells and the production of 
immune mediators in mice. This protective effect is based on reduced expression of TGF-β 1, collagen 
3α 1, fibronectin, and α -SMA; decreased pro-inflammatory cytokines, such as IL-1β , IL-18, IL-6, and 
TNF-α ; inhibition of NLRP3 inflammasome activation; decreased expression of P2X7R; inhibition of 
ROS production; elevation of antioxidant enzyme such as SOD; and inhibition of Smad2/3 and Akt 
phosphorylation (Fig. 9). These results suggest that the HSM ethanol extract may be used to prevent and 
treat pulmonary fibrosis. In view of the existing similarities between the mechanisms responsible for the 
development of fibrosis in the lungs and in other organs such as the liver and kidneys36–38, it is tempting 
to speculate that the HSM extract may also produce beneficial effects for these conditions as well.
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