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Abstract
Intelligent systems that record, analyze, and respond to
events have become major parts of our lives. They are
available as Decision Support (DS) for many tasks and
can enhance the information on which decision-makers can
base their decisions. Decision makers need to evaluate the
available information, and they also have to decide whether
to seek information from additional information sources. The
information is often costly, and its costs and benefits must
be weighted. Also, integrating information from multiple
sources can complicate the decision task. Here, we study the
combined decision process that chooses information sources
and integrates them, if chosen, in a classification decision.
In an online experiment with 75 engineering students, we
manipulated the redundancy level of information received
from DS with already existing information. Participants’ task
in two between-subjects conditions was to classify binary
events with the option to access up to two DS systems. In
one of the conditions, the two DSs provided non-redundant
information, and in the second condition, one of them
provided fully redundant information, and the other provided
non-redundant information. We found that the decision
to access information was not affected by whether some
information was redundant (strongly correlated with already
available information). Participants used the information
to improve classification performance, and the improvement
was significantly higher when they used non-redundant
information. However, the benefits gained were smaller than
predicted from a normative model. Moreover, the use of
information from multiple non-correlated sources can increase
mental workload, as was evident in our results, possibly
because of conflicting information from different sources.

Keywords: Alerting systems, Decision making, Decision
support

Introduction
The advances in technology and the variety of available
information sources make it easier to obtain information.
However, the availability of the information requires
choosing whether and which information source to use.
The decision depends to some extent on the redundancy
of the new information, considering the currently available
information (i.e., the level of correlation with already
available information) (Liang & Fu, 2017; Mulugeta,
Ben Yaakov, & Meyer, 2022). Information acquisition
decisions have been studied extensively, and the main
conclusion from the literature is that people tend to make
non-optimal decisions (Ho, Hagmann, & Loewenstein,
2021; Ben-Yaakov, Bitan, & Meyer, 2021). According
to Bartoš et al. (2014), implicit biases in information
gathering can influence information accumulation processes,

potentially leading to inefficient choices due to incomplete
or biased assessments (Bartoš, Bauer, Chytilová, & Matějka,
2016). Consistent with expectations, participants showed
a preference for using a more reliable DS over a less
reliable one (Montanari & Nunnari, 2023) and showed
the ability to distinguish when it is worth purchasing
information (Ben Yaakov, Wang, Meyer, & An, 2019).
However, a recent study show empirical evidence that users
sometimes access information even when it is not beneficial,
and conversely, at times, they do not access information that
could be beneficial to them (Ben-Yaakov et al., 2021) From
a normative perspective, when using two (or more) sources
of information, non-redundant (uncorrelated) information
should be preferred to minimize forecast error and to
prevent shared biases (Hogarth, 1989; Soll, 1999; Yaniv,
2004). Recent studies indeed found that the redundancy of
information was negatively correlated with its use (Liang
& Fu, 2017; Mulugeta et al., 2022). This is in line with
older studies, which found that people correctly recognize
non-redundant information as more valuable (Goethals
& Nelson, 1973; Gonzalez, 1994). However, some
evidence suggests that people prefer redundant information
(Kahneman & Tversky, 1973). This tendency may be
linked to the phenomenon of confirmation bias, where
individuals preferentially seek evidence that confirms their
beliefs rather than evidence that contradicts them. Strong
evidence supporting the presence of confirmation bias in
decisions related to information acquisition and use has been
documented, and this bias has been found to be resilient even
with increased experience (Jones & Sugden, 2001).

The use of DS has been shown to enhance
performance (Ben-Yaakov et al., 2021; Dixon, Wickens,
& McCarley, 2007; Rieger & Manzey, 2022). However,
the effect of correlated information on performance is
a contentious issue. While some studies suggest that
performance worsens with correlated information compared
to uncorrelated information (Elvers & Elrif, 1997), others
argue that the level of correlation between DS information
and already existing information has no significant effect
on performance (Munoz Gomez Andrade, Duncan-Reid,
& McCarley, 2022). Moreover, the decision to use DS
with more or less correlated information can also impact
operators’ workload. It has been observed that operators
report a lower subjective workload when they are aided by
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automation (Balfe, Sharples, & Wilson, 2015; Röttger, Bali,
& Manzey, 2009). Previous studies extensively explored
the dynamics of user interaction with Decision Support
(DS) systems and their implications on decision-making
processes. One study investigated how the redundancy of
information provided by DS influences users’ decisions
to purchase and trust it and their actual performance in a
classification task (Mulugeta et al., 2022). The findings
revealed a clear preference among participants for a
non-redundant DS (non-correlated information) over partly
or fully redundant DS, with better performance and higher
trust when using non-redundant DS. A later study that
built on these insights delved deeper into the impact of the
correlation between DS and already available information
on user preferences, performance, and trust (Ben Yaakov,
Denisova, Mulugeta, & Meyer, 2024). They investigated
five levels of redundancy: no redundancy, low, medium,
high, and fully redundant (fully correlated) information.
Additionally, they examined three levels of DS quality: low,
medium and high. Results showed that participants accessed
DS more, the less redundant it was, and the higher its quality,
suggesting a recognition of the value of unique content and
quality of information. Interestingly, results also indicated
that correlated information could diminish performance,
with the effect on subjective trust being contingent on the
DS quality level (Mulugeta et al., 2022). These studies
highlighted a trend towards normative preferences in decision
support rather than a reliance on confirmatory information.
Collectively, they contribute to a nuanced understanding of
how information characteristics in DS affect user decisions,
trust, and performance in decision-making scenarios.

MODEL

We use Signal Detection Theory (SDT) (Green, Swets, et
al., 1966; Hautus, Macmillan, & Creelman, 2021; Wickens,
2001) to model the binary classification decisions by both
a human and a binary Decision Support (DS) system. The
probability of a signal is ps, and the probability of noise is
pn = 1− ps. The probability that the DS correctly detects
a signal event and raises an alarm (i.e., true positive) is
PDS

T P , and PDS
FP is the probability that the DS incorrectly

issues an alert when the event is noise (i.e., false positive).
The probabilities of false negative and true negative are
denoted by PDS

FN and PT NDS, respectively, where PDS
FN =

1 − PDS
T P ; PDS

T N = 1 − PDS
FP . SDT differentiates between the

detection sensitivity of a sensor (human or DS) and its
response bias (decision threshold). The detection sensitivity
(d’) is the sensor’s ability to distinguish between signal and
noise. It is represented by the shift of the signal probability
density function compared to the noise probability density
function. When d

′
= 0, the sensor is unable to distinguish

between signal and noise. As d’ increases, the ability
to differentiate between the two entities increases. The
classification probabilities depend on the detection sensitivity
and the DS decision threshold (βDS). While the sensitivity is a

given property of the detectors, the decision threshold can be
adjusted. Its optimal setting depends on ps and the outcome
values from the possible classifications (VT P,VFP,VT N ,VFN).
For a single detector, it is: β = pn

ps
· VFP−VT N

VFN−VT P
The human classifies the event as ”Signal” or ”Noise,”

given information about the event and the DS output.
When using DS, the human decision variables are ⟨βH

A ,β
H
Ā ⟩,

which are the thresholds for classifying events when the
DS indicates a signal event (alarm) or noise event (no
alarm), respectively. Therefore, we can compute the
human classification probabilities when an alarm was issued
(PH

T P|A,P
H
FP|A,P

H
T N|A,P

H
FN|A) and when no alarm was issued

(PH
T P|Ā,P

H
FP|Ā,P

H
T N|Ā,P

H
FN|Ā).

When using two DSs, the human decision variables are
⟨βH

A1A2
,βH

A1Ā2
,βH

Ā1A2
,βH

Ā1Ā2
⟩, which specifies the thresholds to

classify events based on the output of the two DSs. We
assume that events are independent and identically distributed
(IID), and a decision for one event does not affect decisions
regarding other events.

Expected Value
We can compute the expected value without DS, with one DS,
or with two DS.

Without DS

EV (βH) = ps · (PH
T P ·VT P +PH

FN ·VFN)+

pn · (PH
FP ·VFP +PH

T N ·VT N)

With one DS

EV (βDS,βH
A ,β

H
Ā ,C1,C2) =

pA · [P(S|A) · (PH
T P|A ·VT P +PH

FN|A ·VFN)+

P(N|A) · (PH
FP|A ·VFP +PH

T N|A ·VT N)]+

pĀ · [P(S|Ā) · (PH
T P|Ā ·VT P +PH

FN|Ā ·VFN)+

P(N|Ā) · (PH
FP|Ā ·VFP +PH

T N|Ā ·VT N)]−Ci

With two DS

EV (βDS,βH
A1,A2

,βH
Ā1,A2

,βH
A1,Ā2

,βH
Ā1,Ā2

,C1,C2) =

pA1,A2 · [P(S|A1,A2) · (PH
T P|A1,A2

·VT P +PH
FN|A1,A2

·VFN)+

P(N|A1,A2) · (PH
FP|A1,A2

·VFP +PH
T N|A1,A2

·VT N)]+

pA1,Ā2
· [P(S|A1, Ā2) · (PH

T P|A1,Ā2
·VT P +PH

FN|A1,Ā2
·VFN)+

P(N|A1, Ā2) · (PH
FP|A1,Ā2

·VFP +PH
T N|A1,Ā2

·VT N)]+

pĀ1,A2
· [P(S|Ā1,A2) · (PH

T P|Ā1,A2
·VT P +PH

FN|Ā1,A2
·VFN)+

P(N|Ā1,A2) · (PH
FP|Ā1,A2

·VFP +PH
T N|Ā1,A2

·VT N)]+

pĀ1,Ā2
· [P(S|Ā1, Ā2) · (PH

T P|Ā1,Ā2
·VT P +PH

FN|Ā1,Ā2
·VFN)+

P(N|Ā1, Ā2) · (PH
FP|Ā1,Ā2

·VFP +PH
T N|Ā1,Ā2

·VT N)]−C1 −C2

Where PA, pA1,A2 are the probabilities that DSi will raise
an alarm and Ci is the cost to purchase DS i. A rational
decision-maker will maximize the expected value.
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STUDY
In this study, we examine the effect of DS’s redundancy
level (i.e., the correlation between the DS output and
already available information) on the decision to purchase
up to two DS, the effective sensitivity,and the score
as performance indicators, and the cognitive workload,
measured with NASA-TLX questionnaire (Hart & Staveland,
1988). Our empirical study was guided by the normative
model developed to predict the behavior of a perfectly
rational decision-maker. This model, based on standard
utility theory, was used to calculate the expected value
of utilizing different combinations of DS systems, with
varying levels of redundancy (see Table 1 for model
predictions). Normatively, non-redundant information should
be valued higher, as it provides more unique information
than partly or fully redundant information. However, users
may prefer confirmative information and use the additional
information to validate prior opinions and to make their
decisions with greater subjective certainty. We predict
better performance for participants who use non-redundant
systems than participants who use a redundant DS or do
not use a DS. Moreover, we expect better performance
among participants using two non-redundant systems than
one redundant and one non-redundant system. Regarding
workload, as indicated by (Balfe et al., 2015; Röttger et al.,
2009), we expect that participants with DS will report a lower
workload compared to participants without DS. Moreover,
we expect that participants aided by non-redundant systems
will experience a greater workload due to the potential of
events with conflicting information, as previously reported
by (Imants, Theeuwes, Bronkhorst, & Martens, 2021).

METHOD
Participants
Seventy-five engineering students participated in the
experiment as part of a human factors course.

Apparatus
We developed the experiment as a web-based system with
a back-end side implemented with a Python infrastructure
(using the Django library), a database (MySQL), and a
front-end side developed in HTML. Participants performed
the experiment on their own devices.

Procedure
Participants were asked to take on the role of a physician and
monitor patients’ medical conditions. They were to decide
whether an intervention was necessary or not. A patient’s
medical condition was represented by a number, which
reflects the probability that a medical intervention is needed.
Participants were briefed on the possibility of purchasing
up to two Clinical Decision Support Systems (CDSSs)
containing information about the patient’s condition. The
experiment started with instructions explaining the task.
After the instructions, participants began the experiment,

which consisted of 5 blocks. At the beginning of each block,
they decided whether and which CDSSs to purchase from
a set of 2 CDSSs. Participants were informed about the
system’s classification probabilities (i.e., true positive rate
and false positive rates). After they decided whether and
which systems to purchase, they classified 30 events based
on the observed value (which simulates the patient’s medical
condition) and the output of the CDSSs, if purchased. The
sequence of event types (patient needed medical intervention
or not) and the information about the patient’s condition
were the same in both conditions. After each experimental
block, participants answered the NASA-TLX questionnaire.
The flow of the experiment can be seen in Figure 1 and
Figure 2 shows a typical classification screen. Participants
purchased CDSSs with a point system. They began each
block with a budget of 30 points. They earned 3 points if
they correctly identified whether an intervention was needed.
They lost 6 points if they did not correctly identify the need
for an intervention and 3 points when they intervened when
it was unnecessary. Participants received feedback on the
classification immediately after classifying the event. The
first two blocks were used as training blocks, in which the
participants could familiarize themselves with the task and
the CDSSs, and we only analyzed blocks 3, 4, and 5. The
CDSSs were counterbalanced between participants.

Figure 1: Experiment Flow

Figure 2: Typical classification screen with both CDSSs,
CDSS A only, CDSS B only or no CDSS at all (left to right).

Experimental Design
Conditions The two experimental conditions differed
in the correlation between the information about the
patient’s condition and the CDSSs information. In the
”all non-redundant condition,” the two CDSSs provided
non-correlated information. In the ”one redundant
condition”, one of the systems provided information that
was fully correlated with the information about the patient’s
condition and the second system was not correlated. The 2
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systems were independent to each other. We manipulated
the correlation between the CDSSs and the participants’
observed values with the equation: Y = r · X +

√
1− r2 ·

z citekaiser1962sample. In the non-redundant condition, the
purchase of both systems had positive value, while in the
partly redundant condition, one should only purchase the
non-redundant system, as can be seen in Table 1.

Parameters The probability that a patient needed a medical
intervention was p = .3. In both conditions, the CDSSs
had the same decision thresholds and sensitivity (d’ = 1.5).
The participants’ information about a patient’s condition was
sampled from one of two normal distributions with means of
5.25 and 6.75 for noise (no intervention needed) and signal
(intervention needed), respectively. The standard deviation
for both distributions was 1. Thus, the participant’s sensitivity
in SDT terms was d’ = 1.5, and the information was displayed
on a [2,10] scale. The CDSS information was also sampled
from one of two normal distributions with means of 5.25 and
6.75, so the d’ of the systems was also 1.5.

Exclusion criteria Six participants with a sensitivity of
d
′
= 0 or lower in one of the analyzed blocks (blocks 3-5)

were excluded from the analysis.

Table 1: Expected value depends on the purchase decision

Decision Expected Value
No CDSS 75
1 Dependent CDSS 70
1 Dependent & Independent CDSS 77
1 Independent CDSS 82
2 Independent CDSS 84.5

RESULTS
Purchase Decision
Chi-square tests for independence were conducted to examine
the relationship between the experimental condition (all
non-redundant vs. one redundant) and the Purchase
Decision (PD) across each of the three blocks (Blocks
3-5). In all blocks, no significant relationship was observed
between the PD and the experimental condition. We also
conducted Chi-square tests for goodness of fit for each
Condition and Block separately to test whether participants’
purchase decisions were distributed uniformly. As can be
seen in Figure 3 and Table 2, among participants in the
non-redundant condition, in Block 5, participants’ purchase
decisions were not uniformly distributed. Participants had
a higher tendency to purchase two systems (M = .54)
compared to one system (M = .27) or no systems (M =
.19). In the non-redundant condition in blocks 3 and 4
and the one-redundant condition in all three blocks, there
was no significant deviation from a uniform distribution of

purchase decisions. Further analyses were conducted to
determine if there was a significant preference for either the
redundant or non-redundant CDSS when participants in the
’one redundant condition’ opted to purchase only one CDSS.
This analysis revealed no significant preference in any of
the three blocks. In Blocks 3 and 4, an equal proportion of
participants who chose to purchase only one CDSS opted for
the redundant CDSS as those who chose the non-redundant
CDSS. However, in Block 5, among participants who decided
to purchase only one CDSS, 27.3% chose the redundant
CDSS, while 72.7% selected the non-redundant CDSS.

Figure 3: PD distribution by Block and Condition.

Table 2: Chi-Square test for goodness of fit

Block χ2 d f p

All non-redundant Condition
3 2.65 2 .27
4 5.405 2 .07
5 7.51 2 .02

One redundant Condition
3 4 2 .135
4 3.21 2 .2
5 3.53 2 .17

Performance
We computed the effective sensitivity (d’) and score for each
participant in each block and analyzed it with a Generalized
Linear Mixed Model (GLMM) with the participant’s ID as a
random effect, the Condition and Purchase Decision (PD) as
fixed effects and the Block as a repeated measure variable.

Sensitivity The main effects Condition F(1,219) =
7.66, p = .006, and PD, F(2,219) = 7.66, p = .006, and the
interaction Condition X PD, F(2,219) = 8.83, p< .001, were
significant. Participants in the all non-redundant condition
differentiated better between signal and noise events (i.e.,
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they had a higher effective sensitivity) (M = 1.73,SD =
.065), compared to participants in the one-redundant
condition (M = 1.44,SD = .05). Pairwise contrasts between
the number of purchased systems (zero, one or two)
showed that participants who purchased no systems had
significant lower effective sensitivity (M = 1.13,SD =
.05), compared to participants who purchased one system
(M = 1.37,SD = .06) and two systems (M = 1.94,SD =
.06),Ad j.p < .01,Ad j.p < .001, respectively, as can be
seen in Figure 4. A significant difference was also found
between participants who purchased one system and two
systems, Ad j.p < .001. Pairwise contrasts were also used
to further analyze the interaction between PD X Condition.
Results showed that among participants who purchased two
systems, participants in the all non-redundant condition had a
significantly higher effective sensitivity (M = 2.2,SD = .08),
compared to participants in the one-redundant condition, in
which one system was strongly correlated with the available
information and the other was independent, (M = 1.67,SD =
.07),Ad j.p < .001.

Figure 4: Mean effective Sensitivity by Purchase Decision
and Condition.

Score The main effects Condition F(1,219) = 6.1, p =
.01, and PD, F(2,219) = 14.27, p < .001, and the
interaction Condition X PD, F(2,219) = 5.43, p = .005,
were significant. Participants in the all non-redundant
condition achieved higher scores (M = 69.88,SD = 1.33),
compared to participants in the one-redundant condition
(M = 63.94,SD = 1.14). Pairwise contrasts between the
number of purchased systems (zero, one, or two) showed
that participants who purchased no (M = 61.22,SD =
1.54) or one (M = 63.76,SD = 1.63) system, achieved
significantly lower scores, compared to participants who
purchased two systems (M = 71.5,SD= 1.27),Ad j.p< .001,
as can be seen in Figure 5. Pairwise contrasts were also
used to further analyze the interaction between Purchase
Decision and Condition. Results showed that among
participants who purchased two systems, participants in the
all non-redundant condition had significantly higher scores

(M = 76.84,SD = 1.64), compared to participants in the
one-redundant condition, (M = 65.96,SD = 1.65),Ad j.p <
.001.

Figure 5: Mean score by Purchase Decision, and Condition.

Workload
We measured participants’ workload in the task using the
NASA-TLX questionnaire. We computed the workload for
each participant in each block and analyzed it similarly to
previous analyses. There was a significant effect of the
PD, F(2,219) = 3.98, p = .02 and the interaction Condition
X PD, F(2,219) = 3.74, p = .025. Pairwise contrasts
between the number of purchased systems (no, one or
two) showed that participants who purchased no system
reported significantly lower workload (M = 6.32,SD = 0.4),
compared to participants who purchased one (M = 7.5,SD =
0.5) or two (M = 7.98,SD = 0.35) systems Ad j.p =
.05, p = .005, respectively. Pairwise contrasts showed that
among participants with two systems, participants in the
all non-redundant condition reported significantly higher
workload (M = 8.59,SD = .52), compared to participants in
the one-redundant condition (M = 7.34,SD = .45),Ad j.p =
.05, as can be seen in Figure 6.

Discussion
We developed a normative model specifically designed to
determine the optimal purchasing decisions when users are
faced with multiple Decision Support (DS) systems, as well
as to predict the expected performance based on purchasing
strategy. The model takes into account the properties of the
DSs, the human, and the environmental state. To assess
the model’s effectiveness, we conducted an experiment to
collect behavioral data and compared this with the model’s
predictions. The primary aim of our study was to gain
insights into users’ preferences for DSs, particularly in
scenarios where they must choose between systems offering
different levels of redundant information. Furthermore, we
explored how their choices impacted the overall performance
of the DS and the users’ subjective workload.
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Figure 6: Mean workload by Purchase Decision, and
Condition.

Participants demonstrated a tendency to purchase
information from the DS, regardless of the potential benefits
and the redundancy level of the information. These findings
are consistent with previous studies indicating non-optimal
information acquisition decisions (Ben Yaakov et al., 2019;
Ho et al., 2021).

When comparing the results of the current study with
previous research (see (Mulugeta et al., 2022; Ben Yaakov
et al., 2024)), intriguing patterns and contrasts are observed.
Previously, a distinct preference for non-redundant DS was
observed, with participants demonstrating better performance
and higher trust when using non-redundant DS. This
trend aligns with findings from Block 5 of our current
study in all non-redundant conditions, where participants
exhibited a marked inclination towards purchasing two
systems. This consistency underscores the recognized value
of non-redundant information. However, the absence of
a significant preference for non-redundant DS in the early
blocks (3 and 4) and throughout the one-redundant condition
presents a notable deviation from past trends. This divergence
could be attributed to the experimental design, while in
(Mulugeta et al., 2022; Ben Yaakov et al., 2024), the
decision between redundancy levels was manipulated as a
between-subjects variable, meaning participants were not
required to choose between redundant and non-redundant
systems. In contrast, our experiment required participants to
make this distinction themselves, choosing among purchasing
both, one, or no systems. This requirement to differentiate
may have been challenging for participants, potentially
explaining the observed deviation in their decision-making
behavior.

Although participants purchased DS, the utilization
of the informationwas not always optimal, resulting in
limited benefits from DS potential to enhance performance.
This observation aligns with findings from previous
studies (Meyer, 2001; Parasuraman, Sheridan, & Wickens,
2008; Rieger & Manzey, 2022; Ben-Yaakov, Meyer, Wang,

& An, 2020). We noted that participants’ overall sensitivity
increased when they purchased one DS, and it further
improved with the purchase of two systems. The addition
of more information generally led to better performance.
Although participants did not differentiate between systems
that provided redundant and non-redundant information, the
level of redundancy affected performance, as is evident
from the significant effect of the experimental condition.
When purchasing two systems, participants’ performance
improved more in the all-non-redundant condition compared
to the one-redundant condition, underscoring the value of
non-redundant information. Even in the one-redundant
condition, using two systems, including a fully redundant
one, was beneficial. This improvement may be partly due
to the fact that some participants who chose to purchase only
one system selected the redundant one, whereas, with two
systems, one was always non-redundant.

We also analyzed the participants’ workload using
the NASA-TLX questionnaire (Hart & Staveland, 1988).
Participants with one or two DSs experienced higher
workload, compared to participants who did not use a
DS. This finding conflicts with previous studies (Balfe et
al., 2015; Röttger et al., 2009). A possible explanation
for this phenomenon is that processing information from
multiple sources may raise workload. When aided by
two non-redundant systems, participants reported higher
workload compared to participants who used one redundant
and one non-redundant system. As explained before
in (Imants et al., 2021), this might be due to conflicts between
different information sources.

The study highlights the role of redundancy in information
acquisition and decision-making processes when individuals
have the option to access multiple systems. We observed
an interesting preference for non-redundant information
sources, which significantly influences both performance
and subjective workload. This tendency underscores the
critical need for thoughtful consideration of redundancy in
the design and implementation of DSs. While potentially
beneficial in certain contexts, redundant information can lead
to suboptimal decision-making and increased cognitive load.

Our findings highlight the complex interactions between
the decisions to use information from different sources
that provide more or less redundant information, and its
integration into the actual decision processes. In particular,
the relation between available and new information must
be considered when predicting performance and designing
systems. Future research can provide further insights into
information acquisition decisions, the use of this information,
and its effects on performance and workload.
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