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Improved Battery Storage Valuation Through
Degradation Reduction

Brandon Foggo, Student Member, IEEE and Nanpeng Yu, Senior Member, IEEE

Abstract—The widespread adoption of battery energy storage
systems (BESS) has been hindered by the uncertainty of their
financial value. In past research, this value has been estimated by
optimizing the system’s actions over the course of the battery’s
lifetime. However, these estimates did not consider the fact
that battery actions decrease the lifetime itself. This paper
uses realistic battery cycle degradation to re-evaluate BESS
profitability and attempts to increase profits by mitigating this
degradation. For this purpose, the paper develops an approximate
linear model of degradation suitable for co-optimization with
the set of battery actions. It is shown through simulation that
29.1% of the storage system’s value is lost because of cycle
degradation. However, co-optimization through the approximate
model reduces this loss to just 3.3%.

Index Terms—Batteries, Degradation, Economics, Optimiza-
tion, Valuation

NOMENCLATURE

Section III-A
A Matrix of revenues [$/MW ].
Emax Maximum State of Charge [MWh].
LMP Locational marginal price [$/MW ].
N Number of optimization steps [steps].
O Operation and maintenance costs [$/MW ].
Pmax Maximum power output [MW ].
Regd Revenue for committing 1 MW of capacity for

regulation down [$/MW ].
Regu Revenue for committing 1 MW of capacity for

regulation up [$/MW ].
S Battery State of Charge [MWh].
T Number of hours per optimization step [hrs].
T Estimated battery lifetime [hrs].
d Discharged power output [MW ].
n Optimization step index [steps].
pu, pd Proportion of capacity committed to regulation

up/down that is called upon in real time operations
[unitless].

ru, rd Committed capacity for regulation up/down
[MW ].

t Hour index [hrs].
x Vector of decision variables [mixed].
γ Battery self-discharge rate [unitless].
κ Battery cycle efficiency [unitless].
ρ Battery resistive loss factor [unitless].

B. Foggo is with the University of California, Riverside (email:
bfogg001@ucr.edu)

N. Yu is with University of California, Riverside

Section III-B
CR Cycle Current Rate [MW / unitless].
DoD Cycle Depth of Discharge [MWh / unitless].
SoC Cycle mean State of Charge [MWh / unitless].
deg Degradation rate [unitless].
f Regulation signal [unitless].
fu, fd Positive/negative part of the regulation signal

[unitless].
i Cycle index [cycles].
k Intra-hour tick index [ticks].

Section IV
I SoC Bounding Region [MWh].
R Normalized half length of I [unitless].
ψ State of Charge continuous time approximation

[MWh].
ψm, ψM High/low frequency component of ψ [MWh].
τ Continuous time index [hrs].

Section V
A′ Modified matrix of revenues [$/MW ].
JCR Current Rate Constant [unitless].
JSoC SoC Constant [unitless].
Mdeg Linear degradation multiplier [$].
Uz Set of hours in which the low frequency profile

is flat [unitless].
X Approximated hourly degradation [unitless].
a1, a2 Micro/macro cycle linearization constant [unit-

less].
b vector of multipliers for linear degradation

[1/MW ].
c′ auxiliary charging decision variable [MW ]
d′ auxiliary discharging decision variable [MW ]
pz Probability that the low frequency profile is flat

[unitless].
x′ Modified decision vector [mixed].
µ 1-dimensional conditional cycle counting measure

on DoD intervals [cycles].
µm, µM Micro/macro decomposition of µ [cycles].
ν 2-dimensional cycle counting measure on DoD ×

SoC rectangles [cycles].
φ Nonlinear functional to obtain total depth of dis-

charge from a continuous function [unitless].
ψ̃ Augmented SoC profile [MWh].
σ2
u, σ

2
d Regulation signal up and down variances [unit-

less].
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I. INTRODUCTION

Renewable power generation is quickly making its way into
the electric power grid. With it comes the stochastic nature of
the sources that drive it. Stochastic generation complicates the
act of balancing power generation and load. With fast ramping
rates and the ability to dynamically switch between power
generation and absorption, battery energy storage systems
(BESS) mitigate this challenge. However, the profitability of
doing so remains under question.

BESS owners can profit through the actions of energy
arbitrage and providing one or more of the ancillary services
described in [1]. While much research has been done on the
value of BESS systems directly linked to renewable sources
[2] [3], for energy arbitrage [4], and for primary frequency
regulation [5], a large amount of the existing literature has
underestimated potential profits by failing to optimize these
actions simultaneously. By correcting these issues, [6] and
[7] obtained a significantly more optimal valuation of BESS.
However, this result was obtained by considering only the
effect of time on the battery’s deterioration. But any analysis
which does not consider the impact of battery charging actions
on degradation will likely overestimate the value of the battery
because the battery will degrade faster than the modeling
suggests.

It is reasonable to believe that co-optimization of degra-
dation with energy arbitrage and ancillary services should
significantly mitigate the loss in BESS value from cycle
degradation. Such co-optimization is the goal of this paper.
Unfortunately, current degradation models are not suitable for
this coupled optimization because their dependence on battery
actions is calculated by a series of complicated, non-injective,
and, most importantly, non-closed form transformations.

In this paper, we will develop an accurate analytical approx-
imation of cycle degradation suitable for the search space in
question. We will then use this model to compute the value
of a BESS co-optimized over battery actions (arbitrage and
regulation services) and cycle degradation. The use of co-
optimization with this model results in a profit increase of
36% over the non co-optimized case.

The rest of this paper is organized as follows. Section II
provides a literature review on existing degradation models
and the optimization use cases upon which they are suitable.
Section III describes the process of energy storage valuation
with realistic degradation that is not co-optimized with the
battery actions. Section IV lists a set of properties evident
in the valuation framework that will be used to linearize the
degradation calculation. Section V derives the linearization.
Numerical evaluations and the performance of the degradation
model will be presented in section VI. Conclusions will be
made in section VII.

II. LITERATURE REVIEW

Only a few attempts have been made to couple a BESS
ancillary service optimization problem with degradation. How-
ever, there is research in degradation models suitable to other
optimization use cases.

Reference [8] introduces one of the lowest level degradation
models suitable for application. The model considers a current
driven differential equation representing build up of resistance
at the battery anode. This is coupled with a low level battery
discharge model to find the driving current. The model was
used to find optimal charging schemes for electric vehicles.
Since it is such a low level model, it is difficult to use in
more complicated optimization schemes. It also only considers
resistive build up, and thus does not consider capacity loss.
Nonetheless, if the optimization use case is based directly on
charging and discharging profiles with little uncertainty, then
this is a good model with excellent theoretical justification.

Most models describe degradation in terms of cycling pa-
rameters. Reference [9] provides a comprehensive, test driven
analysis of battery degradation based on these parameters.
It includes analysis in both capacity loss and resistive build
up. The paper does not provide an analytical model for
degradation, but does discuss useful insights for the effects
of each cycle parameter of degradation. These insights can be
used to develop semi-analytical fitting models for degradation.

Reference [10] presents a simple parameter based model for
predicting battery lifetime under a uniform cycling scheme.
For nonuniform cycling, a distribution of current rates is
assumed. The lifetime model can be easily converted to a
degradation model. It is used in the paper to develop a power
control strategy for a hybrid battery/utra-capacitor storage
system in electric vehicles. It is a suitable model when cycling
parameter distributions can be assumed. However, it is unclear
if this model will remain useful in optimization problems
where the decisions change the profile of cycles.

Reference [11] develops another cycle based degradation
model for the optimization of charging profiles in electric
vehicles. The optimization uses time varying electricity costs
and estimated degradation costs. It finds various charging
optimal charging profiles based on the form of these costs.

Reference [12] develops a degradation model based directly
on state of charge for use in an economic optimization of a hy-
brid battery/ photo-voltaic system. Though the functional form
of state of charge degradation is complicated in this model, it
is useful because many applications can use the battery’s state
of charge directly as a decision variable. The model’s main
disadvantage is that it does not have any direct consideration
of depth of discharge. The optimization procedure took care
of depth of discharge loss by putting upper and lower bounds
on the state of charge.

A similar optimization problem was considered in [13].
In this paper, a semi-analytical degradation model, based on
the properties found in [9], is developed. Through rainflow
counting on real data, this paper finds a distribution of cycle
parameters and uses this to find optimal charging profiles in
hybrid battery/photo-voltaic systems. The model is also used
to determine the best of three possible charging profiles for
mobile phone longevity.

Other cycle parameter degradation models include refer-
ence [14], which optimizes a hybrid battery/HVAC system
scheduling with battery degradation included, and reference
[15] which considers battery degradation in an economic
optimization of battery integration in a standalone microgrid.
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Some work has been done in coupling ancillary services
with degradation. Most of these focus on battery control while
providing ancillary services rather than on deciding how much
ancillary service to provide at a given time. For example, ref-
erence [16] coupled degradation to a control strategy for peak
shaving. In particular, reference [17] formulated frequency
regulation as a nonlinear tracking problem and included a
degradation model as a state variable which is to be driven
to zero during the tracking. We believe these works to be
applicable in conjunction with the work presented here by
using the regulation decisions from our scheme with the
control strategies of those.

Reference [18] is the closest work to this paper. It derives
a simplified (though still nonlinear) degradation model that
avoids rainflow counting and embeds it into an ancillary ser-
vice optimization problem. The paper found good results and
is a great exploration into coupling degradation considerations
with ancilliary service scheduling. However, the results are
found by optimizing over just one representative day and
multiplying the daily profit by the lifetime (in days) that
the representative day’s operation would yield. The critical
limitation to this approach is that it assumes lifetime can
be accurately calculated from one day of battery operation.
Realistic operation of a battery will vary day to day, and so a
degradation model that considers the operations of each day
is necessary.

III. EXTERNAL DEGRADATION

A. Valuation Linear Program

Reference [6] introduced a linear program (LP) for valuating
energy storage systems. The LP partitions the battery’s avail-
able capacity at each hour t = 1, 2, ..., T into a set of profitable
actions. These actions are discharging, dt, providing regulation
up services, rut , and providing regulation down services, rdt .
dt is negative when the battery charges. rut and rdt are strictly
nonnegative. Each action has a corresponding revenue. These
are the locational marginal price, LMPt, which is the revenue
from discharging 1MWh of energy, and Regu/dt , the revenue
from committing 1MWh of battery capacity to regulation
services at hour t. A negative revenue, Ot, is included to incur
small profit losses from battery use. It represents the cost of
operation and maintenance, but its effect is small.

Only a fraction of the capacity committed to either regula-
tion services will be used in real time operations. The amount
used in regulation up is sold at the locational marginal price,
and the amount used in regulation down is bought at this
price. Denote these proportions as put and pdt for regulation
up and down respectively. Then regulation up and down have
an additional source of revenue through real time energy
exchange given by LMPtp

u/d
t r

u/d
t .

The decision variables of the LP are formed by appending
a state variable, St, to the above actions. St represents the
battery’s State of Charge (SoC) at the beginning of hour t and
follows simple update dynamics. We will place these decision

variables in a vector xt and contain the respective revenues in
a matrix At

xt =
[
dt rut rdt St

]T
(1)

At =

LMPt Regut Regdt 0
0 LMPt · put −LMPt · pdt 0
0 −Ot · put −Ot · pdt 0

 (2)

This ensures that the sum of entries of the vector Atxt
yeilds the total revenue at hour t.

The horizon of the LP is the estimated battery lifetime. We
denote it as T . It should be an overestimate of the battery’s
true lifetime. Decision variables beyond the true lifetime can
be discarded later.

The LP is then given by objective function (3) and con-
straints (4 - 12).

max
xt

T∑
t=0

1TAtxt (3)

Subject to

St+1 = St(1− γ)− (dt + put r
u
t − pdt rdt ) · (1 hr.)

− (|dt|+ put r
u
t + pdt r

d
t ) · (1 hr.) · ρ (4)

0 ≤ St ≤ Emax (5)

(−dt + rdt ) · (1 hr.) ≤ Emax − St (6)
(dt + rut ) · (1 hr.) ≤ St (7)

dt + put r
u
t − pdt rdt ≤ Pmax (8)

−dt + pdt r
d
t − put rut ≤ Pmax (9)

dt + rut ≤ Pmax (10)

−dt + rdt ≤ Pmax (11)

rut , r
d
t ≥ 0 (12)

The first constraint is the update equation for the battery’s
state of charge. The constraint’s first term is the battery’s self-
discharge which occurs with rate γ. The second term is the
change in energy from the battery’s actions, and the third term
represents resistive losses that scale with total output power.
The resistive losses, ρ, are derived from the battery’s round-
trip efficiency κ.

ρ = 1−
√
κ

Constraints (5), (6), and (7) capture the fact that the battery’s
capacity must be partitioned. Emax is the battery’s maximum
state of charge. These constraints ensure that no physical con-
straint is violated even when all of the committed regulation
capacity is used.

Finally, the battery’s total output power is constrained by
constraints (8), (9), (10), and (11). Pmax is the battery’s
maximum power output.

Degradation is implemented by partitioning the LP into seg-
ments of T hours and optimizing each segment sequentially.
The battery’s degradation over each segment is calculated at
the end of each iteration. From this calculation, a new value
of Emax is fed into the next segment’s constraints.

The algorithm runs over N iterations of the above such that
NT = T . We call this procedure External Degradation as the
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Start
n = 1

Emax = E0

x = [ ]

n > N

Return x

Valuation LP
Start: (n−1)T
end: nT − 1

Update Emax
Increment n

Append
output to x

Time Series
Simulation

RCA

yes

no

Fig. 1. External Degradation algorithm flowchart.

degradation calculation is external to the optimization. It is
illustrated in Figure 1.
T determines a trade-off between optimality and degrada-

tion accuracy. Higher values of T will yield more optimal
decision variables, but lower values of T (and thus more degra-
dation updates) will lead to more accurate values of Emax.
T does not need to be very small, however, because Emax
changes rather slowly with time (u 3% per year). Furthermore,
T does not need to be too large because the final outputs of the
LP, as a function of T , converge when T exceeds 2 months.
In this paper, T was chosen to represent yearly segments with
an expected lifetime of 15 years (N = 15, T = 8760 hours).

In this optimization scheme and all optimization schemes
to come, we considered a realization of prices that combines
the methods of future price curve modeling in [6] with expert
opinions and industry price models. The two data sets used
(one for locational marginal prices and one for ancillary
service prices) can be found at [19].

The External Degradation LP relies on long term forecasting
of market prices. These prices are quite volatile in practice,
however, so the results of the LP represent a clairvoyant upper
bound on the actual value of a BESS.

B. Degradation Model

To calculate a segment’s degradation, the semi-empirical
model of [20] was implemented. The model is based on
experimental data provided by ABB and EEH power systems
laboratories. Its form is primarily based on the Arrhenius
equation and the principle of cumulative degradation. This is
similar to several of the models referenced in the literature
review and so it is quite general. It is a parameter based model
that is agnostic to battery type where different battery types
will require different parameters. Its use is decomposed into
the following three steps.

1) Regulation Signal and Intra-hour SoC Simulation: The
SoC, as a function of time, must first be calculated. Its intra-
hour behavior is determined by the regulation signal. When
the rut and rdt decision variables are nonzero, the battery is
committed to provide regulation services throughout hour t.
The battery is then required to adjust its output up to 900
times throughout the hour in response to regulation signals.

This process can be simulated through the following intra-
hour version of (4).

St,k+1 = St,k + (rdt f
d
t,k − dt − rut fut,k − ρ |dt|)/900 · (1 hr.);

St,0 = St (13)

where t is the index of the hour being simulated (a constant),
and k is an index representing the number of regulation ticks
that have occurred since the start of hour t, i.e. k = 1, 2, ...900.
fu and fd are the positive and negative parts of the regulation
signal, f , respectively.

fut,k = max (0, ft,k)

fdt,k = max (0,−ft,k) (14)

Terms involving the multiplication of ρ and f (d/u) in (13)
have been ignored for being small. A year’s worth (2015) of
historical regulation signals from the PJM interconnection [21]
were used.

2) Rainflow Counting: Once the SoC time series is known,
it is fed into the Rainflow Counting Algorithm (RCA) [22].
The RCA is used to detect repetition in an aperiodic time
series and compute a list of cycles, nonuniform in amplitude
and duration, that are embedded within each other. Each cycle
in this list is represented as an ordered set of parameter
values. For battery degradation, the useful parameters are the
Depth of Discharge (DoD), defined as the amplitude of a
cycle normalized to the maximum battery capacity, the mean
SoC, defined as the average of the cycle with time taken into
account, and the current rate (CR), defined as the DoD divided
by the cycle duration. Typically, the first step of the RCA
reduces the input time series to a set of peak and valley values.
This removes all knowledge of time, and so duration can not
be calculated with this set up. To fix this, we have augmented
the first step so that it keeps the intra-hour time indices at
which the peaks and valleys occurred.

When referencing cycle values, SoC, DoD, and CR will
all refer to values that are normalized by the current Emax,
and thus belong to the interval [0, 1]. However, we will
occasionally reference the SoC time series. Values of SoC,
as evaluations of this time series, will not be normalized.

3) Capacity Calculation: The new maximum capacity is
obtained from the outputs of the RCA as follows. First, for
each cycle (indexed by i), the following three semi-empirical
functions are calculated

fDoD(DoDi) = (kDoD,1DoD
−kDoD,2
i − kDoD,3)−1 (15)

fSoC(SoCi) = ekSoC(SoCi−SoCref ) (16)

fCR(CRi) = ekCR(CRi−CRref ) (17)

Where DoDi, SoCi, and CRi are the DoD, SoC and CR of
the ith cycle. The forms of these functions are derived from
theoretical considerations. Parameter values for Lithium-Ion
(Li-Ion) batteries were found experimentally in [20]. Table I
repeats these values for convenience.
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TABLE I
DEGRADATION FUNCTION PARAMETERS FOR A LI-ION BATTERY.

Function Parameters

Stressor Parameter Value

DoD

kDoD,1 8.95× 104

kDoD,2 4.86× 10−1

kDoD,3 7.28× 104

SoC
kSoC 1.04

SoCref 0.50

CR
kCR 2.63× 10−1

CRref 1.00

Time kt 1.49× 10−6 1
hr

r1 5.75× 10−2

r2 121

A degradation rate degn is then calculated from these
functions according to (18).

degn =

Ln∑
i=1

fDoD(DoDi)fSoC(SoCi)fCR(CRi) + ktT

(18)

where Ln is the number of cycles that occurred during step
n and kt is the rate at which the battery ages independently
from operation. We will call degn the degradation function,
viewing it as a function of cycles and time.

Finally, the new capacity is calculated from the following
double exponential model.

E(n+1)
max = r1e

−r2
∑n
η=1 degη + (1− r1)e

∑n
η=1 degη (19)

The first exponential represents a quick degradation from the
build up of the Solid Electrolyte Interphase (SEI) layer. The
second represents a slower degradation from ion loss. Values
for r1 and r2 are provided in Table I.

The effect of power fade was not considered in this paper.
Power fade occurs as a build up of internal resistance in
the battery which reduces κ and Pmax. However, its primary
stressor (aside from time) becomes important only when the
battery’s SoC is held near its boundaries for extended periods
of time [23]. As we will see in section IV, the optimized SoC
time series is rarely near either boundary, and so this stressor
can be ignored.
Pmax is changed in the external degradation setup only

when Emax/(1 hr.) degrades below the nominal Pmax. In
this case, Pmax is set to Emax for the remaining simulations.

IV. OUTPUT PROPERTIES

A. Macro Cycles and Micro Cycles

Figure 2 shows a day’s worth of the SoC time series, found
through the external degradation procedure, for a battery with
energy rating 5.8MWh and power rating 2.53MW . Observed
is a clear separation in magnitude between the high frequency
cycles and the low frequency ones. It is useful to think of

Fig. 2. Time series data of the SoC over a sample 24 hour window.

the state of charge time series as the sum of a low frequency
component and a high frequency perturbation. We will further
consider the state of charge over the interval [t, t + 1] as a
continuous time function ψt(τ), τ ∈ [0, 1](hrs.). This should
be a decent approximation because the update time for the
state of charge time series (4 sec) is much smaller than time
scale required for significant degradation (u 1 year). We will
call ψ the state of charge profile to distinguish it from the state
of charge time series.

The decomposition of ψ will be as follows. Denoting the
low frequency component as ψM and the high frequency
component as ψm, we have

ψt(τ) = ψt,M (τ) + ψt,m(τ) (20)

where

ψt,M (τ) = (St − St+1) · τ (21)
ψt,m(τ) = ψt(τ)− ψt,M (τ) (22)

That is, ψM is obtained from linear interpolation of the
S decision variables and ψm is obtained by removing the
low frequency component from ψ. We will consider these
continuous functions as valid inputs to the RCA (where,
realistically, we run it on the un-approximated time series).
We will denote the high frequency cycles as micro cycles and
the low frequency ones as macro cycles.

B. Bounding Region and Switching Behavior

Figure 2 illustrates a second important property: the SoC
is attracted to the values 2.5 KWh and 3.3 KWh. Fur-
thermore, it frequently abandons its current value for the
other. Note that these attraction values are Pmax · (1 hr.) and
Emax − Pmax · (1 hr.) respectively.

This is no coincidence. The valuation LP can be viewed
as an optimization over one state changing variable (charg-
ing/discharging) that can be either costly or profitable, and
one non-state changing variable (regulation up and down
simultaneously) that is always profitable. Intuitively, we would
like for the non-state changing variable to be maximized as
often as possible. The following proposition establishes the
existence of a SoC region in which this is possible.
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Fig. 3. Scatterplot of mean normalized SoC vs. normalized DoD.

Proposition 1. The maximum value of rut + rdt is
Emax/(2 hrs.) + Pmax. This maximum is achievable
iff. St ∈ I = [u, v] where u and v are the minimum and
maximum of {Pmax · (1 hr.), Emax − Pmax · (1 hr.)}
respectively.

This is proved in the Appendix. We name the region I the
SoC Bounding Region. The proposition and the above logic
help to explain the observation that the SoC profile tends to
stay within this region, but it does not explain the behavior of
repeatedly switching from bound to bound.

To understand the switching behavior, we note that the profit
from discharging will occasionally dominate over the profit
from regulation services. When this happens, we will want
to discharge as much as possible. However, we will want the
SoC to remain in I. It makes sense, then, to discharge from the
upper bound of I to the lower bound. Then sometime before
this discharge, the SoC will need to be brought to the upper
bound of I, and we will want to do this when charging is
cheapest. It follows that this SoC raise will occur in one step
(at the time when charging is cheapest). For similar reasons,
the subsequent discharge will also occur in one step.

It is never the case, in the scope of this paper, that the
length of I is too large to charge or discharge in a single
step. If this were the case, we would have |2Pmax · (1 hr)−
Emax| > Pmax · (1 hr). But this requires that Emax < Pmax ·
(1 hr.). This is only the case in special situations which are
not considered here.

Define R as half the length of I normalized by Emax.

R ,

∣∣∣∣12 − Pmax · (1 hr.)
Emax

∣∣∣∣ (23)

Then I = [Emax · ( 12 −R), Emax · (
1
2 +R)]

C. Bimodality and Symmetry

Since the SoC time series frequently jumps in value from
Emax · ( 12 − R) to Emax · ( 12 + R) and back, we will have
a build up of macro cycles with DoD near 2R. The micro
cycles and most of the remaining macro cycles will have DoDs
much lower than this. Thus, with respect to DoD, we obtain
a bimodal distribution.

The cycles in either of these peaks are equally likely to oc-
cur above or below SoC = 1

2Emax. Thus we have symmetry

in that, for any range of DoD values, the number of cycles
with mean SoC above this line will be nearly equal to the
number of cycles with mean SoC below it.

Both of these properties are illustrated in Figure 3 which
plots the SoC (normalized to Emax) against the DoD (also
normalized) for a year’s worth of cycles. The figure displays
a distinct gap in the DoD direction and rough symmetry about
the SoC = 1

2 .

D. Scope

These output properties depend only on the form of the
external degradation LP and the general relative magnitudes of
prices for each service. They do not depend on any particular
instance of prices in the objective function. However, this
LP does assume perfect forecasting of prices, and so it is
reasonable to question the retainment of these properties in
more realistic scenarios, e.g. stochastic optimization. A greedy
algorithm, for example, could see a large discharge profit
and go well below I. Thus one does need to be careful to
ensure that their optimization strategy complies with the above
heuristics (keeping the SoC in I, charging and discharging the
entire boundary in one step) before invoking these properties.

More optimistically, these properties can be used to guide
local decision making. The global behavior of the clairvoyant
LP is explained by local heuristics. It stands to reason that
local decisions based on these heuristics will approximate the
decisions made by the clairvoyant strategy. We suspect that a
stochastic optimization problem on just energy arbitrage with
loss functions included to punish the SoC for leaving I could
yield profits close to those of the clairvoyant bound (assuming
maximum regulation in both directions is always provided).
Under such a scheme, the above properties can be invoked
without guilt.

Furthermore, if the relative magnitudes of prices are con-
sistently different from those used here, the properties could
break down. For example, if regulation services consistently
have negligible revenue compared to arbitrage, then the LP
will have no reason to keep the SoC inside I. We believe that
the price path used does, at the least, capture these magnitudes
realistically, so, this problem should not last for long if it does
occur.

V. LINEARIZATION

We will now begin to describe the process of simplifying
the degradation model that

1) depends on the decision variables instead of the rainflow
counted cycles.

2) is linear.

We will first show that the current rate component, fCR, and
state of charge component fSoC can be reasonably approxi-
mated as constants. The particular values of every constant
that follows depends on the battery type, but all can be derived
from the same process. We list the values derived for Li-ion
batteries in this paper.
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A. Current Rate Component

Most (u 99%) of the realized cycles have current rate on
the order of 0.1 or smaller. This is because micro cycles have
small DoD, and macro cycles have long time scales. The
current rates of the remaining cycles are too few and not large
enough (u 0.25) to significantly influence the degradation of
the battery. Since the component of degradation due to current
rate varies slowly for these small rates, we take fCR to be the
constant JCR = 0.785 (CR u 0.08).

B. Lebesgue Integral Reformulation

For the remaining subsections, we will rewrite the cycle
degradation component of (18) as a Lebesgue integral over a
constructed measure space.

Let Cn be the set of all cycles returned from the RCA after
iteration n. ∀c ∈ Cn, denote the depth of discharge and mean
state of charge of c as DoD(c) and SoC(c) respectively. Let
X and Y be unit intervals and let BX and BY be the Borel
σ-algebras on X and Y . Let ν be the push-forward measure
of the counting measure on Cn through the function

c 7→
[
DoD(c)
SoC(c)

]
Then (X×Y,BX⊗BY , ν) is a σ-finite measure space because
ν(X × Y ) <∞. Intuitively, ν counts the number of dots in a
given subset of Figure 3.

The cycle component of the degradation function can then
be written as the following Lebesgue integral.

f = JCR

∫
X×Y

fSoC fDoD dν (24)

This transfers the sum over each cycle in (18) into a sum
over possible output values (fCR · fSoC · fDoD) times the
number of cycles that yield that value (dν).

C. State of Charge Component

The symmetry discussed in section IV-C reduces the SoC
component of the degradation function to a constant (approx-
imately). To see this, let πx : X × Y → X be a projection to
the x-axis. Let µ be the pushforward measure µ = ν ◦ π−1.
By the disintegration theorem [24], there exists a family of
conditional measures {νx}x∈X such that νx({x} × Y ) = 1
∀x ∈ X and (24) can be rewritten as the following iterated
integral.

f = JCR

∫
X

fDoD

(∫
{x}×Y

fSoC dνx

)
dµ (25)

Now split the y-axis at 1
2 and denote the lower and upper

halves as Y − and Y + respectively. Let h reflect y ∈ Y − across
the y = 1

2 axis, i.e. h(y) = 1− y. Symmetry implies that the
pushforward of νx under h is just νx, so the inner integral can
be written as follows.∫
{x}×Y

fSoC dνx =

∫
{x}×Y −

fSoC dνx +

∫
{x}×Y +

fSoC dνx

=

∫
{x}×Y +

(fSoC ◦ h+ fSoC) dνx (26)

But (relying on the chosen value of SoCref = 1
2 )

(fSoC ◦ h+ fSoC) (y) = ekSoC(1−y− 1
2 ) + ekSoC(y− 1

2 )

= 2cosh

(
kSoC

(
y − 1

2

))
which varies slowly for y ∈ Y +. We can therefore approxi-
mate it as a constant. We chose to take its average over Y +,
JSoC = 1.0422, as the constant in question. Equation (26) then
becomes 2JSoC · ν(Y +). Symmetry implies that Y + has νx-
measure 1

2 ∀x ∈ X , so this is just JSoC .
The degradation function now takes the form

f = JCR · JSoC
∫
X

fDoDdµ (27)

(27) is a 1-dimensional analog of (24) which relies on DoD
alone.

D. Depth of Discharge Component

All that remains to simplify is the DoD component of the
degradation function.

1) Cycle Splitting: The integrand in (27) can be split by
cycle type. Explicitly, we create two new measures for A ∈
BX , one that counts the number of micro cycles with DoD
in A and one that counts the number of macro cycles with
DoD in A. We call these µm and µM respectively. Both are
dominated by µ because a subset cannot contain micro or
macro cycles if it does not contain any cycles. Thus there
exist Radon-Nikodym derivatives gm and gM such that

µm(A) =

∫
A

gmdµ (28)

µM (A) =

∫
A

gMdµ (29)

clearly µ(A) = µm(A) + µM (A) ∀ A ∈ BX because the
number of cycles in A is equal to the number of mirco cycles
in A plus the number of macro cycles in A. Then (27) becomes

f = JCRJSoC ·
( ∫

X

fDoD dµm +

∫
X

fDoD dµM
)

(30)

All micro cycles are contained in the first peak of the
bimodal DoD distribution. As illustrated in figure 4, we can
linearize fDoD in the small DoD region quite well.

On the other hand, macro cycles can belong to either peak.
Since the slope of fDoD is different at both of these peaks,
it may be thought that no one line can approximate the
degradation from a set of cycles belonging to both. However,
there are so few cycles in between these peaks that a line
from zero to the second peak will actually work as a decent
approximation. This, of course, requires that we know where
the second peak is; luckily, we already know that this is 2R.
We can thus fully linearize (30) as

f = JCR · JSoC ·
(
a1

∫
X

x dµm + a2

∫
X

x dµM
)

(31)
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Fig. 4. fDoD and corresponding linearizations.

2) Quadratic Functional Expansion: Rewrite (31) as

f = JCRJSoC
( ∫

X

x (a1gm + a2gM ) dµ
)

(32)

and define g = a1gm + a2gM . This is the Raydon-Nikodym
derivative of a new measure that counts a scaled version of
the macro cycles and adds to it a scaled version of the micro
cycles. If a1 and a2 are of the same magnitude, then this new
measure can be interpreted as an approximation to the measure
that counts the number of cycles in X of an augmented state
of charge profile ψ̃t(τ) = a1ψt,m(τ) + a2ψt,M (τ).

Under this interpretation, the integrand in (32) is equivalent
to the total depth of discharge traversed by ψ̃t. This is equal
to half of the total absolute change in ψ̃t. We can thus model
the integral in (32) as the nonlinear functional

φ(ψ̃t) =
1

2

∫ 1

0

∣∣∣∣∣dψ̃t(τ)dτ

∣∣∣∣∣ dτ. (33)

We will drop the subscript t on all ψ and ψ̃ symbols. For
what remains of this subsection, all calculations are considered
within hour t.

Considering a1ψm as a small perturbation on a2ψM , we
can approximate (33) by the functional Taylor series [25,
Appendix A]

φ(ψ̃) ≈ φ(a2ψM ) + a1
dφ(a2ψM + εψm)

dε
|ε=0

+
1

2
a1

2 d
2φ(a2ψM + εψm)

dε2
|ε=0 (34)

The zero order term is just

1

2
|a2ψ′M | =

a2
2

∣∣(1− ρ)(pdt rdt )
−(1 + ρ)(put r

u
t )− dt − ρ|dt|

∣∣ (35)

as no term in ψ′M has intra-hour time dependence.
To obtain the first order term, we must differentiate the

non-differentiable integrand of (33). Thus we approximate this
integrand with the differentiable function ((dψ̃dt )

2 + u2)
1
2 and

consider what happens as u→ 0. The first order term is then

a1a2ψ
′
M

2(a22ψ
′2
M + u2)

1
2

∫ 1

0

ψ′mdt (36)

This term will vanish because within the hour,

ψ′m(t) = rut (f
u
t − put ) + rdt (p

d
t − fdt ) (37)

(where the loss factor ρ has been ignored because all terms
involving it in ψ′m are small) and

∫ 1

0
f
u/d
t dt = p

u/d
t .

The second order term is given by

a21u
2

4(a22ψ
′2
M + u2)

3
2

∫ 1

0

ψ′2mdt (38)

But ∫ 1

0

ψ′2Mdt = Var [rut fu(t)] + Var
[
rdt f

d(t)
]

−E
[
2rut r

d
t f̃

u(t)f̃d(t))
]

(39)

where f̃u(t) = (fu(t) − put ), f̃
d(t) = (fd(t) − pdt ), and

the statistics are taken as time integrations over the hour
under consideration. We will write Var [fu(t)] as σ2

t,u and
Var

[
fd(t)

]
as σ2

t,d. These can be calculated (or estimated if
the signal is not known [26]) before simulation.

Since fu and fd are never simultaneously nonzero and
E[fu/d] = p

u/d
t , the expectation term can be calculated as

−2rut rdt put pdt . The variance terms can be written as

(rut + rdt )(r
u
t σ

2
t,u + rdt σ

2
t,d)− rut rdt (σ2

t,u + σ2
t,d)

Finally, as u→ 0,

u2

(a22ψ
′2
M + u2)

3
2

→ 2

a2
δ(ψ′M )

where δ(·) is the dirac-delta impulse function. Thus the second
order term is nonzero only during hours in which ψ′M = 0.
This implies that, to the second order, there is complete
separation between the macro and micro cycles in terms of
degradation.

The second order term is then

δ(ψ′M )
a21
2a2

(
(rut + rdt )(r

u
t σ

2
t,u + rdt σ

2
t,d)

−rut rdt (σ2
t,u + σ2

t,d + 2put p
d
t )
)

(40)

3) Remaining Nonlinearities: For a fully linear model, we
must find a way to remove the absolute value and delta func-
tions from these formulas. We must also remove the quadratic
regulation terms. We choose to do this statistically, i.e. by
considering the effects of summing each hour’s degradation
component over the time interval simulated (e.g. one year).

Let Uz be the set of hours in which ψ′M = 0. Let H be the
set of all hours simulated in a given block and pz = |Uz|

|H| .
Unfortunately, this must be known before the simulation.
However, if it is guessed and updated, it only takes about
two iterations for it to converge.

For hours in Uz , there is no change in state of charge to
compute. In H −Uz , we assume the state of charge increases
and decreases with equal probability and assume further that
dt is positive when it decreases and negative otherwise. The
absolute value function in (35) can then be approximated as
1
2 (1 − pz)|dt| and since dt appears directly in the objective
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function, it can be split into two variables, d′t and c′t (for
discharge and charge) such that dt = d′t−c′t and |dt| = d′t+c

′
t.

We evaluate the second order term similarly by replacing
δ(ψ′M ) with it’s expectation over several possible ψ′M (as many
will occur over the course of a year), pz .

Finally, the constraints of the LP enforce that (rut + rdt ) ≤
2Pmax in I. In fact, maximizing this term is the reason that
the SoC time series stays in this region in the first place. Thus
we replace the sum with this bound entirely. We also replace
the product rdt r

u
t with 1

2Pmax(r
u
t + rdt ) by splitting the term

into 1
2 (r

u
t r
d
t + rut r

d
t ) and setting rut = Pmax in the first term

and rdt = Pmax in the second. We do not further approximate
this sum as 2Pmax because it is already linear.

The degradation constants for each decision variable are
thus derived. We summarize the simplified model in (41 - 44)

b =


a2
4 (1− pz)
a2
4 (1− pz)

a21
2a2

pzPmax(1.5σ
2
t,u − 0.5σ2

t,d − put pdt )
a21
2a2

pzPmax(1.5σ
2
t,d − 0.5σ2

t,u − put pdt )
0

 (41)

Xt = bT


c′t
d′t
rut
rdt
St

 (42)

degn =

T∑
t=0

Xt + kt · T (43)

E(n+1)
max = r1e

−r2
∑n
η=1 degη + (1− r1)e

∑n
η=1 degη (44)

where a1 = 2R
fDoD(2R) , a2 = 1 × 10−4, and k is a tuning

parameter defined in the next section.
The final two calculations remain external to the opti-

mization problem. However, the re-simulation step and the
RCA algorithm are eliminated from the calculation. Most
importantly, however, is that this degradation is explicitly a
function on the decision variables of the LP, and can be
incorporated internal to the optimization.

4) Caveats: The SoC time series output will never have
exactly the ideal properties of section IV. Thus we use the
tuning parameter k to mitigate this problem. k will almost
always be near unity, and can be viewed as a non-ideality
factor for the SoC profile. Tuning k does not take much effort.
In our results, k was tuned to obtain small error on the first
year and then the found value was used for every year after
that.

Furthermore, the model is underpinned by the bi-modality
of the DoD distribution. This bi-modality in turn depends on
the R-gap. As the R-gap becomes small, the second peak
approaches the first and a single mode distribution is obtained.
Thus, when R is small (e.g. R < 0.1), a1 should be set
to 0.1

fDoD(0.1) by default. Also, Uz should be more inclusive
as the gap decreases because ψ′M , when nonzero, is almost
always extremely small (as the jumps become small), so
micro cycles dominate these hours despite technically having
nonzero ψ′M . Thus, for years with 2R ≤ 0.1, we include hours

into Uz if ψ′M ≤ 1 × 10−1 whereas we use the criterion
ψ′M ≤ 1 × 10−12 for years that do not have this property.
Realistically, this precaution will only be necessary for a few
initial years because the nominal Pmax is typically less than
1
2Emax/(1 hr.).

Finally, when the R-gap is large, it becomes easier for the
SoC time series to stay within the stable gap even when
charging and discharging. This means that the optimization
will discharge even when the profit of doing so only dominates
by a small amount. Thus we expect to have more cycles within
the R-gap as it gets larger. However, when discharging profit
dominates regulation, it will still discharge by at least the
smallest gap where a bimodal distribution was observed. It
follows that there will still be distance between the micro
cycles and macro cycles. Thus a2 = 0.15

fDoD(0.15) was used for
years when 2R > 0.15.

E. Internal Degradation
To test this model, a linear term is added to the objective

function, (3), to punish high degradation. This leads to a
modified version of the original linear program which we
will call Internal Degredation to contrast it with the external
procedure.

First, because we have split the discharge variable into
its positive and negative parts (d′t discharging and c′t for
charging), we need to modify the decision vector xt and the
revenue matrix At.

x′t =
[
c′t d′t rut rdt St

]T
(45)

A′t =

−LMPt LMPt LMPt · put −LMPt · pdt 0
0 0 Regut Regdt 0
0 0 −Ot · put −Ot · pdt 0


(46)

The optimization problem then takes the form.

max
x′t

T∑
t=0

(1TA′tx
′
t +Mdeg

t Xt) (47)

Subject to

St+1 = St(1− γ)− (d′t − c′t + put r
u
t − pdt rdt ) · (1 hr.)

− (d′t + c′t + put r
u
t + pdt r

d
t ) · (1 hr.)ρ

(48)
0 ≤ St ≤ Emax (49)

(c′t + rdt ) · (1 hr.) ≤ Emax − St (50)
(d′t + rut ) · (1 hr.) ≤ St (51)

d′t + put r
u
t − pdt rdt ≤ Pmax (52)

c′t + pdt r
d
t − put rut ≤ Pmax (53)

d′t + rut ≤ Pmax (54)

c′t + rdt ≤ Pmax (55)

Xt = bTx′t (56)

c′t, d
′
t, r

u
t , r

d
t ≥ 0 (57)

The optimization is still split into N iterations of horizon
T . At the end of each iteration, (43) and (44) are calculated
and the new Emax is fed into the next iteration.
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Fig. 5. Emax at the beginning of each year for three optimization schemes.

Fig. 6. Cumulative percent error in Emax after each year.

Mdeg
t introduces a new trade off. If Mdeg

t is too large, the
LP will sacrifice far too much profit in return for extended
battery lifetime. Even further, it will disturb the properties
used to derive the linear model. Then the term Mdeg

t Xt may
hurt profits without improving lifetime. If Mdeg

t is too small,
however, then the results of the new optimization scheme will
reduce to that of the external degradation scheme. We name
this procedure Internal Degredation to contrast it with the
external procedure.

Since a cycle’s degradation is on the order of 10−6, and
the remaining multipliers in the objective function are on the
order of 1 dollar, we should let Mdeg

t be on the order of 106.
Several values of Mdeg

t were tested. The results of these will
be presented in the next section.

VI. RESULTS

The validity of three claims will be shown in this section.
The first claim is that the simplification of the degradation
function is a good approximation of the actual degradation
process. The second is that realistic degradation needs to be
considered when valuing a battery energy storage system, and
the final claim is that a significant portion of the value lost
from the degradation processes can be recovered by using the
above internal degradation formulation.

The battery and economic parameters used in the following
simulations are shown in Table II.

TABLE II
BATTERY SIZE AND ECONOMIC PARAMETERS.

Sizing and Economics

Parameter Value Parameter Value

Emax 5.8MWh Pmax 2.53MW

κ 88% γ 1.65%/mo.

Energy Investment $614/kWh Power Investment $551/kW

Auxiliary Load 0.875% Discount Rate 6%

Fig. 7. Net Present Value (NPV) of each year.

A. Linearization Performance

Figure 5 shows three plots of Emax vs. year number.
The lower two of these curves illustrate a direct comparison
between the linearized degradation model (estimated) and
the nonlinear, non-closed form degradation model (external)
when both are used in the original LP with the same path
of prices (or equivalently, when Mdeg

t = 0). On the whole,
the curve from the approximated model is lower than that of
the nonlinear model. However, the curves are close. Thus the
linear model well approximates the more complex one in this
case.

Testing that this approximation performs well even when
Mdeg
t 6= 0 is critical. To test this, Internal Degradation was

run with Mdeg
t = 6e6 and a list of yearly Emax values was

returned. A posteriori verification of the linearized model was
then formed by combining using the optimization scheme of
Internal Degradation (with Mdeg

t = 6e6) but with degradation
calculated from the nonlinear model. This verification also
returned a list of yearly Emax values. The percent differences
in the returned Emax values between the Internal Degradation
scheme and the posteriori verification are plotted in Figure
6 (optimized, Mdeg = 6e6). Figure 6 also plots the percent
differences in Emax for the unoptimized (Mdeg = 0) case. The
error in the optimized case is not much worse than that of the
unoptimized. However, in the latter case, k was raised slightly.
The necessity of raising k implies that the LP properties were
less ideal when Mdeg 6= 0. In any case, all errors are bounded
by 1%.
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Fig. 8. Regulation Up signal variance vs. price. The trend line is y =
97.86x− 0.81.

B. Value Loss from Degradation

In a test case, External Degradation was modified to exclude
cycle degradation. That is, (18) was changed to

degn = ktT (58)

The results of this were compared to an unmodified External
Degradation procedure. In the test case, a BESS value of
$1, 700, 000 is obtained. In the latter, this value drops to
$1, 205, 000. Thus $495, 000 of value is lost to cycle degrada-
tion, a 29.1% loss. Cycle degradation represents a considerable
loss to BESS value and needs to be considered.

C. Value Recovery

The higher Emax curve of Figure 5 is found from Internal
Degradation with Mdeg

t = 6e6. Critically, this curve crosses
the Emax = 3.48 (60% nominal) line a whole year later than
the lower two curves which represent External Degradation.
Taking this Emax line as the death of the battery, we see
that the battery optimized with Internal Degradation provides
an additional year of value over the battery optimized with
External Degradation.

This is illustrated in Figure 7. The two he two furthest right
bars of this figure (at each year) represent Internal Degrada-
tion. The rightmost bar is obtained by using Mdeg = 6e6, and
the middle bar is obtained with Mdeg = 1e6. The leftmost
bar represents External Degradation. The initial investment
is the same in all three cases ($6, 730, 000, based on battery
size). It is observed that Internal Degradation under-performs
slightly in the earlier years, but by doing so it gains a
large amount of value in the later years. In the strongest
modification (Mdeg = 6e6), the battery survives 15 years and
the cumulative Net Present Value (NPV) is $1, 644, 000. This
is an increase of $439, 000 in NPV over External Degradation,
i.e. an 88.7% recovery of the NPV lost ($495, 000) from cycle
degradation.

With Mdeg = 1×106 the battery only survived partially into
its 15th year and only recovers 37.5% of the value lost from
cycle degradation. Higher Mdeg may result in large profits by
allowing the battery to survive the 16th year, but our pricing
data only lasted 15 years so this was not tested.

We can also characterize this improvement through the
investment’s internal return rate of return (IRR). For External
Degradation, the IRR is 8.5%. For Internal Degradation, this
raises to 9.15%.

In a more economically realistic analysis, Mdeg should
be chosen with consideration to the cost of the BESS. For
example, if the BESS has no cost (and has no cost to set
up), then Mdeg = 0 would be appropriate because the battery
could be replaced for free. Mdeg higher than 6e6 is likely
appropriate. This would yield a larger increase in IRR given
the realistic initial investment.

It should be noted that the death cutoff will vary by battery.
Nonetheless, death will still occur later in the optimized case
and value will still be received. For example, if death is taken
at 70% nominal capacity, we still obtain nearly an additional
year of value with Internal Degradation. In general, this value
decreases as the death cutoff increases.

To get a sense of how realistic these results are in practice
(since we have assumed perfect forecasting), note that all
three scenarios (internal and external degradation) compared
assumed perfect price forecasting. Furthermore, all scenarios
compared assumed perfect knowledge of the expected value
of the regulation signal. Thus we believe that the largest
assumption to worry about is that of perfect knowledge of the
variance of the regulation signal. Though fair estimates are
possible in practice, less accurate signal variances will lead to
errors in the degradation model. This will make the internal
degradation LP think that it will degrade the battery with a
slightly higher or lower rate than it actually does. However,
since perfect forecasting yields absolute errors of this kind on
the order of 1e-5 (each hour), we believe that slight increases
in this error will not lead to significantly worse results.

D. Heuristics and Parameter Estimation
A heuristic for SoH preservation can be inferred from the

decision variables chosen by the modified LP. The primary
observation is that many potential regulation awards have been
rejected completely. As illustrated in Figure 8, this occurs
when the variance of the regulation signal is high relative
to the profit of providing the corresponding service. The
other regulation variable is not cut simultaneously, so a small
change in SoC occurs during these hours. These differences
are compensated by a short series of small charge/discharge
variables which take the SoC back to the boundaries of
I. This heuristic can be appended to the list of heuristics
described in section IV-D to form a fairly realistic short
horizon optimization scheme. This will be tested in future
work.

In order to use the approximation of cycle degradation
with accuracy, the DoD function parameters must be known
accurately. Instead of finding these experimentally, the linear
approximation itself can be used to estimate a1, a2, and k
simultaneously by measuring the SoH of the battery and
updating them from this measurement. This will also be
considered in future work.

We will also test the heuristics of subsection IV-D in future
work at the same time that we test the regulation heuristics
and parameter estimation approach.
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E. Optimal R

Reference [6] found that, without degradation consider-
ations, the most valuable power to energy ratio, Pmax ·
(1 hr.)/Emax (nominal) for wholesale market is 1

2 because of
the increased cost of BESS with higher ratios (i.e. more state of
the art in terms of this ratio). The gap jumping property further
establishes this optimal ratio. Larger Pmax · (1 hr.)/Emax
will mean that the initial R is larger. With larger R, larger
macro cycles will occur, and therefore more degradation. Thus
the increased investment in increasing Pmax · (1 hr.)/Emax
will decay more quickly than the investment up to just
Pmax · (1 hr.)/Emax = 1

2 .

VII. CONCLUSION

This paper developed a framework for Battery Energy
Storage Valuation that is co-optimized with a realistic degra-
dation model. First, BESS optimization was described in
detail and a procedure for calculating degradation external
to the optimization was explained. It was shown that cycle
degradation incurs a 29.1% loss in battery value compared to
estimates that did not include it. Properties of the optimized
output decisions were then analyzed and a possible heuristic
optimization program was discussed. A linear approximation
to the degradation function was developed from these proper-
ties. By placing the linear model internal to the optimization
problem, an additional year of battery lifetime was obtained.
This extended lifetime recovered more than 85% of the lost
value, reducing the value lost by cycle degradation to just
3.3%. Heuristics for degradation reduction were inferred from
the output decision variables of the internal optimization
procedure, and an optimal power ratio was argued from the
stance of degradation.

APPENDIX

Proof of Proposition 1.
Summing (6) and (11) yields (59). Summing (7) and (10)
yields (60)

rdt + rut ≤ Emax/(1 hr.)− (St/(1 hr.)− Pmax) (59)

rdt + rut ≤ St/(1 hr.) + Pmax (60)

summing (59) and (60) and dividing by 2 then yields

rdt + rut ≤ Emax/(2 hrs.) + Pmax (61)

which is the proposed bound.
To show that this bound is achievable iff. St is in the

proposed region, we must consider two cases.
First, suppose Pmax ≤ Emax/(2 hrs.) (the typical case in

practice). Then if St < Pmax · (1 hr.), the right hand side
of (60) is less than 2Pmax which is less than or equal to
Emax/(2 hrs.) + Pmax so rut + rdt cannot meet the proposed
bound. If St > Emax − Pmax, however, the right hand side
of (59) again becomes less than 2Pmax. Thus the bound (61)
cannot be achieved outside of I. Within I, however, the right
hand sides of both (59) and (60) are larger than the proposed
bound.

Similar logic holds for the case where
Pmax > Emax/(2 hrs.). If St > Pmax · (1 hr.), the right

hand side of (59) becomes Emax which is less than
Emax/(2 hrs.) + Pmax, and if St < Emax−Pmax, the right
hand side of (60) becomes Emax. Again, both right hand
sides are larger than the proposed bound when St ∈ I.

This completes the proof.
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