
UCLA
UCLA Electronic Theses and Dissertations

Title
Summarizing Massive Information for Querying Web Sources and Data Streams

Permalink
https://escholarship.org/uc/item/69g177g7

Author
Mousavi, Hamid

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/69g177g7
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Summarizing Massive Information
for Querying Web Sources and Data Streams

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Seyed Hamid Mousavi Behbahani

2014

c© Copyright by

Seyed Hamid Mousavi Behbahani

2014

ABSTRACT OF THE DISSERTATION

Summarizing Massive Information
for Querying Web Sources and Data Streams

by

Seyed Hamid Mousavi Behbahani
Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2014

Professor Carlo Zaniolo, Chair

Largely as a result of advances brought by the Web and related technologies, we are

now experiencing a tremendous growth in the volume of data streaming between, and

stored at, many nodes of the Internet. This “Big Data” revolution is underscoring the

importance of summarization in general, and in particular in two new application areas

that are rich of practical significance and interesting research challenges. Indeed, while

summarization techniques, including sampling, histograms, and quantiles, remain crit-

ical in analyzing large data sets and optimizing queries in traditional databases, new

techniques are needed to address the following two problems. The first is that, in addi-

tion to summarization techniques for stored data, we now need online/continuous sum-

maries for the streaming data, e.g., real-time online histograms. When dealing with

massive data streams and fast-changing distributions, summaries should be quickly up-

dated with the newly arrived data, in order to reflect the most recent portion (window)

of the data stream. The second problem is that the Web is storing large corpora of

structured, semi-structured, and unstructured (free-text) documents, and these docu-

ments are subject to the ambiguities of natural language and the challenges they pose

to machine processing. This situation has so far limited severely the ability of smart

applications to use the information contained in Web pages, as needed to realize the “Se-

ii

mantic Web” vision. It is however clear that many of these limitations can be overcome

and advanced searches and analysis applications can be supported, if the knowledge

of each Web page can be summarized into a standard machine-friendly structure. In

this dissertation, we attack these two difficult problems by proposing fast summariza-

tion techniques for (i) scalar information of data streams and (ii) textual information

in Web pages. For scalar data, we present light and fast synopses, namely histograms,

combined with various sampling approaches in order to implement more practical sum-

marization techniques over massive data sets and data streams. To our knowledge, this

technique provides the most accurate online histograms for data streams with sliding

windows. For textual documents, we introduce several techniques and systems for

extracting structured summaries from unstructured text and use these structured sum-

maries to complete the existing ones as well as to improve their consistency.

iii

The dissertation of Seyed Hamid Mousavi Behbahani is approved.

John Cho

Stott Parker

Yingnian Wu

Carlo Zaniolo, Committee Chair

University of California, Los Angeles

2014

iv

To my lovely wife and family.

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Overview and Contributions . 5

1.2 Organization of the Dissertation . 8

2 SemScape: Structuring Free Text . 10

2.1 Preparing Parse Trees . 14

2.2 MainPart Trees . 16

2.3 TextGraphs . 20

2.3.1 Support for Exceptions . 23

2.3.2 Combining Confidence Value 24

2.3.3 Enriching TextGraphs with Ontologies 25

2.3.4 Graph Domain Patterns . 26

2.4 Coreference Resolution . 27

2.4.1 Recognizing Characters . 28

2.4.2 Mining Characters Context . 28

2.4.3 Finding Patterns for Coreferences 30

2.4.4 Resolving Characters . 32

2.5 Graph Matching Optimization . 33

3 IBminer: Generating Structured Summaries from Text 37

3.1 Overview and Example . 40

3.2 Generating Semantic Links . 41

3.2.1 Extracting Semantic Links . 42

vi

3.2.2 Computing Links Confidence 46

3.2.3 Support for Exceptions . 47

3.2.4 Co-reference Resolution . 48

3.3 Mapping Links to Attributes . 49

3.3.1 Generating Potential Matches 50

3.3.2 Selecting Best Categories . 52

3.3.3 Generating InfoBox Triples 53

3.3.4 Type-checking . 54

3.3.5 Suggesting Secondary Matches 55

3.4 Implementation . 56

3.5 Experimental Results . 58

3.5.1 Data Sets . 59

3.5.2 Precision/Recall Performance 59

3.5.3 The Impact of Category Selection 61

3.5.4 Results on New Domains . 62

3.5.5 Application-based Evaluation 64

3.5.6 Large Scale Experiment: . 66

3.6 Related Work . 67

4 OntoHarvester: Automatic Ontology Generation from Free Text 70

4.1 From Text to TextGraphs . 73

4.2 Ontology Generation . 74

4.2.1 Extracting Ontological Relations 76

4.2.2 Extracting Concepts . 79

4.2.3 Extracting New Aliases . 80

vii

4.2.4 Extracting New Relation Types 81

4.3 Experimental Results . 82

4.3.1 Data Sets and Initial Ontologies 82

4.3.2 OntoHarvester vs. CRCTOL 84

4.3.3 The Impact of Seed Size . 86

4.3.4 OntoHarvester on Various Domains 86

4.3.5 Application-Based Evaluation 89

4.4 Related Work . 92

5 IKBstore: Knowledge Integration through IBminer 95

5.1 Step A: Integrating Knowledge Bases 97

5.1.1 Data Collection . 97

5.1.2 Data Integration . 98

5.2 Part B: Improving the Knowledge Base using Text Mining 100

5.2.1 Generating new Structured Summaries 100

5.2.2 Verifying Existing Structured Summaries 103

5.2.3 InfoBox Templates Suggestion 104

5.3 Step C: Context-aware Synonyms to Improve Consistency 104

5.3.1 Generating Attribute Synonyms 107

5.3.2 Generating Entity Synonyms 109

5.4 Step D: Tools for Crowdsourcing . 111

6 Synopses and Summarization Techniques on massive data 116

6.1 One-Pass Data Sets and Data Streaming Models 118

6.2 Essential Queries in Massive Data Sets and Data Streams 120

viii

6.3 Existing Synopses . 122

6.3.1 Quantiles and Equi-Depth Histograms 123

6.3.2 Biased Histograms and Quantiles 126

6.3.3 Exponential Histogram Sketch 129

6.3.4 Other Types of Histograms . 130

6.3.5 Other Synopses . 131

6.4 Sampling as the Most Common Summarization Technique 132

6.5 Other Summarization Techniques . 136

7 A Fast- and Space-Efficient Equi-Depth Histogram 137

7.1 Definitions . 139

7.2 BAr Splitting Histogram (BASH) . 140

7.3 Bars Initialization . 142

7.3.1 Merging and Splitting Operation 144

7.3.2 Computing Final Buckets . 149

7.4 Formal Analysis . 150

7.4.1 Approximation Analysis . 150

7.4.2 Space Complexity Analysis 154

7.4.3 Time Complexity Analysis . 155

7.5 Experimental Results . 157

7.5.1 Data Sets . 159

7.5.2 BASH Timing Results . 160

7.5.3 BASH Space Usage Results 161

7.5.4 BASH Error Results . 163

7.5.5 Histograms vs Sampling . 164

ix

7.5.6 Discussion . 167

8 Biased Histograms on Data Streams . 169

8.1 Biased Histogram Computation . 172

8.1.1 Definitions . 172

8.1.2 Bar-Splitting Biased Histogram (BSBH) 174

8.1.3 Biased Sampling . 182

8.2 Formal Analysis . 184

8.3 Experimental Results . 190

8.3.1 Data sets . 191

8.3.2 BSBH versus CKMS . 192

8.3.3 Scalability . 193

8.3.4 Biased Sampling versus Uniform Sampling 194

8.3.5 The Effect of Concept Shifts 195

8.3.6 Discussion . 196

8.4 Related Work . 197

9 Conclusion and Future Work . 200

9.1 Future Research Directions . 201

References . 207

x

LIST OF FIGURES

2.1 Most probable parse tree for our running example. 15

2.2 Most probable parse tree for our running example in parenthesized for-

mat with our addressing schema. 15

2.3 Annotated parse tree (MainPart Tree) for the parse tree in Figure 2.1. . . 16

2.4 MP Tree for the parse tree in Figure 2.2. For brevity, we did not include

all the MP information in the graph. 19

2.5 Part of the TextGraph for the first sentence in our running example. . . . 21

2.6 From left to right a) The GD query (q), b) a TextGraph that contains q

(tg), and c) a TextGraph that does not contain q (tg′). 33

2.7 From left to right: Collapsed version of a) q (qc), b) tg (tgc), and c) tg′

(tg′c). 36

2.8 From left to right: a) the subgraph of tgc that matches qc, b) the ex-

panded graph of part a, and c) the subgraph of tg that matches q. 36

3.1 Excerpts from the Wikipedia page for “Johann Sebastian Bach” (Re-

trieved on 5/7/12) . 39

3.2 Part of the TextGraph for first sentence in Figure 3.1. 42

3.3 Part a) shows the graph pattern for Rule1, and b) depicts one of the

possible matches for this pattern. 44

3.4 The architecture of IBminer. 57

3.5 Results for Musicians data set: a) Precision/Recall diagram for best

matches, b) Precision/Recall diagram for attribute synonyms, and c)

the size of generated results for the test data set. 61

xi

3.6 a) The impact of increasing level number on Recall, b) The impact

of increasing Categories number on Recall, and c) InfoBox generation

delay per abstract. 62

3.7 a) Precision/Recall diagram for best matches (Actors), b) Precision/Recall

diagram for best matches (Institutes), and c) the size of generated re-

sults for Actors and Institutes. 63

3.8 Number of results generated for different queries using DBpedia and

IBminer knowledge bases. 65

4.1 Part of the TextGraph for our motivating example. 74

4.2 Pattern Graph for Rule 1. 77

4.3 The number of generated concepts from SFF at each iteration for small

and large seeds. (Freq=4, Conf=.98) 85

4.4 The precision/recall comparison for the concepts generated for MATH.

(Freq= 6, ..., 15, Conf=.99) . 88

5.1 Evaluation of (a) best matches, and (b) secondary matches (c) attribute

mapping for the entire Wikipedia. 101

5.2 Evaluation of attribute synonyms for existing InfoBoxes in the initial

knowledge base. 110

5.3 A sample view of the InfoBox Editor (IBE) page. By hovering over the

source names (as shown for Freebase) users can see the original triple

in that source. Similarly, users can see the synonyms used for each

attribute by hovering over that attribute name (as shown for BirthDate). 112

6.1 Incrementing an EH sketch twice at time 58 and 60. That is we have

seen 1, 0, and 1 respectively at time 58, 59, and 60. (k=2 and W=35) . . 130

7.1 Merging two EH sketches EH1 and EH2. (k=2) 148

xii

7.2 a) Execution time for all data sets (W = 100k), and b) The effect of

changing window size from 1k to 1m on the execution time on DS13.

(k = 10, p = 7, and ε = 0.01.) . 158

7.3 Space usage of the algorithms for a) all the data sets (W = 100k), and

for b) different window sizes on DS13. (k = 10, p = 7, and ε = 0.01.) . 161

7.4 a) Boundary error, b) size error, and c) rank error for all data sets. (k =

10, p = 7, W = 100k, and ε = 0.01.) 164

7.5 The effect of changing window size from 1k to 1m on the a) boundary

error, b) size error, and c) rank error for DS13. (k = 10, p = 7, and

ε = 0.01.) . 165

7.6 The boundary errors for data sets a) DS1, b) DS5, and c) DS8 from left

to right. (k = 10, p = 7, W = 100k, and ε = 0.01.) 165

7.7 The boundary errors for data sets a) DS14, b) DS16, and c) DS17 from

left to right. (k = 10, p = 7, W = 1m, and ε = 0.01.) 165

7.8 The boundary errors for data sets a) DS18, b) DS19, and c) DS20 from

left to right. Wt is set to 10k for DS19 and 100k for others. (k = 10,

p = 7, and ε = 0.01.) . 165

7.9 The effect of combining sampling and BASH with different sampling

rates on a) running time , b) memory usage, and c) size error from left

to right. The results are for data set DS17. (W = 100k, k = 10, and

p = 7.) . 166

8.1 Equi-depth and biased histograms for annual precipitation in the US,

with close-up magnification for the head of the distribution. (Each his-

togram has 100 bars.) . 170

8.2 Merging two bars (XL andXR) into one bar (X). a) right before merge-

bar operation and b) right after merge-bar operation. 178

xiii

8.3 a) The execution time, b) memory usage, and c) size error of BSBH

and CKMS algorithms on DS3. (k = 10, p = 7, ε = 0.01, and εmin =

0.001.) . 192

8.4 a) The execution time, b) memory usage, and c) size error of BSBH

and CKMS algorithms on DS7. (k = 10, p = 7, ε = 0.01, and εmin =

0.001.) . 192

8.5 a) The execution time, b) memory usage, and c) size error of BSBH

algorithms on DS3 and DS7 for different window sizes. (φ = .8, k =

10, p = 7, ε = 0.01, and εmin = 0.001.) 193

8.6 a) The execution time, b) memory usage, and c) size error of BSBH

algorithms on DS7 for different sampling rates. (φ = .7, W = 100K,

k = 10, and p = 7.) . 194

8.7 a) The execution time, b) memory usage, and c) size error of BSBH

algorithms on DS10 for different sampling rates. (φ = .7, W = 100K,

k = 10, and p = 7.) . 195

8.8 The size error of running BSBH-BL on data sets DS7 to DS9 through

time. (φ = .7, W = 100K, k = 10, p = 7) 196

8.9 a) The execution time, b) memory usage, and c) size error of BSBH

algorithms with different sampling rate for all data sets. (φ = .7, W =

100K, k = 10, p = 7) . 196

xiv

LIST OF TABLES

3.1 Description of data sets used in experiments. 59

4.1 OntoHarvester (OH) vs. CRCTOL on PGT data set. (Prob=.98) 84

4.2 The impact of the seed size for SFF. 85

4.3 The precision/recall results of running OntoHarvester on data sets from

different domains. 87

4.4 Domain specific relation types for each dataset. 89

4.5 Results of Topic Identification using for Taxonomies. 92

5.1 Public Knowledge Bases used in IKBstore 98

7.1 Data sets used for the experimental results 158

8.1 Data sets used for the experimental results 191

xv

ACKNOWLEDGMENTS

First and foremost, I would like to sincerely thank my advisor, Professor Carlo Zaniolo.

He was an incredibly insightful mentor for me in my years at UCLA. I truly appreciate

him for always believing in me and constantly guiding, helping, and supporting me. I

would also like to thank my committee members, professor John Cho, professor Stott

Parker, professor Yingnian Wu for their time and for their priceless suggestions and

comments. I also had the honor to collaboration with Dr. Markus Iseli and Dr. Deirdre

Kerr from the National Center for Research on Evaluation, Standards, and Student

Testing (CRESST). I really appreciate their invaluable contribution and support to this

research. Without any doubt, working with them was the most pleasant part of my

Ph.D. study. I wish to also thank my dear colleague and friend, Shi Gao, who has been

a great collaborator on a number of research projects. I am also grateful to members

and alumni of the Web Information Systems Laboratory for their encouragement and

understanding. I really enjoyed my time working in a fantastic and supporting group

with Alex Shkapsky, Kai Zeng, Mohan Yang, Gurneet Chhokar, Dr. Nikolay Laptev,

Dr. Barzan Mozafari, Dr. Carlo Curino, Chongsheng Zhang, Mirjana Mazuran, Dr.

Massimo Mazzeo, Hsuan (Cheryl) Chiu, Jiaqi Gu, and many others.

Last but not least, I would like to express my special appreciations to my family

who are the real source of inspiration and motivation for me; my beloved wife who has

made my tough days easier, joyful, and adventurous, my mother who has been my first,

best, and most patient teacher, my father who has been my constant supporter, and my

sisters who always loved me unconditionally.

xvi

VITA

2004 B.S. (Computer Engineering), University of Tehran, Tehran, Iran.

2003–2005 Research Assistant, Router Lab., University of Tehran, Tehran, Iran.

2007 M.S. (Computer Engineering), Sharif University of Technology,

Tehran, Iran.

2007–2008 Lecturer at Sharif University of Technology, Tehran, Iran.

Teaching “Introduction to Programming (C++)”, and “Operating

Systems Laboratory” courses.

2007–2008 Lecturer at Shariaty Technical College, Tehran, Iran.

Teaching “Operating Systems”, “Introduction to Algorithms”, and

“Formal Languages and Automata Theory” courses.

2010 Teaching Assistant, Database Systems, Computer Science Depart-

ment, UCLA.

2011 Research Intern, Microsoft Research - Redmond, WA.

2010–2013 Research Assistant, National Center for Research on Evaluation,

Standards, and Student Testing (CRESST), UCLA.

2010–2014 Research Assistant, Computer Science Department, UCLA.

xvii

PUBLICATIONS

H. Mousavi, S. Gao, and C. Zaniolo. “Discovering Attribute and Entity Synonyms for

Knowledge Integration and Semantic Web Search” In SSW Workshop, Rive del Garda,

Trento, Italy. 2013.

H. Mousavi, S. Gao, and C. Zaniolo. “IBminer: A Text Mining Tool for Constructing

and Populating InfoBox Databases and Knowledge Bases” In VLDB, Rive del Garda,

Trento, Italy. 2013.

H. Mousavi and C. Zaniolo. “Fast Computation of Approximate Biased Histograms on

Sliding Windows over Data Streams” In SSDBM, Baltimore, Maryland. 2013. (Best

Paper Award winner)

C. Zhang, Y. Hao, M. Mazuran, H. Mousavi, C. Zaniolo, F. Masseglia. “Mining fre-

quent itemsets over tuple-evolving data streams.” SAC’13: Symposium on Applied

Computing. 2013.

H. Mousavi and C. Zaniolo.“Fast and Space-Efficient Computation of Equi-Depth His-

tograms for Data Streams.” In EDBT 2011 Joint Conference, Uppsala, Sweden, 2011.

H. Mousavi, D. Kerr and M. Iseli. “A New Framework for Textual Information Mining

over Parse Trees”, In ICSC2011, Palo Alto, USA, 2011.

H. Thakkar, N. Laptev, H. Mousavi, B. Mozafari, V. Russo, C. Zaniolo. “SMM: A

data stream management system for knowledge discovery.” In ICDE 2011, pp 757-768,

Hannover, 2011.

xviii

H. Mousavi, D. Kerr, M. Iseli, and C. Zaniolo. “Mining semantic structures from syn-

tactic structures in free text documents.” (CSD Technical Report #140005), University

of California, Los Angeles, 2014.

D. Kerr, H. Mousavi, and M. Iseli. “Automatic Short Essay Scoring Using Natural

Language Processing to Extract Semantic Information in the Form of Propositions,”

(UCLA/CRESST Technical Report #831), University of California, Los Angeles, 2013.

H. Mousavi, S. Gao, and C. Zaniolo. “Discovering Attribute and Entity Synonyms for

Knowledge Integration and Semantic Web Search”, (CSD Technical Report #130013),

University of California, Los Angeles, 2013.

H. Mousavi, D. Kerr, M. Iseli, and C. Zaniolo. “OntoHarvester: An unsupervised

ontology generator from free text”, (CSD Technical Report #130003), University of

California, Los Angeles, 2013.

H. Mousavi and C. Zaniolo. “Fast Computation of Approximate Biased Histograms on

Sliding Windows over Data Streams”, (CSD Technical Report #130002), University of

California, Los Angeles, 2013.

H. Mousavi, D. Kerr, M. Iseli, and C. Zaniolo. “Deducing InfoBoxes from Unstructured

Text in Wikipedia Pages”, (CSD Technical Report #130001), University of California,

Los Angeles, 2013.

N. Laptev, H. Mousavi, A. Shkapsky and C. Zaniolo. “Optimizing Regular Expres-

sion Clustering for Massive Pattern Search.” CSD, UCLA, 2012. (Technical Report

#120005).

xix

H. Mousavi, D. Kerr, and M. Iseli. “A new framework for textual information mining

over parse trees.” In (CRESST Report #805). University of California, Los Angeles,

2011.

xx

CHAPTER 1

Introduction

The introduction of Big Data in recent years is shifting traditional database manage-

ment systems (DBMSs) toward more scalable approaches. Nowadays, the processes of

querying, analyzing, and mining in many Big Data environments are very challenging

tasks using traditional DBMSs (if not impossible) due to the size and complexity of the

data. Sensor networks, log-records, Web-clicks, telecommunication network monitor-

ing systems, traffic monitoring systems, social networks, stock market tickers, online

encyclopedias, online reviewing systems, and customer complaint systems are only a

few examples of such environments. In such environments, several issues exacerbate

the challenges of efficiently querying and analyzing the data. Here, we listed four of

the most important such issues:

• Unmanageable Size: As already mentioned, the volume of the data in Big Data

applications is one of the biggest challenge in querying and analyzing these data

sets.

• Unstructured and Semi-Structured Data: Unstructured (Text) and semi-structured

data are the most prevalent type of data across the Web. Online encyclopedias,

reviewing systems, customer reviews, Blogs, social networks, and many other

applications contains vast amount of data in text format or semi-structured for-

mats such as tables, lists, etc. Due to the ambiguity of the natural languages,

and lack of a standard terminology (or Ontology), dealing with such data sources

adds another level of complexity to the challenge of mining Big Data.

• Online/Continuous Queries: Query processing in most Big Data applications

1

must be performed on-the-fly [BW01]. That is, the users need to get their query’s

answers at most in few seconds after submitting the query. On the same note,

once a query is submitted, the system often should run the query continuously

and generate new results considering the new-coming data items in an online

fashion. These types of data sets are referred to as data streams and have been the

focus of many research efforts in the last decade [BBD02], [GGR02], [Mut03],

[GZK05], and [Agr07].

• Data Streams with Sliding Windows: In applications dealing with data streams,

the more recent data are usually of more interest, since the data may be streaming

for a long time and the older data items may be invalid or changed. To deal

with such cases, the concepts of ageing/decaying [CL03] and sliding windows

[BBD02, LMT05] are introduced. With ageing, as the name offers, we give less

weight to older data items as new data items arrives, while with sliding windows

we only consider a certain number of the most recent data items.1

The most common solution to cope with these issues, in which the quantity and the

complexity of the information exceed the capacity of existing computing systems, is

to summarize the data sets. Sampling, histograms, quantiles, etc. are some of these

summarization techniques, that have been used extensively in traditional databases.

However, these techniques now require dramatic changes in order to effectively address

the challenges in “Big Data”. In this dissertation, we attack these challenging problems

by proposing fast summarization techniques for (i) scalar information in both data sets

and data streams and (ii) textual and structured information in Web pages. The main

goal in summarizing massive data sets is not only to reduce the volume of the data,

but also into convert it to more machine-friendly structures that can be analyzed with

less effort. In this dissertation, we refer to the process of creating and maintaining

any kind of summary for the purpose of fast query processing and data analyses as a

summarization technique.
1Or those data items which have arrived no later than a certain amount of time before the current

time.

2

As for the scalar data, one of the earliest works on summarizing data sets was in-

troduced by Munro and Paterson [MP80] in which the problems of sorting and se-

lection in databases with a limited memory space is addressed. Throughout the last

few decades many researchers have proposed new summarization techniques for dif-

ferent types of data sets [Vit85a, GM98, GKM01, GKM02, QAA02, GKM02, CM05,

ZLX06, GM07, THP08]. Perhaps the simplest summarization technique, though very

efficient for many queries, is random uniform sampling. Almost any type of function

or technique can be combined with a sampling technique, perhaps with some slight

changes. However, for some scenarios sampling can not provide an acceptable balance

between the memory/time requirement and the accuracy of the results (e.g. queries

involving join operations [CMN99, CM99]). To provide more accurate results using

less space and time, more complex structures such as Quantiles [GK01a], Histograms

[IP99], Wavelets [VW99, CGR00], etc. should be employed for massive data sets and

streaming data environments. These structures, which are often used to approximate

the results of users’ queries are called synopsis or sketch data structures [GM99].

Informally, synopses are light data structures that store useful information of the en-

tire data set and can be utilized to approximately answer users’ queries in a more time-

efficient way. These queries can be point or range queries, answers to inner-product

queries, frequency moments, Heavy Hitters, Top-k Items, frequent patterns, entropy es-

timation, or other aggregate functions [GM07]. Later, these queries combined with

other techniques can be utilized in practical applications such as, approximate query

answering [BW01, Gib01, WAA01], security systems over computer networks, sen-

sor monitoring systems, splitting parallel databases, frequent itemset mining systems,

mining and monitoring Web logs and click-streams, and several other data mining ap-

plications in massive data sets and data streams.

Recently several summarization techniques were proposed for unstructured or semi-

structured data as well. Perhaps the most prominent such techniques is provided by the

InfoBoxes in Wikipedia pages [Wik12], which summarize the most important attributes

3

and their values for entities described in the pages. In addition to being very valuable for

human readers, this information has many applications in various information systems

and in particular question answering systems such as Faceted Search [AT10], SWIPE

[AZ12], and IQ [MRS11]. Moreover, this information has been used extensively to

generate Commonsense Knowledge Bases (CKBs), e.g, DBpedia [BLK09] and YaGo2

[HSB11], and domain specific knowledge bases (Ontologies) [BCS07, Dro03, PD10] in

systems which support text summarization, document categorization, semantic search,

and automatic essay grading.

Unfortunately, since the current process of generating InfoBoxes is manual, and

standard ontologies are often not used, InfoBoxes suffer from serious inconsistency

and incompleteness issues [WW08]. In recent years, several automatic techniques have

been proposed to address these issues. Many of such works only consider structured

or semi-structured part of data [WW08, BEP08, SKW08, BLK09, HSB11]. Some ap-

proaches use limited forms of NLP-based techniques to extract InfoBox-like informa-

tion from text techniques [ECD04, YCB07, CBK10a, PGR10, LBN10, WLH11]. How-

ever, none of the mentioned efforts are able to take full advantage of the linguistic mor-

phologies of sentences in the text to generate high-quality structured information. As

a result, the existing approaches are not able to exploit hidden information in the text,

and are often incapable of extracting those pieces of information that are not mentioned

frequently in the documents.

With the introduction of the recent efforts on summarization techniques for massive

data sets and data streams on the Web as well as their shortcomings, we encounter the

following two major issues still needed to be addressed:

A. First, the proposed summarization techniques on scalar data sets and data streams

still are not fully practical and scalable for many Big Data applications, thus

more practicable techniques are needed in order to provide highly accurate ap-

proximate results, especially in fast data streaming environments with sliding

windows. Moreover, the most practical approximation approach for many appli-

4

cations are still the sampling techniques. Although performing well, sampling

can be used in combination with other synopses to improve the performance.

However, the effect of using sampling techniques in combination with other syn-

opses still needs more attention.
B. The second issue is the lack of efficient and effective summarization techniques

on structured, semi-structured, and unstructured data sources. Many of the men-

tioned approaches rely on manual techniques and none of them follow a common

terminology, which makes their use very limited. Perhaps Wikidata [Wik] is the

only project trying to provide a [multilingual] standard for presenting the sum-

maries. However, it highly relies on human contributors which makes it very hard

to scale. Moreover, a large portion of the Web (some estimate it to be more than

80%) consists of textual and semi-structured information that includes a huge

wealth of knowledge. However, current approaches for querying and mining this

part of the Web mostly rely on Bag-of-Words techniques. Unfortunately, since

these techniques do not capture morphological structure in the text, they are in-

capable of extracting much of the hidden knowledge in the text. Thus, more

sophisticated techniques are required to convert/summarize text into a machine-

friendly structure; a structure that can be easily queried and mined with in-hand

techniques.

In this work, as discussed in the following section, we mainly aim at addressing

these two challenging issues by proposing new summarization techniques.

1.1 Overview and Contributions

To address the first issue mentioned above, we propose two new types of light-weight

histograms; equi-depth histograms and biased histograms. Both types of histogram

support massive data sets and data streams with sliding windows, and has been proven

to significantly outperform their state-of-the-art peers. We also investigate and provide

5

the most efficient ways of combining these two synopses with sampling techniques to

further improve their time and space performance. These histograms will then provide

quick and accurate estimations of the data distribution, which are in fact very beneficial

for a large set of applications such as query optimization, approximate query answering,

distribution fitting, parallel database partitioning, and data mining.

As for the second issue, we propose a new integration technique to i) integrate

the existing structured knowledge bases in the Web, ii) improve and complete them

using text mining approaches, and iii) provide online tools for human volunteers to

revise the final structured summaries (Knowledge Base or KB). This approach is re-

ferred to as IKBstore throughout this dissertation. In order to generate the structured

summaries in part (ii), we present a novel NLP-based technique to extract structured

summary information from free text. This text mining system, which is perhaps the

most important component of IKBstore, generates summaries in the form of InfoBoxes

in Wikipedia and thus is called InfoBox Miner or IBminer. IBminer takes advantage

of our recently implemented NLP-based text mining framework (called SemScape)

that converts (or equivalently summarizes) text into weighted graph structures called

TextGraphs. TextGraphs hide syntactical structures of the text by providing grammati-

cal connections between terms and words in the text as a weighted directed graph, and

thus are much more machine-friendly to be analyzed with respect to the Bag-of-Words

model.

More specifically, the following contributions are proposed in this dissertation:

• We design and implement a new text mining framework, called SemScape, which

converts the unstructured text into a weighted directed graph called TextGraph.

As opposed to Parse Trees and similar structures, TextGraphs are much closer to

the semantic of the text and hide many syntactical features of the text, include

single- and multi-word terms (candidate terms) in the text and their grammati-

cal connections, and are able to present ambiguity of the text through weighted

6

edges. We also provide a SPARQL-like language with few new features for

querying and mining knowledge from the TextGraphs. With these, SemScape

provides very powerful and expressive structures and tools that can be utilized in

order to summarize and mine textual documents.

• Using SemScape, we present two complex and novel text mining techniques

namely OntoHarvester for generating (populating) ontologies and IBminer for

generating structured information in the form of Wikipedia’s InfoBoxes. We

should note that the IBminer and OntoHarvester processes can be seen as au-

tomatically annotating the terms and concepts as well as their semantic relations

in text. This indeed is the long-standing goal of the Semantic Web for which

the users are expected to perform the time consuming task of annotating. How-

ever, by employing these two systems, the annotation task can be significantly

facilitated, makes the Semantic Web one big step closer to its objectives.

• We propose a technique for integrating available structured summary informa-

tion in systems such as DBPedia [BLK09], YaGo2 [HSB13], FreeBase [BEP08],

MusicBrainz [MUS] , GeoNames [GEO] , etc. The integrated knowledge base,

called IKBstore, is then improved by mining accompanying text for the subjects

in Wikipedia or similar encyclopedias through the IBminer System. IKBstore

also provides two strong tools for browsing and editing the knowledge base by

users. With the former one users are able to browse and search the knowledge

base, and perform query-by-example as recently proposed in SWIPE [AZ12].

The latter tool also provides several facilities for users to edit the knowledge base

without knowing its internal structure. This not only eases the manual revising

and annotation tasks for the users, but it also implicitly leads them to use the cor-

rect internal terminology, and thus automatically improves the consistency of the

resulted knowledge base. IKBstore is available for public access at [Sem].

• As for the scalar data, we propose two new synopses for summarizing scalar mas-

sive data sets and fast data streams: Bar Splitting Histogram (BASH) which pro-

7

vides equi-depth histograms and Bar Splitting Biased Histogram (BSBH) which

is the modified version of BASH for biased histograms. Both BASH and BSBH

histograms support large sliding windows on the data streams. Our extensive ex-

periments in both cases indicate significant improvement with respect to the state-

of-the-art algorithms. We should add that, to our knowledge, BSBH is the first

algorithm that supports biased histograms over sliding windows of data streams.

• To further reduce the space usage of our histograms, we study the impact of

different sampling techniques on both BASH and BSBH algorithm. We also

propose a biased sampling technique for BSBH, in which we sample less from

the points of interest in the data distribution. This approach is proven to be more

effective than the uniform random sampling.

1.2 Organization of the Dissertation

As naturally imposed by the main two shortcomings mentioned previously, we divided

the dissertation into two main parts: i) summarization techniques for textual data and

semi-structured data, which is explained in the next 4 chapters and ii) summarization

techniques for scalar data. Since the former is our more recent work, we start the

dissertation with part i) and then we discuss our techniques for part ii) in Chapters 6, 7,

and 8.

For the first part, we start by introducing our pattern-based text mining framework

called SemScape (Chapter 2) [MKI11a, MKI11b]. As already mentioned, SemScape

converts text into more machine-friendly structures called TextGraphs. In Chapters 3

and 4, we explain two systems employing these TextGraphs to respectively generate

structured information (IBminer [MKI13a, MGZ13a]) and Ontologies (OntoHarvester

[MKI13b]) from free text. After introducing these subsystems, we present our final in-

tegrated knowledge based system (IKBstore) which summarizes already existing struc-

tured knowledge bases and those generated by IBminer from text into a more standard

8

knowledge based [MGZ13a, MGZ13b, MGZ13c]. IKBstore is first demonstrated at

VLDB 2013 [MGZ13c] and is available at [Sem] for public access.

As for the second main part of the dissertation, we continue by preliminaries and

background information on different types of data set and data streams as well as ex-

isting summarization techniques for scalar data in Chapter 6. In this chapter, we cover

several synopses with the main focus on Histograms and Quantiles. Next, we explain

our equi-depth histogram, BASH, in Chapter 7, which is first published in EDBT 2011

[MZ11b]. In Chapter 8, we present our biased histogram algorithm, BSBH, which

received best paper award at SSDBM 2013 [MZ13].

We finally conclude the dissertation in Chapter 9 and provide several lines of future

work in this chapter.

9

CHAPTER 2

SemScape: Structuring Free Text

A tremendous amount of publicly available data in the World Wide Web is in free

text format. Systems such as online encyclopedias, online reviewing systems, news

agencies, social networks, online publications, costumer complaint systems, blogs, etc.

are constantly generating textual data. With this increase on the volume of the textual

data, users are demanding for more advanced mechanisms for retrieving and accessing

the data. Nowadays, people are willing to read short summaries of long articles or news

rather than the entire text. They prefer to see the average rating for different features of

a service or a product instead of going over all textual reviews of other costumers. They

often want to know the hottest topics in the social networks or blogs without spending

too much time reading them. More importantly, advanced structured search [AZ12],

faceted search [HBS10], question answering systems, and automatic personal assistants

such as Siri and Google Now are getting more popular than traditional keyword-based

searches.

All mentioned applications, as well as many other domain-specific ones, require a

more effective approach for analyzing and mining text. This approach should be able

to extract the semantic of text in a more standard structured format, hide syntactical

features of the text, mine domain-specific text, handle multi-lingual text, and support

ambiguities and exceptions in natural languages.

Text mining approaches can be divided into two main categories: bag-of-words

(also called statistical) and deep NLP-based (or simply NLP-based) techniques. Since

bag-of-words machine learning techniques do not exploit morphological structures in

10

the text, they are mostly incapable of addressing all mentioned requirements. Sup-

porting ambiguities or exceptions in text, resolving pronouns and coreferences, and in

general mining from relatively smaller text data sets are very challenging in these ap-

proaches if not impossible. To deal with problems of this sort, these techniques usually

need to use larger data sets and ignore less frequently mentioned information just to

exclude some exceptions.

On the other hand, deep NLP-based approaches parse the sentences in the text and

convert them into tree-based structures, called parse trees. Parse trees contain [some of]

the morphological structures in the text with a more machine friendly format, and thus

provide a better structure for text analyzing. Although deep NLP-based approaches are

much more resource-demanding than keyword-based ones, they are proven to be more

effective in addressing the current text mining needs. Moreover, the recent advances in

distributed computing techniques also has hugely alleviated the time performance issue

of deep NLP-based techniques.

Text mining through NLP-based techniques is often performed by employing some

patterns on parse trees [Sta14] (or similar structures [MMM06]). Generating these pat-

terns, either manually or by statistical patten learning techniques, is not a trivial task

at all. Since a simple piece of information can be expressed in many different ways

through natural languages, many patterns need to be created to extract that piece of

information. Generating such patterns is both costly and time-consuming, which is

mainly emanated from the fact that parse trees are still carrying various syntactical

structures in the text. As a result, to mine parse trees one should deal with these dif-

ferent structures using many complex patterns. We should also add that, automatic

pattern generation techniques are not any better, since they often need large training

data sets (that have to be created manually) and are not usually able to learn patterns

for exceptions.

To address this issue and ease the process of text mining, we present a new and

more expressive structure, called TextGraph, that is much closer to the semantic of the

11

text, and thus requires simpler and fewer patterns to be analyzed. TextGraphs cap-

ture grammatical connections between words and terms in the text in a more standard

way than other structures such as parse trees [Sta14] and dependency trees [MMM06].

TextGraphs contains multi-word terms and their grammatical roles which is missed in

similar structures. Moreover, by providing weights for the edges/links, TextGraph can

better support text ambiguity.

TextGraphs are in fact generated by our newly proposed text mining framework,

SemScape. SemScape uses statistical parsers [Sta14] to generate few most probable

pares trees of the sentences, and then uses a small set of tree-based patterns to annotate

the parse trees with some useful information called MainParts. MainParts carry up the

hidden information in the leaves and lower branches of the parse trees to the upper non-

terminal nodes. In this way, one need much simpler and more general patterns to mine

the annotated trees, referred to as the MainPart (MP) Trees. Finally, SemScape uses

another set of tree-based patterns over the MP Trees to extract grammatical relations

between words and terms in the text to generate the TextGraphs. This two step gener-

ation of the TextGraphs from parse trees has significantly reduced the number and the

complexity of required patterns.

More specifically, we present the following contributions in SemScape:

• We introduce an annotated parse tree called MainPart tree or MP Tree in which

non-terminal nodes are annotated with important information resides in their

branches. We also introduce a tree-based query language, called Tree-Domain

(TD) Rules. TD rules can be used to query both parse trees and MP trees. Using

MP trees, one can extract information from the parse trees with fewer and less

complex patterns, which consequently eases the entire process of mining parse

trees.

• Utilizing the MainPart trees, we propose a weighted graph representation of the

text, called TextGraph, which is able to hide many syntactical features of the

text. TextGraphs are more expressive than tree structures such as parse trees and

12

dependency trees, include multi-word (candidate) terms in the text, and are able

to present ambiguity of the text through weighted edges.

• To be able to query and mine TextGraphs, SemScape provides a SPARQL-like

query language. This query language, called Graph-Domain Rules (GD rules),

provides few new features to simplify expressing queries on TextGraphs. We also

present an optimization technique for matching graph patterns in TextGraphs to

avoid several unwanted join operations in regular SPARQL engines.

• We propose a new Coreference Resolution technique to resolve pronouns and

other references in the text. This is performed through a new component in Sem-

Scape called Story Context (SC) which uses a large body of contextual, taxonomi-

cal, and categorical information from various sources. SC also takes advantage of

many syntactical patterns specifying possible or impossible resolutions. The im-

possible patterns significantly improve the quality of the final resolutions, which

is completely overlooked in the current state-of-the-art.

• SemScape is also able to adapt with different domains by accepting an ontology.

Once an ontology is fed to the framework, it generates TextGraphs with higher

focus on the known terms and concept and eliminates many unrelated terms. This

makes the framework capable of dealing with very noisy text data sets as well.

Since SemScape uses a pattern-based mining technique (with the full support of pat-

terns for capturing syntactical exceptions) to generate TextGraphs, it provides a natural

way for incrementally improving the system by adding more rules to capture missing

grammatical connection and excluding wrongly generated connections. Currently, all

patterns mentioned in this work are created manually, however one may use supervised

or semi-supervised techniques to create more patterns. The SemScape framework has

been used in our two text mining applications IBminer and OntoHarvester respectively

discussed in Chapters 3 and 4, and is proven to be very effective.

13

2.1 Preparing Parse Trees

To prepare the text, we first partition it into its paragraphs and sentences and then

simplify the sentences so that the parsing takes place more effectively and efficiently.

To illustrate this process as well as other steps that SemScape performs to generated

TextGraphs, we use the following example text throughout the section:

Motivating Example: “Barack Obama (born August 4, 1961) is the 44th and cur-

rent President of the United States. He is the first African American to hold the office.

Born in Honolulu, Hawaii, Pres. Obama is a graduate of Columbia University and

Harvard Law School, where he was president of the Harvard Law Review.”

As for the first step, SemScape finds terms and values in known formats such as

dates, floating point numbers, url addresses, etc. and uses a uniform way to represent

them (by eliminating all occurrences of the period character). For instance, in our

running example date ‘August 4, 1961’ is converted to a standard format (‘date-1961-

8-4’). Then, SemScape tags abbreviation terms (e.g. Pres., Mr., U.S., etc.) used in the

text. After these simple steps, SemScape partitions the text into paragraphs considering

the NewLine character as the delimiter. Paragraphs are important to SemScape since

they specify the scope of the pronouns used in them as explained in Section 2.4. Finally,

SemScape uses end of sentence characters (‘.’, ‘?’, ‘!’, etc.) to extract the sentences.

Next, SemScape parses each sentence using a probabilistic parser (e.g. Charniak

[Cha08] and Stanford [Sta14] parsers). For each sentence, we generate Npt (>1) parse

trees (PTs) using the parser. Having more than one PT will i) help us better deal with

the inaccuracy and noisiness of the parsers in many cases, ii) increase the amount of ex-

tracted information, and iii) provide a better way for representing ambiguity in the text.

For many cases, the first parse tree is not completely correct, so using the secondary

parse trees may help improving the results. In some cases, more than one parse trees

may be correct and using them helps generating more information as well as capturing

possible ambiguity in text. One such parse tree for our motivating example is shown in

14

Figure 2.1: Most probable parse tree for our running example.
[-1] (S
[0] (NP
[0, 0] (NP (NNP Barack 1) (NNP Obama 2))
[0, 1] (PRN
[0, 1, 0] (-LRB- (3)
[0, 1, 1] (VP (VBN born 4) (ADJP (JJ date-1961-8-4 5)))
[0, 1, 2] (-RRB-) 6)))
[1] (VP
[1, 0] (AUX is 7)
[1, 1] (NP
[1, 1, 0] (NP
[1, 1, 0, 0] (DT the 8)
[1, 1, 0, 1] (JJ 44th 9)
[1, 1, 0, 2] (CC and 10)
[1, 1, 0, 3] (JJ current 11)
[1, 1, 0, 4] (NN President 12))
[1, 1, 1] (PP
[1, 1, 1, 0] (IN of 13)
[1, 1, 1, 1] (NP (DT the 14) (NNP United 15) (NNPS States 16))))))

Figure 2.2: Most probable parse tree for our running example in parenthesized format
with our addressing schema.

Figure 2.1.

Each word in the generated parse trees is assigned an ID to make the system capable

of uniquely addressing words in the text. This is mainly required to avoid confusion

among repeated words and more importantly, to preserve the order of words and terms

in the TextGraphs. SemScape also uses a simple addressing scheme to address nodes

in the tree (Figure 2.2). Basically, each node address contains its parent address plus its

position in the ordered list of siblings.

15

Figure 2.3: Annotated parse tree (MainPart Tree) for the parse tree in Figure 2.1.

2.2 MainPart Trees

Parse trees are much richer structures than the text. In fact they have been frequently

used in different studies to improve the bag-of-words techniques for extracting infor-

mation from text. However, they still suffer from two important issues that make their

use challenging, and thus limited:

• The most important issue is that the structure of the parse trees is hugely depen-

dent to the grammar and morphological structures in text. In other words, parse

trees are still far from the semantic of the sentences. Thus, extracting information

from such parse trees still requires dealing with such various syntactic structures.

• The second issue is that parse trees (as well as dependency trees) are only con-

necting words together. Multi-word terms (A.k.a. Candidate Terms) and their

roles in the sentences are completely missing from these structures.

To address these issues, we propose a richer structure by annotating the non-terminal

nodes in the parse trees with useful information about their underlying sub-trees as

shown in Figure 2.3. For instance consider the left most NP in Figure 2.3. As shown

in the figure, this noun phrase is representing either ‘Barack Obama’ or ‘Obama’. These

16

pieces of information will carried up to the upper nodes in the parse trees so other ap-

plication will not need to search deep in the trees branches. These types of information

are referred to as Main Parts (MPs) as they specify the main part of data in each branch.

MPs may contain multi-word (candidate) terms as well, which addresses the second is-

sue mentioned earlier. The annotated parse trees are referred to as MainPart Trees or

MP Trees.

To extract MPs in the parse trees and assign them to their corresponding nodes, we

use tree-based patterns/rules, which are also called Tree Domain (TD) rules. Take the

NP at address [1, 1, 0] in Figure 2.2 as an example. This NP, which specifies the object

of the verb ‘is’ in the sentence, contains the phrase ‘the 44th and current President’. The

most important component (or part) of this phrase is obviously the term ‘President’,

which is referred to as a Noun MainPart (NMP) of the mentioned NP. A TD rule for

extracting this NMP is shown below:

———————————– Rule 1. ———————————–

RULE mainPartRule1 (’NMP’) {
PATTERN:

(NP *
(? |JJ |ADJP)
(? |CC)
(JJ |ADJP)
(NP |NN |NNS)
!*)

RESULT: < [−1], [3] >
RESULT: < [−1], [0] + [3] >

RESULT: < [−1], [2] + [3] >

}
——————————————————————————

This rule consists of two parts: PATTERN and RESULT. PATTERN specifies a tree-

like pattern for which we need to find matches in the PTs of the sentences in the text.

The RESULT parts indicate how the MPs should be generated and to which node they

should be assigned. We should add that PATTERNs are nested patterns and more ex-

pressive than regular expressions (or equivalently finite automata) [AM06]. This dif-

ferentiates our work from most of the existing NLP-based techniques. Moreover, the

17

tree-based format of our patterns makes them more readable and user friendly.

In Rule 1, PATTERN specifies noun phrases whose last four branches are i) an adjec-

tive or an adjective phrase (?|JJ|ADJP), ii) a conjunction (?|CC), iii) another adjective or

adjective phrase (JJ|ADJP), and iv) a noun or a noun phrase (NP|NN|NNS). The first two

branches are optional (indicated by a ?). From the parse tree shown in Figure 2.1 (and

in parenthesized format in Figure 2.2), it is easy to see that ‘44th and current President’ in

our motivating example matches this pattern. If any match is found for this PATTERN,

the first RESULT in Rule 1 adds the NMPs of the forth branch (‘President’ with address

[3] in the pattern tree and address [1,1,0,4] in the matching tree) of the matching tree to

the NMP list of its root (the node with address [-1] in the pattern tree and address [1,1,0]

in the matching tree).

With its last two RESULTs, Rule 1 also suggests two multi-word terms, ‘44th Pres-

ident’ and ‘current President’. This sort of terms are usually referred to as Candidate

Terms in the literature, and can be directly used in Name Entity Recognition systems

[NS07] as explained later in this section.

The MainPart Tree (MP Tree) for our running example is depicted in Figure 2.4 in

parenthesized format1. Currently, SemScape uses 135 TD rules (accessible at [Sem])

to generated the following four types of MP information:

• Noun MainParts (NMPs): As already explained, NMPs are defined for noun-

related nodes (NP , NN , NNS, CD, JJ , ADJP , ...), and they indicate the actual

term(s) represented by these node.

• Active Verb MainParts (AVMPs): A similar concept is used for the verbs-

related non-terminal nodes (S, V P , V B, V BZ, V BD, V BN , ...) in the parse

trees; however, since verbs have two forms, passive and active, we have to have

two types of main-parts for verb-related nodes. Thus, AVMPs capture the active

verbs of the verb-related nodes.

• Passive Verb MainParts (PVMPs): Similar to the previous case, PVMPs cap-

1With this format, it is actually easier to grasp the idea of matching in our TD rules.

18

[-1] S⇒ NMP: {Barack Obama, Obama}
[0] NP⇒ NMP: {Barack Obama, Obama}
[0, 0] NP⇒ NMP: {Barack Obama, Obama}
[0, 0, 0] NNP⇒ NMP: {Barack}
[0, 0, 1] NNP⇒ NMP: {Obama}
[0, 1] PRN
[0, 1, 0] -LRB-
[1, 1, 1] VP⇒ AVMP: {born}
[1, 1, 1, 0] VBN⇒ AVMP: {born}
[1, 1, 1, 1] ADJP⇒ NMP: {date-1961-8-4}
[1, 1, 1, 1, 0] JJ⇒ NMP: {date-1961-8-4}
[1, 1, 2] -RRB-
[1] VP⇒ AVMP: {is}
[1, 0] AUX⇒ AVMP: {is},

PMP:{{of, the United States}, {of, States}, {of, United States}}
[1, 1] NP⇒ NMP: {President, current President,

44th President, President of United States, ...},
PMP: {{of, the United States}, {of, States}, {of, United States}}

[1, 1, 0] NP⇒ NMP: {President, current President, 44th President}
[1, 1, 0, 0] DT⇒ NMP: {the}
[1, 1, 0, 1] JJ⇒ NMP: {44th}
[1, 1, 0, 2] CC⇒ NMP: {and}
[1, 1, 0, 3] JJ⇒ NMP: {current}
[1, 1, 0, 4] NN⇒ NMP: {President}
[1, 1, 1] PP⇒ PMP:{{of, the United States}, {of, States}, {of, United States}}
[1, 1, 1, 0] IN⇒ NMP: {of}
[1, 1, 1, 1, 0] NP⇒ NMP: {States, United States}
[1, 1, 1, 1, 0, 0] DT⇒ NMP: {the}
[1, 1, 1, 1, 0, 1] NNP⇒ NMP: {United}
[1, 1, 1, 1, 0, 2] NNPS⇒ NMP: {States}

Figure 2.4: MP Tree for the parse tree in Figure 2.2. For brevity, we did not include all
the MP information in the graph.

ture the passive verbs in verb-related non-terminal nodes. Passive verbs are of

particular importance since they change the regular roles of the subjects and the

objects in the sentences.

• Preposition MainParts (PMPs): The fourth MainPart set is for prepositions

and preposition phrases. Both noun-related and verb-related nodes may contain

PMPs. PMP of a node specifies a possible preposition for that node.

We should add that, generating PMPs is the most challenging among the four types

of MainParts, since it often requires a good understanding of the contextual knowledge,

commonsense knowledge, and some sort of reasoning. For many cases, ambiguity in

the text makes this task even more challenging. In the current implementation, we have

only considered a very small set of patterns for generating PMPs and improving them

are left for the future work.

19

Applying the mentioned 135 TD rules over the parse trees does not significantly

increase the delay of generating MP tree comparing with the parse tree delay. However

as shown next, MP trees require simpler and fewer patterns for being analyzed. Thus,

they can serve as a good replacement of regular parse trees with a small effort in many

existing text mining applications.

2.3 TextGraphs

Although the MPTs generated in the previous section are richer structures than parse

trees, they are still not completely suitable for representing semantics in the text. This

is mainly because of the tree-based structure of parse trees, which limits the number

of direct connections of terms to other terms to only one. This problem is alleviated to

some extend by dependency trees [CdJ10] in which words can be used as non-terminal

nodes as well. However, dependency trees are still limiting, since:

• Dependency trees do not still capture multi-word terms and their role in the sen-

tences.

• They still inherit the limitation of tree-based representation. Representing seman-

tics in a more standard way requires a more expressive structure, e.g. graph-base

structure.

• They do not provide a systematic way to represent the text ambiguity (e.g. confi-

dences for the links).

To address these shortcomings, we introduce an even richer structured representa-

tion of text called TextGraph. TextGraphs are machine-friendly weighted graph struc-

tures, that represent grammatical connections between words and terms in the sen-

tences, where terms are single- or multi-word phrases representing a thing or a concept.

Each link in the TextGraphs is assigned a confidence value (weight) indicating Sem-

Scape’s confidence on the correctness of the link and an evidence count indicating the

frequency.

20

Figure 2.5: Part of the TextGraph for the first sentence in our running example.

A simplified TextGraph for the first sentence in our running example is shown in

Figure 2.5. This graph connects words and terms to each others through grammatical

links such as ‘subj of ’, ‘obj of ’, ‘prop of ’, ‘det of ’, etc. The complete list of link types

in TextGraphs with their purposes is published in [MKI13b]. The graph also identifies

multi-word (candidate) terms (as shown in dashed boxes) and their roles and links to

other component of the sentences. For instance, the TextGraph contains two possible

subjects for the verb ‘is’ in sentence which are ‘Barack Obama’ and ‘Obama’. These two

at the same time play the subject role for the verb ‘born’.

With TextGraphs, more effective and efficient algorithms can be designed to extract

knowledge from text by combining graph-based and statistical methods. This is mainly

because:

• Representing the text in a graph-based structure makes it possible to take advan-

tage of many existing graph-based mining algorithms.

• TextGraphs already contain candidate terms in text that facilitates the process of

many applications requiring these terms.

• They are closer to the semantic of the text, by providing meaningful terms and

their grammatical connections in a more standard graph-based structure.

• They are weighted which is very beneficial for dealing with ambiguity in natural

languages and noisiness of the parsers.

21

These, in fact, hugely differentiate TextGraphs from their counterpart representation

techniques such as parse trees and dependency trees. Later in next section, we also

show how SemScape resolves pronouns and coreferences in the text to improve the

TextGraphs. To generate the TextGraphs, we again take a pattern based approach to find

grammatical relations between words and terms presented in the MP Trees. We refer

to these relations as either links or triples throughout this section. To extract links, we

created more than 270 TD rules which are all available in [Sem]. The generated triples

by these rules are later combined into the final TextGraph structure. An examples for

such TD rules is shown bellow, This rule aims at capturing the ‘subject of ’ (‘subj of ’)

links:

———————————– Rule 2. ———————————–
RULE subjectToVerb
{

PATTERN:
(S

(NP)
(VP))

RESULT (FO1=‘NMP’, FO3=‘AVMP’, conf=.9):
<[0], ‘subj of ’, [1]>

RESULT (FO1=‘NMP’, FO3=‘PVMP’, conf=.9):
<[0], ‘pobj of ’, [1]>

}
——————————————————————————

The PATTERN in Rule 2 specifies a pattern in which a Noun Phrase (NP) is followed

by a Verb Phrase (VP). This is the most general form of subject-to-verb link structure in

parse trees. Similar to MP rules, Rule 2 indicates that for the matching trees, the NMPs

of the noun phrase (NP) should be connected to the active verb main-part (AVMP) of the

verb phrase (VP) to generate a subj of link with confidence 0.9. Moreover, the NMPs

of the noun phrase (NP) should be connected to the passive verb main-part (PVMP) of

the verb phrase (VP) as a ‘passive object of ’ (pobj of) link. For our running example,

this rule captures links such as <Obama, subj of , is> and <Barack Obama, subj of , is>.

Note that, with the assist of MP information, this single rule can catch most of the

subj of and pobj of links in different sentences without needing to know their lower

22

level structure of the parse trees at nodes NP and VP. This is actually one of the most

important gains in the SemScape framework, and dramatically decreases the number of

required patterns/rules as well as simplifying the patterns required for any text mining

application.

Each generated triple has a confidence (indicated by keyword ‘conf ’ in Rule 2)

showing SemScape’s confidence on the correctness of the link. If the same link is

generated from different rules or from different MP trees, SemScape increases its cor-

rectness confidence as discussed in Section 2.3.2. After applying all rules to the MPTs

of a sentence and generating the triples, we combine them into the final TextGraph (e.g.

Figure 2.5). That is each sentence is converted into a separate TextGraph. In section

2.4, we show how SemScape improves the textGraph of each sentence by resolving

its pronouns and coreferences with terms in the same or previous sentences. Next we

discuss SemScape’s approach for capturing syntactic exceptions in natural languages

to improve the TextGraphs.

2.3.1 Support for Exceptions

Syntactic exceptions are the inseparable part of any natural languages. Although cap-

turing exceptions can significantly enhance the quality of the text mining approaches,

most of existing approaches do not provide an easy-to-use technique to handle excep-

tions. On the other hand, finding patterns with no exceptions in natural languages is

a very tedious task, and a general pattern should be split down into many smaller pat-

terns too avoid some exception cases. To simplify this process without needing to split

our general patterns (e.g. Rule 2), SemScape uses patterns with negative confidence

to specify exceptions and remove many of the incorrectly generated triples from the

TextGraphs. Exception rules are considered superior to regular rules. That is if the

same triple is extracted multiple times by different rules over the MP trees of the same

sentence, and one of the extracted triples has a negative confidence, the triples with

positive confidence will be eliminated.

23

To better illustrate this technique, consider the sentence “In the woods are trees”.

Since the sentence is in inverted form, which is not as common as the normal form,

the parsers may not be able to recognize the structure correctly. For instance for the

mentioned sentence, only one parse trees from the first three suggested parse trees

by Stanford parser is correctly capturing the inverted form. Thus, our patterns may

generate incorrect information from the incorrect parse trees. (<trees, obj of , are> in

our case). To eliminate this incorrect information, SemScape uses the following pattern:

———————————– Rule 3. ———————————–
RULE subjectToVerb(Inverted)
{

PATTERN:
(SINV

(PP)
(VP)
(NP))

RESULT (FO1=‘NMP’, FO3=‘AVMP’, conf=-.9):
<[2], ‘obj of ’, [1]>

RESULT (FO1=‘NMP’, FO3=‘AVMP’, conf=.9):
<[2], ‘subj of ’, [1]>

}
——————————————————————————

This pattern matches the correct parse tree and generates a triple with negative con-

fidence (<trees, obj of , are>) as well as the correct triple (<trees, subj of , are>). Using

the negative-weighted triple, SemScape can eliminate incorrect triples generated from

incorrect parse trees and improve the final TextGraph for the sentence.

2.3.2 Combining Confidence Value

As already mentioned, every triple in TextGraph is assigned a confidence value. Since

the same triple may be generated more than once (from different rules or different

parse trees), we need to combine their confidence value c. Similar to [LWW11], the

only assumption for the combination process is that evidences of the same piece of in-

formation are independent from each other. Thus, if a piece of information has been

generated twice by different rules or from different MainPart Trees, once with confi-

24

dence c1 ≥ 0, and once with c2 ≥ 0, we combine the confidence to c = 1−(1−c1)

(1−c2)= c1+(1−c1)c2. This new confidence is higher than both c1 and c2 which indi-

cates the link’s correctness probability is now higher. For each triple, we also count

the number of time it has been generated and refer to it as the evidence frequency or

count (e). We should note that, if one of the confidence values are negative for a par-

ticular triple (specifying an exception), we eliminate all the same triples with positive

confidence as explained in previous section.

2.3.3 Enriching TextGraphs with Ontologies

Another important feature of SemScape is the ability to adapt an ontology and provide

more related candidate terms with respect to the specified ontology. The Ontology

here can be both domain-specific or domain independent in OWL. For simplicity, one

can also specify a list of concepts instead of Ontology (e.g. the list of all subjects in

Wikipedia). There are two main advantages of this feature which are discussed next.

The first advantage is to better control the volume of generated Noun MainParts.

To understand how, we should note that for complex noun phrases (NPs) there might

be several possible candidate terms. Not all of these candidate terms are useful or

meaningful. Therefore, suggesting all of them as MPs may lead to a very large set of

candidate terms which lowers the efficiency of the system. To prevent this problem,

SemScape is made capable of utilizing an ontology, say O. Using O, SemScape only

generates candidates terms that either i) contain less than three words, ii) are part of

an existing concepts in O, or iii) contain a concept from O. In most simple cases this

generates all possible candidate terms; however for many long noun phrases, this helps

us reduce the size of the TextGraphs.

The second advantage of incorporating an ontology in the framework is to allow

domain-specific applications to better utilize the framework. In a similar way, Sem-

Scape is also able to recognize Named Enmities [NS07] in the provided text which is

25

not a trivial task in other approaches. It can also spot more related parts of the text with

respect to the ontology which consequently improves system’s robustness on dealing

with noisy corpora. This feature is discussed in greater detail in [MKI13b].

2.3.4 Graph Domain Patterns

SemScape provides a graph-based query language, called Graph Domain or GD rules,

to let users and applications mine the TextGraph. Although the format of GD rules

is very similar to that of SPARQL [SPA12], its implementation is somehow different

as explained in Section 2.5. In GD rules, we also introduce few extended features

for simplifying the information mining process from TextGraphs. These features are

introduced later in this section. Besides the external applications that can benefit from

GD rules, SemScape uses GD rules for two purposes. The first one is completing and

improving the TextGraphs using few GD rules. These patterns are often much easier to

be expressed by GD rules than TD rules. The second purpose is to perform Coreference

resolution which is the topic of the next section in which we provide examples of GD

rules. Readers are also referred to [Sem], [MKI13b] and [MKI13a] for more examples

of such rules.

We should add that GD rules are usually considered as in batch of patterns aiming at

mining certain types of information. That is SemScape may be fed with sets of GD rules

for different tasks (and applications). For instance as shown in [MKI13b], we fed the

system with rules for generating ontological links in an automatic ontology generation

system. Similar idea is used in [MGZ13c] to generate structured information from free

text. Thus, once the GD rules are specified by an application, SemScape will apply

them on all TextGraphs of the provided text, combine the resulted tuples, and report

them back to the application.

In addition to the features supported by SPARQL, GD rules introduce the following

features to ease the process of mining TextGraphs2:
2Readers are referred to [MKI13a] for examples on each new feature.

26

• Each rule may have multiple SELECT clauses to allow generating multiple pieces

of information from same patterns.

• One may use keyword ‘NEG’ before the SELECT keyword to specifying excep-

tions similar to TD rules in section 2.3.1.

• One may use keyword ‘NOT’ before any triple in the WHERE clauses to indi-

cate the absence of some links in the pattern, which requires a more complex

expression in SPARQL.

2.4 Coreference Resolution

In textual documents, a pronoun or a reference may be used to refer to a term or a con-

cept. These terms or concepts may be or may be not mentioned in the text itself. For

instance in our running example word ‘he’ in the second sentence is a pronoun referring

to ‘Barack Obama’ and ‘Pres. Obama’ is a reference for ‘Barack Obama’. Resolving these

types of references, called Anaphora or Coreference Resolution, is a very crucial step

for improving the performance of any text-based knowledge acquisition technique. Un-

fortunately, this task is very challenging since it requires a huge amount of contextual

knowledge, commonsense knowledge, and in many cases complex and ad hoc infer-

encing techniques [MML09]. The ambiguity of the natural languages also aggravates

this issue.

In SemScape, we propose a new technique to resolve pronouns and references

through the Store Context (SC) component. At its highest level, SC recognizes charac-

ters (also called mentions) in the text, learns contextual information about them from

different resources, and uses this contextual information and a novel pattern-based tech-

nique to match characters to each other and resolve pronouns and references in the text.

Each sentence in the text has its own SC in SemScape. The SC of the sentences of a

paragraph are combined into the SC of the paragraph, and the SC of the paragraphs are

combined to construct the SC of the entire document. In this way, we specify different

27

resolution scopes. For instance the resolution for relative pronouns are considered the

same sentence, while this scope for pronouns is the its entire paragraph. The scope for

other references is considered to be the entire document. These steps are explained next

in this section.

2.4.1 Recognizing Characters

The first step to construct the SC’s structure is to recognize possible characters or men-

tions. This is a relatively easy task for us since TextGraphs already provide all the

candidate terms (Noun MainParts) in text. We use these candidate terms as the charac-

ters of [the story of] the text. However, some characters in the text are more important

(due to their role) than the others, and as a result they are more probable to be referred

with pronouns or other references. To determine the importance of a character, each

character is assigned an evidence count and a confidence weight. Whenever the same

character is encountered in different roles (relations), we increase its evidence count by

one and its confidence as explained in Section 2.3.2. We should mention that at this

stage each occurrence of the same candidate term is considered as a separate character.

2.4.2 Mining Characters Context

After generating the list of characters, we gather information about some of their impor-

tant and distinguishing attributes or properties. These properties are sometimes called

agreement properties. Currently, we consider seven properties: isMale (if it is a male

or a female), isPerson (if it is a person or not), isOrganization (if it is an organization

or not), isLocation (if it is an geographical location or not), isAnimal (if it is an animal

or not), isObject (if it is a thing or not), and isPlural (if it is plural word or not). Other

properties could be added to this set to improve the final resolutions results. However,

we found these the most useful and differentiating properties. We should add that most

of the exiting works in this area only consider person, gender, and number as their

28

agreement properties [Hob78, LL94, CE09, HK09].

For each property, SC uses a different source of information to estimate their value,

which ranges between -1 and 1. Value 1 means 100% confidence that the property holds

and value -1 means 100% confidence it does not (value 0 indicates no information about

the property). As opposed to most similar approaches which use only true/false values

for characters properties [Hob78, LL94, CE09, HK09], SC uses probability of being

true or being false to better deal with uncertainty.

To evaluate the mentioned properties, we use the rich structured knowledge pro-

vided by Wikipedia’s categorical information. For instance if one of the ancestor of a

character is the ‘Category:People’ category in Wikipedia, we set its isPerson property

to 1. The same approach is used for isOrganization, isLocation, isAnimal, and isObject

properties. This technique can be used for many potential properties that one may want

to add to our initial list of properties. However, the main drawback of this technique

is that for many characters, there is either no equivalent title in Wikipedia or no cat-

egorical information. Thus, we use the following heuristics to mine more contextual

information on each character:

• We use VerbNet [KKR08] which for each verb v specifies its possible subject or

object as either an organization, a person, an animal, or an object. For instance,

in the sentence ‘The agent was killed in a terrorist attack.’, due to the meaning of the

verb ‘killed’, ‘agent’ is probably a person or an animal.

• For isPlural, we use the POS tags generated from the parser as well as some TD

rules (e.g., terms containing the word ‘and’ or ‘or’ are considered plural).

• For isMale, we use lists of masculine (e.g., waiter, king, etc.) and feminine (e.g.,

waitress, queen, etc.) terms and lists of male or female proper first names.

• For isPerson, we use some POS tag information (e.g., NNP), our male and female

first names lists, as well as some TD rules (e.g., any term renaming the words

‘who’ or ‘whom’ could be a person).

• We also have a list of animal names to add more evidence to isAnimal.

29

• For isObject, if there is evidence that a term is not a person and is not an animal,

we increase the confidence that it is an object. Any term renaming the word

‘which’ could also be an object.

Combining Potentially Referencing Characters: Another new technique to improve

our understanding about the values of the seven properties for different characters is

to use taxonomical relations namely type of relations between the characters. These

relations are generated using our OntoHarvester system [MKI13b] and Hyponym in-

formation in WordNet [SR98]. The key idea is that if character γ1 is type of character

γ2 with confidence c, then γ2 may be used as a coreference for γ1 (in other words, γ1

may be referred to as γ2) with confidence c. For instance, since ‘algebraic equation’ is

type of ‘equation’, after the first time ‘algebraic equation’ is mentioned in text, it can be

referenced with the ‘equation’ for the rest of text. This essentially means that γ1 can

inherit the properties of γ2 and vice versa. In order to do so, for each property f we

update its confidence value in γ1 (γ1.f) as follows:

γ1.f = {
γ1.f + (1− γ1.f)cγ2.f if γ1.f × γ2.f ≥ 0

(γ1.f + cγ2.f)/2 if γ1.f × γ2.f < 0

The idea of combining the confidence values is essentially the same as in Section

2.3.2 if properties’ values have the same signs. If they have different signs, we simply

take a weighted average on their values. By propagating the values of the properties

for potentially coreference characters, we ease our later resolution technique which is

based on the similarity (or agreement) of the character’s properties.

2.4.3 Finding Patterns for Coreferences

Although in general resolving pronouns and other references only based on morpho-

logical structures in text is not feasible, there are few cases for which these structures

may indicate a resolution. For instance consider the sentence “Bob relieved himself telling

him the truth.”. Clearly from the structure of the sentence, one can tell the reflexive pro-

30

noun‘himself ’ refers to ‘Bob’ in this sentence. Here the pattern is that if the object of a

verb is a reflexive pronoun, it always refers to the subject of the same verb. To capture

such a pattern, we use the following GD rule:

———————————– Rule 4. ———————————–
SELECT (?2 ‘CoRef’ ?1)
WHERE {

?1 ‘subj of’ ?3.
?2 ‘obj of’ ?3.
FILTER (regex(?2, ‘ˆitselfˆ|ˆherselfˆ|ˆhimselfˆ...’, ‘i’))

}
——————————————————————————-

In addition to reflexive pronouns, we use predictive nominative constructs, first ex-

ploited by [PD08], appositive and role appositive constructs [HK09], and relative pro-

nouns construct [RLR10]. As can be seen, there are only very few such constructs that

explicitly specify a resolution. However, there are many cases that a construct explic-

itly indicates two characters can NOT refer to each other (be each others resolution).

For instance, in our earlier example, ‘him’ can refer to neither ‘Bob’ nor ‘himself ’. We

refer to such cases as impossible resolutions. In general the object and subject of most

verbs can not be each other’s resolutions unless the object is a reflexive pronoun. This

pattern is captured with the following GD rule in SemScape:

———————————– Rule 5. ———————————–
SELECT (?2 ‘NoCoRef’ ?1)
SELECT (?1 ‘NoCoRef’ ?2)
WHERE {

?1 ‘subj of’ ?3.
?2 ‘obj of’ ?3.
FILTER NOT (regex(?3, ‘ˆbeˆ|ˆbecomeˆ|ˆremainˆ...’, ‘i’))
FILTER NOT (regex(?2, ‘ˆitselfˆ|ˆherselfˆ|ˆhimselfˆ...’, ‘i’))

}
——————————————————————————-

Some other obvious constructs indicating negative or impossible resolutions are

terms connected through a preposition, terms for which one is part of the other, and

terms connected with conjunctions such as ‘and’, ‘or’, ‘except’, etc. Currently, Sem-

Scape uses 64 GD rules (available at [Sem]) to extract possible and impossible reso-

lutions between characters from the morphological information in text. For possible

31

resolutions, we combine the characters as explained in the previous section. Inheriting

the property’s value is even more useful when one of the characters is a pronoun, since

most of the mentioned seven properties for pronouns are easily inferrable. The impos-

sible resolutions, on the other hand, are used in the next section where we explain how

SemScape performs the final character resolution.

2.4.4 Resolving Characters

Say that a character γ1 from a sentence s needs to be resolved. We calculate the similar-

ity (see next paragraph) between γ1 in s and all other non-pronoun characters in s that

are not an impossible resolution for γ1. Our studies shows that filtering by impossible

resolution reduces the search space by more than half for each sentence. Similarity val-

ues larger than a predefined threshold are reported as resolutions. If no value exceeds

the threshold, resolution search for γ1 is continued among characters in the previous

same-paragraph sentences, iteratively. In this way we take the recency into account.

If γ1 is a pronoun and no resolution is found for it in its paragraph, the search will be

stopped; this should be a rare case. If γ1 is not a pronoun and it is not resolved yet,

sentences of the previous paragraph are also checked until resolutions are found or un-

til the beginning of the document is reached. In other words, the scope for a pronoun’s

resolution is only its paragraph in SemScape, while the scope for other coreferences is

the entire document.

Characters Similarity Measurements: To compute the similarity of two charac-

ters γ1 and γ2, we define the distance for property f as δf=(γ1.f−γ2.f)/2 (−1≤ δf ≤1)

and average for property f as µf=(γ1.f+γ2.f)/2 (−1≤ µf ≤1) respectively. Thus, we

compute the similarity of characters γ1 and γ2 by:

1− (
∑
f∈F

df)/|F |

32

Figure 2.6: From left to right a) The GD query (q), b) a TextGraph that contains q (tg),
and c) a TextGraph that does not contain q (tg′).

where F is the set of all properties (i.e. |F | = 7 in our case) and df is the dissimi-

larity of γ1 and γ2 for property f which is defined as:

df =
|δf |
|µf |+ 1

It is easy to see that 0 ≤ df ≤ 1. The above formula indicates that more difference

(|δf |) essentially means more dissimilarity, especially when the average is smaller (e.g.,

the dissimilarity of properties with values -.2 and .2 is more than the dissimilarity of

properties with values .5 and .9 even though their distances are the same).

2.5 Graph Matching Optimization

As you may have already noticed, TextGraphs can be presented in RDF-like triple

format, and thus queried by SPARQL. However, there is a subtle difference between

TextGraphs and RDF graphs. As the TextGraphs are the graph representation of text,

they may include several different nodes with the same name or label while nodes in

RDF must have unique names. For instance in the TextGraph shown in Figure 2.5, there

are two nodes with label ‘the’. This makes querying the TextGraphs using SPARQL in-

efficient as explained next.

33

To understand the above issue, consider the GD query (q) in Part a) of Figure 2.6.

Five nodes with three different labels (A, B, and C) are connected through four links

in this query. As mentioned earlier, to differentiate among nodes with the same label,

SemScape assigns an ID to each node (e.g. ‘A1’, ‘A5’, and ‘A6’ in Part b) of Figure 2.6

or ‘the 8’ and ‘the 14’ in Figure 2.5). To ease our discussions, we assume all edges have

the same label, say ‘link’. Now consider two TextGraphs tg and tg′ in Parts b) and c)

of Figure 2.5. As can be seen, although both tg and tg′ contain all the individual edges

of the query graph q, only tg contains a subgraph matching q. To find such matches, q

can be expressed with the following SPARQL query:
———————————- Rule 6. ———————————–

SELECT *
WHERE {

?1 ‘link’ ?2 .
?1 ‘link’ ?4 .
?4 ‘link’ ?3 .
?5 ‘link’ ?3 .
FILTER (strStarts(?1, ‘A ’))
FILTER (strStarts(?2, ‘C ’))
FILTER (strStarts(?3, ‘C ’))
FILTER (strStarts(?4, ‘B ’))
FILTER (strStarts(?5, ‘A ’))

}
——————————————————————————-

Although this approach perfectly works for GD query q using any SPARQL engine,

it is very inefficient and slow, since it can not take advantage of any smart indexing

techniques. Notice that the engine needs to traverse all triples for each where clause

in the form of <?1 ‘link’ ?3 .> and then filter them based on the specified FILTER

commands. The same phenomenon can happen in other RDF resources, however it is

much more frequent in TextGraphs due to too many same-label nodes.

To take advantage of the same-label nodes in our query engine, we first ignore

all the IDs assigned by the SemScape to nodes and collapse both query graphs and

TextGraphs by combining same-label nodes into a single node. The collapsed version

of the examples in Figure 2.6 is depicted in Figure 2.7. As shown in Figure 2.7, for

34

every link in the collapsed version, we store all the associated links in the actual graph

for later retrieval. Now the collapsed version of query q, called qc (Part a) Figure 2.7),

can be answered through the following SPARQL query:
——————————– Rule 7. ————————————

SELECT *
WHERE {

‘A’ ‘link’ ‘C’ .
‘A’ ‘link’ ‘B’ .
‘B’ ‘link’ ‘C’ .

}
——————————————————————————-

Answering collapsed queries (e.g. Rule 7.) over collapsed TextGraphs is much

faster than regular queries (e.g. Rule 6.) over original TextGraphs. This is due to two

main reasons: i) the collapsed queries are smaller in the number of edges which conse-

quently reduce the number of join operations to answer them by a SPARQL engine and

ii) there are more literal nodes and less variable nodes in the collapsed query graphs,

which makes a better use of indexing optimizations. However, finding a match for a col-

lapsed query on a collapsed TextGraph does not necessarily mean that the actual query

matches the actual TextGraphs (e.g. qc matches tg′c but q does not match tg′.) A match,

here, only indicates that all edges in the query graph have at least one corresponding

edge in the TextGraph. This check, in fact, reduces the search space by eliminating

many TextGraphs in which one or more of the specified edges in q is missing. For other

cases, to verify that the matching edges construct the same graph structure specified by

q, we use the following verification algorithm.

Verification: After finding the matches for the collapsed queries on the collapsed

TextGraphs, we expand the matching edges to those in the actual edges. For instance,

consider TextGraph tg and its collapsed version tgc (Part b), Figure 2.7). Running the

collapsed query qc over tgc will return the subgraph shown in Part a) Figure 2.8. Once

we expand this subgraph to its corresponding subgraph in tg, we create a graph in which

each edge matches at least one of the edges in the original query graph q. This subgrapg

which is shown in Part b) Figure 2.8 is referred to as tgm.

35

Figure 2.7: From left to right: Collapsed version of a) q (qc), b) tg (tgc), and c) tg′ (tg′c).

Figure 2.8: From left to right: a) the subgraph of tgc that matches qc, b) the expanded
graph of part a, and c) the subgraph of tg that matches q.

Now, the goal is to verify that the query graph q matches with tgm or part of it.

To this end, any sub-graph matching technique can be utilized. Fortunately, since both

nodes and links in TextGraphs are labeled and the queries are mostly small graphs, the

problem is much simpler than the general subgraph matching (subgraph isomorphism)

problem which is NP-Complete [Coo71]. In our current implementation, we use a

simple recursive backtracking procedure.

36

CHAPTER 3

IBminer: Generating Structured Summaries from Text

Structured summaries of textual documents are playing an increasingly important role

in Web information systems. In addition to being very valuable for human readers,

this information has many applications in various information systems and in particular

question answering systems such as Faceted Search [AT10], SWIPE [AZ12], and IQ

[MRS11]. This information has also been used extensively to generate Commonsense

Knowledge Bases (CKBs) [BLK09, HSB11, WW08] and domain specific knowledge

bases (Ontologies) [BCS07, Dro03, PD10] in systems which support text summariza-

tion, document categorization, semantic search, and automatic essay grading.

A prominent example of such structured summaries is provided by the InfoBoxes

in Wikipedia pages [Wik12], which summarize the most important attributes and their

values for the entities described in the pages. Unfortunately, since the current process of

generating InfoBoxes is manual, and standard ontologies are often not used, InfoBoxes

suffer from several issues [WW08]. The first problem is limited coverage, due to the

fact that many pages in Wikipedia have incomplete InfoBoxes or no InfoBox at all—

according to DBpedia, more than 40% of the pages in Wikipedia are missing their entire

InfoBox. The second problem is that attributes may have several synonyms or aliases

(e.g., ‘birthdate’, ‘date of birth’, and ‘born’), which are used interchangeably, making

the knowledge base seemingly inconsistent. Finally, the third problem is that, due to

the manual construction, lots of erroneous or misspelled InfoBox triples (around 4%

according to our studies) are created.

In recent years, several automatic techniques have been proposed to alleviate these

37

issues. Many of such works only consider structured or semi-structured part of data

[WW08, BEP08, SKW08, BLK09, HSB11]. Some approaches use limited form of

NLP-based techniques to extract InfoBox-like information from text techniques [ECD04,

YCB07, CBK10a, PGR10, LBN10, WLH11]. However, none of the mentioned efforts

are able to take full advantage of the linguistic morphologies of the sentences in the text

to generate high-quality structured information. As a result, the existing approaches are

not able to exploit hidden information in the text, and are often incapable of extracting

those pieces of information that are not mentioned frequently in the documents.

In this section, we describe our system, called IBminer, which addresses the men-

tioned issues by generating structured information in two main phases: First it extracts

meaningful connections between mentioned terms in the text by using morphological

structures in the text. These links are referred to as semantic links and represented as

<subject, link, value> triples. Then using a large body of categorical/taxonomical

information (for subjects and values) and using the original InfoBox triples in Wi-

kipedia, IBminer automatically learns patterns for mapping the link parts in semantic

links to appropriate attribute names and generates the final InfoBox triples.

Being able to capture morphological structures in text through the SemScape frame-

work and combining them with contextual information for terms and phrases in text,

IBminer is effectively capable of deriving accurate information from rather small cor-

pora. To improve the quality of the generated structured information, IBminer also

employes an effective type-checking technique as well as an approach for dealing with

exceptions in natural languages. Our studies in fact show that by only considering the

abstract of the pages in Wikipedia, IBminer is able to generate structured information

with more than 97% accuracy while improving the coverage of DBpedia by at least

27%. Moreover, since IBminer uses free text, it can be simply fed with textual infor-

mation from any resources. Thus, it can improve the performance of many applications

using structured information.

More specifically, we provide the following contributions in this section:

38

Figure 3.1: Excerpts from the Wikipedia page for “Johann Sebastian Bach” (Retrieved
on 5/7/12)

• We propose the IBminer system which extracts structured summary information

(in the form of <subject, attribute, value>) from completely unstructured text.

IBminer also introduces a very strong type-checking mechanism that automati-

cally infers the acceptable value domains for each attribute. These value domains

greatly improve the accuracy of IBminer’s final results.

• IBminer also suggests attribute synonyms, which may differ based on the tax-

onomical information for the subject and value of the triples. This mainly im-

proves the consistency of the results. Moreover, our synonym structure can rec-

oncile the different terminologies used for attribute names in the existing knowl-

edge bases.

• We perform extensive experiments on a multi-core implementation of IBminer

and evaluate its performance using the long abstracts in Wikipedia. We have

also conducted experiments by evaluating the results of semantic search over

IBminer’s results and those of DBpedia. To this end, we first created a set of

popular queries and then provided the answers for the queries using these two

knowledge bases, which showed at least 53% improvement on the number of

found answers for the queries.

39

3.1 Overview and Example

After preprocessing the text and partitioning it into its paragraphs and sentences, IB-

miner performs the following operations to achieve its high-level functionality of de-

riving InfoBoxes from free text:

• Generating TextGraphs: IBminer converts the sentences in the TextGraphs us-

ing SemScape (As explained Chapter 2).

• Phase I: Using SPARQL-like graph patterns on the TextGraphs, IBminer gen-

erates a set of initial triples called semantic links in the form of <subject, link,

value>where subject is an entity, value is either an entity or a value, and link is

a semantic relation between subject and value. Each semantic link represents a

small piece of information that is potentially useful to generate an InfoBox triple.

• Phase II: Using a large body of categorical/taxonomical information and learn-

ing from the original InfoBox triples in Wikipedia, IBminer generates an inter-

mediate structure called Potential Matches (PM). PM is a very large set of au-

tomatically generated patterns which will be used to translate link names in the

semantic links into appropriate attribute names and generate new InfoBox triples.

Both mentioned phases take advantage of pattern-based mining techniques. How-

ever, there is a huge difference between the two sets of patterns, used in these phases.

In the former case, we use a limited set (≈ 60) of domain-independent patterns which

are designed manually. Since these patterns are only capturing morphological structure

they can be used in any domain with no changes. Our experiments in this study also

prove this claim. On the other hand, patterns in phase two are created automatically

based on the contextual (taxonomical or categorical in our case) information available

for each domain. They can easily adapt with new domains without any extra effort.

To ease the rest of our discussions, we use the following running example through-

out this chapter:

40

Example: Consider the Wikipedia page for ‘Johann Sebastian Bach’ (Figure 3.1). For

‘Bach’ and many other classical musicians, the entire InfoBox is missing from the Wi-

kipedia page. However, several pieces of information about Bach can be extracted

from the accompanying text (e.g., birthdate, death date, birth place, nationality, and

occupations).

After generating TextGraphs using SemScape (such as the one in Figure 3.2) for

the sentences in the Bach page, IBminer employs a set of SPARQL-like queries called

Graph Domain (GD) rules to extract information from TextGraphs in the form of

triples, which are referred to as semantic links (e.g. <Bach, was, composer>, <Bach,

was, German>, <Bach, was of, Baroque Period>, etc.).

For each generated semantic link <s, l, v>, IBminer maps the link name l to one

or more known attribute names from the existing InfoBoxes based on the values of

s, l, and v as well as categorical information of s and v. In the example above, the

link ‘was’ in the triple <Bach, was, composer> will be mapped to the attribute name

‘occupation’ based on the knowledge that i) ‘Bach’ belongs to the category ‘people’,

ii) ‘composer’ belongs to the category ‘occupation in music’, and iii) according to the

existing examples, the link ‘was’ between these two categories is usually referred to as

‘occupation’.

The rest of this chapter is organized as follows: We first present the key parts of

IBminer, Phase I in Section 3.2 and Phase II in Section 3.3. The actual implementation

of IBminer in a multi-core environment is discussed in Section 3.4. In Section 3.5, we

describe the results obtained from extensive experiments. Finally, we proceed with a

discussion of related work in Section 3.6 followed by the Conclusion section.

3.2 Generating Semantic Links

The next step to generate InfoBoxes is to find the semantic connections between terms

used in the TextGraphs. These connections are referred to as semantic links in our work,

41

Figure 3.2: Part of the TextGraph for first sentence in Figure 3.1.

and will be used later to generate the final InfoBox triples. Before continuing, let us

first define semantic links:

Semantic Link. Semantic link is a triple, denoted as <subject, link, value> where

subject and value are two candidate terms in a TextGraph connected through the phrase

link. For instance, <Bach, was, composer>, <Bach, was, German>, and <Bach, was,

organist> are three possible semantic links in our running example.

It is important to understand that with the above definition some of the links in the

TextGraph are also semantic links (e.g. <Date-3-31-1685, was, Bach>). However, there

are many more semantic links that can be extracted from the TextGraphs. This section

explains how IBminer extracts such links with a pattern-based approach.

3.2.1 Extracting Semantic Links

To generate semantic links such as the ones introduced above, IBminer uses a limited set

of carefully created graph-based patterns. These patterns, which are also called Graph

Domain rules, capture common structures in the TextGraphs that indicate possible se-

mantic links between candidate terms. Then from the matching sub-graphs for these

patterns, IBminer constructs the semantic links. Semantic links that are created more

42

than once from different patterns or different sentences are also merged as explained

later in this section.

Graph Domain Rules. Given a TextGraph T , Graph Domain (GD) rule is a graph

query executed on T which returns semantic links matching certain conditions. The for-

mat of GD rules is similar to SPARQL, with some extended key words for TextGraphs.

To understand our GD rules and the process of using them to generate semantic links,

we provide several examples in this section. We should stress that the GD rules in

IBminer are completely generic and domain independent. Our experiments in Section

3.5 also verify this claim, where we applied these rules on three different domains and

observed steady results for all the domains. In the current implementation of IBminer,

we have created 59 such GD rules which are available for online access [Sem].

As shown in Figure 3.2, terms are represented by nodes in the graph and connected

in various ways. For instance, the term ‘Johann Sebastian Bach’ is connected to the

term ‘composer’ though a connecting node (verb) ‘was’. This is actually a very com-

mon pattern that can generate several small facts such as <Johann Sebastian Bach, was,

composer>. Generating such a fact in bag of keyword approaches or even in shallow

NLP-based techniques is indeed very challenging. IBminer uses the following GD rule

to extract similar facts to the mentioned one:

———————————– Rule 1. ———————————–
SELECT (?1 ?3 ?2)
WHERE {

?1 “subj of” ?3.
?2 “obj of” ?3.
NOT(”not” “prop of” ?3).
NOT(”no” “det of” ?1).
NOT(”no” “det of” ?2).

}
——————————————————————————-

As depicted in the part a) of Figure 3.3, the pattern graph (WHERE clause) of Rule

1, specifies two nodes with names ?1 and ?2 which are connected to a third node (?3)

43

Figure 3.3: Part a) shows the graph pattern for Rule1, and b) depicts one of the possible
matches for this pattern.

respectively with ‘subject of’ (sub of) and ‘object of’ (obj of) links. One possible match

for this pattern in the TextGraph of our running example is shown in part b) of Figure

3.3. Due to the structure of the TextGraphs, matching multi-word terms (hyper nodes in

the TextGraphs) to the nodes in the patterns is an easy task for IBminer whereas this is

actually a challenging issue in works such as [WW10] which are based on dependency

parse trees. Using the SELECT clause in Rule 1, the rule returns several triples for our

running example such as:

• <Johann Sebastian Bach, was, composer>,

• <Sebastian Bach, was, composer>,

• <Bach, was, composer>,

• <Johann Sebastian Bach, was, organist>,

• <Sebastian Bach, was, organist>, etc.

Section 3.2.2 discusses how IBminer assigns confidence value to each of the above

triples. As can be seen, we have made the syntax of the GD rules similar to that of

SPARQL [SPA12]. The SELECT clauses in GD pattern may indicate more than one

triple. However, we added the notation of ‘NOT’ to indicate the absence of some links

in the pattern, which requires a more complex expression in SPARQL.

As a more complex example, consider Rule 2 which captures Bach’s nationality in

our running example. This rule looks for a ‘to be’ verb (?3) with an object (?2), where

the object has an adjective (?4). If such a pattern is found, the subject (?1) of the verb

is connected to that adjective (?4) via the verb (?3). The following results are generated

44

by this rule for our running example:

• <Johann Sebastian Bach, was, German>,

• <Sebastian Bach, was, German>,

• <Bach, was, German>, etc.

———————————– Rule 2. ———————————–
SELECT (?1 ?3 ?4)
WHERE {

?1 “subj of” ?3.
?2 “obj of” ?3.
?4 “prop of” ?2.
?4 “POS Tag” ?5.
NOT(”not” “prop of” ?3).
NOT(”no” “det of” ?1).
FILTER (regex(?3, “ˆamˆ|ˆisˆ|ˆareˆ|ˆwasˆ|ˆwereˆ|ˆbe|ˆ...”, “i”))
FILTER (regex(?4, “ˆJJˆ|ˆADJPˆ”, “i”))

}
——————————————————————————-

Note that by using POS-Tag information which carried up from parse trees to the

TextGraph and the FILTER keyword which accepts Regular Expressions, it is easy to

verify that the node matching to the variable ?4 is an adjective. Without this filter, Rule

2 will generate wrong triples such as<Bach, was, music> for sentence “Bach was a music

composer.”.

Many of the semantic links in text can be found in prepositional phrases. In order to

capture this type of information, we have considered rules such as the following one1.

———————————– Rule 3. ———————————–
SELECT (?1 ?3+?4 ?2)
WHERE {

?1 “subj of” ?3.
?2 ?4 ?3.
NOT(”no” “det of” ?1).

1Similar rules are generated for cases such as passive sentences, sentences including verbs with mod-
ifier, prepositions that are connected to nouns, etc.

45

NOT(”not” “prop of” ?3).
FILTER (regex(?4, “ˆtoˆ|ˆonˆ|ˆinˆ|ˆwithˆ|ˆfromˆ|ˆatˆ|...”, “i”))

}
——————————————————————————–

This rule captures semantic links in prepositional phrases that are connected to a

verb. The link in this case is specified by ?3+?4 which indicates the concatenation of

the verb and the preposition. For instance, it generates the following triples from the

second paragraph in Figure 3.1.

• <he, died on, date-7-28-1750>,

• <he, served as, KapellMeister>,

• <he, served to, Leopold>, etc.

• <he, went to, St Michael’s School>, etc.

For the rest of the chapter, we refer to this set of semantic links generated by IB-

miner as Tn. To unify similar link names, IBminer uses their stems as new link names

for triples in Tn. To this end, IBminer replicates each triple by replacing the link name

with its stem. The stem and synonym information is provided by WordNet [Wor12]. As

an example for the semantic link <Johann Sebastian Bach, was, composer>, IBminer also

generates the triple <Johann Sebastian Bach, be, composer>. This simple expansion tech-

nique improves the process of interpreting attributes names (Section 3.3) by populating

verb tenses and word variations.

3.2.2 Computing Links Confidence

As discussed in Section 2.3.2, every edge in TextGraph is assigned with confidence val-

ues. To compute the confidence value of the generated semantic links, we simply use

the minimum confidence among the matching edges of TextGraph as the final confi-

dence of each triple. The intuition behind using the minimum is that if one of the links

in the matching subgraph is of low confidence, it makes the entire match low confident.

Since the same semantic link may be generated more than once from different rules

46

or TextGraphs, we need to combine its evidence count e and confidence value c. Similar

to [LWW11], the only assumption for the combination process is that evidences of

the same piece of information are independent from each other. Thus, if a piece of

information has been generated twice, once with evidence count and confidence of e1

and c1, and once with e2 and c2, we combine the evidence count to e1 + e2 and the

confidence to 1−(1−c1)(1−c2)= c1+(1−c1)c2. This new confidence is higher than

both c1 and c2 which indicates the link’s correctness probability is now higher.

3.2.3 Support for Exceptions

Exceptions are an inseparable part of any natural languages. It is almost impossible to

create a pattern that is always capturing the correct or intended morphological structure

in natural languages. There are several cases of exceptions in which the patterns fail to

capture the correct structure. Thus, supporting for these exceptions is a vital component

to improve the accuracy in NLP-based text mining techniques. This is unfortunately

overlooked in many previous works. However in IBminer, we are able to define cases

of exceptions and exclude them for the other patterns. In this way many wrong results,

generated because of them are eliminated.

Consider the first sentence in the second paragraph of Figure 3.1, which says “Bach

was born in Eisenach, ...”. Due to the structure of the TextGraph for this sentence,

Rule 3 generates triple <Bach, born in, Eisenach> which is not exactly correct. The

more accurate triple <Bach, was born in, Eisenach>) can be generated using Rule 4.

The pattern in Rule 4 is more specific than that of Rule 3, and cancels the inaccurate

triple generated by Rule 3, using the negative select clause (shown by keyword NEG). If

negative triple t is generated from a sentence by any rule, it will cancel all the generated

[positive] t by other rules for that sentence. However, it does not cancel the positive

t’s that are generated from other sentences. Thus in our running example, triple <Bach,

born in, Eisenach> will be replaced by <Bach, was born in, Eisenach>.

47

———————————– Rule 4. ———————————–
SELECT

(?1 ?5+?3+?4 ?2)
NEG(?1 ?3+?4 ?2)

WHERE {
?1 “subj of” ?3.
?2 ?4 ?3.
?5 “prop of” ?3.
NOT(”no” “det of” ?1).
NOT(”not” “prop of” ?3).
FILTER (regex(?4, “ˆtoˆ|ˆonˆ|ˆinˆ|ˆwithˆ|ˆfromˆ|ˆatˆ|...”, “i”))

}
——————————————————————————-

3.2.4 Co-reference Resolution

In many of the generated triples, the subject (or value) is either a co-reference or a

pronoun referring to the actual subject. For example, the triple <Bach, was born in,

Eisenach> generated from the second paragraph in Figure 3.1 basically indicates the

birth place of ‘Bach’, but which Bach it is referring to? Now by examining previous

sentences, it can be inferred that ‘Bach’ is a co-reference for ‘Johann Sebastian Bach’.

Similarly for semantic link <he, died on, date-7-28-1750> from the same rule, ‘he’ is a

pronoun referring to ‘Johann Sebastian Bach’, which needs to be resolved. Fortunately,

SemScape provides a way to resolve some of these co-references and pronouns used

in the sentences [MKI13a]. Thus, for any generated triple such as <s, l, v> with

confidence c, if we find a resolution for s, say s′, with similarity c′, we will add the new

triple <s′, l, v> with confidence c× c′ to our semantic links set (Tn). We use the same

approach to resolve v as needed. At the end of this phase, semantic links containing

a pronoun, and those where an interrogative pronoun remains in their subject or value

parts are removed from Tn.

48

3.3 Mapping Links to Attributes

In phase II, IBminer uses contextual information about subjects and values in the se-

mantic links to map the link names in Tn to attribute names used in the original In-

foBoxes. In this process, many of the inaccurate or irrelevant triples in Tn will be

dropped since no good maps for their links can be found. For the rest of this chapter,

we refer to the set of triples taken from the original InfoBoxes in WikiPedia as Ti.

The key idea in mapping the link name of a semantic link (Tn) to the attribute name

in current InfoBoxes (in Ti) is to learn the attribute mapping by example. To understand

the concept of attribute mapping and the intuition behind IBminer approach to create

this mapping, we continue with some examples. Consider the following two semantic

links which have been generated from the TextGraphs in the previous section:

• <Johann Sebastian Bach, was, composer>

• <Johann Sebastian Bach, was, German>

Although the attribute names in both triples denote the same term, ‘was’, they con-

nect the subjects and values with completely different relations. As the attribute names

in the actual InfoBox triples (Ti) suggest, the first ‘was’ is mostly interpreted as ‘occu-

pation’ while the second one is usually called ‘nationality’. This kind of interpretation

for the link names in semantic links based on the best match in existing InfoBoxes is

referred to as attribute mapping. The difference in the context of the subjects may also

imply different mappings. Consider the following triples:

• <Johann Sebastian Bach, be, composer>

• <songwriter, be, composer>

This time ‘occupation’ is not the best interpretation for the second ‘be’, and a bet-

ter interpretation would be ‘typeOf ’. Thus, the meaning or interpretation of a link in

semantic link <s, l, v> depends not only on the link name (l) but also on the taxonom-

49

ical/categorical information of the subject (s) and the value (v). Under this intuition,

to correctly map link name l to attribute names used in Ti, IBminer considers the cat-

egorical information of the subject and value provided by Wikipedia under categories

section. For instance, in the triple <Johann Sebastian Bach, was, composer>, knowing

that 1) ‘Johann Sebastian Bach’ is in category ‘people’, 2) ‘composer’ is in category ‘oc-

cupations in music’, and 3) according to the matching examples, link ‘was’ between

these two categories is mostly called ‘occupation’ in Ti, we can infer the new InfoBox

triple <Johann Sebastian Bach, occupation, composer>. Next, we formally explain this

technique for attribute mapping.

3.3.1 Generating Potential Matches

To map links in Tn to attributes in Ti, IBminer constructs a structure called Potential

Matches (PM) by learning from the existing examples. To understand this structure, let

us start with the definition of triple match.

Matching triples: Given two triples tn =< s1, l, v1 > and ti =< s2, α, v2 > where

tn ∈ Tn and ti ∈ Ti, we say tn and ti match each other iff s1 = s2 and v1 = v2.

For instance,<Johann Sebastian Bach, was, German> from semantic links (Tn) matches

<Johann Sebastian Bach, nationality, German> from InfoBoxes triples (Ti), since both

subjects and both values in the two triples are the same. The set of all triples in Tn that

match with at least one triple in Ti is referred to as Tm. Using such matching triples be-

tween Ti and Tn, IBminer automatically generates a set of patterns in a structure called

Potential Matches or PM which is defined as follows:

Potential Matches: Potential Matches are records in the form of <cs, l, cv> : α, each

associated with a confidence value c and an evidence frequency e. Each record in PM

indicates that if a subject from category cs is connected to a value from category cv with

50

link l in Tn, α may be a map for l with confidence c and evidence e.

As an example, consider PM record <people, was, occupations in music> : occupa-

tion. This record specifies a simple pattern indicating the link name ‘was’ between a

subject from ‘people’ category to a value from ‘occupations in music’ category may be

interpreted as the attribute ‘occupation’. Next we explain how IBminer used triples in

Tm to generate these patterns and build the PM structure.

Assume tm =<s, l, v> (tm ∈ Tm) with confidence cm matches ti =<s, α, v> (ti ∈

Ti). In the following, Cs = {cs1, cs2, ...} and Cv = {cv1, cv2, ...} denote the categorical

information respectively for s and v. This categorical information is retrieved from

Wikipedia. If no category is found for a subject (or a value), we will consider them

to be in the most general categories (e.g., ‘Category:Things’). Moreover, in addition

to the direct categories, Cs and Cv may contain indirect (more general) categories that

will be described in next section. We say attribute α is a potential match for link l from

any category in Cs to any category in Cv with confidence cm and evidence count 1. To

construct the final list of potential matches (PM), for each cs ∈ Cs and cv ∈ Cv, we add

the following record to the PM structure:

<cs, l, cv> : α

For each newly generated PM record, confidence value c is initiated by cm and evi-

dence frequency e is initiated by 1. It is worthy to mention that the number of potential

matches for tm is |Cs| × |Cv| where |Cx| is the number of categories for the entity x.

If we encounter more evidence for the same record in PM, IBminer increases its confi-

dence and evidence by combining the records as explained in Section 3.2.2. At the end

of this step, PM will contain a big list of potential matches with their confidence values

and evidence frequencies. In Section 3.3.3, we explain how PM is used to generate the

final InfoBox triples by attribute mapping.

51

3.3.2 Selecting Best Categories

A very important issue in generating potential matches is the quality and quantity of the

categories for the subjects and values. The direct categories provided for most of the

subjects are too specific and only a few subjects are listed in each of these categories. As

shown in Subsection 3.5, generating the potential matches over direct categories does

not generalize the matches for newly observed subjects. On the other hand, exhaustively

adding all the indirect (or ancestor) categories will generate too many inaccurate po-

tential matches and significantly increase the processing time. For instance considering

only four levels of categories in Wikipedia’s taxonomy, the subject ‘Johann Sebastian

Bach’ belongs to 422 categories. In this list, there are some useful indirect categories

such as ‘German Musicians’ and ‘German Entertainers’, as well as many categories

which are either too general or inaccurate (e.g. ‘People by Historical Ethnicity’ and

‘Centuries in Germany’). Considering the same issue for the value part, hundreds of

thousands of potential matches may be generated for a single triple in Tm. This issue

not only wastes our resources, but also impacts the accuracy of the final results.

To address this issue, we use a flow-driven technique to rank all the categories to

which entity s belongs, and then select the best NC categories. The main intuition is to

propagate flows or weights through different paths from s to each of its categories. The

categories receiving more weights are considered to be more related to s. Now, L being

the number of allowed ancestor levels, we create the categorical structure for s up to L

levels. Starting with node s as the root of this structure and assigning weight 1.0 to it,

we iteratively select the closest node to s, which has not been processed yet, propagate

its weight to its parent categories, and mark it as processed. To propagate weights of

node ci with k ancestors, we increment the current weights of each k ancestors with

wi/k, where wi is the current weight of node ci. Although wi may change even after

ci is processed, we will not re-process ci after any further updates on its weight to

facilitate the algorithm. After propagating the weight to all the nodes, we select the NC

categories with the highest weight.

52

3.3.3 Generating InfoBox Triples

Once PM is generated, IBminer uses it to map the link names in semantic links (Tn)

into the attribute names in InfoBoxes (Ti). Let tn=<s, l, v> (tn∈Tn) be the triple whose

link (l) needs to be mapped, where s and v have category sets Cs = {cs1, cs2, ...} and

Cv = {cv1, cv2, ...} respectively. The key idea is to find all possible attribute mappings

for tn, and pick the attribute with the highest aggregate frequency and confidence as

explained bellow.

To map l, for each cs∈Cs and cv∈Cv, IBminer finds all potential matches such as

<cs, l, cv>: αi. The resulting set of potential matches are then grouped by the In-

foBox attribute names, αi’s. For each group we compute the aggregate confidence and

evidence frequency of the matches using the technique described in Section 3.2.2. At

this point, IBminer uses two thresholds to remove potential matches that are very low-

confidence (named τc) or infrequent (named τe), as discussed in Section 3.5. Next,

IBminer filters the remaining results by a very effective type-checking technique ex-

plained in Subsection ??. The few matched left in the list are called ranked matches.

Then, we consider the one with the largest evidence count, say pm, as the only attribute

map and report the new InfoBox triple<tn.s, pm.ai, tn.v>with confidence tn.c×pm.c

and evidence tn.e. In Subsection 3.3.5, we show how the remaining ranked matches are

used to find secondary matches.

Normalized Weight: Some attributes (such as ‘occupation’) have been frequently used

in Ti, while many attributes (such as ‘headquarter’) are not used as frequently as oth-

ers. This imbalance is directly transferred into the PM structure. Thus, the generated

InfoBox triples for more frequent attributes may have much higher evidence frequency

than those for less frequent attributes. That is if we use very high τe, many of correct re-

sults for less frequently observed attributes in Ti will be eliminated. On the other hand,

using low τe will result in accepting many wrong triples for more frequent attributes.

To avoid this, once all the Best Matches are generated, we normalize the evidence fre-

53

quency of matches for attribute α by dividing it by αavg e, where αavg e is the average

frequency of the correctly generated triples with attribute α. The correctly generated

triples are those in the initial KB (Ti) that are also generated by IBminer. Similarly,

we normalize the confidence of all matches, and compute a single normalized weight

by multiplying the normalized evidence and confidence. In this way, we only need to

consider a single threshold to tune the precision and recall of the approach. We refer to

this threshold as normalized threshold (τ).

3.3.4 Type-checking

Attributes may take values from specific domains. For instance, attribute ‘origin’ may

accept only values from ‘geopolitical locations’ domain. This sort of information on

domain of values for attributes can be used as a simple, yet effective type-checking

technique which in turn improves accuracy of the final results. For example, the value

‘German’ fails the type-checking for attribute ‘origin’ since in the original InfoBoxes

they are not used together at all. On the other hand, ‘German’ passes the check for

attribute ‘nationality’ since in several instances these two are used in the same triple

in the original InfoBoxes. To automatically identify the correct domain for values of a

given attribute, currently IBminer learns from Ti triples. That is, for each attribute α,

IBminer counts the number of times that any value, say v, is used in a triple in Ti with

attribute α. This number is called the value rank of v in α’s domain. Value ranks are

then used to verify the correctness of the generated results.

One of the drawbacks of type-checking is that if we eliminate all the triples with

wrong value types, we will never find new values for some of the attributes. For in-

stance, attribute short description accepts a variety of values which might not be listed

in its domain. To avoid this issue, IBminer performs type checking on ranked matches

for tn, only if tn.v belongs to the domain of one (or more) attribute in the ranked

matches. For instance assume for link ‘was’ in semantic link <Johann Sebastian Bach,

was, organist>, two attributes ‘occupation’ and ‘instrument’ are suggested using potential

54

matches. Since value ‘organist’ is frequently used with attribute ‘occupation’ but not

with attribute ‘instrument’, our type checking will cancel the latter and only accepts ‘occupa-

tion’ as the final attribute map. On the other hand, assume for link ‘was’ in semantic

link <Johann Sebastian Bach, was, organist of Baroque Period>, two attributes ‘short de-

scription’ and ‘occupation’ are suggested. This time value ‘organist of Baroque Period’

has not co-occurred with any of the two attributes, and thus the type checking will not

eliminate any of the maps.

Finally for generic data types such as integers, floating points, dates, and URL

addresses, IBminer records the number of times any value from each data type is used

with an attribute to do a more effective type-checking. For instance, if for an attribute,

say height, mostly integer or floating point values are used, the type checking will

cancel any other value types (e.g. strings, dates, etc.) for this attribute.

3.3.5 Suggesting Secondary Matches

As mentioned earlier, IBminer may find more than one ranked match for a triple in

Tn. Intuitively, such cases are implying a possible synonym for the mapped attributes.

Synonyms play a crucial role in unifying different terminologies used in Wikipedia

or other date sources. As an example, consider the triple <Johann Sebastian Bach, was

born in, Eisenach> in Tn. The technique mentioned in Section 3.3.1 finds three ranked

matches for link ‘was born in’. These matches are ‘born’, ‘birthPlace’, and ‘origin’.

Although all of these are correct matches, IBminer only picks the most evident one

(‘born’ in this case) since for many cases the less evident ranked matches are wrong.

To verify which of the secondary ranked matches are actually correct, IBminer uses

a very similar idea to that for PM. The idea is that if two attributes are synonyms,

they are usually expressed in similar ways in the text (e.g. attributes ‘birthdate’ and

‘dateOfBirth’ are synonyms and they are both presented in the text with links such as

‘was born on’, ‘born on’, or ‘birthdate is’). Thus, IBminer constructs a structure, called

55

Potential Attribute Synonyms (PAS), to count the number of times each pair of attributes

in the InfoBoxes are presented in the text in the same form (i.e. with the same link).

These numbers are then used to compute the probability of that any given two attributes

are synonyms.

In order to avoid duplication, we avoid further discussion on the PAS structure

and leave it for Chapter 5 and more specifically Section 5.3, where we discuss our

extended context-aware synonym suggestion system for improving the consistency of

the generated knowledge base [MGZ13a, MGZ13b].

3.4 Implementation

Figure 3.4 sketches the architecture of a multi-core implementation of the IBminer

system. This system is mainly comprised of four modules: TextGraph Generator, Po-

tential Match Generator, InfoBox Triples Generator, and the Knowledge Base. Next

we explain each of the these modules and their functions:

TextGraph Generator: TextGraph Generator performs two main tasks: i) convert-

ing text into TextGraphs and ii) capturing the Semantic Links from TextGraphs using

GD rules. Both tasks above are very time consuming due to employing deep NLP and

exhaustive pattern matching techniques. However, the tasks are easily parallelizable,

since they can be performed separately for every document. Thus, IBminer instantiates

several instances of SemScape and frequently assign them a small set of articles to han-

dle. the results are integrated by combining duplicate triples generated from different

documents at the end.

Potential Match Generator: As its name conveys, Potential Match Generator is re-

sponsible for generating the PM structure (and PAS structure). This task is not as time

consuming as the others in IBminer, however implementing it in parallel is beneficial.

To this end, small sets of semantic links are sent to each core and then the generated PM

56

Figure 3.4: The architecture of IBminer.

from all cores are gathered and eventually integrated by the PM Generator Component.

The resulting PM (and PAS) are also stored in our knowledge base for later use.

InfoBox Triples Generator: Using the PM structure and the semantic links, InfoBox

Triples Generator generates the final InfoBox triples as explained in Section 3.3.3 and

store them in our knowledge base. Similar to the previous module, InfoBox Triples

Generator is parallelized to take advantage of multiple cores.

Knowledge Base: The knowledge base module is mainly responsible for storing the

initial knowledge base, the intermediate results, the PM and PAS structures, and the

final results of IBminer. Our knowledge base, also known as IKBstore, is stored in an

Apache Cassandra database [Cas] which provides efficient key/value store as well as

the ability to handle large amount of data. We should add that, since Cassandra resides

in a separate machine, IBminer sets up its own cache module which locally stores very

frequently accessed knowledge pieces. This is crucial to improve the performance of

accessing IKBstore.

Although we use only DBpedia in this study, in the current implementation of

57

IKBstore, we integrate DBpedia [BLK09], YaGo2 [HSB11], MusicBranez [MUS],

GeoNames [GEO], and WordNet [SR98] into a general integrated knowledge base

[MGZ13a, MGZ13c]. This knowledge base is used in our structured query answer-

ing system which is based on SWIPE [AZ12].

Although for the current study, multi-core implementation of IBminer was enough,

we have also implemented our IBminer system using MapReduce architecture [DG08]

over cluster of machines in Amazon Web Service, EC2. The parallelization idea for

this implantation is very similar to those mentioned above.

3.5 Experimental Results

To evaluate IBminer, we used both manual and automatic approaches and obtained the

results presented in this section, where, after introducing the data sets used in this study,

we present an in-depth evaluation of the precision and recall of IBminer for the Musi-

cian dataset (Section 3.5.2). Then in Sections 3.5.3 and 3.5.4, we respectively study the

impact of category selection and domain change on IBminer’s results. Finally in Sec-

tion 3.5.5, we compare IBminer with alternative approaches using application-oriented

metrics. Thus, we compare IBminer with the baseline DBpedia and with iPopulator

[LBN10], a system that is an excellent representative of the current state of the art in

extracting structured data from text.

All our experiments were performed on a single machine with 16 cores of 2.27GHz

and 16GB of main memory, running under Ubuntu12 OS. On the average, our system

spent 3.07 seconds for parsing each sentence on a single CPU. Thus, using 16 cores,

we were able to parse and generate semantic links for 5.2 sentences per second. All the

data sets and the results discussed in this section are available for access in [Sem].

58

Dataset Name Subjects InfoBox Subjects with Subjects with Sentences
Triples # Abstract InfoBox per Abstract

Musicians 65835 687184 65476 52339 8.4
Actors 52710 670296 52594 50212 6.2
Institutes 86163 952283 84690 54861 5.9

Table 3.1: Description of data sets used in experiments.

3.5.1 Data Sets

To perform our evaluation studies, we created three data sets for the domains of Mu-

sicians, Actors, and Institutes from the subjects and their accompanying abstracts in

Wikipedia. These data sets do not share any subject, and in total they cover around

7.9% of Wikipedia subjects. To build each data set, we started from a general WikiPedia

category describing the domain of the data set (e.g. Category:Musicians for Musicians

data set) and collected all the Wikipedia pages in this category or any of its descendant

categories up to four levels. Table 3.1 provides more details on each data set.

As for our initial knowledge base, we used DBpedia which organizes Wikipedia’s

InfoBoxes by using structured data available in Wikipedia documents, and thus pro-

vides a better starting point for IBminer. Then we used IBminer to mine the text of

the entire long abstract of each article to create our data set. We should stress that no

structured data was associated with the text in our experiments. In other words, for

each subject one can also collect text from different sources, and employ IBminer to

generate InfoBox triples from that text.

3.5.2 Precision/Recall Performance

In our experiment, we built the Potential Match from 80% of the Musicians data set,

using 50 categories (NC = 50) and 4 levels (L = 4). The total number of initial

triples for this chunk of data set is |Tn| = 3.7M , while 52.9K of them match with

original InfoBoxes (|Tm| = 52.9K). Using these PMs and the initial triples generated

from the remaining 20% of the abstracts, we generated our InfoBox triples without any

frequency and confidence constrains (i.e. τe = 0 and τc = 0.0). Later in this section,

59

we analyze the effect of NC and L selection on the results.

To estimate the accuracy of the final triples, we randomly selected 5% of the gen-

erated triples (≈ 42K) and carefully graded them by matching against their abstracts.

Many similar systems such as [CBK10a, HSB11, WLW12] have also used manual grad-

ing due to the lack of good benchmarks. Recall estimation is also very hard since we

again do not know what portion of the InfoBoxes in Wikipedia are covered or men-

tioned in its accompanying text (long abstract for our case). Thus, we only used those

InfoBox triples which match at least one of our initial triples, and compute how many

of them are also generated by IBminer. In this way, we make sure that the resulting

InfoBox triples were most likely to be mentioned in the text.

To have a better understanding of the issue, we studied the relation between the

abstracts and existing InfoBox triples in DBpedia for 50 randomly selected subjects

(which have both abstract and InfoBox) from the Musicians domain. Interestingly, out

of 1155 unique2 InfoBox triples, only 305 are covered by their abstracts (i.e. only

24.4%). We should also add that many of the covered cases need extra or common-

sense knowledge to be converted to the exact InfoBox format (e.g. different formats

for names or dates). More importantly, we have found 47 wrong triples (3.8%) and 146

unimportant triples (11.7%) (e.g. file names, image names, formats, size, or alignment).

Next we will present our results on the Musicians data set.

Best Matches: Part a) in Figure 3.5 depicts the precision/recall diagram for best

matches. As we decrease our thresholds on potential match evidence count (τe) and

confidence (τc), we generate more triples with lower recall and precision. To ease our

analysis, we study the effect of both threshold in the same experiment by multiplying

them. As can be seen, for the first 20% coverage, IBminer is generating only correct

information. For these cases, τe is very high. To reach 97% precision which is more

than what DBpedia offers, one should set τc.τe to 6,300 (≈ .12|Tm|). For this case

as shown in Part c) of the figure, IBminer generates around 96.6K triples with 37.3%

2We had encountered 92 (7.4%) duplicate triples.

60

Figure 3.5: Results for Musicians data set: a) Precision/Recall diagram for best
matches, b) Precision/Recall diagram for attribute synonyms, and c) the size of gen-
erated results for the test data set.

recall.

Secondary matches: We also generate the secondary matches or what we refer to

as attribute synonyms for all the InfoBox triples generated in the previous step. Pre-

cision and recall are computed similarly and depicted in part b) of Figure 3.5 (while

the potential attribute synonym evidence count (τse) decreases from right to left). For

instance, to have 97% accuracy one need to set τsc.τse to 24,000(≈ .9|Tm|). Although

synonym results indicate only 3.6% improvement on the overall recall, the number of

correct new triples that they generate are relatively large (53.6K triples).

Part c) of Figure 3.5 summarizes the number of best matching triples, the total

number of generated items, and the total number of correct items for various τe and

τse. It shows that for τe=.12|Tm|, we reach up to 97% accuracy while the total number

of new InfoBox triples is 146.3K. If we do not consider duplicate, unimportant, and

wrong triples in the original InfoBoxes, then the coverage of the current InfoBoxes is

improved by at least 27.6%. This is actually very impressive considering that IBminer

only uses the long abstract of the page.

3.5.3 The Impact of Category Selection

To understand the impact of category selection technique, we repeat the previously

mentioned experiments for different levels (L) and category numbers (NC). Here, we

only compare the results based on the recall estimation. First, we fix the NC at 40 and

61

Figure 3.6: a) The impact of increasing level number on Recall, b) The impact of
increasing Categories number on Recall, and c) InfoBox generation delay per abstract.

change L from 1 to 4. Part a) of Figure 3.6 depicts the estimated recall (only for the

best matches) while PM’s frequency threshold (τe) increases. Not surprisingly, as L in-

creases, the recall improves significantly, since more general categories are considered

in PM construction. On the other hand, using more categories also improves the recall

as depicted in Part b) of the figure. In this part, we fix L at 4 and change NC from 10

to 50. The results indicate that even with 10 categories, we may obtain good recalls

for lower frequency thresholds (τe). This manly proves the efficiency of our category

selection technique, since even with few categories the system is able to reach high

coverage.

In Part c) of Figure 3.6, we compare the time performance of all the above cases.

This diagram shows the average time spent on generating final InfoBoxes for each ab-

stract. As we increase the levels, the processing time increases exponentially since

IBminer performs more database accesses to generate the categories structure. How-

ever, we observe very small changes with the increase in NC , since it does not require

any additional database accesses.

3.5.4 Results on New Domains

To study IBminer’s performance on different domains, we ran it on two other data sets:

i) Actors data set which has similar attributes with the Musicians, and ii) Institutes data

set which has completely different set of attributes from the other two. For these ex-

62

Figure 3.7: a) Precision/Recall diagram for best matches (Actors), b) Precision/Recall
diagram for best matches (Institutes), and c) the size of generated results for Actors and
Institutes.

periments, we used NC=50 and L=4. The PM for each case is constructed considering

the entire data set. As shown in Table 3.1, the average number of sentences in these two

data sets is less than that for Musicians, however the total number of resulted triples are

still comparable to that for Musicians data set.

As in the case of Musicians data set, we manually graded triples from the resulted

triples for Actors and Institutes for minimum possible thresholds (5000 triples from

each). Part a) and b) in Figure 3.7 depict the precision/recall diagrams for Actors and

Institutes data sets respectively when τc.τe decreases from left to right. Although we

did not create any specific GD rule for these two data sets, their accuracy can still reach

high values. This simply shows that our technique is domain-independent.

Part a) of Figure 3.7 depicts the precision in Actors results drops early. The main

reason for this outcome is that many triples with same attribute and same value (more

than 300 in some cases) in the original InfoBoxes are simply wrong (e.g., values TV,

Film, and Television are frequently listed as the occupation of a person). A very similar

problem exists for the Musicians data set (e.g. singer is listed as the instrument for a

person in more than 300 evidences). Since the the same errors are repeated in several

examples, IBminer generates some high-confidence wrong triples. Evenso, IBminer is

still able to generate 270, 8K results with 97.0% accuracy and 25.6% recall.

On the other hand, the InfoBox triples in the Institutes data set are organized very

loosely, with different names used for similar attributes. Thus many more attribute

63

names are used in this data set than the other two, and as a result, for many attributes,

IBminer is given very few example to learn from,. This directly affects the number

of final results (Part b in Figure 3.7). Even so, IBminer manages to generate 102.9K

results for this data set, with 97.0% accuracy and 25.4% recall. Interestingly, if one

can tolerate 95% accuracy, the recall for this case can reach up to 56.1% which is quite

impressive.

In Part c) of Figure 3.7, we provide the total number of generated results for various

evidence and confidence thresholds. Although better tuned thresholds could be used,

we kept the same thresholds from Section 3.5.2 (scaled by the size of Tm) and report

the total number of generated results and the number of accurately generated ones for

each data set in this figure. Although better coverage is reported for the Institutes data

set, for accuracy more than 96% much fewer results were generated. This is due to

the large number of attribute names and few examples for each of the attributes in the

original InfoBoxes in Wikipedia. IBminer also generates more results for Actors data

set than Musicians data sets, which is mainly due to higher popularity of pages in the

Actors data set which contains many contemporary people.

3.5.5 Application-based Evaluation

In previous sections, we showed that the recall of the generated information by IB-

miner can reach high values. However, to understand how this improvement in recall

actually helps the applications of knowledge bases, we carried out an application based

experiment. In this experiment, we create a set of popular queries (explained next)

and compare the search results obtained after DBpedia is extended by IBminer with

the original ones. We also compare these with the results produced by the iPopulator

[LBN10] system. Although other similar systems have been proposed recently, we se-

lected iPopulator for two main reasons: i) it is designed for generated information from

free text, and more importantly ii) the iPopulator’s results are publicly available.

64

Figure 3.8: Number of results generated for different queries using DBpedia and IB-
miner knowledge bases.

Creating the query set: In order to create a set of popular queries for our evalua-

tion, we used Google Search Auto-Complete system, and found around 150 keyword

queries suggested by this system to complete two phrases: “musicians who” and “ac-

tors who”. We were able to translate 120 of these keyword-based queries to SPARQL.

The remaining keyword queries, (e.g., “Actors who are tall”, “Musicians who married

normal people”, etc.) are too vague for a precise translation and quantification and were

thus ignored.

Knowledge Bases: Three different knowledge bases (KBs) are used in this evaluation.

As for the baseline KB, we use DBpedia’s InfoBox triples. Note that both IBminer and

iPopulator use DBpedia as their initial knowledge bases. Since the goal is to measure

how much IBminer’s result improves DBpedia, we combine the triples in DBpedia and

IBminer into our second KB called IBminer+DBpedia. We create the third KB similarly

for iPopulator by adding its results to those of DBpedia.

After preparing the queries and the knowledge bases, we employed Apache Jena

[Jen], and ran the queries using the three knowledge bases. For more than 44% of the

queries, no answer is found from any of the knowledge bases. This very clearly proves

the incompleteness of the current knowledge bases. Nevertheless, for the remaining

queries, the IBminer case almost always (except 4 queries) finds more answers than the

65

baseline case. Figure 3.8 shows what portion of the answers (for each query) that are

found using IBminer+DBpedia is also inferable using only DBpedia’s knowledge base.

To better present the results, we sort the queries based on the percentage introduced

above. We also exclude the queries with no answer in any of the knowledge bases from

the figure.

As Figure 3.8 indicates, there are several cases (11.6%) in which DBpedia is not

able to provide any answer for the queries as opposed to IBminer. Using IBminer,

we are actually able to find between 1 to 29 answers for these queries. The number

of found results using IBminer+DBpedia is included in the horizontal axis in addition

to the queries ID in Figure 3.8. In total for all queries, IBminer improves original

DBpedia by 53.3% on answering structured queries. This value for iPopulator is less

than 1%. In fact, iPopulator was able to slightly improve DBpedia in query answering

only for 6.6% of the queries. This is mainly because of three main reasons: i) the recall

of iPopulator is much lower than IBminer (at least 10 times). ii) iPopulator does not

recognize synonymous attributes, and iii) some of the generated values in iPopulator are

not accurate and in addition to the correct values, they usually contain other unrelated

textual phrases as well.

All queries and their answers from the introduced knowledge bases are available at

SWIMS website [Sem]. In this website, users can also use our recently proposed demo

at PVLDB13 [MGZ13c] and find the list of InfoBox triples for the answers provided

for each query. We provide the provenance of each triples, which indicates if the triple

is taken from DBpedia, IBminer, etc. Thus verifying the quality of the answers for

these queries is quite easy.

3.5.6 Large Scale Experiment:

At the time of writing this dissertation, we are in the process of running IBminer on

the entire Wikipedia’s text. This experiment is distributed over the Hoffman2 cluster

66

at UCLA [Hof], on which we have access up to 400 cores each with 8 GB of main

memory. The first three steps of the IBminer’s process is now completed which is

resulted in more than 2.7 billion semantic links from text, out of which 21.6 million

match the existing InfoBox triples. Using these matches, IBminer has learnt more than

29.6 million patterns in step c). We have recently started the last step to extract the final

structured summaries using the learnt patterns, and the early results indicate that this

should at least double the size of the initial KB (i.e. the original DBpedia).

3.6 Related Work

Generating knowledge bases from structured or semi-structured data has been the focus

of several works such as FreeBase [BEP08], DBPedia [BLK09], YaGo [SKW08], and

YaGo2 [HSB11]. FreeBase is Google knowledge base which is harvested from sev-

eral source including Wikipedia. DBPedia extracts triples from the structured part of

Wikipedia and other data sets (e.g. WordNet [SR98] and GeoNames [GEO]). YaGo2

uses similar techniques and predefined extractors [EG13] to construct knowledge bases

mostly from Wikipedia with the main focus on extracting temporal and spatial infor-

mation. The knowledge base provided by these techniques are usually incomplete and

inconsistent since they only rely on only structured data and/or human volunteers.

To address these issues, a large body of research currently focuses on pattern-based

knowledge generation from free text. Etzioni et al. in KnowItAll created a general pur-

pose ontology by finding unary and binary predicate instances from the text [ECD04].

Later, Yates et al. proposed a similar system called TextRunner which improves the

accuracy of KnowItAll by considering all meaningful relations in the text [YCB07].

Despite the impressive accuracy in their evaluations, they both suffer from limited cov-

erage issues.

In [NMI07], Nguyen et al. used both semantic and syntactic information to extract

relations from Wikipedia. However, their approach focuses on the relations between

67

existing entities in Wikipedia, which is not easily applicable on InfoBox generation

and population. Other similar systems such as PROSPERA [NTW11] also suffer from

the very same problem. Wu and Weld used an automatic technique to create a train-

ing set [WW10]. Their main idea, which was originally proposed in [HZW10], is to

assign each attribute/value pair in the InfoBoxes to a sentence in the page using some

straightforward heuristics. Then, these assignments are used to learn extractors which

in turn generate more attribute/values. Although it is shown impressive improvement

with respect to TextRunner, their accuracy is still limited to less than 90% for most

cases.

NELL [CBK10a] performs a pattern-based fact generation on a large-scale text set

and iteratively improves their knowledge base. In 66 days experiment, NELL generated

about 230,000 unary relations (Subject/Category triples) and 12,000 binary relations

(InfoBox-like triples) with 74% accuracy. Comparing with the size of the input data set

which contains 500 million Web pages, the coverage seems too low. Another approach

which attempts to generate a large scale commonsense knowledge base is CYC [EG06].

Although, CYC has been recently equipped with several NLP-based and automatic

techniques, the main core still relies on supervised techniques on semi-structured data

sets.

Another large scale pattern-based knowledge construction system is Probase [WLH11,

WLW12], which iteratively induces taxonomical information from large text. At each

iteration, Probase uses existing taxonomies to identify new ‘isA’ pairs from text and in-

tegrates the new pairs into the taxonomies. It also proposes an algorithm to merge and

connect concepts. Probase produces a general taxonomy with more than 2.7 million

concepts from the textual Web documents. However, Probase is only able to generate

taxonomical information which is not the focus of our current system.

Recently, two similar approaches to IBminer are proposed by Lange et al. called

iPopulator [LBN10] and Liu et al. called DeepDive [NZR12]. iPopulator presents

a new technique which uses existing InfoBox triples in Wikipedia to discover struc-

68

tures in the text, that represent possible attribute/value for the subjects. Unfortunately,

iPopulator’s coverage is low as our comparison in Section 7.5 showed. DeepDive, on

the other hand, first employs NLP tools to extract relations from raw text. Then, the

relations are used to train statistical models which convert the initial relations into a

knowledge base. Although this approach in nature is very similar to IBminer, it does

not provide any evaluation or experiment on the quality of the generated triples.

69

CHAPTER 4

OntoHarvester: Automatic Ontology Generation from

Free Text

By introducing concepts and their relations, ontologies provide a critical information

structure that facilitates the processes of sharing, reusing, and analyzing domain knowl-

edge in knowledge-based systems [Gru93]. Ontologies are one of the most important

components of the Semantic Web, and many knowledge-based applications, includ-

ing semantic search, intelligent information integration, and natural language process-

ing, depend on them. This has given rise to ambitious systems, such as FreeBase

[BEP08], DBPedia [BLK09], YaGo2 [HSB11], and ProBase [WLW12], that support

general ontologies alongside their large-scale knowledge bases. However, in spite of

their size and breadth, the ontologies they provide are not comprehensive enough for

many domain-specific applications. Therefore, more complete ontologies must be built

for a roster of important applications, and cost-effective approaches are needed for this

challenging task. Unfortunately, many of the existing ontology generators use man-

ual or highly supervised techniques [Bou92, Vou95, PL01, Dro03, Sno06, WW08].

These approaches make it easier to incorporate knowledge from domain-experts, but

their high demands on time and resources impair their practical scalability. To ad-

dress this problem, automatic or semi-automatic approaches have been proposed, us-

ing statistical techniques, occasionally combined with shallow NLP-based methods

[MS00, QHF04, BCS07, PD10, DZP10].

These automatic approaches have achieved a fair amount of success, but have also

encountered several limitations. In fact, as stated in Poon et al. [PD10], none of the

70

existing techniques have achieved a higher accuracy than 91%. Moreover to reach these

relatively high levels they require large training sets highly focused on the domains of

interest. A simple analysis of these limitations suggests that many follow from their

inability to take full advantage of the linguistics morphologies in the text, whereby they

cannot handle well sentence ambiguities and linguistic exceptions. This observation

has inspired the design of our OntoHarvester system, that uses deep NLP analysis

through the SemScape framework to automatically generate domain-specific ontologies

from unstructured text. In this section, we describe this approach, and show that it

outperforms previous approaches in terms of accuracy and coverage.

OntoHarvester starts with an initial ontology (Seed) and iteratively extends it with

new terms carefully mined from the input text. At each iteration, OntoHarvester only

accepts new terms that are semantically connected to the current concepts. In this way,

OntoHarvester remains focused on the specified domains and achieves high resistance

to noise. On the other hand, since the semantic connections are mined through a deep

NLP-based technique, the system is able to generate very comprehensive ontologies

from small corpora. This represents a major improvement over other automatic tech-

niques, which require large corpora to generate domain-specific ontologies, as shown

in detailed comparisons presented later in the section.

The main tasks performed by OntoHarverster can be summarized as follows:

1. Building TextGraphs: This task is performed using our SemScape text-mining

system described earlier in Chapter 2 SemScape [MKI11a, MKI13b]. Using Sem-

Scape, OntoHarvester captures candidate terms and their grammatical links in the

text, which are represented as weighted hyper-graphs (TextGraphs).

2. Extracting Semantic Relations: OntoHarvester uses graph patterns (Graph Do-

main or GD Rules) similar to those of Hearst’s [Hea92] to extract semantic rela-

tions (initially part of and type of relations).

3. Extracting Concepts: These semantic relations are used to detect candidate

71

terms that are strongly connected to the current concepts. These terms are then

added to the ontology.

4. Finding New Relation Types: In this step, OntoHarvester finds new semantic

relation types between currently accepted concepts. These new relation types

will help OntoHarvester find more related concepts in the next iterations.

The presentation of this chapter is thus organized as follows:

• The next section introduces a running example used in the rest of the chapter, and

then describes the derivation of TextGraphs from input documents.

• In Section 4.2, we introduce OntoHarvester and show how new terms are rec-

ognized and incorporated into the ontology on the basis of (i) their frequency

and correctness confidence and (ii) the strength of their connections with existing

concepts (An important difference from most of the existing works that only use

(i)).

• Section 4.2.1 focuses on how OntoHarvester uses Graph-based patterns (Graph

Domain or GD rules), to extract more information with fewer patterns. This

represents a significant improvement over existing pattern-based techniques that

rely on tree-based patterns or regular expressions.

• Section 4.2.4 describes the technique used by OntoHarvester to automatically

suggest new possible domain-specific semantic relations to improve the final On-

tology. This is another feature differentiating OntoHarvester from existing works

which mostly use predefined relation types.

• Section 4.3 reports on the results of our experiments. We used an application-

focused evaluation technique to evaluate our system. To this end, we imple-

mented a “topic identifier” system that mainly uses an ontology to suggest topics

for a given piece of text. The results indicate that the ontology created by On-

toHarvester can significantly improve the performance of applications using the

72

ontology. Moreover, extensive experiments to measure precision and recall on

several application domains also show significant uniform improvements over

previous approaches.

4.1 From Text to TextGraphs

To ease our discussions in this section and to better understand the OntoHarvester’s

tasks, we continue with the following motivating example:

Running Example: “An algebraic equation, such as a linear or nonlinear equa-

tion, is an expression that contains variables and a finite number of algebraic opera-

tions.”

Using SemScape, as described in previous section, OntoHarvester converts all sen-

tences in the text into TextGraphs. One such TextGraph for the above example is de-

picted in Figure 4.1. This TextGraph contains all possible single- or multi-word terms

(sometimes called name entities in the literature) which np may be representing. E.g.

the noun MPs for “linear and nonlinear equation” are “equation”, “linear equation”, and

“nonlinear equation”1. These MPs are also referred to as candidate terms in this sec-

tion. The TextGraph also include the grammatical links such as <equation, subject of ,

is>, <algebraic equation, subject of , is>, <linear, property of , equation>, <expression,

object of , is>, etc.

A very important feature of this framework is the ability to adopt an ontology and

provide more related candidate terms with respect to the specified ontology. To under-

stand why this is important, we should note that for complex noun phrases (NPs) there

might be several possible candidate terms. Not all of these candidate terms are useful

or meaningful. Therefore, suggesting all of them as MPs will lead to a very large set of

candidate terms which lowers the efficiency of the applications. To prevent this prob-

1The fourth term in the example is “linear and nonlinear equation”, which is referred to as Whole
Part (WP).

73

Figure 4.1: Part of the TextGraph for our motivating example.

lem, if the system is fed with an ontology, say O, we only generate candidates terms

that either i) contain less than three words, ii) are part of an existing concepts in O, or

iii) contain a concept fromO. In many cases this generates all possible candidate terms;

however for many long noun phrases, this helps reduce the size of the TextGraphs.

As shown in Figure 4.1, all the candidate terms which are also a concept in O

are tagged with their concepts in the TextGraphs. For instance, nodes “expression”,

“equation”, “number”, and “variables” are in O and tagged with their corresponding

concepts. Notice that the corresponding concept of a term may be a synonym or alias

(e.g. “variables” is an alias for “variable”).

Algorithm 1 summarizes OntoHarvester’s main steps, where the tasks described in

this section correspond to steps 2 and 3. These steps are followed by the ontology

generation steps described next.

4.2 Ontology Generation

Once the TextGraphs (TGs) are created for the given corpus (τ) as explained in the

previous section, OntoHarvester starts its main discovery loop by iterating over the

following three main steps (shown as steps 7, 8 and 9 in Algorithm 1).

74

Algorithm 1 OntoHarvester()
1: OntoHarvester (τ , O0) {
2: SemScape = new SEMSCAPE();
3: TGs = SemScape.generateTGs(τ , O);
4: O = O0;
5: RT = [type of , part of , rename];
6: while (true) {
7: relso = extractOntologicalRelations(TGs, O);
8: concepts = extractOntoConcepts(relso);
9: aliases = extractOntoAliases(relso);
10: O = O.add(relso, concepts, aliases);
11: if (size(concepts)+size(aliases) ≤minc)
12: return O;
13: newRT = extractNewRelationTypes();
14: RT = RT .add(newRT);
15: TGs = SemScape.reGenerateTGs(τ , O);
16: }
17: }

• Extracting Relations: OntoHarvester extracts ontological relations between the

existing terms in TGs at the beginning of each iteration. For instance, from

the TextGraph of our running example, OntoHarvester is able to generate rela-

tions such as <algebraic equation, type of , expression>, <linear equation, type of ,

equation>, <variables, part of , expression>, etc. To generate such relations, On-

toHarvester uses a set of graph patterns on TGs as explained in Section 4.2.1.

• Extracting Concepts: Next, OntoHarvester detects new concepts and aliases us-

ing those extracted relations that connect a concept in the current ontology (O)

to a non-concept term in TGs. In our running example, considering the above

mentioned relations and the fact that “equations” is already a concept, OntoHar-

vester accepts “linear equation” (and similarly “nonlinear equation” and “algebraic

equation”) as new concepts. Several additional heuristics are employed in this

step, which are described in Sections 4.2.2 and 4.2.3.

• Suggesting New Relation Types: Before starting the next level, OntoHarvester

extract new relation types using semantic relations provided in TextGraphs. On-

75

toHarvester initially starts with three types of ontological relations: type of ,

part of , and rename. Later at the end of each iteration, it finds new ontologi-

cal relation types by considering frequently observed semantic relations between

current concepts in O. Section 4.2.4 discusses this part in greater detail.

The key idea in above steps is to extend the current ontology (O) only with terms

highly related (connected) to O. In this way, as opposed to similar systems [WLB12],

OntoHarvester is able to stay focused and generate highly related concepts (to the spec-

ified domain) from a noisy corpus. The domain is essentially specified by some of its

concept in the initial ontology, O0. We should note that our experiments in Section 4.3

indicate that O0 does not need to be large at all. Usually a handful of initial concepts

and a small corpus suffice for OntoHarvester to generate a well-focused ontology that

describes terms, concepts and relationships learned from the corpus.

In theory, OntoHarvester stops its iterations once no new concept is found. How-

ever, iterations at the end of the tail normally produce very few new concepts. Thus, in

practice, we can stop the iterations either i) when a certain number of iterations are per-

formed or ii) when the number of newly generated concepts are less than a predefined

threshold (minc).

4.2.1 Extracting Ontological Relations

To generate ontological relations between terms in the TextGraph of each sentence in

τ , we use graph domain (GD) patterns/rules described next. Using a syntax similar

to SPARQL [SPA08], GD rules are used to specify and detect patterns in TextGraphs

which indicate particular fragments of knowledge. In our case, we are interested in

using GD rules in order to find taxonomic relations, namely type of (IS A) and part of

(HAS A). For instance, consider the relation <algebraic equation, type of , expression> in

our running example. To extract such a link from our motivating example, the following

GD rule is used:

76

Figure 4.2: Pattern Graph for Rule 1.

———————————– Rule 1. ———————————–
SELECT (?1 “type of” ?3)
WHERE {

?1 “subj of” ?2.
?3 “obj of” ?2.
NOT(“not” “prop of” ?2).
NOT(“no” “prop of” ?1).
NOT(“no” “prop of” ?3).
FILTER (regex(?2, “ˆisˆ|ˆareˆ|ˆwasˆ|ˆwereˆ|ˆbe ...”, “i”))

}
——————————————————————————

As shown in Figure 4.2, Rule 1 specifies a pattern in which two nodes (labeled ?1

and ?3) are connected through a third node (?2) that represents any tense of the verb “to

be”. The NOT parts filter out the negative sentences; This is usually a challenging task

in most current systems. Rule 1 catches the following four results from the TextGraph

in Figure 4.1:

• <equation, type of, expression>,

• <algebraic equation, type of, expression>,

• <equation, type of, that>, and

• <algebraic equation, type of, that>.

For the last two relations, OntoHarvester uses SemScape’s Anaphora Resolution

component to resolve the pronoun “that” and replace it with its resolved term (for this

case “expression”). If no resolution is found, the last two relations will be rejected, since

the term “that” is in our black list of concepts, alongside all other pronouns. For the

above case, pronoun resolution results in re-generation of some of the exiting relations.

77

However, Rule 2 shows how pronoun resolution can also generate new relations which

most existing works are not able to capture.

———————————– Rule 2. ———————————–
SELECT (?1 “part of” ?3)
WHERE {

?3 “subj of” ?2.
?1 “obj of” ?2.
NOT(“not” “prop of” ?2).
NOT(“no” “prop of” ?1).
NOT(“no” “prop of” ?3).
FILTER (regex(?2, “ˆinclude*|ˆcontain*|ˆconsist*|...”, “i”))

}
——————————————————————————

This rule has a very similar structure to Rule 1, but here it defines a pattern for sub-

jects and objects connected with any verbs indicating inclusion (e.g. include, contain,

and consist). For our motivating example this rule generates relations such as:

• <variables, part of, that>

• <finite number of algebraic operations, part of, that>

Now, by resolving “that” to “expression”, OntoHarvester generates new relations

such as:

• <variables, part of, expression>

• <finite number of algebraic operations, part of, expression>

In OntoHarvester, we have generated 48 GD rules for taxonomic relation extrac-

tion [MKI13b], and our experiments in Section 4.3 show that these powerful rules can

be used (with no changes) in different domains. Out of these 48 rules, 30 are for type of

relations and the rest are for part of.

Combining the Relations: Each of the extracted relations from the GD rules in-

troduced earlier are assigned with a correctness confidence. The confidence value of

a relation generated from pattern p is set to the minimum confidence among the edges

78

in the matching graph for patten p. After applying the GD rules over all TextGraphs,

we combine the generated ontological relations from different TextGraphs. The com-

bination process of relations confidence is very similar to that for TD rules; Since we

need to keep the confidence values below 1, OntoHarvester uses the formula C=C1+(1-

C1)×C2 to combine the confidence of two relations havingC1 andC2 as their respective

confidence values. It is easy to see that 1 ≥ C ≥ C1 and 1 ≥ C ≥ C2.

That is, each time we encounter new evidence for an existing relation, we increase

its confidence in proportion to the new relation’s confidence. Moreover, for each unique

relation, we store its frequency, which measures the number of times this relation is

extracted from different sentences.

Relations between concepts in O whose confidence and frequency exceed confi-

dence threshold (Conf) and frequency threshold (Freq) are added into ontology O.

Therefore, we will not include relations with high confidence but low frequency, inas-

much as insufficient evidence exists for them. Symmetrically, relations with high fre-

quency and low confidence will also not be accepted.

4.2.2 Extracting Concepts

As mentioned previously, nodes in TextGraphs can be concepts, non-concept (or can-

didate) terms, and other words in the text such as verbs, articles, etc. Thus we need to

ascertain which of the current candidate terms are actually new concepts. Most previ-

ous works rely on statistical or frequency-based techniques to accept candidate terms

as concepts, and require large corpora to perform satisfactory. OntoHarvester instead

exploits the ontological relations generated in the previous section to detect new con-

cepts. The main intuition in OntoHarvester is that if a candidate term is a concept in

the domain of τ , it should be connected to some other concepts of the domain through

one or more relations. Thus, OntoHarvester accepts a term as a new concept if it has

a “strong connection” to other existing concepts in O. Here, by a strong connection,

79

we mean that the relations from the new term to existing concepts have frequency and

confidence values that are respectively greater than Freq and Conf .

With this intuition, all ontological relations connecting any concept in O to a can-

didate term, say CTi, are retained and their confidence and frequency are combined

exactly as described in the previous section. Now, CTi’s with high frequency and con-

fidence are accepted as new concepts, providing that they do not contain: 1) a word

from the black list (e.g. same, an, etc.), 2) an attributive adjective (e.g. short, similar,

etc.), 3) a comparatives or superlative adjective, 4) a verb, an adverb, or a pronoun, and

5) a numeric or a symbol. After these adjustments, we accept those candidate terms

whose confidence and frequency are larger than our pre-specified thresholds, and add

them to O.

4.2.3 Extracting New Aliases

A single concept may have several “names”. Research shows that people use different

names for the same concept more than 80% of the time [FLG87]. Abbreviations, vari-

ations of the term (e.g. plural form), acronyms, aliases, etc. may be used to address

the concepts. To find these different names for same concepts, OntoHarvester uses the

following heuristics:

• We directly use either TD or GD rules to find aliases explicitly mentioned in

the text. (e.g. “a node may be called a vertex.”). This technique considers aliases

as a new type of ontological relations as in Section 4.2.1. Currently we have

generated 29 TD rules and seven GD rules for finding such relations respectively

in annotated parse trees and TextGraphs.

• If two concepts are “strongly” connected only through type of in both directions,

they will be considered aliases of each other. (e.g. <edge, type of, side> and

<side, type of, edge> means that “side” and “edge” are aliases.)

• We use synonym information from WordNet and Wikipedia Redirect pages to

80

detect aliases between concepts in the current ontology.

• The plural form of a concept is considered an alias for its singular form (e.g. sides

and side).

Finally, adjustments similar to those discussed in the previous section will be ap-

plied to pick the final aliases. We group all the aliases of the same concept and (ran-

domly) consider one of them as the head of the group. In the next iteration of OntoHar-

vester, at the concept annotation time, we use the head of each group for tagging any of

the aliases in that group.

4.2.4 Extracting New Relation Types

As discussed in Section 3.2, our system is also able to generate general semantic links

between the terms in the TGs. The most prominent example of such semantic links is

the <subject, verb, object> link, in which the verb in a sentence is connecting its sub-

jects to its objects. Using these links, OntoHarvester attempts to find new ontological

relation types between exiting concepts. These new relation types will be used in the

next iteration of the OntoHarvester to find more related concepts.

LetRT be the set of current ontological relation types. RT initially contains type of ,

part of , and rename relation types. The average number of relations in O for these re-

lation types is called avgRT . Also, let fsl be the number of time the semantic link sl

is generated between concepts in the current ontology O. Thus, for each sl, if fsl is

greater than avgc×avgRT , OntoHarvester adds sl to the the current relation types (RT).

Where, avgc is a constant factor for tuning the number of newly found relation types.

Our experiments show that if avgc > 1, OntoHarvester will find at most three new re-

lation types (which are “of ”, “be”, and “and”). It is also important to mention that the

newly found relation types may not always resemble any specific ontological relation.

Nevertheless, they are very useful for connecting concepts of the same domain. That

is, they will help significantly in discovering new concepts for the specified domain.

81

4.3 Experimental Results

We evaluated the effectiveness of OntoHarverster by using both manual and automatic

techniques on four data sets from different applications domains. All data sets are

available for online access2.

All the experiments were performed on a single machine with 16 cores of 2.27GHz

and 16GB of main memory running an Ubuntu12. On average, our system spends 3.07

seconds for parsing each sentence on a singe CPU. Therefore, using 16 cores, we were

able to process and generate initial triples for 5.2 sentences per second.

4.3.1 Data Sets and Initial Ontologies

The data sets we use in our evaluation experiments are as follows:

• SFF: The first data set is actually Chapter 5 of the book entitled “Naval Shiphan-

dler’s Guide”. This data set, referred to as SFF (for Ship Fire Fighting), contains

around 2,200 paragraphs and 5,000 sentences.

• PGT: The second data set is the PGT data set that was also used in [JT10]. It

contains the reports on “Patterns of Global Terrorism” for years 1991-20023 for

a total of about 3,000 paragraphs and 8,000 sentences.

• MATH: The third data set is much larger than the other two and contains 24,184

long abstracts (≈172K sentences) of mathematics related pages in Wikipedia. To

generate this data set, referred to as MATH, we collected each page in Wikipedia

where one, or more, of its ancestor categories belongs to the “mathematics”

category. To control the size of the the data sets, we searched only up to 3 levels

of ancestors.

• ANIM: In a similar way, we have created the forth data set, called ANIM. This

2http://semscape.cs.ucla.edu
3Downloaded from the Federation of American Scientists: http://www.fas.org/irp/threat/terror.htm

82

data set contains 11966 long abstracts (≈71K sentences) for pages having ances-

tor category “animal”.

We should add that the GD patterns for relations extraction are created only once

and independently from the above data sets.

The last two data sets present challenging test cases for several reasons, including

the fact that they are very noisy. Take for instance MATH, a domain that is more

rigorous and well-defined than most. A careful analyses of this data set shows that

less than 45% of those pages describe concepts directly related to mathematics. In fact,

several pages in this data set actually belong to related topics, such as physics, computer

science, astronomy, book titles, universities, people names, and so on.

For each of these data sets, we generated one or two initial ontologies (seeds). The

two large seeds for MATH and SFF were manually created as part of other projects, in

which the goal was to help designing of instructional materials, evaluation of assess-

ment performance, and the modeling of knowledge, skills, and attitudes4. The seeds

used in the rest of this section are as follows:

• OAnim: The seed contains: Animal(s), Mammal, Fish, Bird, and Insect.

• Osff short: The seed contains: AFFF (an acronym for Aqueous Film Forming

Foam), Extinguisher, Fire(s), Firefighting, Firemain, Hose, Nozzle, Party, Smoke,

Ventilation, and Water.

• Osff long: The seed contains 150 concepts and 20 aliases. The index of the

“Naval Shiphandler’s Guide” book is used to create this ontology.

• Opgt: The seed contains: Attack(s), Bombing(s), Hostage(s), Incident(s), Tar-

get(s), Terrorism, Terrorist(s), Terrorist group, and Threat(s).

• OMath: The seed contains 877 concepts and 186 aliases which are extracted from

Common Core State Standards for Mathematics.
4For more information visit: http://www.cse.ucla.edu/.

83

Table 4.1: OntoHarvester (OH) vs. CRCTOL on PGT data set. (Prob=.98)
Freq Total Precision Recall F-Score

Concepts-OH 4 1307 92.9% 41.0% 56.9%
Concepts-OH 5 1069 93.0% 35.5% 51.4%
Concepts-OH 6 925 93.1% 23.0% 36.9%
Concepts-CRCTOL N/A N/A 92.8% 4.1% 7.8%
Relations-OH 4 2587 83.8% 25.0% 38.5%

4.3.2 OntoHarvester vs. CRCTOL

In this section, we compare OntoHarvester’s performance with CRCTOL [JT10]. To

the best of our knowledge, CRCTOL is one of the few works which uses a deep NLP-

based approach to generate high-quality domain-specific ontologies. CRCTOL pro-

vides a natural test bed for comparison experiments, since it obtains the most accurate

results among previous approaches and has both precision and recall computed on a

publicly available data set (PGT). In order to compare OntoHarvester’s performance

with CRCTOL, we ran OntoHarvester for 10 iterations starting from the Opgt seed.

The results for three different values for the Freq threshold are depicted in Table 4.1.

To measure the precision of our results, we manually graded 10% of the generated

concepts and relations. As for recall, we manually found 200 concepts and 100 relations

related to the global terrorism domain from the PGT documents for the year 1991.

Then, we checked these concepts and relations against the ones OntoHarvester has

generated to compute the coverage5. Table 4.1 depicts the comparative results for the

extracted concepts of these two approaches. The recall and F-Score of OntoHarvester is

significantly higher than those for CRCTOL, while the precision is slightly improved.

The main reason for this significant improvement is that, as opposed to CRCTOL and

many similar techniques, OntoHarvester uses ontological relations to find more related

concepts to the application domain, and gradually extend the ontology. In this way,

many wrong or unrelated concepts, which are frequently mentioned in the text, are

eliminated since they are not semantically connected to the current Ontology. On the

5Similar annotation is done for CRCTOL, but our efforts to contact the authors failed.

84

Figure 4.3: The number of generated concepts from SFF at each iteration for small and
large seeds. (Freq=4, Conf=.98)

Table 4.2: The impact of the seed size for SFF.
Seed Total No. Precision

Concepts Osff small 1131 90.0%
Concepts Osff large 1238 90.9%
Aliases Osff small 187 91.5%
Aliases Osff large 216 94.9%
Relations Osff small 2515 76.1%
Relations Osff large 2770 76.4%

other hand, CRCTOL learns the concepts independently from the relations in one single

phase. Thus to avoid wrong concept and improve its accuracy, CRCTOL needs to

increase the frequency threshold which consequently reduces the number of generated

results.

Since no result is reported for taxonomic relations generated in CRCTOL for this

data set, we cannot quantitatively compare the systems in terms of relations coverage.

However, similar improvements can be reasonably expected to hold for the quality of

the extracted relations, since a big portion of the concepts and thus all relations having

those concepts as endpoint are missing in CRCTOL.

85

4.3.3 The Impact of Seed Size

To study the impact of seed’s size on the extracted results, we ran OntoHarvester for

SFF with the large and small seeds introduced earlier (Osff large and Osff small re-

spectively). The results of this experiments are summarize in Table 4.2. We used the

same thresholds as in the previous section. Although the smaller seed contains only

10 concepts, rather than 150, starting from this much smaller seed, we were able to

generate 91.3% of concepts one can generate by starting from the larger seed. Similar

results held for the number of extracted links and aliases. Moreover as shown in Table

4.2, the accuracy of the results was not significantly affected. This verifies that users do

not need to spend a lot of time creating the seed: A few domain-specific concepts and

a small corpus are sufficient for OntoHarvester to provide high-quality ontologies.

To understand what exactly happens for the case with the smaller seed, we report the

number of concepts extracted in each iteration for the run with the larger seed (“Large-

Seed”) and the run with the smaller seed (“SmallSeed”) in Figure 4.3. As expected

for the first few iterations, the SmallSeed case generates fewer concepts than Large-

Seed case. However after few iterations, the initial ontology is already expanded, many

general concepts are found, and OntoHarvester starts to find more concepts than the

LargeSeed case. In simpler words, the SmallSeed case catches up with the LargeSeed

case after few (less than 10 for SFF) iterations.

4.3.4 OntoHarvester on Various Domains

We ran OntoHarvester for our four data sets and the precision and recall results are

summarized in Table 4.3. For all the experiments, we ran 10 iterations and the confi-

dence probability threshold (Conf) is set to .98. As for the frequency threshold, we

used Freq=4 for SFF and PGT, Freq=5 for ANIM, and Freq=6 for MATH to be pro-

portional to the size of data sets.

Table 4.3 includes the precision of the results obtained for the various test sets.

86

Table 4.3: The precision/recall results of running OntoHarvester on data sets from dif-
ferent domains.

Data Set Total Precision Recall F-Score
Concepts-SFF-SmallSeed 1,131 90.0% - -
Concepts-SFF-LargeSeed 1,238 90.9% - -
Concepts-PGT 1,307 92.9% 41.0% 56.9%
Concepts-MATH 19,476 83.6% 51.7% 63.8%
Concepts-ANIM 6,595 82.3% - -
Relations-SFF-SmallSeed 2,515 76.1% - -
Relations-SFF-LargeSeed 2,770 76.4% - -
Relations-PGT 2,587 83.8% 25.0% 38.5%
Relations-MATH 26,814 87.4% - -
Relations-ANIM 2,987 81.2% - -

These results were derived by grading randomly selected samples with the help of four

human graders. The samples’ size was always 500 items or more. As shown in Preci-

sion column, OntoHarvester provides high-quality results for all four different domains.

The provided accuracy for both concepts and relations in these cases is quite steady.

This in fact verifies that the OntoHarvester method is general and domain-independent,

and can therefore generate high-quality ontologies for a wide range of different do-

mains.

It is interesting to note the effect of noise in data sets on the precision of the gener-

ated concepts. The MATH and ANIM that have more than 55% unrelated content are

the ones with the lower precision. On the other end, PGT has the largest precision, since

not only it is very well-focused but it also mentions repeatedly the same concepts and

relations in different scenarios. The latter differentiates PGT from SFF data set. As for

the relations, our experiments indicate that the quality of the created relations depends

mostly on the complexity of the sentences in the text. For instance, since the sentences

in the SFF data set are more complex than sentences in the other three sets (SFF is

written by a professional author as opposed other data sets), the extracted relations for

SFF are of slightly lower accuracy.

We also evaluated the recall of the MATH experiment in a similar way to that for

PGT. This time, we randomly graded 5% of Wikipedia titles (1219 titles) in the MATH

87

Figure 4.4: The precision/recall comparison for the concepts generated for MATH.
(Freq= 6, ..., 15, Conf=.99)

data set and found 545 mathematic concepts among them. Then, we used these 545

concepts as a benchmark to compute the coverage of the results generated by Onto-

Harvester. As reported in Table 4.3, 51.7% of the benchmark’s concepts are extracted

by OntoHarvester as well. Noting that more than 39% of the benchmark concepts are

mentioned only once in the entire data set6 and 9.5% of them have only one sentence as

their abstracts, the estimated recall is actually quite satisfactory—statistical techniques

are much less likely to find such low frequent concepts. Moreover, several abstracts in-

clude formulas, symbols, or very formalized definitions that pose as much a challenge

for an NLP system as they do for a non-expert reader.

To study the effect of the frequency threshold (Freq) on the performance of On-

toHarvester, we provided the precision and recall for the MATH experiments with fre-

quency thresholds varying from 6 to 15. The results of this experiment are shown in

Figure 4.4. Although, we can reach higher precision by increasing Freq, the recall

drops quickly to less than its half. This is mainly due to the fact that many of the

correctly extracted concepts are actually of very low frequency, and they are thus elim-

inated once Freq is raised.

Finally, in Table 4.4, we provide the most frequent domain specific relation types

6In some cases, the concept name (i.e., the Wikipedia page’s title) is not even mentioned in its own
abstract.

88

Table 4.4: Domain specific relation types for each dataset.
Dataset Domain-Specific Relation types (ordered by frequency)
SFF explains, consistOf, include, beInvestigationOf, beInstalledIn,

beProvidedBy, contain, beProvidedFor, provide, beLikelyIn
PGT kill, beClaimedFor, arrest, beProvidedTo, relatedTo,

beConductedBy, conduct, engagedIn, claim, sentencedTo
MATH explains, beCalled, include, beUsed By, use, beUsedIn,

beGivenBy, beDescribedBy, beRepresentedBy, knownAs
ANIM include, explains, like, consistOf, contain, beFoundIn,

referTo, liveIn, beCalled, beCauseBy, beSpeciesOf

suggested by OntoHarvester for each data sets. We excluded the generic relation types

such as prepositions (of, in, for, to, with, etc.), conjunctions (and and or), and common

verbs (be and have) from this table.

4.3.5 Application-Based Evaluation

Although previous experiments provide a good insight on the quality of the generated

results, they are still subjective to the graders opinion. A more objective approach for

evaluating ontologies is to use them in an application and evaluate the results of the

applications. To this end, we apply the ontology generated by OntoHarvester to the

problem of “Topic Identification” (TID) [SC08]. The goal in this problem is to identify

the main topic(s) for a given text. Thus, we use the following algorithm, called TID,

which is based on the technique proposed by Janik et al. [JK08]:

1. Constructing Initial Semantic Graph: For the given text τ , we create all the

semantic links in τ as explained in Section 3.2. Using these semantic links, we

then construct a semantic graph called G.

2. Pruning the Graph by Ontology: Based on the given nodes in an ontology, say

O, we only keep nodes in G that are also in O. Each node, say n, is also assigned

a weight (wn) which is initiated by the degree (the number of connected links) of

the node in G. Later we use these weights to suggest final topics.

89

3. Populating the Graph by Taxonomy: We add taxonomical links to the remain-

ing nodes (concepts) in G. This way more general terms and topics are added

to the graph. Let us say taxonomical link l=<n, type of , m> is used to extend

the concept n in G. Thus, we add link l and node m (if it is not already there)

to G and increment wm by cd × wn, where cd < 1 is a constant decaying fac-

tor. For instance, if node “Persian Cat” is in the list, and O indicates “Persian

Cat” is type of “Cat”, we will add “Cat” to G as well. However, the weight of

“Cat” is incremented only by a portion of the weight of “Persian Cat”. This is

because we do not want to give too much credit to more general topics so the

final selected topics are specific enough for given text. Of course, if the text (τ)

is mentioning other types of cats (e.g. Ragdoll, Munchkin, etc.) then the node

“Cat” will receive more credit (weight) and its chance to be selected as the main

topic increases. We should note that this step is repeated for any newly added

nodes to G.

4. Suggesting Final Topics: Based on the nodes weights, we rank and report the

final topics. (E.g. the node with highest weight is reported as the first-rank topic,

etc.)

We employ the above algorithm to suggest topics for a benchmark data set (ex-

plained next) using our ontology and a baseline ontology. In this way, we can compare

the two ontologies, by evaluating the two sets of results generated by the above algo-

rithm for the benchmark data set using each ontology.

Baseline Taxonomy: To generate the baseline ontology, we start by 684 animal names

provided by Kozareva et al. [KH10]. We refer to this list as the initial animals list.

Next, we retrieve all the hypernyms located on the paths connecting these titles to the

animal node in WordNet. This Ontology/Taxonomy (called WNTax) contains respec-

tively 2,687 and 5,624 concepts and [type of] links. We should add that, one can not

simply start with the animal node in WordNet and find all its descendants/hyponyms

90

to create a domain specific taxonomy. This is due to the fact that many terms have

several meanings and each may have different hyponyms. Exhaustively following such

hyponyms starting from a general term (e.g animal) would result in a very general

taxonomy.

OntoHarvester Taxonomy: We use the animal ontology generated by OntoHarvester

in the previous section, and considering only type of links in this ontology, we create a

taxonomy referred to as OHTax.

Benchmark Data Set: We create a simple benchmark by collecting the abstract of 440

animal names in the initial animals list from Wikipedia. Unfortunately, the other items

in this list do not have any abstract in Wikipedia. We also assign three sets of possible

topics to each abstract in the benchmark. i) Title: the animals name, ii) Direct Cats.: the

direct categories provided for the Title by Wikipedia, and iii) Indirect Cats.: the indirect

or secondary categories that are the ancestor of the largest number of direct categories

for the abstracts. These possible topics are compared with the suggested topics by TID

to evaluate the quality of taxonomies.

We feed WNTax and OHTax to the TID algorithm to suggest topics for abstracts in

the benchmark. That is for each abstract, we run TID using the two taxonomies and get

the ordered list of suggested topics. The result of this experiments are provided in Table

4.5. As shown in the third column of the table (in bold font), when OHTax is used, TID

is able to find the exact title for 30.2% of the abstracts in the benchmark with its first

ranked suggested topics. This is more than twice the same value for WNTax. Similar

results hold for the other two topic sources (Direct Cats. and Indirect Cats.). In all

cases, OHTax significantly outperforms WNTax, due to having more concepts related

to the domain of animals.

Considering the top-20 topics suggested by TID, we compute the number of cor-

rectly identified topics from each topic source. Then for each abstract, we determine

the position (rank) of the correct topic in ordered list. The average ranks is shown in

91

Table 4.5: Results of Topic Identification using for Taxonomies.
Taxonomy Topic Rank-1 Avg.
Name Source Topic # (%) Rank
OHTax Title 133 (30.2%) 2.77
OHTax Direct Cats. 78 (17.7%) 4.47
OHTax Indrct. Cats. 128 (29.1%) 6.68
WNTax Title 56 (12.7%) 5.36
WNTax Direct Cats. 35 (7.9%) 6.09
WNTax Indrct. Cats. 97 (22.0%) 6.88

the fourth column of Table 4.5. The TID’s results for OHTax are of higher quality than

those for WNTax. More specifically, the average rank of the correctly reported topics

using OHTax for the Title case is 2.77, which is about half of the same value for WNTax.

The above experiment mainly indicates that although WordNet (and similarly other

general ontologies) may be of high quality, they are not comprehensive enough for

domain-specific applications such as the one mentioned in this section. OntoHarvester,

on the other hand, is able to use very small seed ontology (or existing ontologies) and

a small set of application-specific textual documents to learn more comprehensive on-

tologies for the purpose of the application. This makes OntoHarvester a very powerful

and practical tool for learning domain-specific ontologies.

4.4 Related Work

In the last two decades, many highly supervised approaches have been proposed to ex-

tract ontological information. In 1992, Bourigault [Bou92] used a two-phase algorithm

to first analyze the corpora to find candidate terms and then parse them to find the final

terminological units mainly using their grammatical structures. Based on this work,

Drouin proposed a hybrid technique to extract terms from POS-tagged text and then

to filter them based on some statistical techniques [Dro03]. Similar techniques were

proposed by Voutilainen [Vou95] and Maedche et al. [MS00]. Unfortunately, most of

these approaches are too expensive to scale up, due to the need for human validation.

92

A second group of related works employ statistical techniques or machine learning

techniques to automatically extract ontologies; Loh et al. [LWO00] used fuzzy rea-

soning to calculate the likelihood of a term to be a concept. Pantel and Lin [PL01]

proposed a language independent technique, in which they first extract high frequency

two-word terms, and then extend them to multi-word terms using statistical techniques.

In [QHF04] and [THF06], Quan et al. incorporated fuzzy logic into Formal Concept

Analysis or FCA [GW99] to automatically extract ontologies. Another approach based

on fuzzy logic is proposed by Lee et al. in [LKK07]. Parameswaran et al. used some

variations of association rule mining techniques to find frequent terms and words from

logs and tags [PGR10]. These approaches typically suffer from the following issues:

1) They need large training sets in order to provide highly accurate results, 2) they may

need to be re-trained for each new domain, 3) they can not handle reordering of the

words to make new terms (e.g. “linear equation” from “linear or non-linear equation”)

due to ignoring the morphological structures of the text, and 4) they highly rely on

structured or semi-structured data sets which limits their coverage.

To address these issues, more NLP-based techniques have been proposed in recent

years. Lin and Pantel [LP01] automatically found the similar paths in the dependency

trees. These similar paths form a (binary) relation structure between terms and can

be used in ontology generation systems. Banko et al. in [BCS07] introduced a new

extraction paradigm, called OIE, in which some relations are extracted from the cor-

pus in preprocessing time to facilitate the main process of text mining. Later, Poon

and Domingos [PD10] proposed OntoUPS which is more robust to noise with respect

to OIE. OntoUPS is based on a semantic parser called UPS [PD09]. UPS converts

dependency trees to quasi-logical forms, and uses recursive reductions to abstract out

syntactic variation. Kozareva et al. [KH10] used simple patterns to extract taxonomic

relations from the Web. Later, [NVF11] improved their approaches by using more gen-

eral patterns in the forms of World-Class Lattices [NV10]. Krishnamurthy and Mitchell

[KM11] used the relations extracted from NELL’s knowledge-base [CBK10a] to ex-

93

tract concepts and aliases. One of the few works showing that using deeper NLP-based

techniques, such as parse tree mining, can provide more accurate results is CRCTOL

proposed by Jiang and Tan in [JT10]. In CRCTOL, parse trees are used to find can-

didate terms (from NPs for instance), and other statistical techniques are employed to

extract the concepts from the candidate terms.

Unlike OntoHarvester, most of these works either i) use very limited and shallow

NLP-based techniques, ii) use a limited and fixed number of patterns (mostly borrowed

from Hearst [Hea92]) to mine the text or parse trees, or ii) separate the concept ex-

traction phase from relation extraction. Thus, they do not gain much over the pure

statistical techniques.

We should also add that there are several systems to generate general ontologies or

common-sense knowledge-bases. CYC [EG06], [GK06], FreeBase [BEP08], SOFIE

[SSW09], DBPedia [BLK09], YaGo2 [HSB11], and ProBase [WLW12] are the most

common such systems. However, we do not discuss them here, since they mostly work

for structured data and are not designed for domain-specific ontology generation.

94

CHAPTER 5

IKBstore: Knowledge Integration through IBminer

As repeatedly mentioned throughout this dissertation, the Web provides a vast amount

of high-quality information through structured, semi-structured, and unstructured sources.

Projects such as Cyc [EG06, GK06], Kylin [WHW08], Freebase [BEP08], DBpedia

[BLK09], YaGo2 [HSB11, SKW08], Probase [WLH11], and WikiData [Wik] gener-

ate a huge number of structured summaries. These techniques extract their knowledge

either using highly supervised techniques or using structured or semi-structured data,

and thus they are costly to scale. For instance, around 43.9% of pages in Wikipedia are

missing their entire InfoBoxes and many others are missing part of their structured sum-

maries. As a result, structured queries over individual KB will not provide accurate and

complete enough results [CMH09]. This claim is also proven in Section 3.5.5, where

we showed the current DBPedia is not able to answer to at least 56% of the most pop-

ular queries searched in Google. On the other hand, on-line encyclopedias, handbooks,

manuals, and other semi-curated free-text corpora provide an even larger amount of

knowledge in semi-structured, and unstructured (text) forms. However, due to the am-

biguity and complexity of such data sources, they can not be directly used in structured

querying. To make more effective structured querying and question answering sys-

tems, one need to integrated the existing sources of knowledge into a better-structured

knowledge base of much improved coverage and accuracy.

Fortunately, although overlapped a lot, the mentioned KBs cover knowledge on

various domains or topics. Moreover, there are several domian specific and publicly

available KBs such as MusicBrainz [MUS], GeoNames [GEO], etc. that provide more

95

information on more specific topics. In Order to unify these existing knowledge bases

which are using heterogeneous formats and terminologies, we propose a knowledge

integration system, called IKBstore [MGZ13c, MGZ13b]. IKBstore integrates existing

KBs into a more standard KB presented with RDF triples and then completes it by

mining unstructured and semi-structured data. More specifically, IKBstore performs

the following four steps to create a knowledge base which is superior to the existing

ones in coverage and consistency:

Step A: IKBstore first integrates the publicly existing structured data (starting with

DBpedia [BLK09], WikiData [Wik], YaGo2 [HSB11], MusicBrainz [MUS], and Geon-

ames [GEO]) into an initial knowledge base. To this end, IKBstore mostly utilizes the

interlinking information available in DBpedia, and then presents the information in

RDF triple format (Section 5.1.) These triples are then stored in an Apache Cassandra

database.

Step B: Next, IKBstore uses our IBminer system to mine more structured information

from available unstructured data in Web (Currently Wikipedia’s text) as described in

Chapter 3. In this way, we extract missing structured information that should belong to

InfoBoxes of Wikipedia and other semi-curated on-line collections. We shortly discuss

the detail of this step in Section 5.2.

Step C: Once the initial KB is created, IKBstore use a Context-aware Synonym Sug-

gestion System (CS3) [MGZ13a, MGZ13b] to reconcile different terminologies used

in different resources. This step, which significantly improves the consistency of the

KB, is an extension to IBminer’s technique for suggesting secondary matches and is

discussed in Section 5.3

Step D: As demonstrated in [MGZ13c], IKBstore provides a user-friendly interfaces

to help volunteer contributors to revise and improve the final knowledge bases. This

step, which is further discussed in Section 5.4, allows users to edit the KB without

knowing its internal terminology. Therefore, this tool is a great asset for more effective

96

crowdsourcing

In this chapter, we explain each of the above four steps in the context of our large

experiment on the entire Wikipedia dataset. This data set contains all subjects and

their plain text provided by Wikipedia, which has 4.4 Million subjects each with 18.2

sentences on average. Note that for this data set we use the entire text (up to 200

sentences per page) while for Musicians, Actors. and Institutes data sets, we only used

their abstracts. The experiments were run using the Hoffman2 cluster at UCLA [Hof]

with up to 256 cores each with 8GB of main memory and a machine with 64 cores of

2.3GHz and 256GB of main memory.

5.1 Step A: Integrating Knowledge Bases

In this part, we explain the initial process of collecting the existing knowledge bases

and integrating them using the exiting interlinks. Each piece of information generated

in this phase is tagged with its provenance which is mainly the source names including

that piece. This may later be used to rank the users browsing and querying results.

5.1.1 Data Collection

We will consider several publicly available knowledge bases (Table 5.1) and integrate

them as explained later in this section. Among the introduced knowledge bases, there

are some domain specific ones (e.g. MusicBrainz, Geonames, etc.), and some do-

main independent ones (e.g. DBpedia, YaGo2, etc.). Although pieces of knowledge in

these sources are represented in various ways, we represent them in the form of triples

<Subject, Attribute, Value> and store them in Apache Cassandra which is designed for

handing very large amount of data. We recognize three main types of triples:

InfoBox triples: These triples provide information on a known subject in the sub-

ject/attribute/value format. For easing our discussion we refer to these as InfoBoxes

97

Name Size (GB) # of Entities (106) # of Triples (106)
ConceptNet [SLM02] 3.0 0.30 1.6

DBpedia [BLK09] 43.9 3.77 400
FreeBase [BEP08] 85.0 ≈25 585
Geonames [GEO] 2.2 8.3 90

MusicBrainz [MUS] 17.6 18.3 ≈131
NELL [CBK10b] 1.3 4.34 50
OpenCyc [OPE] 0.2 0.24 2.1
YaGo2 [HSB13] 19.8 2.64 124

WikiData (Eng.) [Wik] 8.5 4.4 12.2

Table 5.1: Public Knowledge Bases used in IKBstore

(<J.S. Bach, PlaceofBirth, Eisenach>).

Subject/Category triples: They provide the categories that a subject belongs to in the

form of subject/link/category where, link represents a taxonomical relation (<J.S. Bach,

isA, German Composers>).

Category/Category triples: They represent taxonomical links between categories(<German

Composers, isA, German Musicians>).

Currently, we have converted all the knowledge bases listed in Table 5.1 into the

above triple formats.

5.1.2 Data Integration

Knowledge bases introduced in Table 5.1 contain a wealth of knowledge as the numbers

indicate. However, lack of a standard ontology in these knowledge bases makes them

very challenging to integrate. Our main goal is to tackle this challenge and discover

the initial interlinks between subjects, attributes, and categories in order to eliminate

duplication, align attributes, and improve consistency.

Interlinking Subjects: Fortunately, the same names are often used to denote the same

subjects in different databases. Moreover, DBPedia is interlinked with many existing

knowledge bases, such as YaGo2 and FreeBase, which can serve as a source of subject

interlinks. For the knowledge bases which do not provide such interlinks (e.g. NELL),

98

in addition to exact matching, we use both synonym matching and attribute similarity.

Synonyms can be obtained from links such as redirect and sameAs, WordNet, or using

our recently proposed ontology generator OntoHarvester [MKI13b]. For subjects with

matching names, we only merge them if they have a predefined number of attribute

names in common.

Interlinking Attributes: Similar to the subject interlinking, we use exact matching and

synonym matching for finding initial attribute interlinks. In Section 3.3.5, we explain

how one can find synonym attributes and interlink different aliases for the attribute

names used in different knowledge bases.

Interlinking Categories: In addition to exact matching, we compute the similarity

of the categories in different knowledge bases based on their instances. Consider two

categories c1 and c2, and Let S(c) be the set of subjects in category c. The similarity

function for categories interlink is defined as Sim(c1, c2) = |S(c1) ∩ S(c2)|/|S(c1) ∪

S(c2)|. If the Sim(c1, c2) is greater than a certain threshold, we consider c1 and c2 as

aliases of each other, which simply means that if the instances of two categories are

highly overlapping, they can be assumed to represent the same category.

After retrieving these interlinks, we will merge similar triples based on the retrieved

interlinks. Currently this task is finished for Geonames and MusicBrainz and partially

done for DBpedia and YaGo2. We are quickly covering more of these two knowledge

bases as well as the remaining ones in Table 5.1. All triples are also assigned with ac-

curacy confidence and frequency values. As explained in Section 2.3.2, more evidence

supporting the same piece of information will increase its confidence and frequency

values. Observe that the sources from which the triples are generated are also stored

for the provenance purposes.

Integrating current knowledge bases using the techniques explained above has sev-

eral advantages discussed next. A) The integrated knowledge base covers more struc-

tured summaries, which results in richer and more confident patterns for IBminer. B)

More attributes are encountered, since the focus on different sources are different. This

99

also improves IBminer’s performance as explained in the next section. C) The use of

multiple knowledge bases represents an effective way to validate preexisting structured

summaries and those newly generated from text. Using these techniques, we can also

evaluate the quality of the textual part of a page.

5.2 Part B: Improving the Knowledge Base using Text Mining

Once the initial knowledge base is created, we use IBminer to improve the knowledge

base by mining the available text in Wikipedia as explained in Section 3. This time

we use the all subjects and their entire text in Wikipedia. In this way, many of the

missing structured summary information in current knowledge bases will be added to

the IKBstore which significantly improves the coverage of the knowledge base. Similar

to the previous case, each newly generated triple is tagged with provenance information

for later ranking purposes.

5.2.1 Generating new Structured Summaries

We set NC=20 and L=3 which are slightly lower than what suggested in Section 3.5.3,

since this data set is a lot larger and much more examples can be found for each cat-

egories. To generate the TextGraphs and semantic links (Phase I), we distributed the

task over up to 256 cores in Hoffman2 cluster [Hof]. This task, which took around a

month, has resulted in 4.5 Billion semantic links out which 251 Million have subjects

matching their page title. To control the size of the experiment, we only used these 251

Million links for the rest of the experiment (|Tn|=251M). Out of these semantic links

8.2 Million match the existing InfoBox triples (|Tm|=8.2M) which are used to gener-

ated the PM and PAS structures using our 64-core machine. Finally, we used these two

structures to suggest the final InfoBox triples.

Similar to Section 3.5.2, we graded around 50K of the generated triples and provide

the precision/recall diagrams for Best and Secondary Matches respectively in Figures

100

Figure 5.1: Evaluation of (a) best matches, and (b) secondary matches (c) attribute
mapping for the entire Wikipedia.

5.1.(a) and 5.1.(b). Again in both diagrams, the normalized threshold (τ) decreases

from left to right. As compared to the Musicians case, the precision in this case starts

to drop earlier mainly due to lower quality of the information in the entire Wikipedia

compared to that of Musicians. Notice that concepts related to Musicians are generally

more popular and receive more attention from Wikipedia’s users. This results in higher

quality of text and InfoBoxes in Musicians pages. Nevertheless, IBminer is able to

generated 3.9 Million triples with 95% accuracy. With 90% accuracy we are able to

recall up to 7.1 Million triples.

To evaluate the quality of the PM structures independent from the errors introduced

by the NLP parsers and the SemScape system, we also evaluated the triples generated

from the Tm set. Remember that Tm includes semantic links such as<s, l, v> for which

there is at least one triple in exiting InfoBoxes (Ti) such as <s, a, v>. That is, subject s

and value v are most probably extracted correctly by the NLP component, and the only

thing needs to be done is to map l to a or one of its synonyms. This time, we graded

a sample of 2K translated triples from Tm and reported the precision/recall diagram in

Figure 5.1(c). As can be seen, the mapping results for all such cases is performed with

95% accuracy. It is interesting to note that mapping precision for the 7.1 million newly

generated triples is above 98%, which is very significant.

We should mention that the number of results we generated for Musicians was

higher than the other domains due to the higher quality of the information in their pages

as discussed in the previous subsection. As mentioned earlier for the entire Wikipedia,

101

we were able to generate up to 7.1 Million InfoBox triples. Noticing that these triples

are generated mostly from the pages with “useful” text, IBminer adds 2.8 new triples

per page. By “useful” text, we mean the text for which SemScape is able to generate

at least one semantic link. Only 58% of pages in Wikipedia have “useful” text, and

the other pages either are empty, contain only tabular information, or are redirect or

disambiguation pages.

To understand how these new triples will impact the quality of search over DBpe-

dia, we performed an application-based evaluation in Subsection ??. The experiment

showed that by adding IBminer’s triples to DBpedia, we observe 53.3% improvement

in the number of results for the users query, although the increase in DBpedia’s ac-

tual size is much less (≈21%). This mainly implies that IBminer is providing higher

quality and query-relevant information than DBpedia. To understand why, we studied

DBpedia and summarized some interesting facts next. DBpedia suggests 44K attribute

names out of which 27K are used less than 10 times and thus do not provide any use

for structured querying. These attributes are mostly introduced by the naive and im-

precise technique DBpedia uses to convert tables into triple format. The very same

technique also has introduced many unimportant triples (>17%) (e.g. file names, im-

age names, formats, size, or alignment), duplicate triples (>7%), wrong triples (>4%),

and incomplete triples1 (>10%). The reported percentages here are estimated using a

small sample of DBpedia. More accurate statistics may be estimated by a larger sample,

however the numbers already prove the low quality of the triples in DBpedia. In fact,

out of 54 Million triples in DBpedia only 12.2 Millions are generated from Wikipedias

InfoBoxes (according to WikiData [Wik]). The rest is largely generated from other

structured information in Wikipedia and is not reliable. Briefly, a very optimistic esti-

mation indicates that more than 38% of triples in DBpedia are not suitable for structured

queries.

1These are triples that have lost their meaning due to being separated from other values in
the same row of a table.

102

Although we used 90% accuracy in this study, much lower precisions in knowledge

bases are acceptable in practice for the following reasons. First, many of the wrong

results are for less important attributes (e.g. name and caption attributes) or unrelated

values. These cases are usually less probable to be appeared in users’ queries. Second,

the main priority of a knowledge based for structured querying is the coverage (not

accuracy). In fact, structured queries on the extended DBpedia are providing more

precise results than current keyword-based search engines. Third, the quality of our

results is completely comparable (if not better) with many current KBs, including those

which have been work on for more than forty years [EG06].

5.2.2 Verifying Existing Structured Summaries

More evidence for the same piece of information is a good indicator of its correctness.

However, the knowledge from different sources is usually represented in different ways.

Therefore, IKBstore assigns initial weights to different sources, combines their triples,

and calculates the significance and accuracy values of the triples based on their initial

weights, evidence frequency, the patterns correctness confidence, etc. If the same piece

of information is generated from the text, IKBstore accordingly updates its significance

and accuracy.

We also try to find mismatches between items generated by IBminer and those were

already part of the initial knowledge base. We say two triples <s1, l1, v1> and <s2,

l2, v2> mismatch if s1=s2, v1=v2, l1 6=l2, and l1 and l2 are not synonyms. These mis-

matches are reported as incorrect summaries if their normalized wight is above a pre-

defined threshold. Our experiments indicate that IBminer reports 1.2% of the existing

summary items as potential incorrect items, whereas only 57% of those are actually

incorrect (a false negative rate that is under 1.2× 0.57 = 0.52%).

103

5.2.3 InfoBox Templates Suggestion

Finding a right InfoBox template (or simply a list of relevant attributes) for a subject

can be a very time consuming task for typical Web users. To alleviate this issue, IB-

miner (through IBE as explained in Section 5.4) suggests the most relevant attribute

names for a given subject. To this end, IBminer first finds the most popular attributes

currently used for the subjects in each category in our knowledge base. Then, for a

subject of interest, all popular attributes from the categories listed for the subject are

suggested as relevant attributes. For each attribute, say α1, we also find the most pop-

ular attributes used with α1 in the same InfoBox (i.e. for the same subject). Based

on this co-occurrence data set, we suggest missing attributes which their counterpart is

already in the current attributes for the subject. With this feature, users would use more

standard attribute names and are more likely to enter structured information.

5.3 Step C: Context-aware Synonyms to Improve Consistency

The integrated knowledge base so obtained will represent a big step forward, since it

will (i) improve coverage, quality, and consistency of the knowledge available to Se-

mantic Web applications and (ii) provide a common ground for different contributors

to improve the knowledge base in a more standard and effective way. However, a seri-

ous obstacle in achieving such a desirable goal is that different systems do not adhere

to a standard terminology to represent their knowledge, and instead use plethora of

synonyms and polynyms.

Thus, we need to resolve synonyms and polynyms for the entity names as well as

the attribute names used in these knowledge bases. For example, by knowing ‘Johann

Sebastian Bach’ and ‘J.S. Bach’ are synonyms, the knowledge base can merge their

triples and associate them with one single name. As for the polynyms, the problem

is even more complex. Most of the time based on the context (or popularity), one

should decide the correct polynym of a vague term such as ‘JSB’ which may refer to

104

“Johann Sebastian Bach”, ‘Japanese School of Beijing’, etc. Several efforts to find en-

tity synonyms have been reported in recent years [CCC12, CGX09a, CGX09b, CLP12,

PCB09]. However, the synonym problem for attribute names has received much less

attention, although they can play a critical role in query answering. For instance, the

attribute ‘birthdate’ can be represented with terms such as ‘date of birth’, ‘wasbornin-

date’, ‘born’, and ‘DoB’ in different knowledge bases, or even in the same one when

used in different contexts. Unless these synonyms are known, a search for musicians

born, say, in 1685 is likely to produce a dismal recall. WikiData [Wik] is one of the

pioneer approaches for recognizing such synonyms in large scales, but it unfortunately

is highly supervised and mangle is designed only for InfoBoxes in Wikipedia.

To address these issues, we proposed a Context-aware Synonym Suggestion System

(CS3 for short) [MGZ13a, MGZ13b], which is used to improve the consistency of IKB-

store. CS3 learns attribute synonyms by matching morphological information in free

text to the existing structured information. Similar to IBminer, CS3 takes advantage

of a large body of categorical information available in Wikipedia, which serves as the

contextual information. Then, CS3 improves the attribute synonyms so discovered, by

using triples with matching subjects and values but different attribute names. After uni-

fying the attribute names in different knowledge bases, CS3 finds subjects with similar

attributes and values as well as similar categorical information to suggest more entity

synonyms. Through this process, CS3 uses several heuristics and takes advantage of

currently existing interlinks such as DBpedia’s alias, redirect, externalLink, or sameAs

links as well as the interlinks provided by other knowledge bases.

Synonyms are terms describing the same concept, which can be used interchange-

ably. According to this definition, no matter what context is used, the synonym for

a term is fixed (e.g. ‘birthdate’ and ‘date of birth’ are always synonyms). However,

the meaning or semantic of a term usually depends on the context in which the term is

used. The synonym also varies as the context changes. For instance, in an article de-

scribing IT companies, the synonym of the attribute name ‘wasCreatedOnDate’ most

105

probably is ‘founded date’. In this case, knowing that the attribute is used for the name

of a company is a contextual information helping us find an appropriate synonym for

‘wasCreatedOnDate’. However, if this attribute is used for something else, such as an

invention, one can not use the same synonym for it.

Being aware of the context is even more useful for resolving polynymous phrases,

which are in fact much more prevalent than exact synonyms in the knowledge bases.

For example, consider the entity/subject name ‘Johann Sebastian Bach’. Due to its

popularity, a general understanding is that the entity is describing the famous German

classical musician. However, what if we know that for this specific entity the birthplace

is in ‘Berlin’. This simple contextual information will lead us to the conclusion that the

entity is referring to the painter who was actually the grandson of the famous musician

Johann Sebastian Bach. A very similar issue exists for the attribute synonyms. For

instance, ‘birthdate’ can be a synonym for ‘born’ when it is used with a value of type

‘date’; but if ‘born’ is used with a value indicating locations, ‘birthplace’ should be

considered as its synonym.

CS3 constructs a structure called Potential Attribute Synonyms (PAS) to extract at-

tribute synonym. In the generation of PAS, CS3 essentially counts the number of times

each pair of attributes are used between the same subject and value and with the same

corresponding semantic link in the TextGraphs. Similar to IBminer, the context here

is considered to be the categorical information for the subject and the value. These

numbers are then used to compute the probability that any given two attributes are syn-

onyms. Next subsection describes the process of generating PAS. Later in Subsection

5.3.2, we will discuss our approach to suggest entity synonyms and improve existing

ones.

106

5.3.1 Generating Attribute Synonyms

Intuitively, if two attributes (say ‘birthdate’ and ‘dateOfBirth’) are synonyms in a spe-

cific context, they should be represented with the same (or very similar) semantic links

in the TextGraphs (e.g. with semantic links such as ‘was born on’, ‘born on’, or ‘birth-

date is’). In simpler words, we use text as the witness for our attribute synonyms.

Moreover, the context, which is defined as the categories for the subjects (and for the

values), should be very similar for synonymous attributes.

More formally, let attributes αi and αj be two matches for link l in initial triple

<s, l, v>. Let Ni,j (= Nj,i) be the total number of times both αi and αj are the inter-

pretation of the same link (in the initial triples) between category sets Cs and Cv. Also,

let Nx be the total number of time αx is used between Cs and Cv. Thus the probability

that αi (αj) is a synonym for αj (αi) can be computed by Ni,j/Nj (Ni,j/Ni). Obviously

this is not always a symmetric relationship (e.g. ‘born’ attribute is always a synonym

for ‘birthdate’, but not the other way around, since ‘born’ may also refer to ‘birthplace’

or ‘birthname’ as well). In other words having Ni and Ni,j computed, we can resolve

both synonyms and polynyms for any given context (Cs and Cv).

With the above intuition in mind, the goal in PAS is to compute Ni and Ni,j . Next

we explain howCS3 constructs PAS in one-pass algorithm which is essential for scaling

up our system. For each two records in PM such as <cs, l, cv>: αi and <cs, l, cv>:

αj respectively with evidence frequency ei and ej (ei ≤ ej), we add the following two

records to PAS:

<cs, αi, cv>: αj

<cs, αj , cv>: αi

Both records are inserted with the same evidence frequency ei. Note that, if the

records are already in the current PAS, we increase their evidence frequency by ei. At

the very same time we also count the number of times each attribute is used between a

pair of categories. This is necessary for estimating Ni and computing the final weights

107

for the attribute synonyms. That is for the case above, we add the following two PAS

records as well:

<cs, αi, cv>: ‘’ (with evidence ei)

<cs, αj , cv>: ‘’ (with evidence ej)

Improving PAS with Matching InfoBox Items: Potential attribute synonyms can be

also derived from different knowledge bases which contain the same piece of knowl-

edge, but in different attribute names. For instance let <J.S.Bach, birthdate, 1685>

and <J.S.Bach, wasBornOnDate, 1685> be two InfoBox triples indicating bach’s

birthdate. Since the subject and value part of the two triples matches, one may say

birthdate and wasBornOnDate are synonyms. To add these types of synonyms to

the PAS structure, we follow the exact same idea explained earlier in this section. That

is, consider two triples such as <s, αi, v> and <s, αj , v> in which αi and αj may be a

synonym. Also, let s and v respectively belong to category sets Cs = {cs1, cs2, ...} and

Cv = {cv1, cv2, ...}. Thus, for all cs ∈ Cs and cv ∈ Cv we add the following triples to

PAS:

<cs, αi, cv>: αj (with evidence 1)

<cs, αj , cv>: αi (with evidence 1)

This intuitively means that from the context (category) of cs to cv, attributes αi and

αj may be synonyms. Again more examples for these categories and attributes increase

the evidence which in turn improve the quality of the final attribute synonyms. Much

in the same way as learning from initial triples, we count the number of times that an

attribute is used between any possible pair of categories (cs and cv) to estimate Ni.

We should also note that with this simple extension any other knowledge bases (e.g.,

Wikidata) can be added to IKBstore and our CS3 system will interpret its terminology

to that of IKBstore using the matching triples between the two KB.

Generating Final Attribute Synonyms: Once PAS structure is built, it is easy to com-

pute attribute synonyms as described earlier. Assume we want to find best synonyms

108

for attribute αi in InfoBox Triple t=<s, αi, v>. Using PAS, for all possible αj , all

cs ∈ Cs, and all cv ∈ Cv, we aggregate the evidence frequency (e) of records such as

<cs, αi, cv>: αj in PAS to compute Ni,j . Similarly, we compute Nj by aggregating the

evidence frequency (e) of all records in form of<cs, αi, cv>: ‘’. Finally, we only accept

attribute αj as the synonym of αj , if Ni,j/Ni and Ni,j are respectively above predefined

thresholds τsc and τse. At the end, a very same normalization technique explained in

Section 3.3.3 is used to perform a better filtering.

Completing Knowledge by Attribute Synonyms: In order to compute the precision

and recall for the attribute synonyms generated by CS3, we use our large initial knowl-

edge bases and the PM structure generated for the entire Wikipedia text to construct the

PAS structure as described above. In total, this PAS contains more than 89 million po-

tential attribute synonym records, which are used to find synonymous attributes for all

the triples in our initial knowledge base. Note that these synonyms are for already exist-

ing InfoBox triples, and thus different from the secondary matches explained in Chapter

3. Similar to our evaluation for the Best and Secondary matches in Section 3.5.2, we

graded 100K of the resulted synonymous triples and provide the Precision/Recall dia-

gram in Figure 5.2. The normalized threshold (τ) in this digram increases from left to

right. As can be seen in this figure, CS3 is able to find more than 55% of all possible

synonyms with more than 90% accuracy. In fact, this is a very big step in improving

structured query results, since it adds ≈5.7 million triples to IKBstore. These triples

improve the consistency of the knowledge base by providing more popular (common)

synonymous attributes for those used in different knowledge bases.

5.3.2 Generating Entity Synonyms

There are several techniques to find entity synonyms. Approaches based on the string

similarity matching [Nav01], manually created synonym dictionaries [SR98], automat-

ically generated synonyms from click log [CLP10, CLP12], and synonyms generated

by other data/text mining approaches [Tur01, MKI13b] are only a few examples of

109

Figure 5.2: Evaluation of attribute synonyms for existing InfoBoxes in the initial knowl-
edge base.

such techniques. Although performing very well on suggesting context-independent

synonyms, they do not explicitly consider the contextual information for suggesting

more appropriate synonyms and resolving polynyms.

Very similar to context-aware attribute synonyms in which the context of the subject

and value used with an attribute plays a crucial role on the synonyms for that attribute,

we can define context-aware entity synonyms. For each entity name, CS3 uses the cat-

egorical information of the entity as well as all the InfoBox triples of the entity as the

contextual information for that entity. Thus to complete the exiting entity synonym sug-

gestion techniques, for any suggested pair of synonymous entities, we compute entities

context similarity to verify the correctness of the suggested synonym.

It is important to understand that this approach should be used as a complementary

technique over the existing ones for two main reasons. First, context similarity of two

entities does not always imply that they are synonyms specially when many pieces of

knowledge are missing for most of entities in the current knowledge bases. Second,

it is not feasible to compute the context similarity of all possible pairs of entities due

to the large number of existing entities. In this work, we use the OntoMiner system

[MKI13b] in addition to simple string matching techniques (e.g. Exact string matching,

having common words, and edit distance) to suggest initial possible synonyms.

110

Let ‘Johann Sebastian Bach’ and ‘J.S. Bach’ be two synonyms that two different

knowledge bases are using to denote the famous musician. A simple string matching

would offer these two entity as being synonyms. Thus we compare their contextual

information and realize that they have many common attributes with similar values for

them (e.g. same values for attributes occupation, birthdate, birthplace, etc.). Also they

both belong to many common categories (e.g. Cat:German musician, Cat:Composer,

Cat:people, etc.). Thus we suggest them as entity synonyms with high confidence.

However, consider ‘Johann Sebastian Bach (painter)’ and ‘J.S. Bach’ entities. Al-

though the initial synonym suggestion technique may suggest them as synonyms, since

their contextual information is quite different (e.i. they have different values for com-

mon attributes occupation, birthplace, birthdate, deathplace, etc.) our system does not

accept them as being synonyms.

5.4 Step D: Tools for Crowdsourcing

Perhaps the most successful crowdsourcing story is that of Wikipedia, in where the

amount of data has grown at least 10 times in less than 10 years, making Wikipedia the

most commonly used encyclopedia. However, in recent years this growth is decreasing

due to two main reasons: i) the crowds are usually good at more general knowledge,

but for narrower and more specific domains, only few experts can contribute, and ii)

with the data getting larger, crowdsourcing and editing data require sophisticated tools

to assist the contributors. In fact the latter, is one of the main reasons hindering the

Semantic Web from reaching ambitious goal of annotating the Web documents. Forcing

contributors to use a common terminology is another big challenge. Moreover, users

usually require advance searching and browsing tools to find the right place to enter

their information or to find similar cases to avoid redoing an already performed task.

Therefore, we provided two easy-to-use tools, referred to as InfoBox Knowledge-

Base Browser (IBKB) and InfoBox Editor (IBE). The former is for browsing, retrieving,

111

Figure 5.3: A sample view of the InfoBox Editor (IBE) page. By hovering over the
source names (as shown for Freebase) users can see the original triple in that source.
Similarly, users can see the synonyms used for each attribute by hovering over that
attribute name (as shown for BirthDate).

112

and querying the knowledge base, while the latter is implemented for enhancing the

manual process of generating structured information by the users such as in Wikipe-

dia and WikiData [Wik]. The prototype version of this tool (available at [Sem]) was

demonstrated at PVLDB 2013 [MGZ13c] and attracted much attention. As opposed

to the existing systems, IBE hides the internal structure of the KB from the users and

implicitly leads them to use the correct terminology. In this way, users do not need to

know the internal terminology of the KB in order to improve it, which will significantly

encourage more users to contribute. Figure 5.3 shows the IBE user interface for the

subject “J.S. Bach”. We next explain main features of these two tools:

The InfoBox Knowledge-Base Browser (IBKB): IBKB is implemented to let users

browse the current knowledge base. Its user interface is very similar to the one for

IBE (Figure 5.3). For a given subject, the tool provides i) structured summary items in

user specified order, ii) the synonyms found by IBminer for the attributes used in the

summaries, and iii) wrong summary items recognized by IBminer. The tool can also

determine the provenance of each piece of information and report the knowledge base

from which it was originally taken, or that it was actually discovered by IBminer. By

clicking on each source name, the user will be provided with the original form of the

triple in that source. Each entity in the result pages is also connected to its own page to

make the browsing easier for the users.

Using IBKB, users can select one or more summary items from the user interface,

and provide their feedback on the correctness, relevance, and significance of the items.

In addition to using such feedback to improve IBminer’s performance and to tune its

patterns, users’ feedback will be used to rank the structured summaries. The ranking

mainly improves the user experience with IBKB, since many of the provided summaries

are just common sense information for the users, and they usually do not want to see

them on top of the list of summaries.

More importantly, we have equipped IBKB with the powerful query-by-example

system, SWiPE, initially proposed by Atzori and Zaniolo in [AZ12]. Using SWiPE,

113

users can specify their query by i) starting from a similar page to what they are looking

for, ii) specifying their conditions on the appropriate attribute names shown for the

selected page, and iii) click on the search button. Receiving users’ queries, IBKB

translates it into the SPARQL query and uses Apache Jena to answer the query over our

integrated KB.

The InfoBox Editor (IBE): In addition to the browsing tool for the current knowledge

base, we provide an easy-to-use tool, referred to as IBE, for enhancing the manual

process of generating structured information by the users such as in Wikipedia. Figure

5.3 shows the IBE user interface for the subject “J.S. Bach”. For the existing subjects,

IBE allows users to add more textual information and structured summaries. To create

a new subject, users are asked to enter the name (a descriptive subject), one or more

categories for the subject, and a descriptive text for it. They can optionally add as

many structured summaries as they desire. IBE specifically provides the following

mechanisms for the used to improve the KB:

• IBE automatically suggests missing attribute names for subjects (as explained in

Section 5.2.3), so users can fill the missing values.

• Similarly, IBE automatically suggests missing categories, and thus users only

need to verify the correctness of the suggested information.

• Users will be able to provide feedback on correctness, importance, and relevance

of each piece of information.

• Finally, users can insert their knowledge in free text (e.g, by cutting and pasting

text from Wikipedia and other authorities), and IBE employs IBminer to convert

them into the structured information. After users final verification, the structured

information will be added to the KB. This is perhaps the most natural way for

inserting structured information.

Notice that the main difference between IBE and Wikipedia is that IBE’s focus is

on generating structured summaries for machine use that requires a standard ontology,

while Wikipedia is mainly designed for human readers. Moreover, IBE is able to au-

114

tomatically generate structured summaries and suggest InfoBox templates so users can

provide structured summaries more efficiently.

Semantic Web Annotation: A final feature of IBE will enable the Semantic Web users

to annotate their documents in a semi-supervised approach. In other words, instead of

manually annotating the documents, IBE will perform the annotation task and users

only need to verify the final annotations. In this way, not only we reduce typical Web

users task to publish their Semantic Web-friendly documents, but we also provide a

set of more standard annotations which consequently reduce the efforts required for

sharing, reusing, and querying the contents.

115

CHAPTER 6

Synopses and Summarization Techniques on massive

data

In this section, we provide some preliminary and background information on synopses

and summarization techniques in data streams or massive data sets. For many resource-

intensive applications, it is acceptable to provide approximate results to reduce time

and space requirements of the algorithms. This is true for applications on both static

data sets and data streams. In many cases, there is no other choice than estimating the

final results due to time and space constraints, especially for data streams in which it is

crucial to provide online results. Thus, we need some light structures to help maintain

approximate results for the new-coming data items and avoid passing the whole data

set more than once [GM99].

In data streaming environment, as already discussed, we need to continually provide

the results in an online fashion [TGN92, BW01]. This basically means that for each

new-coming piece (or chunk) of data, the system should recompute (or update) the

results of the query. Thus, another important reason for designing synopses and looking

for more efficient summarization techniques is to be able to provide faster continuous

results.

One of the important uses of synopses is on query optimization. Query Optimizers

need different statistics to be able to estimate the selectivity of certain operations in

order to plan the execution of complex queries. In data streams, this issue will be

more important since the process might take longer and the results should be provided

instantly (in an online fashion.) In Some application such as those in OLAP and data

116

mining environment, the absolute size of intermediate results are needed to ensure that

the results are correctly extracted.

In many applications, processing time of a query would not be an issue if one can

have the whole data set in the memory (e.g aggregates such as min/max in sliding

window). However, the whole data set may be too large to fit into memory. Therefore,

synopses are a good solution for reducing the memory requirement of the algorithms at

the cost of providing approximate results instead of the exact ones [GM99]. Reducing

storage requirements for massive data sets and data streams is also an important practice

in reducing the transferring time of the data in some distributed environments.

Although synopses are very useful and inevitable structures in massive data sets and

data streaming systems they have some known drawbacks as well [CM05]:

• They may have Ω(1/ε) or more multiplicative factor in their space requirements,

where ε the approximate rate.

• The maintenance of the synopses for new, updated, and/or expired items may

take linear time to the size of the synopses, which is not acceptable for many data

streaming environments.

• Most synopses are useful for a limited class of queries, and there are not enough

works on designing synopses for semi-structured and unstructured data sets.

• The computation delay for these structures may contain large multiplicative con-

stant factors.

• Although synopses are useful for both databases and data streams, in the context

of data streams, they need to handle additional issues such as item expiration in

sliding windows case, more strict limits on running time, etc.

Next, we introduce different types of data sets and data streams as well as possible

types of queries over such data sources. Finally, we shortly discuss the most important

type of synopses and few general summarization techniques.

117

6.1 One-Pass Data Sets and Data Streaming Models

Based on the application type on data sets and data streams may be defined via different

models. Note that since for both massive data sets and data streams we need one-pass

algorithms, we may use the term data streams for both of them in this study. Moreover,

all of these models have some features in common; i) the sequence of data is too long

that it can not be stored completely in the memory (or even if it is stored it cannot be

processed in online fashion), and ii) the results of the queries need to be continuously

re-evaluated on the fly. In this section, we list the existing data streaming models in the

literature of the data streaming systems.

• Add-Only Data Streams: This is the simplest data streaming model, in which

data items or tuples will be added to the rest of data set. No update or deletion is

considered for this model.

• Data Streams with Windows: Sliding window is a more commonly used model

to handling data expiration. In these models, only a chunk of data items from the

most recent part of the data stream is considered [LMT05].

– Physical and Logical Windows: Two main types of sliding windows are

considered commonly in the literature; Physical windows which contains

the most recent N tuples for some N , and Logical or Time-based windows

which contains those tuples that have arrived in last T units of time for

some T . There is another type of windows which is useful for data sets

with various data item size. In such environments, it is impossible to pick

an appropriateN or T that works for all the situations. To resolve this issue,

a good solution is to use a fixed-size window in terms of space. That is the

most recent set of data items that in aggregate occupies a certain amount of

space is considered in the current window.

– Sliding and Tumbling Windows: Another important issue regarding the

118

sliding window model is the way the window should slide. The simplest

method is to slide the window every time a new tupple arrives. However

this approach is not very time-efficient. A better alternative is to slide once

a certain number of items, say S, arrive. This new portion of data stream is

called a slide1. When the size of the slides are the same as window size, we

say the window is tumbling.

– Updatable vs Fixed Tuples: Another variation of this model is allowing

for the updates on data items in the middle of the sliding windows. We

should mention that usually these updates are ignored for the sake of better

performance, however in some applications this may not be possible due to

the high dynamicity of the data set.

• General Update Model: In the general update model, data stream is defined as

a sequence of records in the form of (ts, i, ∆), where ts indicates the time-stamp

or position of the data item in the sequence, i is the items index from FIXED

domain [n] = 1, 2, ..., n, and ∆ is an integer number indicating the change in the

frequency of item i [GM07].

• Strict Update Model: This model is a special case of the general update model

in which the frequency of items are non-negative [GM07].

• Insert-Only Model: In this model no deletion is allowed. That is ∆ can not be a

negative number [GM07].

• Textual Data Streams: Those data streams in which the data is a text are referred

to as Textual Data Streams or Topic Streams [Kle02, HP10].
1A similar idea is being used in logical windows.

119

6.2 Essential Queries in Massive Data Sets and Data Streams

Queries can be categorized into different classes: First, queries may be one-time or

continuous. Queries in data streams are mostly continuous, while they are often of

one-time type in databases [TGN92][BW01]. One-time queries are those needing to

be evaluated once. This type of queries can be blocking; that is to report the results

they need to see the entire data set [BW01]. Second important distinction is between

predefined queries and ad hoc (online) queries [BBD02]. Online queries are generally

harder to deal with, since the query optimizer does not know anything about the nature

of the query in advance. Additionally, in data streams, to answer ad hoc queries one

may need to access part of data that have previously been arrived. This contradicts the

one-pass processing concept in data streaming environments.

In many applications, queries are biased toward some points of interest in the data

distributions, usually the tails. For example, in analyzing round trip time (RTT) of

network packets the queries are biased toward the longer RRTs. However, in many

other applications queries interest is uniformly distributed over the entire data set (data

stream). These in fact shows that the nature of the queries plays a crucial rule in the

synopses design for the data set. We discuss more on this in Section 8.

With this introduction, we provide a list of the most important type of queries in

data streams:

• Point Query (θ(i)): Returns an approximation for the frequency of item i in the

data stream.

• Range Query (θ(l, r)): Returns an approximation for the sum of the frequency

of items form index l to index r (
∑r

i=l ai).

• Selectivity Query (S(C)): Computes the number of items having a given condi-

tion C [SAC79], [PC84]. Note that this query contains both of the above queries.

• Inner Product Query (I(a, b)): Returns the inner product of two data streams

120

a and b with size n (a� b =
∑n

i=1 aibi). The inner product is the basic operation

for joining data sets or data streams, which is a very costly action. Thus, query

optimizers usually need to estimate the cost of each join before they let the join

operation starts.

• Frequency Moments and Lp Norms: For a given set of frequencies, ai, the

kth frequency, Fk moment is defined as
∑

i a
k
i . Obviously, F0 is the number

of distinct items and F1 is the total number of items [FM85, AMS99]. Norms

function has a similar definition. In fact, the Lp norm for p > 0 can be defined as

Lp = F
1/p
k .

• φ-Heavy Hitters: Return the items with frequency of more than the fraction φ

of the entire data set size. Heavy Hitters may also be referred to as the Hot List

[GM99, CKM08] or iceberg queries [FSG98].

• Top-k Queries: Given set P of d-dimension points in <d, top-k query with re-

spect to function score from a point to a real value returns k points with the

largest scores. Top-k results are useful in many applications such as commu-

nications and sensor networks, stock market trading, profile-based marketing,

rating/ranking systems, and multi-criterion decision making systems.

• Skylines: Given set P of d-dimension points in <d, the skyline of P is the set

of points in P which are not dominated by any other points in P . Note that point

p dominates q iff they are not equal and p values in all the d dimensions are less

than or equal to q value in the corresponding dimensions [BKS01], [PTF05], and

[CGG03]. Skylines are closely related to top-k queries, and have the same type

of applications. Some techniques use skylines in order to maintain top-k results

over sliding windows of data streams [MBP06].

• Frequent Itemsets: In shopping basket data sets, the set of items that have been

appeared in more than a certain number of tuples is called a frequent itemset.

Frequent itemsets can also be used to mine association rules [AS94], and [SA96].

121

• Other Aggregate Function: Max/Min, Entropy, Mean, Variance, Median, k-

Median, etc. [HHW97, FKS99, SBA04].

Note that many other aggregate functions such as Distinct Counts, Maximum/Mininimum,

Entropy, Mean, Variance, Median, k-Median, etc. can also be considered as query

types. However since they can usually be estimated using above queries, we do not

consider them in our list of queries. For more information on these sorts of functions,

readers are referred to [HHW97], [FKS99] and [SBA04].

6.3 Existing Synopses

To approximately estimate the answers for the previously mentioned queries, the most

common way is to employ an appropriate sketch or synopsis. In this section, we provide

a list of most commonly used synopses in the literature.

• φ-Quantiles: They can provide essential information for many applications such

Query optimization in commercial DBMSs, splitters in parallel data bases [PI96],

association rule miners in data mining applications [SA96], and data cleaning

through similarity checks [DJM02].

• Equi-Width Histograms: Equi-Width Histograms are the traditional histograms,

in which the domain interval is divided into B equal-sized intervals and the num-

ber of items in each of those intervals are computed.

• Equi-Depth Histograms: Equi-depth histogram computation is akin to quantile

computation. More specifically, an equi-depth histogram tries to partition the

ordered list of the input data set into into B buckets so that the number of items

in the buckets are (roughly) the same. [PC84]

• Compressed Histograms: Compressed Histograms are very similar to equi-

depth Histograms. The only difference is that in compressed histograms items

with very high frequency (for example, those that their frequency is larger than

122

the bucket size) are considered in singleton buckets and an equi-depth histogram

will be used to summarize the rest of the data streams.

• V-Optimal Histograms: V-Optimal histograms try to approximate the ordered

list of input with a B-step Function [JKM98, GKS01].

• MaxDiff Histograms: MaxDiff histograms [PIH96] aim to find theB−1 largest

gaps (boundaries) in the sorted list of input.

• Wavelets: Wavelets try to decompose the given data set into a series of coef-

ficients using the trends in data. This way, the most insignificant coefficients

can be ignored to make an approximate sketch of the whole data set. Perhaps

the most important issue is that in order to be able to answer many types of

queries, the data should be re-composed from the coefficients which is not very

time-efficient. Essentially, maintaining the set of significant transform values in

wavelet generation is similar to that for top-k queries. However, depending on the

transformation type it may be significantly harder than top-k queries[GKM03].

• Other Counting Sketches: There are several other sketches that are also useful

to estimate the frequency of items. These sketches can be also used in more

complex sketches. Exponential Histograms [DGI02a], AMS [AMS96], Smooth

Histograms [BO07], and FP-Trees [HPY00] are a few example of these sketches.

We will discuss them in more details later in this dissertation.

6.3.1 Quantiles and Equi-Depth Histograms

Equi-Depth Histograms, [Gre96][MD88] (also known as equi-height or equi-probable)

seek to specify boundaries between buckets such that the number of tuples in each

bucket is the same. Histograms of this type are more effective than equi-width his-

tograms, particularly for data sets with skewed distributions [Ioa03].

The equi-depth histogram problem is obviously akin to that of quantiles [GK01b],

which seeks to identify the item that occupies a given position in a sorted list of N

123

items: Thus given a φ, 0 ≤ φ ≤ 1, which describes the scaled rank of an item in

the list, the quantile algorithm must return the dφNe’s item in the list. For example, a

0.5-quantile is simply the median. Therefore, to compute the B − 1 boundaries of any

equi-depth histograms, we could employ a quantile structure and report φ-quantiles for

φ = 1
B
, 2
B
, ..., B−1

B
. However, this solution suffers from the following problems:

• Quantile computation algorithms over sliding windows are too slow, since they

must derive more information than is needed to built the histogram [PIH96].

• Quantiles algorithms that are used to construct histograms focus primarily on

minimizing the rank error, while in equi-depth histograms we need to focus on

the size of individual buckets and minimize the bucket size error.

Compressed histograms [PIH96] are a variation of equi-depth histograms, that place

the highest frequency values in singleton buckets and use equi-depth histogram for the

rest of input data. This type of histograms usually provide more accurate results and

can also be used to construct biased histograms [CKM06]. However, we should also

note that compressed histograms are computationally harder to design than equi-depth

histograms, since they require to keep track of frequent data items.

There are many works on designing quantiles in databases [PC84], [GKM02], [GKM02].

Most of these structures pre-compute the quantiles and try to maintaining it once any

pieces of data is manipulated. A commonly used technique in some of these approaches

is to recompute the quantiles once in while as well.

In 1984, Shapiro and Connel introduced a method to estimate the selectivity of

conditions in form of attribute θ constant in a database system where θ can be one of

=, <, >, ≤, and ≥ [PC84]. Obviously this is very akin to the concepts of quantiles and

equi-depth histograms.

In 2002, Gilbert et. al. used Random Subset Sums (RSSs) as an sketch to store

summarized information about the whole database and estimate the quantile with a

one-pass algorithm [GKM02].

124

Gibbons et al. presented a sampling-based technique for maintaining the approx-

imate equi-depth histograms on relational databases [GMP97]. This work is of our

interest mainly because (i) it has considered a stream of updates over database, which

may make the approach applicable for the data stream environment as well, and (ii)

it has employed a split/merge technique to keep the histograms up-to-date, which was

inspiring for us. However in their work, the stream of updates is taken from a Zipfian

distribution which means some records may be updated several times, while many of

the other records remain unchanged; this is not the case in a data streaming environment

where records enter windows once and leave in the same order in which they arrived.

Most past work, in the area of data streams, has focused on the related problem

of quantiles. It has been proven [MP80] that single-pass algorithms for computing

exact quantiles must store all the data; thus, the goal of previous researches was to

find approximate quantile algorithms that have low space complexity (i.e., low mem-

ory requirements). For this reason, Manku et al. introduced an ε-approximate algo-

rithm to answer any quantile query over the entire history of the data stream using

O(1
ε
log2(εN)) space [MRL98]. Later, they improved their quantile computation for

the case of not knowing the data set size in advance using a non-uniform random sam-

pling [MRL99]. Greenwald and Khanna, in [GK01b], improved the memory usage of

the previously mentioned approach to O(1
ε
log(εN)), and also removed the restriction

of knowing the size of the stream (N) in advance. Their work has been influential,

and we refer to it as the GK algorithm. For instance, GK was used in [LLX04] and

[AM04] to answer quantile queries over sliding windows. The algorithm proposed in

[LLX04] has space complexity O(1
ε2
log2(εW)), where W is the window size and it is

unknown a priori. In [AM04], Arasu and Manku proposed an algorithm which needs

O(1
ε
polylog(1

ε
,W)) space. We will refer to this algorithm as AM.

AM runs several copies of GK over the incoming data stream at different levels. At

these levels, the data stream is divided into blocks of size εW/4, εW/2, εW , etc. Once

GK computes the results for a block in a level, AM stores these results until that block

125

expires. In this way, they can easily manage the expiration in the sliding window. To

report the final quantile at each time, AM combines the sketch of the unexpired largest

blocks covering the entire window. Similar to AM, the algorithm proposed in [LLX04]

also run several copies of the GK algorithm. Therefore, both of them suffer from higher

time complexity, as was shown in [ZW07b]. In fact, Zhang et al. also proposed a faster

approach for computing ε-approximate quantile using O(1
ε
log2εN) space. However,

their approach works only for histograms that are computed on the complete history of

the data stream, rather than on a sliding window.

Gibbons et. al., in [GMP97], also provided an algorithm to maintain approximation

for compressed histograms in the dynamic scenario in which items can be updated after

they entered to the system.

In 2002, Qiao et. al. provided a new algorithm to construct a compressed histogram,

called Relaxed Histogram or RHist, to answer multiple queries over the entire history of

a data stream [QAA02]. Their algorithm dynamically adapts accordingly with changes

in queries as well as with the new data items come into the system. The basic idea to

adapt to new-coming queries is to used more buckets in the ranges where more queries

are expects to occur. The have also used a Workload Decay Model to give less to older

queries since new coming queries are more significant in their model.

6.3.2 Biased Histograms and Quantiles

In many environments queries are biased toward some points in data distribution usually

on one or both ends of the data distributions. As an example, consider a performance

monitoring system in a networking environment, which is watching the round trip time

(RTT) for TCP packets. Note that RTT delays can be stretched a lot in different situa-

tions, so the distribution of RTTs is very skewed at its tail [CKM05][CKM06]. In such

system, the queries are biased to the high end of the RTTs distribution. Another good

example of these skewed data sets can be the distribution of people’s wealth [CKM06].

126

There is tiny portion of people at the high end of this distribution, which attracts all

the queries. As the third example, we can mention the distribution of the number of

incoming (outgoing) URL in the Web’s graph.

Many optimization techniques need to know biased information about the distribu-

tion of these data sets in order to perform more efficient and effective. For example,

in the Web’s graph, we may need a good approximation for the average in-degree of

nodes with ranks between 99.9% and 99.99% as well as that for nodes with ranks be-

tween 99% and 99.9%. This may be because of that to store information for the nodes

located between positions 99% and 99.9% and nodes in between position 99.9% and

99.99%, same amount of memory may be needed. This is very crucial in efficiently

splitting/distributing large data sets over different servers.

This type of applications leaded researched toward the definition of biased quan-

tiles/hostograms [CKM05, CKM06, ZW07b]. For instance, a biased quantile can con-

sist of set of the median, 75%, 87.5%, 93.75%, ... quantiles. In other words, the interest

is biased to a particular point (or points) in the distribution (usually one of the ends or

both). Although the traditional quantiles are able to answer any quantile queries, they

do not provide more accurate results for the points of interest in the distribution. For

example, a 0.01-approximate quantile would return the same results for all φ-quantiles,

99% ≤ φ < 100%. This is not acceptable in the biased quantiles’ application. One may

say that generating more accurate quantiles would alleviate this issue, but the problem

is that the existing quantile computation algorithms are not only too slow, but also, their

required space is proportional to 1
ε

or 1
ε2

. Moreover, for the mentioned applications there

is no need to have the same approximation for every given quantile query.

To the authors’ knowledge, no one has considered the problem constructing biased

histograms in data streams over sliding windows. All the works in this area have consid-

ered the entire history of the data streams [CKM05, CKM06, ZW07b]. In Chapter 8, we

present a new randomized algorithm called Bar-Splitting Biased Histograms (BSBH)

to compute biased histograms over sliding windows of data streams. We also prove

127

that under practical assumptions and slow concept shifts the algorithm can guarantee

the expected ε-approximate results.

Cormode et. al. have introduced the idea of biased quantile in [CKM05]. Based

on the GK algorithm, they proposed a deterministic ε-approximate algorithm to con-

struct biased quantiles over the whole history of a data stream. Their approach needs

O(B×log1/φ
ε

log(εN)) of space, where N is the current size of the stream and B is the

number of boundaries we need to report. Note that as shown in [ZLX06], the worst

case behavior of this type of algorithms are linear in the universe size U (The size of

the items’ domain).

Later, in [CKM06], the same authors proposed a faster and more space-efficient

deterministic algorithm for the same problem, based on a binary tree structure idea

borrowed from [SBA04]. Needing O(logU
ε
logεN) space and an almost constant amor-

tized cost of actions per new entry, the algorithm is best suited for high speed data

streams. However, it can not be easily used for the sliding windows data streaming

model. Moreover, their algorithm needs the prior knowledge of U and the bound on

space requirement of the algorithm is dependent on the U which is not desirable.

Zhang and Wang have used a decomposable structure to construct ε-approximate

biased quantiles using O(log
3εN
ε

) space and O(log(logεN
ε

)) of time. In their paper, a

naive non-uniform sampling technique is used which works as follows; first the given

data set of known size N is sorted, and data items in each interval [N
2i+1 ,

N
2i

) is randomly

sampled with rate εN
2i

for i = 0, 1, 2, ..., logN . It is easy to see that the resulting sample

is simply an ε-approximate biased quantile. The rest of their idea is partitioning the

data stream into blocks of known size, using the introduced non-uniform sampling over

each block, and finally merging the results derived for all the blocks into a final answer.

Unfortunately, the mentioned biased quantile computation algorithms can not be

easily used for the sliding window case, due to their underneath structures which ba-

sically do not support the idea of expirations. The usual solution for this issue is to

run several copies of the same algorithms for different-size chunks of the most recent

128

part of the current window, and try to combine the results for the biggest possible parts

which are not expired yet. Similar technique is used in [AM04] for regular quantiles.

However, the technique is proven to provide a slow algorithms [ZW07b][MZ11b].

6.3.3 Exponential Histogram Sketch

In [DGI02b], Datar et al. proposed the Exponential Histograms (EH) sketch algorithm

for approximating the number of 1’s in sliding windows of a 0-1 stream and showed that

for a δ-approximation of the number of 1’s in the current window, the algorithm needs

O(1
δ
logW) space, where W is the window size. The EH sketch consists of an ordered

list of buckets. In this paper, we refer to these buckets as boxes to avoid confusion

since we will use the term bucket at another level in our approach. Every box in an EH

sketch basically carries on two types of information; a time interval and the number of

observed 1’s in that interval. We refer to the latter as the size of the box. The intervals

for different boxes do not overlap and every 1 in the current window should be counted

in exactly one of the boxes. Boxes are sorted based on the start time of their intervals.

Here are the brief descriptions for the main operations on this sketch:

Inserting a new 1: When at time ti a new 1 arrives, EH creates a new box with

size one, sets its interval to [ti, ti], and adds the box to the head of the list. Then the

algorithm checks if the number of boxes with size one exceeds k/2 + 2 (where k = 1
δ
),

and, if so, merges the oldest two such boxes. The merge operation adds up the size of

the boxes and merges their intervals. Likewise for every i > 0: whenever the number

of boxes with size 2i exceeds k/2 + 1, the oldest two such boxes are merged. Figure

6.1 illustrates how this operation works.

Expiration: The algorithm expires the last box when its interval no longer overlaps

with the current window. This means that at any time, we only have one box that may

contain information about some of the already expired tuples. The third row in Figure

6.1 shows an expiration scenario.

129

Figure 6.1: Incrementing an EH sketch twice at time 58 and 60. That is we have seen
1, 0, and 1 respectively at time 58, 59, and 60. (k=2 and W=35)

Count Estimation: To estimate the number of 1’s, EH sums up the size of all the

boxes except the oldest one, and adds half the size of the oldest box to the sum. We

refer to this estimation as the count or size of the EH sketch.

It is easy to show that using only O(1
δ
logW) space, the aforementioned estimation

always gives us a δ-approximate number of 1’s. This approach is quite fast too, since

the amortized number of merges for each new 1 is only O(1). It is also worth noting

that instead of the counting the number of 1’s in a 0-1 stream, one can simply count

the number of values falling within a given interval for a general stream. For instance,

to construct an equi-width histogram, a copy of this sketch can be used to estimate the

number of items in each interval, when the boundaries are fixed.

6.3.4 Other Types of Histograms

Perhaps, the simplest type of histograms are the traditional equi-width histograms, in

which the input value range is subdivided into intervals (buckets) having the same

width, and then the count of items in each bucket is reported. Knowing the minimum

and maximum values of the data, the equi-width histograms are the easiest to imple-

ment both in databases and in data streams. However, for many practical applications,

130

such as fitting a distribution function or optimizing queries, equi-width histograms may

not provide useful enough information [Gre96]. A better choice for these applications

is an Equi-depth histogram which has been discussed earlier in previous section.

Other types of histograms proposed in the literature include the following: (i)

V-Optimal Histograms [GKS01][JKM98] that estimate the ordered input as a step-

function (or pairwise linear function) with a specific number of steps, and (ii) MaxDiff

histograms [PIH96] which aim to find the B− 1 largest gaps (boundaries) in the sorted

list of input. Although these type of histograms can be more accurate than the other

histograms, they are more expensive to construct and update incrementally [HKY09].

For example, current V-optimal algorithms perform multiple passes on the database,

and are not suitable for most data stream applications [JKM98].

6.3.5 Other Synopses

As Already mentioned in Section 6.3.3, Datar et. al. presented an effective method,

called Exponential Histograms to estimate statistics of data streams over sliding win-

dows [DGI02a]. They showed in order to provide an ε-approximate results their struc-

ture needs only O(1
ε
logW) of space. More detail on this method is provided in section

6.3.3. Later on, many other works have used EH sketch as their basis to provide other

types of statistics [BO07], [BO10], and [MZ11b]. We already talked about works in

[MZ11b], in which a fast and space efficient equi-depth histogram is provided using

EH sketch.

Braverman et. al. in [BO07] and [BO10] improved the approximation error rate of

EH sketch. Their sketch, Smooth Histogram, is able to provide approximate results for

a larger class of function than EH called (α, β)-smooth function. These functions are

namely Lp norms (p 6= 1, 2), frequency moments, length of increasing subsequence and

geometric mean. Function f is called (α, β)-smooth, if, once f(B) is a β-approximate

of f(A) where data set B is the suffix of A, we can guarantee that f(B
⋃
C) is an

131

α-approximation of f(A
⋃
C) for any portion of new elements in data set C.

A very costly operation in DBMSs and also in DSMSs is the join (or inner product)

operation. To make join operations faster, the order of tables or data streams that are

being joined is very important. Thus, an important job of query optimizers is to estimate

the selectivity of each join.

FM sketch is a simple structure to compute the number of distinct items (0’s fre-

quency moment) form domain {0, 1, ...,M − 1} [FM85]. Assume hash function h(x)

that maps incoming values, say x, in {0, 1, ...,M−1} uniformly across {0, 1, 2, 4, ..., 2L−1},

where L = O(logM). Now, assume lsb(x) denote the position of the least-significant

1 bit in the binary representation of x. FM sketch is an array A of L bits initialized by

0’s. For each incoming value x, we set A[lsb(h(x))] to 1. It is easy to show that at each

moment in time the number of distinct items is approximately 2l, where l is the position

of the left most 0 in array A.

In [MBP06], authors used a k-skyline structure in order to maintain the results of

top-k queries over sliding windows of a data stream. Since k-skyline is k layers of

skylines over a given data set, the results of the top-k query must be among the items

of these skylines. Thus it is enough to start searching the layers from the outmost one,

and if top-k results are larger than the maximum value in the next layer, we can stop.

Otherwise, we should search the next layer and so forth.

6.4 Sampling as the Most Common Summarization Technique

Sampling is the process of choosing a data item to be processed or not with some prob-

ability [Vit85b], [GZK05]. Sampling methods are one the most popular summarization

techniques due to their low cost of generation and compatibility with most of the exist-

ing functions and applications. We usually are interested in random sampling, in which

numbers are taken from the same probability distribution, without involving any real

population.

132

Sampling techniques are harder to implement when the size of data streams are

unknown prior to the execution of the algorithms [GZK05]; however, this is not a vital

issue for case of the data streams with sliding windows. Perhaps, a more important

issue in data streams with sliding windows is to avoid periodic sampling and keep the

sample random. Another important consideration in sampling methods is their ability

to efficiently deal with a fluctuating data rate [GZK05].

In many streaming environments with a bursty and a fast arriving data-stream, due

to the existing of bottlenecks at some nodes, seldom a sequence of incoming input has to

be shed. The processes of skipping a sequence of data items usually in a data streaming

environment is referred to as Load Shedding [MBD03, MZ10]. The process of load

shedding may also be referred to as Skip Sampling in some literature, since we sample

chunk of data all at once. In addition to having the same problems as other sampling

techniques, load shedding is usually difficult to be used with data mining algorithm due

to dropping chunk of data items [GZK05].

Sketching techniques may also try to vertically sample the input data stream in the

literature. Considering data items have several attributes or features, sketching samples

those attributes which are of the most importance in some sense [BBD02], [Mut03],

[GZK05].

Uniform random sampling is a very well-studied topic for data sets with known

size. There are several approaches to construct Uniform random samples. However, for

the cases that the data sets size are unknown in advance or the case of sliding windows

over data streams, the problem becomes more challenging [Vit85b]. This is usually due

to online nature of these data sets in which one-pass algorithms are the only acceptable

option. One of the earliest works to address the issue of not knowing the data set size

in advance is [Vit85b] by Vitter. He proposed an intuitive algorithm called Algorithm

R which is a simple type of Reservoir algorithms. For generating a sample of size n

in Algorithm R, first n items of the data set are selected as the initial sample and for

each item number t (t > n) with probability n/t it will be randomly replaced by one

133

of the already sampled items. This guarantees that at any moment in time we have an

n-item uniform sample of the so far seen data set. In the same paper, Vitter proposed a

faster sampling algorithm which is referred to as Algorithm Z. In this algorithm instead

of flipping a coin for each item, we skip a random number of items and then replace the

next new item to the Reservoir.

In 1998, Gibbons and Matias introduced two new sampling based summary statis-

tics called concise Sampling and counting sampling, GibbonsMatias98. The former one

is simply a uniform random sample of input such that values occurring more than once

in the sample are represented with a tuple of < value, count >. On the other hand,

counting sampling counts the total number of occurrences for each value selected to be

in the sample. They also showed how these techniques can be used to approximate hot

list queries (Heavy Hitters) in a data set.

In [GMP97] and [GM99], a uniform random sampling technique on data sets is

proposed which has the capability of coping with the updates in the values of data items.

This sampling technique which is called Backing Sampling employs a small synopsis

to reduce the number of disk accesses. In this technique a reservoir-based sampling

such as Algorithm Z, concise, or counter sampling is used as the basis. Once an item

in the data set is deleted, two approaches can be followed; 1) the delete operation is

postponed until next insert happens, or 2) a larger sample size is maintained so if the

deleted item is among the sampled items, it will be replaced with another item in the

reservoir.

Most of the discussed sampling techniques are limited due to lack of support for data

streaming environments. In the context of sliding windows of data streams, sampling

and load-shedding are often considered as duals of each other. In [BDM02], a simple

approach is proposed to construct a uniform random sample of size m over the most

recent n items of the data set. The whole idea of their approach is that whenever an item

is added to the samples reservoir at time t, its future substitute index is also selected

among the next n items t + 1, t + 2, ..., t + n. This way, each item in the sampled list

134

is chain to its substitute and when ever the item is expired it would be replaced with its

substitute without any further computations. This approach is called Chain-Sampling.

They also proposed a priority sampling for logical window cases. In priority sampling

technique each newly arrived data item gets a random priority from 0 to 1, and the item

with the highest priority will be sampled and its successor is an item arrived after p and

has the highest priority. A similar technique is used in [ADL05] to estimate the subset

sum queries.

Aggarwal in [Agg06] introduced a new type of sampling called biased sampling.

His idea was that in some situations users may need the results from both the entire

history of data streams and the most recent items. For these situations, using sliding

windows results in losing the older items and using the whole history would not be so

efficient. Therefore, he proposed a biased sampling in which the sampled items bias to

the more recent items.

Sampling with or without replacement from fixed-size (physical), timestamp-based

(logical), or bursty windows are studied by Braverman, Ostrovsky, and Zaniolo in

[BOZ07] and [BOZ09]. They also proved that the memory complexity of sampling

algorithms over sliding windows is comparable to those of data streams without sliding

windows. They basically showed that to generate a random sample when the window

slides it is enough to replace the old slide’s sampled items with a uniform random sam-

ple of the new coming slide.

The authors in [TcZ07] described a way to determine load-shedding ratios in a

distributed system given the utility function that maximizes throughput. Their work

however does not address important factors such as the ability to load-shed based on a

utility function and computing load-shedding plans online which is essential in a data-

stream environment.

In [MZ10], the load shedding problem is looked at as an optimization problem in

data streaming systems in which multiple queries with specific load shedding require-

ments are taken into consideration. Three main strategies of load-shedding are studied,

135

namely 1) Uniform, where the load is shed equally for every query, 2) Proportional,

where the load is shed proportionally to the amount of results returned by the query,

and finally 3) Optimal, where the shedding ratio is proportional to the amount of re-

sults returned by the query. Their proposed techniques are applicable to data-mining

queries such as K-Means, decision tree classifiers, etc. This work also allows dynamic

re-computation of shedding ratios when system resources change.

6.5 Other Summarization Techniques

In addition to employing synopses and sampling to summarize massive data sets or

data streams, there are some other general summarization techniques that are shortly

discussed next:

Clustering: Another technique which can serve as a summarization technique is clus-

tering. In clustering, similar items (in some senses) are grouped together. For some

applications, we may only need to store and/or process the groups information, which

can greatly save memory and time. Clustering can also be beneficial in the design

of more space-efficient sketches. A useful practice, for example, is to construct the

sketches over the items of each group instead of the entire data sets. This may greatly

reduce the total memory usage. Clustering techniques also play a crucial role in dis-

tributed systems, where the data should be partitioned and assigned to different nodes

in a way that minimum inter-node communication would be required.

Compression: Although these terms may be used interchangeably in some literatures,

there is a subtle difference between them. In compression techniques, the only goal

usually is to reduce the size of a data set in a way that it fits in the smaller space. While,

in summarization techniques, in addition to this, we need structures that allows for fast

(mostly on-line) processing and query answering algorithms. This basically indicates

that not all the compression techniques can serve as a summarization technique. More-

over compression is a lossless process, while summarization is not necessarily.

136

CHAPTER 7

A Fast- and Space-Efficient Equi-Depth Histogram

Equi-depth histograms provide statistically accurate, space-efficient synopses for very

large data sets; therefore, they proved invaluable in a wide spectrum of database appli-

cations, such as: query optimization, approximate query answering, distribution fitting,

parallel database partitioning, and data mining. Histograms are even more important

for data streaming applications, where synopses become critical to provide real-time

or quasi real-time response on continuous massive streams of bursty data and to min-

imize the memory required to represent these massive streams. However, finding fast

and light algorithms to compute and continuously update histograms represents a dif-

ficult research problem, particularly if we seek the ideal solution to compute accurate

histograms by performing only one pass over the incoming data. Data streaming ap-

plications tend to focus only on the most recent data. These data can be modeled by

sliding windows [BBD02], which are often partitioned into panes, or slides whereby

new additional results from the standing query are returned at the completion of each

slide [BBD02][LMT05].

Once the number of buckets (B) is given, the equi-depth histogram algorithm seeks

to findB−1 boundaries such that the number of tuples between two consecutive bound-

aries is approximately N/B, where N denotes the number of tuples in the window. For

the sake of time and space issues, this goal can only be achieved within a certain ap-

proximation, and because of computational constraints and requirements of continuous

queries ε-approximations with much coarser εs are expected in the data stream environ-

ment. In particular, we require that only one pass be made over the incoming data and

137

the results must be reported each time the current window slides.

In this section, we study the problem of constructing equi-depth histograms for

sliding windows on data streams and propose a new algorithm that achieves average

ε-approximation. The new algorithm, called BAr Splitting Histogram (BASH), has the

following properties: BASH (i) is much faster than current techniques, (ii) does not

require prior knowledge of minimum and maximum values, (iii) works for both phys-

ical and logical windows in data streams, and (iv) leaves a smaller memory footprint

for most cases. As we shall discuss in more detail later, the main idea of BASH builds

on the Exponential Histograms technique that was used in [DGI02a] to estimate the

number of 1’s in a 0-1 stream over a sliding window (See Section 6.3.3).

More specifically, we make the following contributions in this section:

• We introduce a new expected ε-approximate approach to compute equi-depth

histograms over sliding windows.

• We show that the expected memory usage of our approach is bounded byO(B 1
ε2
log(ε2W/B)),

where B is the number of buckets in the histograms and W is the average size of

the window.

• We present extensive experimental comparisons with existing approaches: the

results show that BASH improves speed by more than 4 times while using less

memory and providing more accurate histograms.

In order to introduce our novel technique for generating space-efficient Equi-Depth

Histograms on data streams with sliding windows, we first provide the formal defini-

tions of equi-depth histograms and error measurements. Later, we explain the algorithm

and provide our theoretical and experimental results. This section is first proposed in

[MZ11b].

138

7.1 Definitions

Throughout this section, we will frequently use three important terms: boxes, bars, and

buckets. Buckets are the final intervals that we intend to report for the histogram. On the

other hand, each bucket may contain one or more bars, and for each bar, the associated

EH sketch has a list of boxes which has been described in previous section. With this

clarification, we can formally define an equi-depth histogram as follows:

Definition 1 A B-bucket equi-depth histogram of a given data set D with size N is a

sequence of B − 1 boundaries B1, B2, ... BB−1 ∈ D, where Bi is the value of the item

with rank b i
B
Nc in the ordered list of items in D.

Note that each data item (tuple) is simply considered as a floating point number. As

in can be seen, the number of items between each two consecutive boundaries is the

same (N/B). To ease this definition, Bi can be also defined as any values between the

value of the items with rank b i
B
Nc and b i

B
N + 1c. A similar definition can be used for

the sliding window case:

Definition 2 A B-bucket equi-depth histogram of a given data stream D at each win-

dow with size W is a sequence of B − 1 boundaries B1, B2, ... BB−1 ∈ DW , where

DW is the set of data in the current window and Bi is the value of the item with rank

b i
B
W c in the ordered list of items in DW .

Note that the above definitions is valid for both physical windows in which W is a

fixed value and logical windows in which W may vary through the time. However, as

already discussed, computing the exact equi-depth histograms is neither time efficient

nor memory friendly particularly for the data streaming case [MP80]. Thus, we need

algorithms to approximate the histogram with respect to some kind of error measure-

ments. The most natural way to define the error is based on the difference between the

ideal bucket size (i.e. (W/B) and the size of constructed buckets by any algorithms.

139

The other way of computing this error, which is based on the error computation in

quantiles, is to compute the expected error for the ranks of reported boundaries. A third

approach can also be considered, which uses the differences between the ideal position

(actual value) of the bucket-boundaries and the exact boundaries. Based on these three

error types, the following definitions can be considered for the expected ε-approximate

equi-depth histogram. These three error types are respectively called size error, rank

error, and boundary error.

Definition 3 An equi-depth histogram summary of a window of size W is called a

size-based expected ε-approximate summary when the expected error on the reported

number of items in each bucket si is bounded by εW/B.

Definition 4 An equi-depth histogram summary of a window of size W is called a

rank-based expected ε-approximate if the expected error of the rank of all the reported

boundary ri is bounded by εW .

Definition 5 An equi-depth histogram summary of a window of size W is called a

boundary-based expected ε-approximate if the expected error of all the reported bound-

ary bi is bounded by εS, where S is the difference between the minimum and maximum

values in the current window.

The boundary error behaves very similar to the rank error. However, boundary

error is much faster to be computed, since it deals with the value of the items instead

of their ranks. Throughout this section, we consider the first definition, because it is

more appropriate for many applications that only care about the size of each individual

bucket (not the position of the boundaries).

7.2 BAr Splitting Histogram (BASH)

In this section, we describe our BAr Splitting Histogram (BASH) algorithm which com-

putes a size-based expected ε-approximate equi-depth histogram. For the rest of the

140

section, W denotes the number of items in the current window. In other words, W is

the size of the most current window, whether it is physical or logical. We should also

mention that, we never assume that W is a fixed value as in physical windows. This im-

plies that our approach works for both types of sliding windows. As already mentioned,

B is the number of buckets in the histogram under construction. The pseudo-code for

BASH is given in Algorithm 2, which is comprised of the following phases:

1. In the first phase, BASH initializes the structure, which may differ depending

on whether the minimum and maximum values of the data stream is known or not.

However, the general idea is to split the interval into at most Sm = B × p partitions

(Bars), and assign an EH structure to each of the intervals (p > 1 is an expansion

factor helping to provide accuracy guarantees for the algorithm, which will be discussed

further in Section 7.4).

2. The next phase seeks to keep the size of each bar moderate. To achieve this,

BASH splits bars with sizes greater than a threshold calledmaxSize. Note thatmaxSize

is proportional to current window size W , so it is not a constant value. Next section

discusses this threshold with more details. Since the number of bars should not exceed

Sm, BASH may need to merge some adjacent bars in order to make more room for the

split operation.

3. Using the boundaries of the bars computed in the previous two phases, the third

phase estimates the boundaries for the final buckets. This phase could be run each time

the window slides or whenever the user needs to see the current results. To implement

this phase, one could use a dynamic programming approach to find the optimum so-

lution, but unfortunately this is not affordable under the time constraint in streaming

environments, so we have to employ a simpler algorithm.

We will next describe these three phases in greater detail.

141

Algorithm 2 BASH()
BASH () {

initialize();
while (true) {
next = next item in the data stream;
find appropriate bar bar for next;
insert next into bar.EH;
maxSize = dmaxCoef ×W/Sme;
if (bar.count > maxSize)
splitBar(bar);

remove expired boxes from all EHs;
if (window slides)

output computeBoundaries();
}

}

7.3 Bars Initialization

In many cases, the minimum and maximum possible values for the tuples in the stream

are known or can be estimated. To initialize the structure for such cases, the initialize()

function in Algorithm 2 partitions the interval between the minimum and the maximum

into Sm = B × p (p > 1) equal segments, that we call bars; an empty EH sketch is

created for each segment. As it will be shown later, the value of our expansion factor

does not need to be much larger than one. In practice, our experiments show that it is

sufficient to set p value less than 10.

For those cases where there is no prior knowledge of the minimum and maximum

values, initialize() starts with a single bar with an empty EH. Once the first input, say

next, comes in, the method sets the interval for this bar to [next, next], and increments

its EH by one. The algorithm keeps splitting the bars and expanding the interval of the

first and last bars as more data are received from the stream. In this way, we can also

preserve the minimum and maximum values of the tuples at each point in time.

The other critical step in Algorithm 2 is the split operation splitBar(). This opera-

tion is triggered when the size of a bar is larger thanmaxSize = dmaxCoef×W/Sme,

142

where maxCoef is a constant factor. Obviously, maxCoef should be greater than 1

since the ideal size of each bar is W/Sm and we need the maxSize to be larger than

W/Sm. On the other hand, after splitting a bar into two bars, the size of each bar should

be less than or equal to the ideal size of bars. This implies that maxCoef ≤ 2. This

value is empirically determined to be approximately 1.7. Smaller values usually cause

more splits and affects the performance, while larger values affect the accuracy since

larger bars are more likely to be generated. Observe that as the window size changes,

maxSize also changes dynamically. This in turn implies that BASH starts splitting

bars very early, when the window is empty and first starts to grow, because at that point

maxSize is also quite small. Starting the process of splitting the bars early is crucial to

assure that accurate results are obtained from early on in the execution of the algorithm.

This dynamicity also helps BASH to easily adapt to the changes in window size W for

logical (i.e., time-based) windows.

Example 1: Assume that we want to compute a 3-Bucket histogram (p = 2, k = 2,

andW = 100) and the data stream starts with 10, 123, 15, 98, Thus, the initialization

phase starts with a single bar B1 = (1, [10, 10]), which means the bar size and its inter-

val are respectively 1 and [10, 10]. Once second data item, 123, enters, BASH inserts it

into B1, so B1 = (2, [10, 123]). However, at this point B1’s size is larger than maxSize

(d1.7 × 2/6e) and it should be split, so we will have two bars B1 = (1, [10, 66]) and

B2 = (1, [66, 123]). Next data item, 15, goes to B1, so B1 = (2, [10, 66]). Again,

B1’s size is larger than maxSize (d1.7 × 3/6e), so BASH splits it and now we have

three bars: B1 = (1, [10, 38]), B2 = (1, [38, 66]) and B3 = (1, [66, 123]). By repeating

this approach for each incoming input, we obtain a sequence of non-overlapping bars

covering the entire interval between the current minimum and maximum values in the

window.

143

7.3.1 Merging and Splitting Operation

As already mentioned, for each new incoming tuple, the algorithm finds the correspond-

ing bar and increments the EH sketch associated with that bar as, explained in Chapter

6. However, the most important part of the algorithm is to keep the number of tuples

in each bar below maxSize, allowing for a more accurate estimate of the final buckets.

In order to do so, every time the size of a bar gets larger than maxSize, BASH splits

it into two smaller bars. However, we might have to merge two other bars in order to

keep the total number of bars less than Sm. This is necessary to control the memory

usage of the algorithm. Due to the structure of the algorithms, it is easier to start with

the merging method.

Merging

In order to merge the EH sketches of the pair of selected bars, the EH with the

smaller number of boxes is set to blocked. BASH stops incrementing blocked bars,

but continues removing expired boxes from them. In addition, the interval of the other

bar in the pair is merged with the interval of the blocked bar, and all the new tuples

for this merged interval are inserted into this bar. Algorithm 3 describes this in greater

detail. The details on how the bars are chosen for merging will be discussed later in

this section.

When running Algorithm 3, every bar may have one or more blocked bars attached

to it. BASH keeps checking that the size of the actual bar is always bigger than those

of its blocked bars, and whenever this is no longer the case, BASH switches the actual

bar with the blocked bar of larger size. Although this case is rare, it can occur when the

boxes of the actual bar expire and the bar length decreases, while the blocked EH has

not been changed.

Also, observe that every bar might have more than one blocked bar associated with

it. Consider the case where we have to merge two adjacent bars which already have an

associated blocked bar. To merge these two, we follow the same general approach: the

144

longest EH is picked and all other bars (blocked or not) are considered as the blocked

bars of the selected (actual) bar. In the next section, we will show that the expected

number of such blocked bars is Sm.

Algorithm 3 mergeBars()
if (! findBarsToMerge(Xl, Xr)) return false;
Initialize new bar X;
if (EHXl

.BoxNo ≥ EHXr .BoxNo){
EHX = EHXr ;
Add EHXl

to the blocked bars list of EHX ;
} else {
EHX = EHXl

;
Add EHXr to the blocked bars list of EHX ;
}
Add the blocked bars of both EHXl

and EHXr to the blocked bars list of EHX ;
X .start = Xl.start;
X .end = Xr.end;
Remove Xr and Xl from the bars list;
Add bars X and to the bars list;
return true;

Splitting

When the size of a bar, say X , exceeds the maximum threshold maxSize as shown

in Algorithm 2, we split it into two smaller bars according to Algorithm 4. Before the

split operation takes place, we make sure that the number of bars is less than Sm. If this

is not the case, as already explained, we would try to merge two other small adjacent

bars. After X is determined to be appropriate for splitting, we divide the interval being

covered by X into a pair of intervals and assign a new EH sketch to each of them. Let

us call these new bars Xl and Xr. X must be split in such a way that the size (count) of

Xl and Xr remain equal. To this end, the algorithm first tries to distribute the blocked

bars ofX , denoted asBBX , into the blocked bars of each of the new bars. The splitting

algorithms tries to do this distribution as evenly as possible; however, the size (count)

of bars Xl and Xr may not be equal after running this step. Thus, BASH splits the

145

actual bar of X (EHX) accordingly to compensate for this difference. It is easy to

show that it is always possible to compensate for this difference using an appropriate

split on EHX , since the size of the actual bar is guaranteed to be greater than the size

of each its blocked bars.

To split the original EH sketch, EHX , into a pair of sketches, BASH first computes

the split ratio denoted as Ratio in Algorithm 4. Ratio simply indicates that to compen-

sate for the difference between the size of the two new bars, the aggregate size of boxes

going from EHX to EHXr after splitting should be Ratio times the size of EHX . In

order to have such a split ratio, BASH puts half ofEHX boxes with size one intoEHXl
,

and the other half into EHXr . Then, it replaces each of the remaining boxes in EHX

with two boxes that are half the size of the original box. Finally, based on the current

ratio of the sizes, BASH decides whether to put each copy to EHXr or EHXl
. In other

words, if the current ratio of the size of EHXr to the aggregate size of EHXr and EHXl

is smaller than Ratio the copy will go to EHXr otherwise it will go to EHXl
.

Example 2: Let us get back to our running example. Assume we have the fol-

lowing six bars at some point: B1=(21, [1, 43]), B2=(14, [43, 59]), B3 = (10, [59, 113]),

B4=(9, [113, 120]), B5 =(29, [120, 216]), and B6 = (15, [216, 233]), and the next input

is 178. BASH inserts this input into B5, and now B5’s size is 30 which is larger than

maxSize=d1.7×100/6e=29. Thus,B5 should be split. However, since we already have

six (p × B) bars, we need to find two candidates for merging before we can split B5.

As the bars’ size offers B3 and B4 are the best candidates, since after merging them

the aggregate size is still smaller than maxSize. Therefore, after this phase is done

the following bars would be in the system (note that for simplicity, we assumed that

nothing expires in this phase): B1=(21, [1, 43]), B2=(14, [43, 59]), B3=(19, [59, 120]),

B4=(15, [120, 168]), B5= (15, [168, 216]), and B6=(15, [216, 233]).

Which Bars to Merge

To select two bars for merging, we first look for any two empty adjacent bars. If

there is no such pair, we look for an empty bar and merge it with the smaller of its

146

Algorithm 4 splitBars(X)
if (curBarNo == Sm && !mergeBars()) return;
Initialize new bars Xl and Xr;
l = 0;
//distributing blocked bars of X between the new bars
BBSize = Aggregate Size of the blocked bars;
for each (blocked bar bar in BBX) {

if (l + bar.size ¡ BBSize/2) {
l += bar.size;
Add bar to BBXl

;
} else

Add bar to BBXr ;
}
EHXl

.start = EHX .start;
EHXl

.end = (EHX .start + EHX .end)/2;
EHXr .start = (EHX .start + EHX .end)/2;
EHXr .end = EHX .end;
Ratio = ((X .size/2)-l)/(X .size - BBSize);
foreach (box box in EHX) {

if (box.size == 1)
Alternatively add a copy of box to EHXl

or EHXr ;
else {
box.size = box.size/2;
for (2 times)

if (EHXr .size /(EHXr .size+EHXl
.size) ¡ Ratio)

Add a copy of box to EHXr ;
else

Add a copy of box to EHXl
;

}
}
Remove X from the bars list;
Add bars Xl and Xr to the bars list;

147

Figure 7.1: Merging two EH sketches EH1 and EH2. (k=2)

two neighbors. When there is no empty bar, then we find the two adjacent bars that

have the minimum aggregate size. If this aggregate size is less than maxSize (which

is usually the case), we select them for merging. Otherwise, we do not perform any

merge operations until some boxes expire, since we do not want to create bars with size

greater than maxSize. Although bars may be initially empty or become empty due to

the expiration of their boxes, the case in which the bars are not is obviously the most

common one.

An Alternative Merging Approach

Although the aforementioned approach guarantees the approximation ratio, it is us-

ing blocked bars which may increase the memory requirement and as a result influence

performance. As an alternative approach, one can use the following method, wherein

the idea is to merge the boxes of the two bars, and make a new EH. The former tech-

nique is called BASH-BL, since it needs to deal with BLocked bars, and this alternative

approach is referred to as BASH-AL.

To merge two EH sketches, we start by selecting boxes with size one from both EH

sketches, and mingle them into a list sorted by the start time of their intervals. If the

number of such boxes is more than k/2 + 2 (k = 1/δ), we keep combining the oldest

boxes in this list until the number of boxes with size one is smaller than k/2 + 2. The

148

same steps would be followed for boxes with size two. We compile all boxes of size

two, sort them based on their start times, and if the number of these boxes is more than

k/2 + 1, we combine the oldest ones until the number of such boxes is smaller than

or equal to k/2 + 1. Note that while merging boxes with size two, we may be using

some boxes from the first EH , some from the second EH , and some boxes generated

from combining boxes in the previous iterations. This approach is then repeated for

boxes with larger size (4, 8, etc.). Figure 7.1 illustrates an example of merging two EH

sketches where k = 2 using this alternative method.

Although, we do not have any blocked bars, the same split approach, mentioned

earlier, can be used for this alternative merging technique. This time, the splitting

operation in Algorithm 4 splits the only existing EH into two EHs of equal size.

7.3.2 Computing Final Buckets

So far, we showed how the intervals can be partitioned into Sm parts in a way that each

part contains no more than maxSize items. The last phase is to report the final buckets

or boundaries of the buckets. As already noted, a dynamic programming approach

cannot be used to see which bars should go into each bucket. This is due to the quadratic

delay of the dynamic approach that makes it completely inapplicable. Instead, we use

a linear approach as shown in Algorithm 5.

First, this algorithm computes the total number of estimated tuples in the current

window by adding up the estimated number of tuples in each bar. Let us call it totalEst,

which is not necessarily equal to W 1. Therefore, the expected number of tuples in

each bucket should be idealBuckSize = totalEst/B. Thus, we start from the first

bar and keep summing the estimated number of items in each bar until the sum ex-

ceeds idealBuckSize. At this point, we report the appropriate boundary for the current

bucket as shown in Algorithm 5 and continue with the next bucket.

1Note that the expected value of totalEst is W, but at each point in time these two may have different
values.

149

Algorithm 5 computeBoundaries()
b = −1; //An index over bars list
count = 0;
idealBuckSize = totalEst/B;
for (int i = 0; i < B; i++) {

while (count ≤ idealBuckSize) {
b ++;
count += bars[b].count;

}
surplus = count− idealBuckSize;
boundaries[i] = bars[b].start+
bars[b].length ∗ (1−surplus/bars[b].count)

count = surplus;
}
return boundaries;

7.4 Formal Analysis

In this section, we provide the theoretical proof of the approximation ratio, time com-

plexity, and space usage of the BASH algorithm. All the proofs are provided for the

version of BASH which uses blocking to merge the bars (BASH-BL). Similar proofs

can be provided for the other version as well.

7.4.1 Approximation Analysis

First, we start by proving that the splitting operation does not change the expected error

of the estimations for the number of tuples in each new bar. Assume bar X is going to

be split. Let the actual number of items in X be NX , while the sketch has estimated

this number to be nX . Because of the EH sketch approximation ratio, we know:

(1− δ)NX ≤ nX ≤ (1 + δ)NX (7.1)

After splitting X into two smaller bars, say Xl and Xr, our estimation for each of

these new bars is nX/2, because of the way the split operation works. Let the actual

150

number of items in Xl be kl. The expected error for this new bar (Xl) is computed as

the average error over all possible values for kl. Let P{kl = k} be the probability that

the size of bar Xl is k (0 ≤ k ≤ NX). It is then easy to see that:

P{kl = k} =
(
NX

k

)
(1/2)NX (7.2)

Without loss of generality, assume nx ≤ NX and NX is an even number. Thus:

E{err(Xl)} =

NX∑
k=0

|nX
2
− k|P{kl = k}

=

nX/2∑
k=0

(
nX
2
− k)P{kl = k}+

NX∑
k=nX/2+1

(k − nX
2

)P{kl = k}

= 2

nX/2∑
k=0

(
nX
2
− k)P{kl = k}+

NX∑
k=0

(k − nX
2

)P{kl = k}

= 2

NX/2∑
k=0

(
nX
2
− k)P{kl = k}+

NX

2
− nX

2
(3)

Now, we show that the first part of the last equation is negligible with respect to

NX/2− nX/2.

151

nX/2∑
k=0

(
nX
2
− k)P{kl = k} ≤

nX/2∑
k=0

(
NX

2
− k)P{kl = k}

≤
NX/2∑
k=0

(
NX

2
− k)P{kl = k}

=
NX

2

NX/2∑
k=0

P{kl = k} −
NX/2∑
k=0

kP{kl = k}

=
NX

2

1

2
(1 + P{kl =

NX

2
})−

NX/2∑
k=1

NX

2
P ′{kl = k − 1}

=
NX

4
(1 + P{kl =

NX

2
})− NX

2

NX/2−1∑
k=0

P ′{kl = k}

=
NX

4
(1 + P{kl =

NX

2
})− NX

2

1

2

=
NX

4

(
NX

NX/2

)
(
1

2
)NX ∼ 1

4

√
NX

π
(4)

The last part is because of the direct application of Sterling’s formula and P ′{kl =

k} is the probability of having k items in the left bar when you split a bar with size

NX−1. Combining inequality (4) with equation (3), and using inequality (7.1), we can

conclude that:

E{err(Xl)} =
NX

2
− nX

2
+

2

4

√
NX

π

≤ δ
NX

2
+

1

2

√
NX

π

≤ (δ +
1√
πNX

)
NX

2
(5)

Note that the second part of this error shows that no matter how accurate the esti-

mation of the size of bar X is, when we split it, we will add 1/
√
πNX error rate on

average. Fortunately in practice, this increase in error is negligible since NX is very

152

large. Moreover, later we show that the number of split operations is bounded such that

at the next split on the same bar, this extra error will be vanished due to the expiration of

old and inaccurate boxes. Thus in practice, the expected δ-approximation still holds for

this new bar. This also holds for E{err(Xr)} symmetrically. Thus, we can state that

the expected error does not change by splitting a bar. Moreover, the merge operation

does not change this error, since the EH sketch of the merged bars does not change at

all. These two facts lead us to the following lemma:

Lemma 1 At any moment in time, our sketch contains an expected δ-approximation of

the number of tuples in each bar. Also, these estimations are not greater thanmaxSize.

Theorem 1 For any given 0 < ε < 1, algorithm computeBoundaries() provides a

size-based expected ε-approximate equi-depth histogram for sliding windows on data

streams.

Proof: We need to show that the estimated number of tuples in each bucket is

bounded by εW/B on average. Remember that, on average every bucket consists of

Sm/B = p bars. According to Lemma 1, every bar also has an expected δ-approximate

number of tuples in it. On the other hand, the first and last bars should be treated

differently, because we may only consider a fraction of them in the bucket. Thus, in

total, we would have δ error for the size estimation of the bars and 2×1/p for the bars at

the two ends of the bucket. The latter is because the entire counted number from those

two bars may be on the wrong side of the boundaries we have selected. This proves that

the expected total error is bounded by δ+2/p. Calling this bound ε, one can say that by

setting δ = ε/2 (k = 2/ε) and p = 4/ε, we obtain a size-based expected ε-approximate

equi-depth histogram. �

The proof, we provided here shows that the expected approximation error is bounded,

which is enough for our purpose even though better bounds may hold in theory.

153

7.4.2 Space Complexity Analysis

To analyze the space usage of our approach, we first prove the following lemma show-

ing that on average, the total number of blocked bars is limited.

Lemma 2 At any moment in time, the BASH algorithm on average generates O(Sm)

number of blocked bars.

Proof: The algorithm only performs a merge operation when it has to split a bar and

there is no room left for a new bar. Thus, the number of merge operations is less than

the number of split operations. Moreover, for each split operation on a bar, maxSize/2

tuples must have been inserted into the bar since the last split on the bar. This means

that the average number of splits and consequently the average number of merges is

2 ×W/maxSize. By selecting maxSize to be O(W/Sm), e.g., maxCoef ×W/Sm

which is less than twice the ideal size for each bar, we can conclude that the average

number of split operation and as a result the average number of merge operations in

each window is O(Sm).

To show that the average number of blocked bars in the current window is O(Sm),

first consider that there is no switch between any actual bar and one of its larger blocked

bars. For this case, every blocked bar stays in the system, until the whole window

expires. This is because when a bar is blocked, it does not get incremented anymore

and after the window slides for W tuples, all its boxes will be expired. This basically

means the average number of blocked bars is the same as the average number of splits.

Now, consider the case that we need to switch an actual bar with one of its blocked

bars which has a larger size. We show that on average the number of such switches

are constant, thus the average number of blocked bars is still O(Sm). Let q be the

probability of switching an actual bar with one of its blocked bars at any time between

two consecutive split operations over that actual bar. Also, observe that the size of

blocked bars are always decreasing, and on average, the rate of expiring from both

types of bars are the same. Thus, blocked bars sizes are decreasing at a faster rate than

154

those of actual bars, since we may insert new items into the actual bars. This basically

means q < 1/2. Keeping this in mind, we also know that in the mentioned period, the

probability of having one switch is q, the probability of having two switches is q2, etc.

Thus, the expected number of switches is Σiqi ≤ q/(1 − q)2, which in turn is smaller

than 2 for q < 1/2. This completes our proof. �

Based on the above lemma, we can now compute the average space used by BASH.

On the one hand, each EH sketch for counting X items in an sliding window with

δ-approximate (δ = ε/2) accuracy needs O(1
δ
log(δX)) or equivalently O(1

ε
log(εX))

of space. On the other hand, the total number of bars in the system is O(Sm) for the

worst case (Lemma 2). Thus the total memory used is O(Sm
1
ε
log(ε × maxSize)) or

O(B 1
ε2
log(ε2W/B)). This leads us to the following theorem:

Theorem 2 The BASH algorithm computes the set of B−1 boundaries of the expected

ε-approximate equi-depth histogram on a data stream usingO(B 1
ε2
log(ε2W/B)) space,

where W is the sliding window size.

Observe that this bound is computed for the worst case scenario. As previously

mentioned, we do not need to set k (1/δ)) and p to very high values in practice. Conse-

quently, BASH practically needs even less memory space than the existing approaches.

7.4.3 Time Complexity Analysis

We will compute the expected computational cost of BASH per tuple assuming that

k = 2: for larger k’s the algorithm is faster at the cost of using more memory space.

When the next data value, next, comes in, the cost of the various steps in Algorithm 2

can be estimated as follows:

• Finding the appropriate bar, curBar, for next to be inserted into takes log(Sm)

using a simple binary search.

• Incrementing the EH sketch of curBar needs one box-combining operation on

155

the average. To see why this is O(1), observe that at most half of the increments

cause two size-one boxes to get merged. From this half, half of them result in

combining two boxes of size 2, and so on and so forth. Therefore, in total, for

2i increments we need 2i−1 merges on boxes of size 1, 2i−2 of merges on box of

size 2, ..., and 1 merge for boxes of size 2i−1. Since this adds up to 2i − 1, each

increment requires an average (2i − 1)/2i ≈ 1 combining operations.

• The probability of needing a split operation is 1/Sm, and to split a bar we only

need to go through the box list of EH once; this takes O(log(maxSize)). There-

fore, the average cost of a split operation is O(log(maxSize)) /Sm, which is

practically a constant.

• The merge operation itself needs a constant amount of time, but to find the best

bars to merge, we need to go through the entire list of bars of length Sm. Multi-

plying this by the probability of needing to merge (1/Sm), we conclude that the

average cost for this operation is also constant.

• Computing the final boundaries requires visiting all bars (O(Sm)). Fortunately,

we do not need to report the results for each new incoming data value. Instead,

we can report the results each time the window slides (S): this reduces the com-

plexity to O(Sm/S).

• The naive implementation of the expiration phase checks the last box of each

EH (O(Sm)). This time can be reduced to O(log(Sm)) using a simple heap tree

structure. To keep the implementation simple, we perform the expiration phase

a constant number of times in each slide: this can lower the time complexity to

O(Sm/S).

Considering these computations, we can conclude that the total time complexity per

data item would be O(log(Sm) + Sm/S) = O(log(B × p) + (B × p)/S), where S is

the slide size. In practice, this time complexity would be very close to a constant time,

since S is usually much larger than Sm, and log(Sm) is usually very small.

156

7.5 Experimental Results

In order to evaluate the performance of the proposed algorithms, we have implemented

both versions of the BASH algorithm using the C++ programming language. The ver-

sion of BASH which blocks the bars in the merge operation is referred to as BASH-BL,

and the alternative approach which mixes the boxes of the EHs into a single EH at the

merge time is called BASH-AL. In addition to BASH, we have also implemented the

AM [AM04] algorithm in the exact same environment. To be able to compare the re-

sulting histograms from each of the mentioned algorithms, we used a simple approach

which computes the exact boundaries of the equi-depth histograms. It is worthy to note

that for some cases this approach needs several hours to compute the exact histograms.

For all the experiments shown in this section, we have fixed the slide size at 100

tuples. To Make the error diagrams smoother, the average error for every 20000 tuples

is shown at each point. No prior knowledge of the minimum and maximum values of

the incoming data is considered. maxSize and B are also set to 1.7 ×W/Sm and 20

respectively. Similar results hold for different values of B, which are eliminated due to

space limitations.2

Most of the comparisons included in this part are performed with ε = 0.01 for AM

algorithms. The experimental results show that to obtain this error rate for window

sizes larger than 100k, it is almost always sufficient to set δ to 0.1 and p to 7. Moreover,

if one wants to compete with AM with an error rate of 0.025, setting δ to 1/8 and p to 4

would always provide more accurate results in BASH than AM. All the experiments are

run on a 64bit, 2.27 GHz machine running CentOS with 4GB of main memory (RAM)

and 8MB of cache.

157

Table 7.1: Data sets used for the experimental results
Name Distribution Size Shifts Parameters
DS1 Uniform 1m 0 min0,max10k
DS2 Normal 1m 0 µ5k, σ2k
DS3 Normal 1m 0 µ5k, σ50
DS4 Normal 1m 0 µ5k, σ20
DS5 Normal 1m 0 µ5k, σ500
DS6 Zipfian 1m 0 α1.1
DS7 Zipfian 1m 0 α1.5
DS8 Exponential 1m 0 λ10−2

DS9 Exponential 1m 0 λ10−3

DS10 Exponential 1m 0 λ10−4

DS11 Normal 1m 100 µ10k-1k, σ50
DS12 Normal 1m 100 µ15k-5k, σ200
DS13 Normal 1m 1k µ15k-5k, σ200
DS14 Normal 10m 1k µ15k-5k, σ500
DS15 Normal 10m 1k µ15k-5k, σ50
DS16 Mix 10m 100 µ5k, σ200, λ10−3

DS17 Mix 10m 1k µ5k, σ200, λ10−3

DS18 Poker-Hands 10m 0 -
DS19 S&P500 165k - -
DS20 Expanded 1.03m - -

S&P500

Figure 7.2: a) Execution time for all data sets (W = 100k), and b) The effect of
changing window size from 1k to 1m on the execution time on DS13. (k = 10, p = 7,
and ε = 0.01.)

158

7.5.1 Data Sets

The data sets used for evaluating the results can be categorized into two main parts:

synthesized data sets and real-world data sets. Table 7.1 summarizes some information

about these data sets.

Synthesized data sets: We have used a number of different synthesized data sets in

our experiments:

• Uniform, Normal, Zipfian [Zip49], and Exponential distributions with different

settings for their parameters and without any concept shift (DS1 through DS10).

• Normal distributions with many shifts on the value of the mean parameter. (DS11

to DS15)

• Random shifts on random distributions (DS16 and DS17): Just as in the previ-

ous data sets, the distribution of data in these data sets encounters several shifts.

However, this time at each shift, we randomly select between normal and expo-

nential distributions. If the choice is the normal distribution, with probability 0.5,

we increase the mean by 50, otherwise we decrease it by 50. In the same way, we

change the standard deviation by±5. On the other hand, if the exponential distri-

bution is selected at the current shift, the rate parameter (λ) is randomly updated

by ±10%. The initial values of the parameters are shown in Table 7.1.

Real-world data set: One of the most important applications of the histograms is

for those cases in which the distribution of the data is unknown or can not be simply

modeled. To evaluate the performance of BASH algorithms over this kind of data, we

have considered the following real-world data sets:

• Poker-hands (DS18)[web10b]: Each row in this data set contains 10 values rang-

ing from 1 to 12. For this data set, we have computed the histogram over the

multiplication of all these values in each row. Note that this data set contains no

2For more results, see our more extensive report in [MZ11b].

159

concept shift, since the probability of each outcome at each point is computable.

• S&P500 (DS19)[web10a]: This data set contains minute-by-minute prices of

the S&P500 index starting from January 29, 2010 and ending on August 13,

2010. Each record contains the highest, lowest and last prices of the index in the

corresponding minute.

• Expanded S&P500 (DS20): For each row of the previous data set, we generated

17 more values with a normal distribution such that 95% of them are between the

lowest and highest prices of the corresponding row. Combined with the existing

three prices in each row, this makes a data set with more than 1.03 million records.

7.5.2 BASH Timing Results

For each of the data sets introduced in Table 7.1, the running time of the three algo-

rithms with ε = 0.01 and W = 100k is shown in part a of Figure 7.2. Similar results

are obtained for different window sizes and ε which is not shown in this paper due

to space limitations. For further results, readers are referred to our extensive report

[MZ11b].

Based on the timing results in part a of Figure 7.2, we can state that both BASH-

BL and BASH-AL are at least four times faster than AM in almost all the data sets,

while also providing more accurate histograms which are discussed later in this section.

This improvement on execution time makes BASH much more applicable than AM.

particularly for larger windows (or equivalently faster data streams.) As an example,

consider DS16 in which AM and BASH-AL (BASH-BL) respectively spend 607.56

and 111.79 (124.61) seconds to compute the results. Another interpretation of these

timings would be that AM and BASH-AL (BASH-BL) can respectively support 16549

and 89453 (80250) data items per second with a window size of 100k. Therefore,

AM may not be practical for many data streaming systems, while BASH is performing

properly. In the next few paragraphs, we show that the problem of high delay of the

AM approach gets even worse with larger window sizes.

160

Figure 7.3: Space usage of the algorithms for a) all the data sets (W = 100k), and for
b) different window sizes on DS13. (k = 10, p = 7, and ε = 0.01.)

As already mentioned, AM runs several copies of the GK algorithm and employs a

sorting algorithm over the output of these copies to generate the final quantiles. Thus,

the timing performance of AM is hugely dependent on its sorting algorithm. In our

implementation of AM, we have used quick sort, since it is one of the fastest sorting

algorithms in practice. However, we have also included the running time of AM without

considering the time it spends on sorting (bars titled as ”AM No Sort” in part a of Figure

7.2). Interestingly, even after eliminating the sorting time from AM, both BASH-BL

and BASH-AL are still faster. Another important factor affecting the performance of

the mentioned algorithms is the window size Wt. Part b of Figure 7.2 sketches how

the window size affects the response time. These results are taken over data set DS13.

The delay time for all the three approaches increases with respect to the window size;

however, the growth rate of AM is greater than the other two. It is worthy to mention

that putting the sorting time aside, the rest of the AM algorithm still needs more time

than BASH algorithms for all window sizes.

7.5.3 BASH Space Usage Results

The diagram in part a of Figure 7.3 compares the space usage of the three algorithms

for a window size of W = 100k. In this diagram, for each of the data sets, we have

161

provided the size of the main structures in the algorithms. For all the cases (except

DS19), both BASH-BL and BASH-AL need at least 20% less space than AM. However,

BASH-BL uses slightly more space than BASH-AL. The reason that BASH algorithms

need more memory than AM for DS19 is the small size of this data set (165K) with

respect to the window size (100K). This is due to the fact that the BASH algorithms

are in their initialization phase, during which reaching convergence might use more

memory than other algorithms. It is also worth mentioning that the smaller the variance

of data values, the less the memory usage for both BASH algorithms.

In part b of Figure 7.3, the diagram illustrates the space usage of the three algo-

rithms for different window sizes. Both BASH algorithms use almost the same amount

of memory in each window size, and that amount increases logarithmically with respect

to the window size. On the other hand, memory usage of AM is almost constant for

different window sizes, and it even decreases for very large window sizes. Therefore,

for the window sizes larger than 256K, AM starts performing better than BASH algo-

rithms in terms of space. This suggests that there are situations where AM performs

better than BASHs with respect to memory usage. However, we also need to keep in

mind the following two important points: First, as shown in the two diagrams of Figure

7.4, the histograms generated by either of the BASH algorithms over windows with size

larger than 256K are at least three times more accurate than the ones computed by AM.

Second, for all the cases that the memory usage of BASH algorithms is worse than AM,

the running time of AM is at least 8 times worse than those of BASHs. Nevertheless,

for larger window sizes, we can use smaller values for parameters k and p, and reduce

the memory usage while still providing faster and more accurate histograms than AM.

The current setting of k and p values is best suited for window sizes between 32K to

256K in terms of both accuracy and space requirements.

162

7.5.4 BASH Error Results

To evaluate the accuracy of each approach, we have used three type of errors which

have been already introduced in Section 7.1: The boundary error, bucket size error (or

simply size error), and rank error. For each type of errors the absolute difference of the

reported value by each algorithm with the ideal value is used to avoid domination of

the final error values by the large differences. The average error for each of these three

error types over time are shown in Figure 7.4. Part a, b, and c of the figure respectively

compare the boundary, size, and rank errors of the three algorithms. As you can see,

both BASH-BL and BASH-AL algorithms outperforms AM in terms of accuracy for

most of the data sets. It is also worthy to mention that although not always true, BASH-

BL is slightly more accurate than BASH-AL.

The aforementioned error results are for the case in which window size is 100k.

However, this error results differ for different window sizes. To see this, we compute

the boundary, size and rank errors of the histograms generated by each of the algorithms

over data set DS13 (Figure 7.5). All three algorithms perform almost equally in terms

of errors up to the window size of 16k. However, from window size of 32k, the error

rates of BASH algorithms start to decrease, while for the AM algorithm, this rate does

not change, or it even increases. As a result, in larger window sizes, both BASH-BL

and BASH-AL hugely outperform AM algorithms with respect to the three error types.

To have a better understanding of the evolution of accuracy for the histograms over

time, we also compare the boundary error results for AM, BASH-BL, and BASH-AL

for some of the data sets. We should mention that the errors of different diagrams are

not comparable with each others since they are in different scales:

Data Sets with No Concept Shifts: Figure 7.6 compares the boundary errors for

the three approaches (AM, BASH-BL, and BASH-AL) for uniform, normal, and expo-

nential distribution. The X axis shows the number of tuples that have come into the

system thus far, while the Y axis indicates the average boundary errors. Both BASH

163

Figure 7.4: a) Boundary error, b) size error, and c) rank error for all data sets. (k = 10,
p = 7, W = 100k, and ε = 0.01.)

algorithms perform nearly the same, and at all points in time the generated histograms

by the BASH algorithm are more accurate than the ones generated by the AM method.

Data Sets with Concept Shifts: Figure 7.7 illustrates the boundary errors of AM

and two versions of the BASH algorithm on three of the data sets with concept shifts.

The results mainly indicate that, not only are BASH-BL and BASH-AL on average

more accurate than AM, but they are also more steady. This is more apparent in part

a of Figure 7.7 that sketches the boundary error results for data set DS14 in which we

have a concept shift at every 10,000 data items. To see this fluctuation in the errors

computed for the AM method, all three diagrams in Figure 7.7 show the error of the

generated histograms from tuple 4000k to tuple 6000k. In all these three data sets, the

boundary error for the AM method fluctuates at each concept shift while BASH is more

stable.

Real-World Data Sets: The boundary errors for the three real-world data sets are

also computed for BASH-BL, BASH-AL, and AM algorithms (Figure 7.8). Similar to

most of the cases we have seen thus far, BASH algorithms are far more accurate than

AM for all the three data sets.

7.5.5 Histograms vs Sampling

As already mentioned, sampling is an easy technique to be combined with other ap-

proaches, since it just decreases the volume of data and the rest of computations re-

164

Figure 7.5: The effect of changing window size from 1k to 1m on the a) boundary error,
b) size error, and c) rank error for DS13. (k = 10, p = 7, and ε = 0.01.)

Figure 7.6: The boundary errors for data sets a) DS1, b) DS5, and c) DS8 from left to
right. (k = 10, p = 7, W = 100k, and ε = 0.01.)

Figure 7.7: The boundary errors for data sets a) DS14, b) DS16, and c) DS17 from left
to right. (k = 10, p = 7, W = 1m, and ε = 0.01.)

Figure 7.8: The boundary errors for data sets a) DS18, b) DS19, and c) DS20 from left
to right. Wt is set to 10k for DS19 and 100k for others. (k = 10, p = 7, and ε = 0.01.)

165

Figure 7.9: The effect of combining sampling and BASH with different sampling rates
on a) running time , b) memory usage, and c) size error from left to right. The results
are for data set DS17. (W = 100k, k = 10, and p = 7.)

mains unchanged. This way, the algorithms may be run faster using less memory with

the cost of degrading the results accuracy. To see the effect sampling over histograms

performance and accuracy, we picked one of our data sets (DS17) and computed the

histograms, using BASH-BL algorithm, over the sampled data with different rates as it

is shown in Figure 7.9. Note that to use sampling with rate smpRate ≤ 1 in BASH,

we gradually decrease the sample rate from 1 to smpRate through first sliding window.

This helps initiation phase to converge sooner.

As it is expected, sampling improves the performance of BASH algorithm. For ex-

ample sampling with rate 10% reduces time and memory usage of BASH by 42.2%

and 43.2% respectively. However, the accuracy results, in this case, are degraded

with higher rate (48.8%). This may indicate that sampling over BASH algorithm can

not reach a good tradeoff between efficiency and accuracy. Nevertheless, under strict

time/memory constraints sampling is still an acceptable option.

Another type of sampling that we discussed in this prospectus is biased sampling.

As Section 8.1.3, biased sampling rate µ should be greater than φ1/p where φ is the

histograms biased rate. For higher sampling rates, one should set µ = φ1/p and use flat

sampling. Since this particular biased sampling rate makes all the bars to have the same

size, BSBH will be identical to BASH and the above results should hold for this case.

Now, the remaining question is what is the best value for µ. To answer this question

we ran at the middle of running experiment to analyze the performance of BSBH with

166

different biased sampling rate.

7.5.6 Discussion

The experimental results for the performance of the algorithms on different window

sizes, shown in Figures 7.2.b, Figure 7.3.b, and Figure 7.5 reveal some interesting fea-

tures of the BASH algorithms. For all the cases, BASH-AL is slightly faster and more

efficient (in terms of memory use) than BASH-BL. However, for window sizes larger

than 32k BASH-BL typically produces more accurate histograms. The reason behind

this observation is that BASH-BL does not lose any accuracy while merging, due to

the use of blocked bars. On the other hand, the size of each bar (EH sketch) increases

with the increase in window size and, as a result, larger boxes may appear in each bar

for larger windows. In this case, merging technique in BASH-AL loses more accuracy

due to miss-ordering larger boxes. Thus, BASH-BL performs more accurately than

BASH-AL in larger windows; however, it needs more time and memory to maintain

the blocked bars.

On the other hand, the interpretation of the comparison results for space usage be-

tween BASH methods and AM may not be so clear cut. The memory usage of AM

is almost fixed (or even decreases) for different window sizes, while it logarithmically

increases in BASH algorithms. The better scaling of space usage of AM for larger

windows is mainly due to the difference in the main objectives of the two algorithms.

Observe that for larger windows, the allowed error bounds increase for both algorithms

since the errors are proportional to the window size. While AM uses this relaxation

on the error constraint to minimize memory usage, BASH seeks to maximize accuracy

and minimize the running time as well as keeping memory usage in a reasonable range.

This claim is apparent in Figures 7.2.b, Figure 7.3.b, and Figure 7.5, wherein for those

cases in which memory consumption of AM is more efficient than the BASH meth-

ods, the accuracy of the histograms generated by AM as well as its running time are

significantly worse than those of both BASH algorithms.

167

According to the timing results in Figure 7.2, both BASH-BL and BASH-AL are at

least four times faster than AM, while producing histograms that have almost the same

or even better accuracy. A more important concern is the scalability of the algorithms

with respect to running times. As part b of Figure 7.2 indicates, the execution time

for both BASH-BL and BASH-AL linearly increases with the window size, while this

increase for AM is much faster. This is mainly because BASH does not employ a

sorting technique as opposed to AM. Moreover, the results in part a of Figure 7.2 show

that the running times of BASH algorithms decreases for data sets with smaller standard

deviations (such as DS4, DS7, and DS11), while AM needs more time and memory for

these types of distributions.

168

CHAPTER 8

Biased Histograms on Data Streams

As already discussed in the previous section, histograms provide statistically accurate

and memory-efficient synopses for large data sets, and thus find many important uses in

database and data stream applications. Query optimization, approximate query answer-

ing, distribution fitting, parallel database partitioning, and data mining are only a few

examples of such applications. However, in most of these applications, the queries may

focus on some particular regions of the data distribution—typically regions located at

the extremes of data distributions. For instance, consider the daily precipitation across

the US in Figure 8.11. This data set has a very long tail where more than 99% of the val-

ues are less than 0.1 inch/day. As shown in the figure, an equi-depth histogram (dashed

line) does not provide much information on the tail of the distribution since almost all

the data items at this area (tail) are assigned to one bar. The same type of problem exists

for equi-width histograms.

The biased-histogram synopsis proposed in this section provides a much better al-

ternative for such distributions. For instance, in Figure 8.1, we see that the biased his-

togram supports much more accurate estimations for the tail of the distribution while

preserving a good estimation for the head of the distribution (shown in the box in the

middle of Figure 8.1). This is achieved by letting the size of the histogram bars de-

crease exponentially toward the biased region. In particular, in Figure 8.1, the size of

each bar is 90% of the size of the bar to its immediate left—thus, we will say that our

histogram has a bias factor of 0.9 or 90%.

1Data set is taken from http://www.ncdc.noaa.gov.

169

Figure 8.1: Equi-depth and biased histograms for annual precipitation in the US, with
close-up magnification for the head of the distribution. (Each histogram has 100 bars.)

As another example, consider the distribution of the number of incoming (outgoing)

URLs (links) in each page of the World Wide Web, which is known to be Zipfian. For

this distribution, one may need reliable estimates of the average in-degree for the nodes

that, say, rank in the interval 99.90% — 99.99% and for those in the interval 99.0% —

99.9%. Indeed this represents a crucial piece of information when we need to optimize

the splitting/distributing of large data sets over different servers with roughly balanced

load. Round Trip Times (RTTs) of the TCP packets provides another good example.

Since RTT delays can stretch over long periods in various situations, the distribution

of RTTs is very skewed at its tail. Therefore, performance monitoring systems need

to watch the RTT distribution with a biased interest over the tail of the distribution to

detect suspicious behaviors.

The histogram problem is akin to that of quantiles [GK01a], and there has also

been some recent work on defining biased quantiles in data streams [CKM05, CKM06,

ZLX06, ZW07a]. Quantiles are used to extract the item that occupies a given position

in a sorted list of items in a data set or in a window in a data stream. Generally, a

head-biased (tail-biased) quantile consists of the sequence of φ, φ2, φ3 , ... (1 − φ,

(1 − φ)2, (1 − φ)3, ...) quantiles; for a given data set (or data stream) S with size

N , the α-quantile (0 ≤ α ≤ 1) is defined as the value of the item at the position

170

dαNe in the sorted list of the items in S. Computing exact quantiles is a challenging

problem even for small data sets [MP80], and thus incompatible with most data stream

applications which require online response with limited memory and computational

resources. As our experiments show, these problems carry over to biased quantiles.

Moreover, although windows are crucial in most data stream applications, previous

works on biased quantiles have always assumed that the quantiles represent the whole

history of the data streams [CKM05, CKM06, ZLX06, ZW07a].

Therefore, we first define approximate biased histograms on data streams with slid-

ing windows, and then propose a new efficient algorithm called Bar-Splitting Biased

Histograms (BSBH) to computes approximate biased histograms over sliding windows

of fast data streams. To the authors’ knowledge, this is the first work on designing bi-

ased histograms over sliding windows of data streams. BSBH employs a similar struc-

ture as in our previous work on designing equi-depth histograms in [MZ11a]. BSBH

also utilizes a biased sampling technique to improve the performance in terms of both

CPU and memory usage. More specifically, this section makes the following contribu-

tions:

• We define the concept of Biased Histograms over sliding windows of data streams,

and present a new algorithm called Bar-Splitting Biased Histograms (BSBH) to

compute approximate biased histograms over fast data streams with sliding win-

dows. (Section 8.1)

• To be able to tune the memory and CPU usage of BSBH, we propose a new biased

sampling technique. Our experimental results indicate that biased sampling dou-

bles the accuracy of the results with respect to uniform sampling while spending

almost the same amount of memory and CPU. (Section 8.1.3)

• We prove that BSBH can guarantee expected ε-approximate biased histograms

for data sets with no concept shift. We also provide theoretical bounds on both

execution time and memory usage of our algorithm for this case in Section 8.2.

We use extensive experiments to evaluate the performance of BSBH and also com-

171

pare it with CKMS which is one of the best existing algorithms for generating biased

quantiles over the entire history of data streams [CKM06]. Our results (Section 8.3)

show that BSBH outperforms CKMS with respect to execution time, memory usage,

and accuracy. We have also evaluate BSBH for data streams with different rates of con-

cept shifts on their distribution, and the results show that BSBH provides acceptably

accurate results very quickly (mostly in couple of slides) after observing the concept

shifts.

8.1 Biased Histogram Computation

This section first reviews the definitions of quantiles and histograms and then intro-

duces the definition of biased histograms. The Bar-Splitting Biased Histogram (BSBH)

algorithm is then thoroughly explained.

8.1.1 Definitions

Cormode et. al. defined Biased quantiles [CKM05] as follows:

Definition 6 A Low-Biased Quantile with bias factor φ < 1 for a given sequence of

data items is the set of items with ranks dφiNe for i = 1, 2, ..., B=log1/φ(N) in the

ordered list of items, where N is the size of the data set.

One can similarly define the High-Biased Quantile as well. The above definition is

specifying B=log1/φ(N) boundaries, which also can be seen as a B-bucket histogram.

As stated in [MP80], one pass algorithms for computing the exact quantiles need to

store the entire data set which is too expensive in most data streaming computations.

Approximate biased quantile were thus defined in [CKM06] and [ZW07a] as follows:

Definition 7 An approximate Low-Biased Quantile with bias factor φ < 1 of a given

sequence of data items, say S, is the set of items {vi} ∈ S for i = 1, 2, ..., log1/φ(N),

where:

|rank(vi)− φiN | ≤ max{ε.φiN, εminN}

172

where rank(x) is the position of data item x in the ordered list of items, and ε and

εmin are two approximation factors. The reason for needing two approximation factors

is that the term ε.φiN becomes very small for quantiles that are near the biased point

(for larger i’s). Thus if the term εφiN is used, unreasonably high accuracy would be

required for quantiles near the biased point . To alleviate this problem, the alternate

approximation factor (εmin) is used instead. This essentially means that for the biased

regions a flat error curve is used.

Although the above definition is useful in many applications, it is not suitable for

designing biased histograms due to the following issues: First, the error is based on

the rank of the reported quantiles, while in biased histograms we seek to minimize

the error on the size of each bucket. Second, the definition imposes the restriction

of having exactly log1/φ(N) buckets or boundaries. However, many application may

need to set the number of buckets based on their internal settings2 which is usually set

independent of the stream size. Third, since flat error rate (εmin) is used for the areas

near biased points, it might not provide an accurate result at those areas. This also

makes the tuning of εmin a challenging issue. To address these issues, we next define

an approximate Low-Biased Histogram in which the goal is to keep the size of each

bucket in the histogram close enough to the ideal size:

Definition 8 An ε-approximate B-bucket Low-Biased Histogram (with bias factor φ <

1) of a given sequence of ordered data items, say S, is the set of B buckets {Bi : i =

0, 1, ..., B − 1} partitioning S with the following invariant:

|size(Bi)− αφφiW | ≤ εαφφ
iW

where: W is the window size, αφ = (1 − φ)/(1 − φB) is a constant factor to make

the buckets’ sizes add up to W , and size(Bi) is the number of items in bucket Bi. In

other words, the ideal goal of the above definition is to partition the ordered data set

2e.g. It could be set according to the number of available processing units.

173

into B buckets of sizes αφW , αφφW , αφφ2W , ..., and αφφB−1W . Note that with this

definition B is independent from the size of the stream and does not need to be exactly

log1/φ(W)—a desirable property since W is often unknown a priori. Approximate

High-Biased Histogram or Targeted Quantiles [CKM06] can be similarly defined3.

8.1.2 Bar-Splitting Biased Histogram (BSBH)

The BSBH algorithm computes approximate B-bucket biased histograms over sliding

windows of data streams. We assume the current size of the window at time t is Wt

without needing to make any assumption about the type of the window (physical or

logical.) As will be discussed later, BSBH maintains an estimation of Wt called West.

Unlike other approaches [CKM05, CKM06], BSBH does not need the prior knowledge

of U ’s size4. This section focuses on BSBH algorithm for generating low-biased his-

tograms without using any sampling. Later in Section 8.1.3, we show how the idea

of biased sampling can be added to BSBH in order to improve its time and memory

performance.

BSBH Core Algorithm: The main goal in BSBH is to partition the interval be-

tween current minimum and maximum in the sliding window into Sm = B×p intervals

bar0, bar1, ..., barSm−1, where p is an extension factor for improving the accuracy and

is determined analytically. The size of each bar is estimated using the EH structure dis-

cussed in Section 6.3.3. These bars will be later used to approximate the final (B − 1)

buckets’ boundaries.

The ideal goal of the BSBH structure is to keep the size of bari (i.e., |bari|) to ρ

times the size of bari+1 for i = 0, 1, ..., Sm − 2, where ρ = φ1/p. In other words, the

ideal case is when:

|bari| = ρ|bari+1| = αρρ
iWt

3 The notion of end-biased histogram used in [Ioa03] should not be confused with the above definition
of biased histograms, since their idea is to put high-frequency items in singleton buckets.

4Universe U is the range of acceptable data values.

174

for i = 0, 1, ..., Sm − 2, where αρ is a factor that makes the bars’ sizes add up to

Wt (i.e. αρ = (1 − ρ)/(1 − ρSm)). As for Wt, BSBH uses the aggregate size of all the

current bars which we will refer to as West. Due to properties of the EH structure, the

expected value of West would be Wt if no sampling is used, however at each point in

time these two may have different values. With such a setting, if the bars’ sizes are

ideal and no sampling is used, the aggregate size of bars barj for ip ≤ j < (i+1)p will

be αφφi+1W for i = 0, 1, ..., B − 1. These B buckets are actually what the definition

of biased histograms (Definition 8) was seeking.

Algorithm 6 shows how the BSBH structure, mentioned above, is initialized and

then maintained. We will next discuss how the structure is maintained once it is built,

and discuss how it is initialized later in this section.

Maintenance: For each incoming data item from the data stream (say next), BSBH

finds the appropriate bar, say bari, for next based on the current boundaries of the bars

(Line 20). This is done using a simple binary search. Then, the EH structure of bari is

incremented by one (Line 23). While doing this, BSBH updates the current minimum

and maximum values of the entire history of the data stream. At this point, if the bari’s

size is greater than a dynamically computed threshold (maxSizei), BSBH splits the bar

into two smaller bars (Lines 24 to 26).

While splitting bars, BSBH may need to merge two adjacent bars in order to keep

the total number of bars below Sm. It is important to stress on that BSBH only merges

two bars when a bar should be split and there is no room for a new bar. As opposed

to BASH in which maxSize is the same for all the bars at any given point in time, in

BSBH, maxSize is determined based on the bar’s index and its closeness to the biased

point. Note that, the idea is still similar to BASH; the size of bari should not be greater

than maxCoef > 1 of its ideal size. In other words:

maxSizei = maxCoef.αρ.ρ
i.West

175

Although larger maxCoef results in less splits, in practice we use maxCoef =

1.7 to reach higher accuracy as well as to accelerate the processes of stabilizing the

boundaries for the initialization phase and to better cope with concept shift. Notice

that having different thresholds for bars essentially allows smaller bars near the point

of interest.

After assuring that the bars’ sizes are in the acceptable range, if any of the boxes of

the existing EHs is expired, BSBH will remove it from the structure (Line 27). Finally,

after updating the structure for an incoming data item, we can compute the current

boundaries for the final buckets. This is normally done at every slide (Lines 28 and 29).

Next, we explain the main modules of the BSBH algorithm in more detail.

Initialization: The initialization phase plays a very important role in the BSBH

algorithm. This is mostly because at the beginning, the minimum and maximum values

of the data set are unknown. Thus, instead of starting with Sm bars BSBH starts with

one empty bar, and keeps adding new data items into that bar until its size reaches a

threshold (maxSize0). At this point, the bar is full and it will be split into two bars.

BSBH repeats this until Sm bars are created. After this stage for each split operation,

two consecutive bars should be merged. Note that maxSizei at all time is proportional

to the current window size Wt ' West; this essentially means that we allow more splits

during the initiation phase of the algorithm, since Wt is small at this phase. This makes

the initiation phase much faster. For instance due to our threshold-based mechanism,

the first split happens usually at the second or third insert.

Merge-Bar Operation: Let two adjacent bars, say XL and XR, are selected to be

merged into one bar called X . Later in this section, we discuss the details on how

the bars are chosen for merging. As depicted in Figure 8.2, BSBH first integrates the

intervals that XL and XR are covering. Next, for the EH sketches of bars XL and XR

called EHXL
and EHXR

respectively, BSBH set the smaller one to blocked, and the

bigger one to active. In other words, the new barX now has two associated EH sketches

176

Algorithm 6 BSBH()
1 : BSBH (φ, µ, B, p)
2 : {
3 : µ′ = 1; /* for gradually decreasing sample rate*/
4 : effectSmp []; /* initialized with 1’s */
5 : ρ = φ1/p;
6 : if (µ < ρ)

µ = ρ;
7 : initialize();
8 : cnt = 0;
9 : while (true)
10: {
11: next = next item in the data stream;
12: cnt ++;
13: //Updating the Sampling Rate
14: if (cnt ≤ X)
15: if (µ′ > µ)
16: µ′ = 1− ((1− µ)× (cnt−X))/X;
17: if (cnt ≤ 2X)
18: Compute effective sampling rate for each bar and

Update effectSmp array;
19: //Biased Sampling Phase
20: find appropriate bar bari for next;
21: if (!Biased-Sample(next, i, µ′))
22: continue; /* Skipping the item */
23: insert next into bari.EH;
24: maxSizei = αρ.maxCoef.ρi.West;
25: if (|bari| > maxSizei)
26: splitBar(bari, ρ);
27: remove expired boxes from all EHs;
28: if (window slides)
29: output computeBoundaries(B);
30: }
31: }

177

Figure 8.2: Merging two bars (XL and XR) into one bar (X). a) right before merge-bar
operation and b) right after merge-bar operation.

but only one of them is active. This means that the incoming tuple for the X’s interval

will be inserted into the active EH (EHXL
or EHX in our example in Figure 8.2). As

for the blocked EHs, BSBH stops incrementing them, but continues removing expired

boxes from them. Thus, blocked EHs are prevented from growing, and as a result they

will soon be disappeared from the structure and will no longer require memory. Also,

observe that every bar may contain more than one blocked EH. For instance, consider

the case where we have to merge two adjacent bars which already have an associated

blocked EH (e.g. merging bar X in part b of Figure 8.2 with one of its neighbors). To

merge these two, we follow the same general approach: the longest EH is set to the

active one and all other EHs are considered as the blocked EHs of the new bar.

At all times, BSBH makes sure that the size of the active EH for each bar is bigger

than those of the blocked EHs of the bar, and whenever this is no longer the case, BSBH

switches the active EH with the blocked EH of larger size. Although this case is rare,

it can occur when the boxes of the active EH expire more quickly than those of the

blocked EHs. In Section 8.2, we will prove that the expected number of such blocked

EHs is constant for large enough N ’s. Notice that since the internal structure of EHs is

untouched in this merging technique, the technique does not affect the accuracy of the

final results.

178

Split-Bar Operation: When the size of a bar, say X , exceeds its maximum thresh-

old (maxSizei, where i is the position of X in the list of current bars), we split it into

two smaller bars using Algorithm 7. Before the split operation takes place, we make

sure that the number of bars in the histogram is less than Sm. If this is not the case, as

previously explained, we should first merge two other adjacent bars.

Let bar X need to be split to two bars called XL and XR. We divide the interval

being covered by X into a pair of intervals (Lines 5 to 8). The goal is that |XR| =

ρ× |XL| after the split operation takes place. To this end, the algorithm first distributes

the blocked EHs ofX , denoted asBEHX , into the blocked EHs ofXL andXR (Lines 9

to 16). The splitting algorithm tries to do this in a way that preserves the size constraint

(|XR|/|XL| = ρ); however this is not always possible. That is after splitting blocked

EHs of X to XL and XR the ratio ρ′ = |XR|/|XL| may be different than the ideal ratio

(ρ). Thus, BSBH splits the active EH of X (EHX) to compensate for this difference

(ρ − ρ′) (Lines 17 to 29). It is easy to show that we can always achieve this goal by

using appropriate split on EHX , given that the size of the active EH is guaranteed to be

greater than the size of all the blocked EHs.

To split the original EH sketch, EHX , into a pair of sketches called EHXR
and

EHXL
, BSBH first computes the split ratio denoted as λ (Line 17 in Algorithm 7). λ

simply indicates that to compensate for the aforementioned difference (ρ− ρ′), the size

of EHXR
after splitting should be λ times the size of EHX (e.i. |EHXR

| = λ|EHX |).

In order to have such a split ratio, BSBH puts half of the EHX boxes with size one

into EHXL
, and the other half into EHXR

(Line 19 and 20). Then, it replaces each

of the remaining boxes in EHX with two boxes that are half the size of the original

box. Finally, based on the current ratio of the sizes, BSBH decides whether to put

each copy to EHXR
or EHXL

(Lines 23 to 27). In other words, if the current ratio of

|EHXR
|/|EHXR

+ EHXL
| is smaller than λ the copy will go to EHXR

, otherwise it

will go to EHXL
. For instance if λ is 0.5, one half goes to EHXR

and the other half

goes to EHXL
.

179

Algorithm 7 splitBars(X , ρ)
1 : if (curBarNo == Sm && !mergeBars())

return;
2 : Initialize new bars XL and XR;
3 : l = 0;
4 : |BEHs| = Aggregate Size of the blocked EHs;
5 : EHXL

.start = EHX .start;
6 : EHXL

.end = (EHX .start + EHX .end)/(1+ρ);
7 : EHXR

.start = EHXL
.end;

8 : EHXR
.end = EHX .end;

9 : for each (blocked EH bar in BEHX) {
10: if (l + |bar| ¡ |BEHs|/(1+ρ)){
11: l += |bar|;
12: Add bar to BEHXL

;
13: }
14: else
15: Add bar to BEHXR

;
16: }
17: λ = ((|X|/(1 + ρ))-l)/(|X| - |BEHs|);
18: foreach (box box in EHX){
19: if (|box| == 1)
20: Alternatively add a copy of box to EHXL

or EHXR
;

21: else {
22: |box| = |box|/2;
23: for (2 times)
24: if (|EHXR

| /(|EHXR
|+|EHXL

|) ¡ λ)
25: Add a copy of box to EHXR

;
26: else
27: Add a copy of box to EHXL

;
28: }
29: }
30: Remove X from the bars list;
31: Merge boxes of bars XL and XR if necessary.
32: Add bars XL and XR to the bars list;

180

Selecting Bars to Merge: We always merge adjacent bars that have the minimum

aggregate size with respect to their positions and ideal size. Thus, we select a pair

of adjacent bars that yields the least relative deviation from their ideal sizes. In other

words, we pick bars bari and bari+1 such that |bari|/ρi+|bari+1|/ρi+1. If this aggregate

size of these two bars (e.i. |bari|+ |bari+1|) is less than maxSizei (which is usually the

case), we select them for merging. Otherwise, we do not perform any merge operations

until some boxes expire, since we do not want to create bars with size greater than

maxSizei by merging.

An Alternative Merging Approach: Similar to the BASH case (Section 7), we

can merge the bars, by combining the boxes in their associated EHs. The technique

which uses BLocked EHs is called BSBH-BL, and this alternative approach is referred

to as BSBH-AL throughout the rest of the section. Again, notice that by merging boxes

from two different EH sketches, we may lose some information about timestamps of

the items which affects the accuracy of the estimations as discussed in Subection 8.3.

Although, we do not have any blocked EHs for BASH-AL, the same split approach

we mentioned earlier can be used for this alternative merging technique. This time,

the splitting operation in Algorithm 7 splits the only existing EH into two EHs with

appropriate size.

Reporting the Final Buckets: At each slide, the algorithm needs to generate a

new set of boundaries/buckets. Algorithm 8 shows the pseudocode for this operation,

in which the ideal goal is to find B buckets with sizes αφφiWt for i=0, 1, ..., B − 1.

Similar to [MZ11a], Algorithm 8 passes over the list of bars once and estimates Bis

boundaries assuming that the distribution of items inside each bar is uniform. Observe

that the extension factor p plays an important role in this assumption. Indeed, larger

values of p generate smaller intervals, and consequently make the distribution of the

items in each bar closer to a uniform distribution. Since the value of Wt might not be

known, we will instead use its estimate West.

181

Algorithm 8 computeBoundaries(B)
b = −1; //An index over bars list
count = 0;
curBuckSize = αφφB−1West;
for(int i = 0; i < B; i++) {

while (count ≤ curBuckSize) {
b ++;
count += |bars[b]|/effectSmp[b];

}
surplus = count− curBuckSize;
boundaries[i] = bars[b].start+ bars[b].length×

(1−surplus/(|bars[b]|/effectSmp[b]))
count = surplus;
curBuckSize = curBuckSize / φ ;

}
return boundaries;

8.1.3 Biased Sampling

Sampling provides a simple technique for scaling many algorithms to larger data sets.

The most common way to sample is to uniformly drop items from the input data set

and reduce its volume. Although this is very easy to implement, it may not be the best

practice for biased histograms, since uniformly removing items from smaller bars has

a more negative effect in estimating the boundaries than in larger bars. Thus, a good

sampling technique needs to sample out fewer items around the biased point(s) than

from the rest of the data distribution.

Random non-uniform sampling was also used by Zhang and Wang [ZW07a] who

first collect and sort the whole input and then sample from the ordered input at non-

uniform rate. BSBH instead introduces a faster non-blind sampling technique, called

biased sampling, which does not need to see the entire data set in advance. This, makes

BSBH a much more practical approach for data streams. The goal in biased sampling is

to sample (keep) at most σ items from each window. Thus for a low-biased histogram,

knowing the new items value (next) and its associated bar index (i), we sample next

182

with probability µi, such that the following equation holds:

Sm−1∑
i=0

µSm−1−i|bari| = σ ×Wt

As you can see, the sampling occurs such that we keep all the items in the smallest

bar (barSm−1), sample items from barSm−2 with rate µ ≤ 1, and exponentially decrease

the sampling rate to a more selective one for larger bars. We refer to µ as the biased

sampling rate. Note that it is not plausible to sample in a way that after sampling the

size of bari+1 becomes smaller than the size of bari, which means µ should be less than

or equal to ρ (µ ≤ ρ). If smaller sample rates are desired, uniform sampling should be

used. For the case of µ = ρ, it is easy to see that after observing at most 2W items all

bars will have equal sizes (which is αρρSm−1Wt) and the biased histogram computation

is reduced to an equi-depth histogram computation. This basically means that BSBH

with biased sampling rate ρ will be eventually reduced to BASH after the sampling

phase is completed.

One challenge most of the sampling-based techniques need to address is the initia-

tion phase. Since the system is initially empty, to quickly, and more accurately report

the first set of results, the algorithms need to keep more data items and drop less. Later

when the structures are initiated, the techniques can sample more data items to reduce

the load. Moreover in our case, the sampling is not blind and needs to know the bound-

aries of the histogram’s bars. Thus, we need to first generate the boundaries so we can

start the sampling phase. In order to alleviate the effect of switching to the sampling

stage, we gradually decrease biased sampling rate from 1 (no sampling) to µ for the

first X data items (lines 14 to 16 in Algorithm 6). For the physical windows X could

be set to the window size W. For the logical windows, X can be set to estimated size of

the window at the time in which the first item expires.

Since we can not start full sampling form the beginning, the effective biased sam-

pling rate for bari is not going to be µi for the first 2X data items. Thus, in lines 17

183

and 18 of Algorithm 6, we update the effective sampling rate for each bar in an array

called effectSmp based on the history of changes on sampling rates. effectSmp will

be used later to estimate the actual size of bars.

8.2 Formal Analysis

In this section, we prove that BSBH can provide an expected ε-approximate biased

histogram for sliding windows on data streams with no concept shift for any given

ε > 0. We also compute the per-data item delay and space complexity of BSBH for this

case. Notice that data streams with no concept shift can be modeled as the case that

every incoming item from the data stream is taken form a fixed data distribution. This

consequently means that items are arriving in random order. To ease our discussion, we

consider that the window size is fixed at W . First, we compute the expected number of

splits in each sliding window.

Let Esp{N} be the expected number of splits after processing N data items from

the data streams. Observe that the expected number of splits for bari is Esp{N}/Sm

since the probability of insert to (and expire from) bars for randomly ordered inputs

are the same for each bars. Let pt1,t2,i,j be the probability that the current bar at i’th

index/position (bari) in time t1 is moved to position j at time t2 without being split or

merged (That is, the change of position is only due to splitting and merging of other

bars). Also, let qt,i be the probability of having bari split at time t. Thus, the probability

of having two consecutive splits on a bar at times t1 and t2 and at the starting position

i and the finishing position j is Pt1,t2,i,j = qt1,ipt1+1,t2,i,jqt2,j . Knowing this, we can

now calculate the expected number of inserts into bari (called Ein{i}) between two

184

consecutive splits using the following formula:

Ein{i} =
Sm

Esp{N}

N∑
t

N∑
t′=t

Sm−1∑
j=0

Pt−1,t′,i,j(xt,t′,i +mj −
mi

2
)

=
Sm

Esp{N}

N∑
t

N∑
t′=t

Sm−1∑
j=0

Pt−1,t′,i,j(mj −
mi

2
)

+
Sm

Esp{N}

N∑
t

N∑
t′=t

Sm−1∑
j=0

Pt−1,t′,i,j(xt,t′,i)

= Ii +Xi

where mi is the abbreviated form of maxSizei and xt,t′,i is the expected number of

expired items from bari in between the time interval [t, t′]. Basically, for two consec-

utive splits on bari at times t − 1 and t′, we need to insert mj − mi

2
items to reach to

the split threshold at position j if nothing expires from the bar. Otherwise, we need to

insert and additional xt,t′,i of items to compensate for the expired items from the bar.

The above equation simply adds up all of such values for all possible t, t′, and j. Then,

the expected number of inserts among all bars between two consecutive splits can be

computed with the following formula:

Ein =
Sm−1∑
i=0

Ein{i} =
Sm−1∑
i=0

Ii +
Sm−1∑
i=0

Xi = I +X (1)

185

Let us start with I:

I =
Sm−1∑
i=0

Sm
Esp{N}

N∑
t

N∑
t′=t

Sm−1∑
j=0

Pt−1,t′,i,j(mj −
mi

2
)

=
Sm

Esp{N}

N∑
t

N∑
t′=t

Sm−1∑
i=0

Sm−1∑
j=0

Pt−1,t′,i,j(mj −
mi

2
)

=
Sm

2Esp{N}
(
N∑
t

N∑
t′=t

Sm−1∑
i=0

Sm−1∑
j=0

Pt−1,t′,i,j(mj −
mi

2
)

+
N∑
t

N∑
t′=t

Sm−1∑
i=0

Sm−1∑
j=0

Pt−1,t′,j,i(mi −
mj

2
))

=
Sm

2Esp{N}

N∑
t

N∑
t′=t

Sm−1∑
i=0

Sm−1∑
j=0

Pt−1,t′,i,j(
mi +mj

2
)

In the last line of the above equations, we have used the fact that probabilities qt,i

and qt,j are equal for any given t for randomly ordered inputs with no concept shift. This

also indicates that Pt1,t2,i,j and Pt1,t2,j,i are equal. To understand this fact, let Pt1,t2,i,j

¿ Pt1,t2,j,i (or Pt1,t2,i,j ¿ Pt1,t2,j,i). This means that the bars between i and j indices are

constantly moving toward the index j (or i) due to splitting and merging which is in

contradiction with the fact that the data stream contains no concept shift.

I =
Sm

2Esp{N}

N∑
t

N∑
t′=t

Sm−1∑
i=0

Sm−1∑
j=0

Pt−1,t′,i,j(
mi +mj

2
)

=
Sm

2Esp{N}

N∑
t

N∑
t′=t

Sm−1∑
i=0

Sm−1∑
j=0

Pt−1,t′,i,jmi

=
Sm

2Esp{N}

Sm−1∑
i=0

mi

N∑
t

N∑
t′=t

Sm−1∑
j=0

Pt−1,t′,i,j

Note that
∑N

t

∑N
t′=t

∑Sm−1
j=0 Pt−1,t′,i,j computes the expected number of splits for

186

bari for the first N data items of the stream. As already discussed this value is equal to

Esp{N}/Sm. Therefore,

I =
Sm

2Esp{N}

Sm−1∑
i=0

mi(
Esp{N}
Sm

)

=
1

2

Sm−1∑
i=0

mi =
maxCoefW

2
(2)

The above formula simply indicates that the expected number of inserts per split,

or Ein, is greater than maxCoefW/2. This leads us to the following lemma which is

very important to prove the bound on memory requirements of BSBH.

Lemma 3 For N ≥ W , the expected number of blocked EHs in BSBH is O(1).

Proof: Equation 2 indicates that for N ≥ W , the expected number of inserts before

seeing the next split in BSBH is greater than maxCoefW/2 (equation
∑Sm−1

i=0 mi =

maxCoefW only holds for N ≥ W .) That is, in each window the number of splits is

O(1) on the average. On the other hand, the number of blocked EHs is proportional to

the number of splits as proved in Lemma 2 of [MZ11a]. This completes the proof. �

Note that after first W items have arrived, older items start to expire with the same

rate as new-arriving items. This essentially means that the expected number of items

expiring in a given time interval is the same as the expected number of arriving items

(X = I). That is after the first window:

Ein = I +X = 2I = maxCoef ×W

This essentially means that formaxCoef > 1, Ein would be more thanW . In other

words, the expected number of split in each window is less than 1.

Theorem 3 For data stream S with no concept shift and for any given 0 < ε and

187

0 < φ < 1, the BSBH algorithm can provide a size-based expected ε-approximate

biased histogram with bias factor φ for sliding windows on S.

Proof: As stated above in each window there can be at most one split, and no matter

how poorly this split operation is performed, before the next split all the wrongly split

items will have been expired. Thus at any moment, only two adjacent bars may contain

incorrect items due to the split operation. We refer to these two bars as the split bars.

Let us first compute a bound on the expected error imposed by these two bars. The

final boundaries that Algorithm 8 generates may cut at most B − 1 bars. We refer to

the boundaries as bn1, bn2, ..., bnB−1 and to the bars they cut as the cut bars (b1, b2, ...,

bB−1). If both split bars are among un-cut bars they do not impose any error since they

compensate for each other in the final bucket. Otherwise, one of them should be among

bi’s. We will return to the error caused by the bis after we consider the error caused by

the second split bar. Let the second split bar be in interval [bni, bni+1). The maximum

error it generates (called errsp) can be computed as:

|barip+1|
|Bi|

≤ maxCoef.αρ.ρ
ip+1.W

αφ.φi.W
=
maxCoef(1− ρ)ρ

(1− φ)

The other part of the error is because of the the position of boundaries in the cut

bars. Considering the estimated number of items at the left and right sides of boundary

bni in bar bi are respectively called li and ri (li+ri = |bi|), the maximum error imposing

by wrongly selecting the boundaries for Bi is then (ri + li+1)/|Bi|. Thus on aggregate

188

for the cut bars error (errcut), we have:

B−1∑
i=1

(ri + li+1)

|Bi|
≤
∑
i

(ri + li)

|Bi|
=
∑
i

|bi|
|Bi|

≤
B−1∑
i=1

maxCoef.αρ.ρ
ip.W

αφ.φi.W

=
B−1∑
i=1

maxCoef(1− ρ)

(1− φ)

= (B − 1)
maxCoef(1− ρ)

(1− φ)

Knowing that each bar uses an EH sketch with approximation error δ, we can com-

pute the following bound for the final expected approximation error for the buckets in

our BSBH algorithm:

ErrRate = δ + (errsp + errcut)/B

≤ δ +
maxCoef(1− ρ)ρ

(1− φ)B
+
maxCoef(1− ρ)

(1− φ)

≤ δ + c(
ρ

B
+ 1)(1− ρ) < δ + 2c(1− ρ) (3)

where c=maxCoef/(1−φ) is a constant. This proves that the expected approximate

error is bounded. Calling this bound ε and noting that ρ = φ1/p, one can say that by

setting δ = ε/2 (k = d2/εe) and p = d−2c.log(φ)/εe, we obtain a size-based expected

ε-approximate low-biased histogram. To see this observe that:

p = d−2c.log(φ)

ε
e ≥ −log(φ)

ε/2c
≥ log(φ)

log(1− ε/2c)

The last part of the above inequality is derived from the fact ex > 1 + x (where

189

x can be set to 1 − ε/2c). Now by replacing this lower bound for p in Formula 3, the

proofs will be completed. �

Empirical results show that even much smaller values for k and p can provide the

same accuracy level. However, it is necessary to mention that the larger the expansion

factor p is, the quicker the convergence of the algorithm will be especially for those

data sets with concept shifts. Lemma 3 shows that the total number of bars (active EHs

plus blocked EHs) in BSBH is O(Sm). Additionally, the size of all of these bars is

smaller than the window size, which indicates that each bar needs at most 1
δ
log(δW) of

space. These two facts lead us to the following bound on the expected memory usage

of BSBH:

Theorem 4 The expected memory usage of the BSBH algorithm is bounded byO(Sm

δ
log(δW))

= O(B
ε2
log(εW)) , where W is the sliding window size and ε is the approximation factor

of BSBH algorithm.

We can provide a bound on the per item CPU usage in the following theorem. Since

the proof of this theorem is identical to the one in the previous section, we skip it here.

Theorem 5 BSBH on average spends O(log(Sm) + Sm

S
) = O(log(B

ε
) + B

εS
) time for

each input data item, where S is the slide size.

Note that in practice and as shown in the experimental results, this time complexity

is very close to a constant time, since S is usually much larger than Sm, and log(Sm) is

usually very small.

8.3 Experimental Results

We implemented both versions of the BSBH algorithm in C++. The version of BSBH

which blocks the bars in the merge operation is referred to as BSBH-BL, and the al-

ternative approach is called BSBH-AL. We also compared BSBH with the CKMS al-

gorithm proposed by Cormode et al. [CKM06] for the case of no sliding windows,

190

since CKMS does not support it. All the errors were computed using average size error

of the histograms’ bars as defined in Definition 8. For all the experiments shown in

this section, we fixed the slide size at 1000 tuples and number of bars at 20. No prior

knowledge of the minimum and maximum values of the incoming data was considered.

We also set δ to 0.1, p to 7, and maxCoef to 1.7 which are experimentally proved to

be optimum in [MZ11a]. All the experiments were run on a 64bit, 2.27 GHz machine

running CentOS with 4GB of main memory (RAM) and 8MB of cache.

Table 8.1: Data sets used for the experimental results
Name Dist. Size Shifts No. Parameters
DS1 Uniform 1m 0 min0,max10k
DS2 Normal 1m 0 µ5k, σ500
DS3 Zipfian 1m 0 α1.5
DS4 Zipfian 1m 0 α1.8
DS5 Exponential 1m 0 λ10−3

DS6 Exponential 1m 0 λ10−4

DS7 Zipfian 1m 100 starting α1.5
DS8 Zipfian 1m 10 alt. α3 & α1.1
DS9 Exponential 1m 100 starting λ10−3

DS10 Precipitation 21m - -

8.3.1 Data sets

We have considered 10 data sets wherein one is a real-world data set (DS10), and the

rest are synthesized data sets with different distributions as shown in Table ??. As you

can see, the first six data sets (DS1 to DS6) contain no concept shifts which means

their distribution does not change through time. In DS7 and DS9, we shift the concept

by randomly increasing or decreasing the distribution’s parameters (respectively α and

λ) by 10% for every 10K data items. We have also generated a data set with 10 unre-

alistically large concept shifts, called DS8. In this data set, the distribution alternates

between Zipfian with α = 3.0 and α = 1.1. Our real data set contains the amount of

daily precipitation recorded in different stations across the United States for about 400

191

Figure 8.3: a) The execution time, b) memory usage, and c) size error of BSBH and
CKMS algorithms on DS3. (k = 10, p = 7, ε = 0.01, and εmin = 0.001.)

Figure 8.4: a) The execution time, b) memory usage, and c) size error of BSBH and
CKMS algorithms on DS7. (k = 10, p = 7, ε = 0.01, and εmin = 0.001.)

years5. Although, there are many missing records for early years, this data set contains

more than 21 million records. An estimation for the distribution of data in this data set

(Figure 8.1) indicates that the distribution has a very long tail.

8.3.2 BSBH versus CKMS

Figures 8.3 and 8.4 provides the execution time, memory usage, and size error of the

BSBH algorithms as well as CKMS algorithm for data sets DS3 and DS7 respectively.

Both of these two data sets have Zipfian distribution (with α=1.5), but DS7 contains 100

random concept shifts. For CKMS, we set ε and εmin respectively to 0.01 and 0.001 as

suggested in [CKM06]. As can be seen in the figure, both BSBH-BL and BSBH-AL

are constantly faster, lighter (in the sense of memory usage), and more accurate than

5Taken from http://www.ncdc.noaa.gov.

192

Figure 8.5: a) The execution time, b) memory usage, and c) size error of BSBH algo-
rithms on DS3 and DS7 for different window sizes. (φ = .8, k = 10, p = 7, ε = 0.01,
and εmin = 0.001.)

CKMS, even when the results for BSBH algorithms are taken over the whole history

of data streams. For the current setting, BSBH is at least twice as fast as CKMS while

using more than six times less memory and providing results with twice or more better

accuracy. We should mention that CKMS provides a worst-case error guarantee while

BSBH provides an expected error guarantee. This mainly explains the gap between

memory and CPU usage of the two approaches. Note that the error increases for smaller

φ’s in both algorithms. This is mainly because for smaller φ’s, bars closer to the biased

regions get even smaller. As a result, even one misplaced item in those small bar may

result in a very high error rate. This is actually why CKMS uses the flat error rate εmin

at the biased points.

8.3.3 Scalability

As discussed in previous sections, BSBH uses a constant number of Exponential His-

tograms and as a result, we claimed BSBH will inherit the scalability of the Exponential

Histograms. To verify our claim, we tested the execution time, memory usage, and size

error of our two BSBH algorithms over data sets DS3 and DS7 for different window

sizes in Figure 8.5. Parts (a) and (b) of this figure depict that both CPU and memory

usage of BSBH algorithms have logarithmic relation with respect to the size of the win-

dows which proves the scalability of our structure for larger window sizes. In part (c)

193

Figure 8.6: a) The execution time, b) memory usage, and c) size error of BSBH al-
gorithms on DS7 for different sampling rates. (φ = .7, W = 100K, k = 10, and
p = 7.)

of the figure, we included the error which is steady at 2% for larger than 16K window

sizes.

It is also worthy to compare the results for DS3 and DS7, in which the only dif-

ference is the presence of concept shift in DS7. For smaller window sizes, the errors

(part (c) in Figure 8.5) are higher for both data sets, since there is not enough data in

each bar to make a good estimation. DS7’s error is even slightly higher due to several

concept shifts. For larger window sizes, which are more probable in fast data streams,

the accuracy for both data sets is almost the same. However, DS7 needs slightly more

memory and time due to the larger number of split/merge operations. We discuss more

results on data sets with concept shifts in Section 8.3.5.

8.3.4 Biased Sampling versus Uniform Sampling

To evaluate the effect of our proposed biased sampling technique, we compared the

execution time, memory usage, and size error of BSBH algorithms for two types of

sampling techniques; uniform sampling and biased sampling. In uniform sampling,

we simply dropped items with a fixed probability. The results for data sets DS7 and

DS10 are shown in Figures 8.6 and 8.7. The biased sampling rate (µ) and its equiv-

alent uniform sampling rates (σ) are shown in the horizontal axis in the figures. As

part (c)’s of the figures depict, the accuracy of the biased sampling is superior to that

194

Figure 8.7: a) The execution time, b) memory usage, and c) size error of BSBH al-
gorithms on DS10 for different sampling rates. (φ = .7, W = 100K, k = 10, and
p = 7.)

of uniform sampling, especially when the sampling rate increases. However, biased

sampling needs slightly more memory than uniform sampling (part (b) of the figures)

because fewer items from small bars are sampled out. This increases the number of

boxes in small bars. Notice that small changes in the number of items in larger bars

usually does not significantly change the number of boxes in them. As for the CPU

usage s(part (a) of the figures), both techniques performs similarly. However, the in-

teresting result is that by biasing the sampling rate (µ) to less than .98 none of these

techniques significantly improve the CPU performance.

8.3.5 The Effect of Concept Shifts

As already shown in Figure 8.5, moderate concept shifts in the data stream have a very

small effect on the performance of the BSBH algorithms. To take a closer look at the

effect of concept shifts on the performance of BSBH, we compared the evolution of the

size error through time for DS7, DS8, and DS9. The results (Figure 8.8) indicate that

concept shifts have insignificant effect on the size error for data sets DS7 and DS9 in

which we have reasonable concept shifts. This mainly shows that concept shifts of such

as in DS7 and DS9 can be quickly (only in couple of slides a our experiments shows)

resolved by the BSBH. However for DS8, the concept shifts effects are visible due to

the unrealistic changes in the data distribution at each concept shifts. As it can be seen

195

Figure 8.8: The size error of running BSBH-BL on data sets DS7 to DS9 through time.
(φ = .7, W = 100K, k = 10, p = 7)

Figure 8.9: a) The execution time, b) memory usage, and c) size error of BSBH algo-
rithms with different sampling rate for all data sets. (φ = .7, W = 100K, k = 10,
p = 7)

in the figure, the error increases right before the distribution changes from Zipf with

α = 3.0 to Zipf with α = 1.1. The reason that the error is lower for α = 3.0 is that

BSBH receives less data items at the tail of the distribution of the current window under

this case. This basically means that the boxes at the tail gradually shrink down in their

size, and consequently they will not split but may merge. Since the merge operation

does not impose any extra error, the overall error remains low for this case.

8.3.6 Discussion

Figure 8.9 depicts the performance of BSBH-BL without sampling as well as with

biased sampling rates (µ) of 0.98 and 0.96 for all the data sets introduced in Table 8.1.

196

There are some important points which can be understood from the figure. Perhaps the

most prominent element is that the execution time for BSBH is almost independent of

the distribution of the data sets. As you can see in part (a) of Figure 8.9, the execution

time of all the data sets is proportional to the size of the data sets. This verifies our

Theorem 5 in previous section. As for the memory usage, part (b) of the figure suggests

that the data distribution has a slight effect on the memory usage of BSBH. This is also

in accordance with Theorem 4.

The other important point is that although the execution time and the memory usage

of BSBH drops after sampling, this improvement is not very impressive especially for

smaller sample rates. For instance with biased sampling rate of 0.96, which is equiv-

alent to uniform sampling rate of 1.2%, we improve the memory usage and execution

time at most by factors of 3 and 2 respectively, while degrading the accuracy by at least

a factor of 7. This is actually not an unexpected result considering the compactness

of our data structure. According to our experiments, partially shown in Figures 8.6,

8.7, and 8.9, not much is gained when we biased the sampling rate µ to be less than

0.98. Moreover, sampling on the data sets with concepts shifts has a worse effect on

the accuracy of the results, as shown in part (c) of Figure 8.9.

8.4 Related Work

The problem of designing quantiles and equi-depth histograms in databases has been

studied for a long time [PC84], [GMP97], [GKM02]. In 1984, Shapiro and Connel

introduced a method to estimate the selectivity of conditions in the form of attribute θ

constant in a database system where θ can be one of =, <, >, ≤, and ≥ [PC84]. In

2002, Gilbert et al. used Random Subset Sums (RSSs) as a sketch to store summarized

information about the whole database and estimate the quantile with a one-pass algo-

rithm [GKM02]. Gibbons et al. have also presented a sampling-based technique for

maintaining approximate equi-depth histograms on relational databases [GMP97].

197

Existing works on designing equi-depth histograms over data streams have mainly

focused on the related problem of quantiles. Since computing exact quantiles with a

single-pass algorithm requires to store all the data [MP80], most of these works try

to approximately answer quantile queries with low space complexity. Manku et al.

introduced an ε-approximate algorithm to answer any quantile query over the entire

history of the data stream [MRL98]. Later, they used non-uniform random sampling to

improve their quantile computation for the case where the data set size is not known in

advance [MRL99]. Greenwald and Khanna, in [GK01a], improved the memory usage

of the previously mentioned approach. Their work , which is sometimes referred to as

the GK algorithm, was used in [LLX04] and [AM04] to answer quantile queries over

data streams with sliding windows. Both of these two approaches run several copies of

the GK, and as a result they suffer from high time complexity.

Cormode et al. introduced the idea of biased quantiles in [CKM05]. Based on the

GK algorithm, they proposed a deterministic ε-approximate algorithm to construct bi-

ased quantiles over the whole history of a data stream. Their approach needs O(1
ε
B ×

log(1/φ)log(εN)) space, whereN is the data stream size andB is the number of bound-

aries. Note that as shown in [ZLX06], the worst case behavior of this type of algorithms

is linear in the universe size (The size of the items’ range). Later, in [CKM06], the

same authors proposed a faster and more space-efficient deterministic algorithm for

this problem, based on a binary tree structure idea borrowed from [SBA04]. Needing

O(1
ε
logUlog(εN)) space and an almost constant amortized cost of actions per new en-

try, the algorithm is best suited for high speed data streams. However, it can not be

easily employed in the sliding window model for data streams. Moreover, their algo-

rithm requires prior knowledge of U and the bound on space requirement depends on

the U which is undesirable. Zhang and Wang have used a decomposable structure to

construct ε-approximate biased quantiles using O(log
3(εN)
ε

) space and O(log(log(εN)
ε

))

time. However, they used a naive non-uniform sampling technique which needs to sort

thse entire data set in advance.

198

Unfortunately, the aforementioned biased quantile computation algorithms can not

be easily used for the sliding window case, since their underlying structures do not sup-

port the idea of expirations. The usual solution for this issue is to run several copies

of the same algorithms for different-sized chunks of the most recent part of the current

window, and combine the results for the biggest possible parts which are not yet ex-

pired. A similar method is used in [AM04] for regular quantiles that is proven to be

very slow [ZW07b, MZ11a].

199

CHAPTER 9

Conclusion and Future Work

Constantly growing massive data sets and data streams in the Web and various net-

works call for faster and more scalable accessing, querying, and analyzing approaches.

Nowadays, many Big Data systems, such as the Word Wide Web, Web clicks, social

networks, monitoring systems, stock market tickers, online encyclopedias, online re-

viewing systems, etc. are generating gigantic amount of data every second. For data

sets of this size, traditional database management systems are ineffective, even when

these systems take advantage of many well-studies summarization techniques such as

sampling, histograms, and quantiles. In fact, these summarization techniques require

major improvements and in some cases dramatic changes to answer the current needs

in Big Data analysis and querying. This is mainly due to two challenging problems:

• The first challenge is that, in addition to summarization techniques for stored

data, we now need online/continuous summaries for the streaming data, e.g.,

real-time online histograms. These summaries should be quickly updated to keep

track of newly arrived data items and expiring ones to cope with fast-changing

distributions of current data sets.

• The second challenge is that, the Web is storing large corpora of structured, semi-

structured, and unstructured (free-text) documents, which is mostly presented in

ambiguous natural languages. This situation has so far limited severely our ability

of smart applications to use the information contained in Web pages, as needed

to realize the grand vision of the “Semantic Web”.

200

In order to address these two problems, we have introduced several efficient and

effective summarization techniques for scalar and textual data. For scalar data, we have

presented light and fast synopses, namely histograms, combined with various sampling

approaches in order to implement more practical summarization techniques over mas-

sive data sets and data streams with sliding windows. These techniques can quickly

provide a very accurate online histograms for fast data streams with sliding windows

while leaving very small memory footprints.

As for the textual data, we have proposed a new knowledge-integration system,

called IKBstore, which combines many of publicly available structured data into a su-

perior knowledge bases. To improve the consistency of the integrated knowledge base,

IKBstore employs a novel Context-Aware Synonym Suggestion System, CS3, which is

able to resolve many of the synonymous terms used across different knowledge bases.

Since text is the most prevalent source of knowledge in the Web, IKBstore also com-

pletes structured summaries by mining free text. This task is performed by our new

NLP-based system called InfoBox Miner or IBminer. The structured summaries so

produced are in the RDF form of <subject, attribute, value> triples specifying one or

more values for each attribute of a subject. In addition to possible reduction of the vol-

ume of the data, these triples provide the knowledge in a structured format that can be

effectively used in semantic search and question answering systems through structured

queries, as exploited in this dissertation.

9.1 Future Research Directions

Toward Domain-Specific Knowledge Base Management Systems: So far, we showed

how our project aims at building a superior system for providing typical Web users with

high quality knowledge bases which can be used for precise querying. Here, we discuss

an important line of future work and explain how our project can help expert users in

advanced applications focused on more specific domains. In such applications, users

201

and curators need to manage datasets that might contain structured, semi-structured,

and unstructured data, and cover deeper knowledge on more specific topics than what

a general encyclopedia such as Wikipedia can cover. For instance, consider a medi-

cal center where information about patients, physicians, staff, drugs and treatments is

usually available in many different formats such as plain text, forms, images, tables,

and structured information. In addition to the many sources of information, a tremen-

dous number of medical articles are being published every year in different journals.

Although this amount of information provides a significant opportunity for advancing

medical research and patients’ treatment, the complexity and heterogeneity of the data

makes this goal difficult to achieve. As a matter of a fact, researchers often end-up redo-

ing the very same study, since they could not easily identify previous work through the

query systems and the search engines they have currently available. Moreover, it is easy

to recognize that similar scenarios occur in many other applications domains, including

education, natural sciences, history [BBC12], tourism, and entertainment or in even

more specific domains such as materials and their properties [ASM14], global terror-

ism [PGT12], gene-protein connections, naval ship handling [Bar05], musics, movies,

cooking [all14, coo14], gardening[gar14], and so on.

Thus, we need to extend the document mining and querying technology we have

developed on Wikipedia to provide methods and systems for building and managing

domain-specific knowledge bases and applications. In many ways, this extension can

be the first system for automating domain-specific knowledge base management. The

basic approach consists in using available structured information to create the initial

KB for the domain of interest. Fortunately, most of the domains already provide a

considerable amount of structured data. Structured information can also be found in

specialized encyclopedias (e.g., MedlinePlus [Med] or Disease Database [Dis]) and

more general encyclopedias (e.g. those in medical-related pages of Wikipedia). Once

the initial KB is ready, we will employ IBminer to annotate and extract structured infor-

mation from the text at hand (e.g., documents on patients, diseases, treatments, etc.) as

202

discussed in Chapter 3. For domain specific applications, IBminer will be assisted by

domain-specific ontologies that will improve its focus and performance on the domain

of interest. Rich ontologies can be generated by starting from seed ontologies in the do-

main of interest (even small ones can do) and then building them up using text-mining,

by the techniques outlined in Chapter 3.

Relying on ontologies and its relation-extraction patterns, IBminer can also anno-

tate the documents by recognizing entities and their relations in the text. As described

in Section 5.4, this process significantly reduces the human effort needed for structur-

ing documents—giving users more time to improve their knowledge bases through the

facilities provided by IBE and its user-friendly interface. Thus, it is quite reasonable to

expect that users and authors will start providing structured summaries of their docu-

ments or articles by first feeding them to an IBminer-like system, and then verifying and

completing the results so generated in the form of InfoBoxes or annotations. This will

significantly speed-up the knowledge extraction&summarization process even for large

corpora, particularly in scientific fields where authors are highly motivated to having

their papers published, retrieved and read by other researchers who can then reference

them (h-index, ect.). In the longer term this will teach users how to provide article

(e.g. Wikipedia pages) in a way that are less ambiguous and thus more amenable to

text mining approaches such as IBminer.

Supporting InfoBox Analytics: Although presenting the data in structured format

makes its analysis much easier, expert users still need stronger analytical tools in order

to perform InfoBox analytics. For instance, in our medical example above, it is very

desirable to automatically classify patients based on their record history and current

symptoms. Another future direction then would be to equip our system with most

common analytics over the structured data. Covering classification, clustering, outlier

detection, and frequent pattern extraction can be a very good start. Opinion Mining,

Topic identification, document categorization, document summarization, etc. are aslo

several other applications that can fit this line of future studies.

203

Information Confidence and the Provenance: The quality of knowledge in Semantic

Web is very important for semantic applications, especially for semantic search sys-

tems. To assess the quality of knowledge, we need to archive the provenance for every

fact in knowledge base. In reality, different applications may use different types of qual-

ity measures, such as the confidence value, evidence frequency, lineage, etc. Thus, we

propose a provenance extension of IKBstore which annotates every fact with a struc-

ture called provenance polynomial to preserve these important properties of knowl-

edge. There have been several models for capturing provenance in Semantic Web

[TFK11, MWF07]. We extend the abstract provenance model discussed in [TFK11]

to archive knowledge provenance. The process of capturing knowledge provenance

consists of two main phases: (i) constructing the provenance polynomial [GKT07] for

every fact; (ii) materializing the polynomial for each type of provenance. The advan-

tage of such model is the generality. It does not only work for specific provenance, but

also any provenance that can be expressed by provenance polynomial, such as confi-

dence value and reliability used in NELL [CBK10a] and IKBstore system. In this way,

we just need to perform a single-round evaluation to construct the expression of prove-

nance process. Then, IKBstore can evaluate various types of provenance by computing

the provenance value based on corresponding provenance polynomial.

Mining Semi-structured Data: Tables and lists are used frequently in documents,

since they are easy for humans to interpret. They can also be easier for machines to

interpret than unstructured data, if their structure is known to them. However this is not

often the case, since the structure of the table is either explained in text or it is inferable

by humans form context and commonsense knowledge. In this project, to be able to

extract information from these sources, we use most common patterns to convert them

into the triple format (similar to semantic links generated by the first step in IBminer’s

process) and follow the exact remaining steps to translate them to our KBs terminology.

Notice that structured information about entities that can not be easily found in the text

(e.g., for Zip code, area code, elevation, etc. for a given location), can be extracted

204

from some semi-structured or structured specialized sources, (e.g., telephone book).

Thus, we interpret the internal structure of such sources as well as convert them into

our knowledge graph.

Supports for Cross-Language Data Sets: Many data sources provide their data in

different languages. For instance Wikipedia supports more than 270 languages. Re-

cently, the WikiData projects is lounched to collect and unify the information in all

languages in Wikipedia mostly with the assist of volunteer contributors [Wik]. This

will improve the final knowledge base since each language may cover knowledge that

others are missing. For instance, it is more probable to find useful information about

Italian cities in the Italian Wikipedia rather than in Wikipedia for English or other lan-

guages. Although this is a very appealing vision and important step toward the “Seman-

tic Wikipedia”, we believe automatic techniques are necessary to further assist the con-

tributors and expedite this unification process. To this end, we extend our context-aware

synonym generation system to find attribute synonyms among different languages. In

other words, we interpret the attribute translation task as a synonym matching one. In

this way, our system will be able to use already matched attributes in Wikidata and

learn appropriate patterns, as IBminer does, and use these patterns to translate more

triples from different languages. Therefore, the contributing user only need to verify

the suggested results and slightly improve the mistranslated ones.

Scaling the System: Although the current IKBstore contains several large scale KBs,

e.g. DBpedia and YaGo2, we expect considerable improvements in its coverage and ac-

curacy by analyzing more text from the Web. Currently we are in the process of mining

the entire Wikipedia using available clusters at UCLA. Our current estimation is that

this will at least doubles the size of the current KB. To be able to mine knowledge from

even larger text corpora, we distribute IBminer’s steps (Chapter 3) to Map-Reduce-like

jobs over several nodes in the cluster. The most important challenge is the large number

of intermediate triples and patterns. We are seeking techniques for early filtering of the

triples and reducing the patterns before the final aggregation.

205

As the KB will approach its final size, faster approaches for answering queries

should be provided. Toward this goal, one should investigate the performance of dis-

tributed SPARQL search engines such as Virtuoso and Apache Jena under larger KBs

and more simultaneous queries. The impact of different combinations of exiting opti-

mization, caching, indexing, and estimation techniques on the time performance of the

search engine should be carefully studied as well.

The other aspect of a scalable search engine is the number of queries it can handle

at the same time. Fortunately, the users’ requests are usually concentrated on a limited

number of very frequent queries. Inspired from this fact, a dynamic caching technique

can be designed, which learns the most frequent star-shaped subqueries from the current

query logs and caches the intermediate results for these subqueries. In this way, next

time a user submits a query containing one of these subqueries, the results will be on

hand. The reason we select the star-shaped sub-queries is that they can be found in the

query graphs in polynomial time. This also makes the problem of frequent subgraph

mining a lot faster. In addition to the caching techniques, replication and partitioning

approaches for supporting more concurrent queries should be studied.

206

REFERENCES

[ADL05] Noga Alon, Nick G. Duffield, Carsten Lund, and Mikkel Thorup. “Esti-
mating arbitrary subset sums with few probes.” In PODS, pp. 317–325,
2005.

[Agg06] Charu C. Aggarwal. “On Biased Reservoir Sampling in the Presence of
Stream Evolution.” In VLDB, pp. 607–618, 2006.

[Agr07] C. Agrawal. Data Streams: Models and Algorithms. Springer Verlag,
2007.

[all14] “Allrecipes - Recipes and cooking confidence for home cooks.” http:
//allrecipes.com/, 2014.

[AM04] Arvind Arasu and Gurmeet Manku. “Approximate Counts and Quantiles
over Sliding Windows.” In PODS, pp. 286–296, 2004.

[AM06] Rajeev Alur and P. Madhusudan. “Adding Nesting Structure to Words.” In
Developments in Language Theory, pp. 1–13, 2006.

[AMS96] Noga Alon, Yossi Matias, and Mario Szegedy. “The Space Complexity of
Approximating the Frequency Moments.” In STOC, pp. 20–29, 1996.

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. “The Space Complex-
ity of Approximating the Frequency Moments.” J. Comput. Syst. Sci.,
58(1):137–147, 1999.

[AS94] Rakesh Agrawal and Ramakrishnan Srikant. “Fast Algorithms for Mining
Association Rules in Large Databases.” In VLDB, pp. 487–499, 1994.

[ASM14] “ASM Handbooks Online.” http://products.
asminternational.org/hbk/index.jsp, 2014.

[AT10] Witold Abramowicz and Robert Tolksdorf, editors. Business Information
Systems, 13th International Conference, BIS 2010, Berlin, Germany, May
3-5, 2010. Proceedings, volume 47 of Lecture Notes in Business Informa-
tion Processing. Springer, 2010.

[AZ12] Maurizio Atzori and Carlo Zaniolo. “SWiPE: searching wikipedia by ex-
ample.” In WWW, pp. 309–312, 2012.

[Bar05] James Alden Barber. Naval Shiphandler’s Guide. Naval Institute Press,
2005.

[BBC12] Roger S. Bagnall, Kai Brodersen, Craige B. Champion, Andrew Erskine,
and Sabine R. Huebner. The Encyclopedia of Ancient History. Wiley,
2012.

207

http://allrecipes.com/
http://allrecipes.com/
http://products.asminternational.org/hbk/index.jsp
http://products.asminternational.org/hbk/index.jsp

[BBD02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jen-
nifer Widom. “Models and Issues in Data Stream Systems.” In PODS, pp.
1–16, 2002.

[BCS07] Michele Banko, Michael J Cafarella, Stephen Soderl, Matt Broadhead, and
Oren Etzioni. “Open information extraction from the web.” In IJCAI,
2007.

[BDM02] Brian Babcock, Mayur Datar, and Rajeev Motwani. “Sampling from a
moving window over streaming data.” In SODA, pp. 633–634, 2002.

[BEP08] Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie
Taylor. “Freebase: a collaboratively created graph database for structuring
human knowledge.” In SIGMOD, pp. 1247–1250, 2008.

[BKS01] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. “The Skyline
Operator.” In ICDE, pp. 421–430, 2001.

[BLK09] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian
Becker, Richard Cyganiak, and Sebastian Hellmann. “DBpedia - A crys-
tallization point for the Web of Data.” J. Web Sem., 7(3):154–165, 2009.

[BO07] Vladimir Braverman and Rafail Ostrovsky. “Smooth Histograms for Slid-
ing Windows.” In FOCS, pp. 283–293, 2007.

[BO10] Vladimir Braverman and Rafail Ostrovsky. “Effective Computations on
Sliding Windows.” SIAM J. Comput., 39(6):2113–2131, 2010.

[Bou92] Didier Bourigault. “Surface Grammatical Analysis For The Extraction Of
Terminological Noun Phrases.” In COLING, pp. 977–981, 1992.

[BOZ07] Vladimir Braverman, Rafail Ostrovsky, and Carlo Zaniolo. “Succinct Sam-
pling on Streams.” CoRR, abs/cs/0702151, 2007.

[BOZ09] Vladimir Braverman, Rafail Ostrovsky, and Carlo Zaniolo. “Optimal sam-
pling from sliding windows.” In PODS, pp. 147–156, 2009.

[BW01] Shivnath Babu and Jennifer Widom. “Continuous Queries over Data
Streams.” SIGMOD Record, 30(3):109–120, 2001.

[Cas] “Apache Cassandra.” http://cassandra.apache.org/.

[CBK10a] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E.R. Hruschka Jr., and T.M.
Mitchell. “Toward an Architecture for Never-Ending Language Learning.”
In AAAI, pp. 1306–1313, 2010.

[CBK10b] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam
R. Hruschka Jr., and Tom M. Mitchell. “Toward an Architecture for Never-
Ending Language Learning.” In AAAI, 2010.

208

http://cassandra.apache.org/

[CCC12] Kaushik Chakrabarti, Surajit Chaudhuri, Tao Cheng, and Dong Xin. “A
framework for robust discovery of entity synonyms.” In Proceedings of
the 18th ACM SIGKDD international conference on Knowledge discovery
and data mining, KDD ’12, pp. 1384–1392, New York, NY, USA, 2012.
ACM.

[CdJ10] Daniel Cer, Marie-Catherine de Marneffe, Daniel Jurafsky, and Christo-
pher D. Manning. “Parsing to Stanford Dependencies: Trade-offs between
speed and accuracy.” In 7th International Conference on Language Re-
sources and Evaluation (LREC 2010), 2010.

[CE09] Eugene Charniak and Micha Elsner. “EM works for pronoun anaphora res-
olution.” In Proceedings of the 12th Conference of the European Chapter
of the Association for Computational Linguistics, EACL ’09, pp. 148–156,
Stroudsburg, PA, USA, 2009. Association for Computational Linguistics.

[CGG03] Jan Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang. “Skyline
with Presorting.” In ICDE, pp. 717–816, 2003.

[CGR00] Kaushik Chakrabarti, Minos N. Garofalakis, Rajeev Rastogi, and Kyuseok
Shim. “Approximate Query Processing Using Wavelets.” In VLDB, pp.
111–122, 2000.

[CGX09a] Surajit Chaudhuri, Venkatesh Ganti, and Dong Xin. “Exploiting web
search to generate synonyms for entities.” In Proceedings of the 18th in-
ternational conference on World wide web, WWW ’09, pp. 151–160, New
York, NY, USA, 2009. ACM.

[CGX09b] Surajit Chaudhuri, Venkatesh Ganti, and Dong Xin. “Mining document
collections to facilitate accurate approximate entity matching.” Proc.
VLDB Endow., 2(1):395–406, August 2009.

[Cha08] “Charniak NLP Parser.” ftp://ftp.cs.brown.edu/pub/
nlparser/, 2008.

[CKM05] Graham Cormode, Flip Korn, S. Muthukrishnan, and Divesh Srivastava.
“Effective Computation of Biased Quantiles over Data Streams.” In ICDE,
pp. 20–31, 2005.

[CKM06] Graham Cormode, Flip Korn, S. Muthukrishnan, and Divesh Srivastava.
“Space- and time-efficient deterministic algorithms for biased quantiles
over data streams.” In PODS, pp. 263–272, 2006.

[CKM08] Graham Cormode, Flip Korn, S. Muthukrishnan, and Divesh Srivastava.
“Finding hierarchical heavy hitters in streaming data.” TKDD, 1(4), 2008.

209

ftp://ftp.cs.brown.edu/pub/nlparser/
ftp://ftp.cs.brown.edu/pub/nlparser/

[CL03] Joong Hyuk Chang and Won Suk Lee. “Finding recent frequent itemsets
adaptively over online data streams.” In KDD ’03: Proceedings of the ninth
ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 487–492, 2003.

[CLP10] Tao Cheng, Hady Wirawan Lauw, and Stelios Paparizos. “Fuzzy matching
of Web queries to structured data.” In ICDE, pp. 713–716, 2010.

[CLP12] Tao Cheng, Hady Wirawan Lauw, and Stelios Paparizos. “Entity Syn-
onyms for Structured Web Search.” IEEE Trans. Knowl. Data Eng.,
24(10):1862–1875, 2012.

[CM99] Surajit Chaudhuri and Rajeev Motwani. “On Sampling and Relational Op-
erators.” IEEE Data Eng. Bull., 22(4):41–46, 1999.

[CM05] Graham Cormode and S. Muthukrishnan. “An improved data stream sum-
mary: the count-min sketch and its applications.” J. Algorithms, 55(1):58–
75, 2005.

[CMH09] Michael J. Cafarella, Jayant Madhavan, and Alon Halevy. “Web-scale ex-
traction of structured data.” SIGMOD Rec., 37(4):55–61, March 2009.

[CMN99] Surajit Chaudhuri, Rajeev Motwani, and Vivek R. Narasayya. “On Ran-
dom Sampling over Joins.” In SIGMOD Conference, pp. 263–274, 1999.

[Coo71] Stephen A. Cook. “The Complexity of Theorem-Proving Procedures.” In
STOC, pp. 151–158, 1971.

[coo14] “Recipe Search and More.” http://www.cooks.com/, 2014.

[DG08] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data pro-
cessing on large clusters.” Commun. ACM, 51(1):107–113, January 2008.

[DGI02a] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. “Main-
taining Stream Statistics over Sliding Windows.” SIAM J. Comput.,
31(6):1794–1813, 2002.

[DGI02b] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. “Main-
taining Stream Statistics over Sliding Windows.” SIAM J. Comput.,
31(6):1794–1813, 2002.

[Dis] “Diseases Database Ver 1.9.” http://www.diseasesdatabase.com/.

[DJM02] Tamraparni Dasu, Theodore Johnson, S. Muthukrishnan, and Vladislav
Shkapenyuk. “Mining database structure; or, how to build a data quality
browser.” In SIGMOD Conference, pp. 240–251, 2002.

[Dro03] Patrick Drouin. “Term extraction using non-technical corpora as a point of
leverage.” TERMINOLOGY, 9:99–116, 2003.

210

http://www.cooks.com/

[DZP10] Euthymios Drymonas, Kalliopi Zervanou, and Euripides G. M. Petrakis.
“Unsupervised Ontology Acquisition from Plain Texts: The OntoGain Sys-
tem.” In NLDB, pp. 277–287, 2010.

[ECD04] Oren Etzioni, Michael J. Cafarella, Doug Downey, Stanley Kok, Ana-
Maria Popescu, Tal Shaked, Stephen Soderland, Daniel S. Weld, and
Alexander Yates. “Web-scale information extraction in knowitall: (pre-
liminary results).” In WWW, pp. 100–110, 2004.

[EG06] C. Elkan and R. Greiner. “Building large knowledge-based systems:
representation and inference in the Cyc project.” Artificial Intelligence,
61(1):41–52, 2006.

[EG13] C. Elkan and R. Greiner. “Inside YAGO2s: A Transparent Information
Extraction Architecture.” Artificial Intelligence, 2013.

[FKS99] Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Mahesh
Viswanathan. “An Approximate L1-Difference Algorithm for Massive
Data Streams.” In FOCS, pp. 501–511, 1999.

[FLG87] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. “The
vocabulary problem in human-system communication.” Commun. ACM,
30(11):964–971, November 1987.

[FM85] Philippe Flajolet and G. Nigel Martin. “Probabilistic Counting Algorithms
for Data Base Applications.” J. Comput. Syst. Sci., 31(2):182–209, 1985.

[FSG98] Min Fang, Narayanan Shivakumar, Hector Garcia-Molina, Rajeev Mot-
wani, and Jeffrey D. Ullman. “Computing Iceberg Queries Efficiently.”
In VLDB, pp. 299–310, 1998.

[gar14] “Gardening Resources: National Gardening Association.” http://
www.garden.org/, 2014.

[GEO] “GeoNames.” http://www.geonames.org.

[GGR02] Minos N. Garofalakis, Johannes Gehrke, and Rajeev Rastogi. “Querying and min-
ing data streams: you only get one look a tutorial.” In SIGMOD Conference, p.
635, 2002.

[Gib01] Phillip B. Gibbons. “Distinct Sampling for Highly-Accurate Answers to Distinct
Values Queries and Event Reports.” In VLDB, pp. 541–550, 2001.

[GK01a] Michael Greenwald and Sanjeev Khanna. “Space-Efficient Online Computation
of Quantile Summaries.” In SIGMOD Conference, pp. 58–66, 2001.

[GK01b] Michael Greenwald and Sanjeev Khanna. “Space-Efficient Online Computation
of Quantile Summaries.” In SIGMOD Conference, pp. 58–66, 2001.

211

http://www.garden.org/
http://www.garden.org/
http://www.geonames.org

[GK06] Andrew Gregorowicz and Mark A. Kramer. “Mining a Large-Scale Term-Concept
Network from Wikipedia.” Technical report, Mitre, 2006.

[GKM01] Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Martin Strauss. “Surfing
Wavelets on Streams: One-Pass Summaries for Approximate Aggregate Queries.”
In VLDB, pp. 79–88, 2001.

[GKM02] Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Martin Strauss. “How
to Summarize the Universe: Dynamic Maintenance of Quantiles.” In VLDB, pp.
454–465, 2002.

[GKM03] Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Martin Strauss. “One-
Pass Wavelet Decompositions of Data Streams.” IEEE Trans. Knowl. Data Eng.,
15(3):541–554, 2003.

[GKS01] Sudipto Guha, Nick Koudas, and Kyuseok Shim. “Data-streams and histograms.”
In STOC, pp. 471–475, 2001.

[GKT07] Todd J. Green, Gregory Karvounarakis, and Val Tannen. “Provenance semirings.”
In PODS, 2007.

[GM98] Phillip B. Gibbons and Yossi Matias. “New Sampling-Based Summary Statistics
for Improving Approximate Query Answers.” In SIGMOD Conference, pp. 331–
342, 1998.

[GM99] Phillip B. Gibbons and Yossi Matias. “Synopsis Data Structures for Massive Data
Sets.” In SODA, pp. 909–910, 1999.

[GM07] Sumit Ganguly and Anirban Majumder. “CR-precis: A Deterministic Summary
Structure for Update Data Streams.” In ESCAPE, pp. 48–59, 2007.

[GMP97] Phillip B. Gibbons, Yossi Matias, and Viswanath Poosala. “Fast Incremental
Maintenance of Approximate Histograms.” In VLDB, pp. 466–475, 1997.

[Gre96] Michael Greenwald. “Practical Algorithms for Self Scaling Histograms or Better
than Average Data Collection.” Perform. Eval., 27/28(4):19–40, 1996.

[Gru93] T. R. Gruber. “A Translation Approach to Portable Ontology Specifications.”
Knowledge Acquisition, 6:199–220, 1993.

[GW99] Bernhard Ganter and Rudolf Wille. Formal concept analysis - mathematical foun-
dations. Springer, 1999.

[GZK05] Mohamed Medhat Gaber, Arkady B. Zaslavsky, and Shonali Krishnaswamy.
“Mining data streams: a review.” SIGMOD Record, 34(2):18–26, 2005.

[HBS10] Rasmus Hahn, Christian Bizer, Christopher Sahnwaldt, Christian Herta, Scott
Robinson, Michaela Bürgle, Holger Düwiger, and Ulrich Scheel. “Faceted
Wikipedia Search.” In BIS, pp. 1–11, 2010.

212

[Hea92] Marti A. Hearst. “Automatic Acquisition of Hyponyms from Large Text Corpora.”
In COLING, pp. 539–545, 1992.

[HHW97] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. “Online Aggregation.”
In SIGMOD Conference, pp. 171–182, 1997.

[HK09] Aria Haghighi and Dan Klein. “Simple Coreference Resolution with Rich Syn-
tactic and Semantic Features.” In EMNLP, pp. 1152–1161, 2009.

[HKY09] Felix Halim, Panagiotis Karras, and Roland H. C. Yap. “Fast and effective his-
togram construction.” In CIKM, pp. 1167–1176, 2009.

[Hob78] Jerry Hobbs. “Resolving Pronoun References.” Lingua, 44:311–338, 1978.

[Hof] “Hoffman2 Cluster, UCLA.” http://hpc.ucla.edu/hoffman2/.

[HP10] Dan He and D. Stott Parker. “Topic dynamics: an alternative model of bursts in
streams of topics.” In KDD, pp. 443–452, 2010.

[HPY00] Jiawei Han, Jian Pei, and Yiwen Yin. “Mining Frequent Patterns without Candi-
date Generation.” In SIGMOD Conference, pp. 1–12, 2000.

[HSB11] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, Edwin Lewis-Kelham,
Gerard de Melo, and Gerhard Weikum. “YAGO2: exploring and querying world
knowledge in time, space, context, and many languages.” In WWW, pp. 229–232,
2011.

[HSB13] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum.
“YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia.”
Artif. Intell., 194:28–61, 2013.

[HZW10] Raphael Hoffmann, Congle Zhang, and Daniel S. Weld. “Learning 5000 Rela-
tional Extractors.” In ACL, pp. 286–295, 2010.

[Ioa03] Yannis E. Ioannidis. “The History of Histograms (abridged).” In VLDB, pp. 19–
30, 2003.

[IP99] Yannis E. Ioannidis and Viswanath Poosala. “Histogram-Based Approximation of
Set-Valued Query-Answers.” In VLDB, pp. 174–185, 1999.

[Jen] “Apache Jena.” http://jena.apache.org/.

[JK08] Maciej Janik and Krys Kochut. “Training-less Ontology-based Text Categoriza-
tion.” In Workshop on ESAIR, March 2008.

[JKM98] H. V. Jagadish, Nick Koudas, S. Muthukrishnan, Viswanath Poosala, Kenneth C.
Sevcik, and Torsten Suel. “Optimal Histograms with Quality Guarantees.” In
VLDB, pp. 275–286, 1998.

[JT10] Xing Jiang and Ah-Hwee Tan. “CRCTOL: A semantic-based domain ontology
learning system.” JASIST, 61(1):150–168, 2010.

213

http://jena.apache.org/

[KH10] Zornitsa Kozareva and Eduard H. Hovy. “A Semi-Supervised Method to Learn
and Construct Taxonomies Using the Web.” In EMNLP, pp. 1110–1118, 2010.

[KKR08] Karin Kipper, Anna Korhonen, Neville Ryant, and Martha Palmer. “A large-scale
classification of English verbs.” Language Resources and Evaluation, 42(1):21–
40–40, March 2008.

[Kle02] Jon M. Kleinberg. “Bursty and hierarchical structure in streams.” In KDD, pp.
91–101, 2002.

[KM11] Jayant Krishnamurthy and Tom M. Mitchell. “Which noun phrases denote which
concepts?” In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies - Volume 1, HLT ‘11,
pp. 570–580, Stroudsburg, PA, USA, 2011. Association for Computational Lin-
guistics.

[LBN10] Dustin Lange, Christoph Böhm, and Felix Naumann. “Extracting structured in-
formation from Wikipedia articles to populate infoboxes.” In Proceedings of the
19th ACM international conference on Information and knowledge management,
CIKM ’10, pp. 1661–1664, New York, NY, USA, 2010. ACM.

[LKK07] Chang-Shing Lee, Yuan-Fang Kao, Yau-Hwang Kuo, and Mei-Hui Wang. “Auto-
mated ontology construction for unstructured text documents.” Data Knowl. Eng.,
60(3):547–566, March 2007.

[LL94] Shalom Lappin and Herbert J. Leass. “An algorithm for pronominal anaphora
resolution.” Comput. Linguist., 20(4):535–561, December 1994.

[LLX04] Xuemin Lin, Hongjun Lu, Jian Xu, and Jeffrey Xu Yu. “Continuously Maintaining
Quantile Summaries of the Most Recent N Elements over a Data Stream.” In
ICDE, pp. 362–374, 2004.

[LMT05] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker.
“No pane, no gain: efficient evaluation of sliding-window aggregates over data
streams.” SIGMOD Record, 34(1):39–44, 2005.

[LP01] Dekang Lin and Patrick Pantel. “DIRT @SBT@discovery of inference rules from
text.” In KDD, pp. 323–328, 2001.

[LWO00] Stanley Loh, Leandro Krug Wives, and José Palazzo M. de Oliveira. “Concept-
based knowledge discovery in texts extracted from the Web.” SIGKDD Explor.
Newsl., 2(1):29–39, June 2000.

[LWW11] Taesung Lee, Zhongyuan Wang, Haixun Wang, and Seung won Hwang. “Web
Scale Taxonomy Cleansing.” PVLDB, 4(12):1295–1306, 2011.

[MBD03] Brian Babcock Mayur, Brian Babcock, Mayur Datar, and Rajeev Motwani. “Load
Shedding Techniques for Data Stream Systems.” In In Proc. of the 2003 Workshop
on Management and Processing of Data Streams (MPDS), 2003.

214

[MBP06] Kyriakos Mouratidis, Spiridon Bakiras, and Dimitris Papadias. “Continuous mon-
itoring of top-k queries over sliding windows.” In SIGMOD Conference, pp. 635–
646, 2006.

[MD88] M. Muralikrishna and David J. DeWitt. “Equi-Depth Histograms For Estimating
Selectivity Factors For Multi-Dimensional Queries.” In SIGMOD Conference, pp.
28–36, 1988.

[Med] “MedlinePlus - Health Information from the National Library of Medicine.”
http://www.nlm.nih.gov/medlineplus/.

[MGZ13a] Hamid Mousavi, Shi Gao, and Carlo Zaniolo. “Discovering Attribute and Entity
Synonyms for Knowledge Integration and Semantic Web Search.” 3rd Interna-
tional Workshop on Sematic Search over The Web, 2013.

[MGZ13b] Hamid Mousavi, Shi Gao, and Carlo Zaniolo. “Discovering Attribute and Entity
Synonyms for Knowledge Integration and Semantic Web Search.” In CSD Tech-
nical Report #130013, UCLA, 2013.

[MGZ13c] Hamid Mousavi, Shi Gao, and Carlo Zaniolo. “IBminer: A Text Mining Tool for
Constructing and Populating InfoBox Databases and Knowledge Bases.” PVLDB,
6(12):1330–1333, 2013.

[MKI11a] Hamid Mousavi, Deirdre Kerr, and Markus Iseli. “A New Framework for Textual
Information Mining over Parse Trees.” In ICSC, 2011.

[MKI11b] Hamid Mousavi, Deirdre Kerr, and Markus Iseli. “A New Framework for Textual
Information Mining over Parse Trees.” In (CRESST Report 775). University of
California, Los Angeles, 2011.

[MKI13a] Hamid Mousavi, Deirdre Kerr, Markus Iseli, and Carlo Zaniolo. “Deducing In-
foBoxes from Unstructured Text in Wikipedia Pages.” In CSD Technical Report
#130001), UCLA, 2013.

[MKI13b] Hamid Mousavi, Deirdre Kerr, Markus Iseli, and Carlo Zaniolo. “OntoHarvester:
An Unsupervised Ontology Generator from Free Text.” In CSD Technical Report
#130003), UCLA, 2013.

[MML09] Olena Medelyan, David N. Milne, Catherine Legg, and Ian H. Witten. “Mining
meaning from Wikipedia.” Int. J. Hum.-Comput. Stud., 67(9):716–754, 2009.

[MMM06] Marie De Marneffe, Bill Maccartney, and Christopher D. Manning. “Generating
typed dependency parses from phrase structure parses.” In In LREC, 2006.

[MP80] J. Ian Munro and Mike Paterson. “Selection and Sorting with Limited Storage.”
Theor. Comput. Sci., 12:315–323, 1980.

[MRL98] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. “Approxi-
mate Medians and other Quantiles in One Pass and with Limited Memory.” In
SIGMOD Conference, pp. 426–435, 1998.

215

[MRL99] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. “Random
Sampling Techniques for Space Efficient Online Computation of Order Statistics
of Large Datasets.” In SIGMOD Conference, pp. 251–262, 1999.

[MRS11] Y. Mass, M. Ramanath, Y. Sagiv, and G. Weikum. “Iq: The case for iterative
querying for knowledge.” In CIDR, 2011.

[MS00] Alexander Maedche and Steffen Staab. “Semi-automatic engineering of ontolo-
gies from text.” In Proc. of 12th Int. Conf. on Software and Knowledge Engineer-
ing, Chicago, IL, 2000.

[MUS] “MusicBrainz.” http://musicbrainz.org.

[Mut03] S. Muthukrishnan. “Data streams: algorithms and applications.” In SODA, pp.
413–413, 2003.

[MWF07] Simon Miles, Sylvia C. Wong, Weijian Fang, Paul Groth, Klaus-Peter Zauner,
and Luc Moreau. “Provenance-based validation of e-science experiments.” Web
Semant., 5(1), March 2007.

[MZ10] Barzan Mozafari and Carlo Zaniolo. “Optimal load shedding with aggregates and
mining queries.” In ICDE, pp. 76–88, 2010.

[MZ11a] Hamid Mousavi and Carlo Zaniolo. “Fast and accurate computation of equi-depth
histograms over data streams.” In EDBT, pp. 69–80, 2011.

[MZ11b] Hamid Mousavi and Carlo Zaniolo. “Fast and Space-Efficient Computation of
Equi-Depth Histograms for Data Streams.” In EDBT 2011 Joint Conference, Up-
psala, Sweden, pp. 100–112, 2011.

[MZ13] Hamid Mousavi and Carlo Zaniolo. “Fast computation of approximate biased
histograms on sliding windows over data streams.” In SSDBM, p. 13, 2013.

[Nav01] Gonzalo Navarro. “A guided tour to approximate string matching.” ACM Comput.
Surv., 33(1):31–88, March 2001.

[NMI07] Dat P. T Nguyen, Yutaka Matsuo, and Mitsuru Ishizuka. “Exploiting syntactic
and semantic information for relation extraction from wikipedia.” In In IJCAI07-
TextLinkWS, 2007.

[NS07] David Nadeau and Satoshi Sekine. “A survey of named entity recognition and
classification.” Lingvisticae Investigationes, 30(1):3–26, January 2007.

[NTW11] Ndapandula Nakashole, Martin Theobald, and Gerhard Weikum. “Scalable
knowledge harvesting with high precision and high recall.” WSDM ‘11, pp. 227–
236, New York, NY, USA, 2011. ACM.

[NV10] Roberto Navigli and Paola Velardi. “Learning Word-Class Lattices for Definition
and Hypernym Extraction.” In ACL, pp. 1318–1327, 2010.

216

http://musicbrainz.org

[NVF11] Roberto Navigli, Paola Velardi, and Stefano Faralli. “A Graph-Based Algorithm
for Inducing Lexical Taxonomies from Scratch.” In IJCAI, pp. 1872–1877, 2011.

[NZR12] Feng Niu, Ce Zhang, Christopher Re, and Jude W. Shavlik. “DeepDive: Web-
scale Knowledge-base Construction using Statistical Learning and Inference.” In
VLDS, pp. 25–28, 2012.

[OPE] “OPENCYC.” http://www.cyc.com/platform/opencyc.

[PC84] Gregory Piatetsky-Shapiro and Charles Connell. “Accurate Estimation of the
Number of Tuples Satisfying a Condition.” In SIGMOD Conference, pp. 256–
276, 1984.

[PCB09] Patrick Pantel, Eric Crestan, Arkady Borkovsky, Ana-Maria Popescu, and Vishnu
Vyas. “Web-scale distributional similarity and entity set expansion.” In Proceed-
ings of the 2009 Conference on Empirical Methods in Natural Language Process-
ing: Volume 2 - Volume 2, EMNLP ’09, pp. 938–947, Stroudsburg, PA, USA,
2009. Association for Computational Linguistics.

[PD08] Hoifung Poon and Pedro Domingos. “Joint Unsupervised Coreference Resolution
with Markov Logic.” In EMNLP, pp. 650–659, 2008.

[PD09] Hoifung Poon and Pedro Domingos. “Unsupervised semantic parsing.” In Pro-
ceedings of the 2009 Conference on Empirical Methods in Natural Language Pro-
cessing: Volume 1 - Volume 1, EMNLP ‘09, pp. 1–10, Stroudsburg, PA, USA,
2009. Association for Computational Linguistics.

[PD10] Hoifung Poon and Pedro Domingos. “Unsupervised Ontology Induction from
Text.” In ACL, pp. 296–305, 2010.

[PGR10] Aditya G. Parameswaran, Hector Garcia-Molina, and Anand Rajaraman. “To-
wards The Web of Concepts: Extracting Concepts from Large Datasets.” PVLDB,
3(1):566–577, 2010.

[PGT12] “Patterns of Global Terrorism.” http://onlinebooks.library.upenn.
edu/webbin/serial?id=patglobalterror, 2012.

[PI96] Viswanath Poosala and Yannis E. Ioannidis. “Estimation of Query-Result Distri-
bution and its Application in Parallel-Join Load Balancing.” In VLDB, pp. 448–
459, 1996.

[PIH96] Viswanath Poosala, Yannis E. Ioannidis, Peter J. Haas, and Eugene J. Shekita.
“Improved Histograms for Selectivity Estimation of Range Predicates.” In SIG-
MOD Conference, pp. 294–305, 1996.

[PL01] Patrick Pantel and Dekang Lin. “A Statistical Corpus-Based Term Extractor.” In
Canadian Conference on AI, pp. 36–46, 2001.

[PTF05] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. “Progressive sky-
line computation in database systems.” ACM Trans. Database Syst., 30(1):41–82,
2005.

217

http://www.cyc.com/platform/opencyc
http://onlinebooks.library.upenn.edu/webbin/serial?id=patglobalterror
http://onlinebooks.library.upenn.edu/webbin/serial?id=patglobalterror

[QAA02] Lin Qiao, Divyakant Agrawal, and Amr El Abbadi. “RHist: adaptive summariza-
tion over continuous data streams.” In CIKM, pp. 469–476, 2002.

[QHF04] T.T. Quan, S.C. Hui, ACM Fong, and T.H. Cao. “Automatic generation of ontol-
ogy for scholarly semantic web.” Proceedings of The Semantic Web–ISWC, pp.
726–740, 2004.

[RLR10] Karthik Raghunathan, Heeyoung Lee, Sudarshan Rangarajan, Nate Chambers,
Mihai Surdeanu, Dan Jurafsky, and Christopher D. Manning. “A Multi-Pass Sieve
for Coreference Resolution.” In EMNLP, pp. 492–501, 2010.

[SA96] Ramakrishnan Srikant and Rakesh Agrawal. “Mining Quantitative Association
Rules in Large Relational Tables.” In SIGMOD Conference, pp. 1–12, 1996.

[SAC79] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A.
Lorie, and Thomas G. Price. “Access Path Selection in a Relational Database
Management System.” In SIGMOD Conference, pp. 23–34, 1979.

[SBA04] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash
Suri. “Medians and Beyond: New Aggregation Techniques for Sensor Networks.”
CoRR, cs.DC/0408039, 2004.

[SC08] Veselin Stoyanov and Claire Cardie. “Topic identification for fine-grained opinion
analysis.” In Proceedings of COLING, pp. 817–824, Stroudsburg, PA, USA, 2008.

[Sem] “Semantic Web Information Management System (SWIMS).” http://
semscape.cs.ucla.edu.

[SKW08] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. “YAGO: A Large
Ontology from Wikipedia and WordNet.” J. Web Sem., 6(3):203–217, 2008.

[SLM02] Push Singh, Thomas Lin, Erik T. Mueller, Grace Lim, Travell Perkins, and Wan Li
Zhu. “Open Mind Common Sense: Knowledge Acquisition from the General
Public.” In Confederated International Conferences DOA, CoopIS and ODBASE,
London, UK, 2002.

[Sno06] Rion Snow. “Semantic taxonomy induction from heterogenous evidence.” In In
Proceedings of COLING/ACL 2006, pp. 801–808, 2006.

[SPA08] “SPARQL Query Language for RDF.” http://www.w3.org/TR/
rdf-sparql-query/, 2008.

[SPA12] “SPARQL Query Language for RDF.” http://www.w3.org/TR/
rdf-sparql-query/, 2012.

[SR98] Michael M. Stark and Richard F. Riesenfeld. “WordNet: An Electronic Lexical
Database.” In Proceedings of 11th Eurographics Workshop on Rendering. MIT
Press, 1998.

[SSW09] Fabian M. Suchanek, Mauro Sozio, and Gerhard Weikum. “SOFIE: a self-
organizing framework for information extraction.” In WWW, pp. 631–640, 2009.

218

http://semscape.cs.ucla.edu
http://semscape.cs.ucla.edu
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

[Sta14] “The Stanford Parser: A statistical parser.” http://nlp.stanford.edu/
software/lex-parser.shtml, 2014.

[TcZ07] Nesime Tatbul, Ugur Çetintemel, and Stanley B. Zdonik. “Staying FIT: Efficient
Load Shedding Techniques for Distributed Stream Processing.” In VLDB, pp.
159–170, 2007.

[TFK11] Yannis Theoharis, Irini Fundulaki, Grigoris Karvounarakis, and Vassilis
Christophides. “On Provenance of Queries on Semantic Web Data.” IEEE In-
ternet Computing, 15(1), 2011.

[TGN92] Douglas B. Terry, David Goldberg, David A. Nichols, and Brian M. Oki. “Contin-
uous Queries over Append-Only Databases.” In SIGMOD Conference, pp. 321–
330, 1992.

[THF06] Quan Thanh Tho, Siu Cheung Hui, A. C. M. Fong, and Tru Hoang Cao. “Au-
tomatic Fuzzy Ontology Generation for Semantic Web.” IEEE Trans. on Knowl.
and Data Eng., 18(6):842–856, June 2006.

[THP08] Yuanyuan Tian, Richard A. Hankins, and Jignesh M. Patel. “Efficient aggregation
for graph summarization.” In SIGMOD Conference, pp. 567–580, 2008.

[Tur01] Peter D. Turney. “Mining the Web for Synonyms: PMI-IR versus LSA on
TOEFL.” In Proceedings of the 12th European Conference on Machine Learn-
ing, EMCL ’01, pp. 491–502, London, UK, UK, 2001. Springer-Verlag.

[Vit85a] Jeffrey Scott Vitter. “Random Sampling with a Reservoir.” ACM Trans. Math.
Softw., 11(1):37–57, 1985.

[Vit85b] Jeffrey Scott Vitter. “Random Sampling with a Reservoir.” ACM Trans. Math.
Softw., 11(1):37–57, 1985.

[Vou95] Atro Voutilainen. “NPtool, a detector of English noun phrases.” CoRR, cmp-
lg/9502010, 1995.

[VW99] Jeffrey Scott Vitter and Min Wang. “Approximate Computation of Multidimen-
sional Aggregates of Sparse Data Using Wavelets.” In SIGMOD Conference, pp.
193–204, 1999.

[WAA01] Yi-Leh Wu, Divyakant Agrawal, and Amr El Abbadi. “Using the Golden Rule of
Sampling for Query Estimation.” In SIGMOD Conference, pp. 449–460, 2001.

[web10a] “Business Databases at UCLA Anderson, School of Management,
http://www.anderson.ucla.edu/x14506.xml.”, December 2010.

[web10b] “UCI Machine Learning Repository, http://archive.ics.uci.edu/ml/datasets.html.”,
December 2010.

219

http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu/software/lex-parser.shtml

[WHW08] Fei Wu, Raphael Hoffmann, and Daniel S. Weld. “Information extraction from
Wikipedia: moving down the long tail.” In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD ’08, pp.
731–739, New York, NY, USA, 2008. ACM.

[Wik] “Wikidata.” http://www.wikidata.org.

[Wik12] “Wikipedia.” http://www.wikipedia.org/, 2012.

[WLB12] Wilson Wong, Wei Liu, and Mohammed Bennamoun. “Ontology learning from
text: A look back and into the future.” ACM Comput. Surv., 44(4):20, 2012.

[WLH11] W.Wu, H. Li, H.Wang, and K. Zhu. “Towards a probabilistic taxonomy of many
concepts.” Technical report, 2011.

[WLW12] Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q. Zhu. “Probase: a proba-
bilistic taxonomy for text understanding.” SIGMOD ‘12, pp. 481–492, New York,
NY, USA, 2012. ACM.

[Wor12] “WordNet.” http://wordnet.princeton.edu/, 2012.

[WW08] Fei Wu and Daniel S. Weld. “Automatically refining the wikipedia infobox ontol-
ogy.” In WWW, pp. 635–644, 2008.

[WW10] Fei Wu and Daniel S. Weld. “Open Information Extraction Using Wikipedia.” In
ACL, pp. 118–127, 2010.

[YCB07] Alexander Yates, Michael Cafarella, Michele Banko, Oren Etzioni, Matthew
Broadhead, and Stephen Soderland. “TextRunner: open information extraction
on the web.” In Proceedings of Human Language Technologies, pp. 25–26, 2007.

[Zip49] G. K. Zipf. Human Behaviour and the Principle of Least Effort. Addison-Wesley,
Reading, MA, 1949.

[ZLX06] Ying Zhang, Xuemin Lin, Jian Xu, Flip Korn, and Wei Wang. “Space-efficient
Relative Error Order Sketch over Data Streams.” In ICDE, p. 51, 2006.

[ZW07a] Qi Zhang and Wei Wang. “An efficient algorithm for approximate biased quantile
computation in data streams.” In CIKM, pp. 1023–1026, 2007.

[ZW07b] Qi Zhang and Wei Wang. “A Fast Algorithm for Approximate Quantiles in High
Speed Data Streams.” In SSDBM, p. 29, 2007.

220

http://www.wikipedia.org/
http://wordnet.princeton.edu/

	Introduction
	Overview and Contributions
	Organization of the Dissertation

	SemScape: Structuring Free Text
	Preparing Parse Trees
	MainPart Trees
	TextGraphs
	Support for Exceptions
	Combining Confidence Value
	Enriching TextGraphs with Ontologies
	Graph Domain Patterns

	Coreference Resolution
	Recognizing Characters
	Mining Characters Context
	Finding Patterns for Coreferences
	Resolving Characters

	 Graph Matching Optimization

	IBminer: Generating Structured Summaries from Text
	Overview and Example
	Generating Semantic Links
	Extracting Semantic Links
	Computing Links Confidence
	Support for Exceptions
	Co-reference Resolution

	Mapping Links to Attributes
	Generating Potential Matches
	Selecting Best Categories
	Generating InfoBox Triples
	Type-checking
	Suggesting Secondary Matches

	Implementation
	Experimental Results
	Data Sets
	Precision/Recall Performance
	The Impact of Category Selection
	Results on New Domains
	Application-based Evaluation
	Large Scale Experiment:

	Related Work

	OntoHarvester: Automatic Ontology Generation from Free Text
	From Text to TextGraphs
	Ontology Generation
	Extracting Ontological Relations
	Extracting Concepts
	Extracting New Aliases
	Extracting New Relation Types

	Experimental Results
	Data Sets and Initial Ontologies
	OntoHarvester vs. CRCTOL
	The Impact of Seed Size
	OntoHarvester on Various Domains
	Application-Based Evaluation

	Related Work

	IKBstore: Knowledge Integration through IBminer
	Step A: Integrating Knowledge Bases
	Data Collection
	Data Integration

	Part B: Improving the Knowledge Base using Text Mining
	Generating new Structured Summaries
	Verifying Existing Structured Summaries
	InfoBox Templates Suggestion

	Step C: Context-aware Synonyms to Improve Consistency
	Generating Attribute Synonyms
	Generating Entity Synonyms

	Step D: Tools for Crowdsourcing

	Synopses and Summarization Techniques on massive data
	One-Pass Data Sets and Data Streaming Models
	Essential Queries in Massive Data Sets and Data Streams
	Existing Synopses
	Quantiles and Equi-Depth Histograms
	Biased Histograms and Quantiles
	Exponential Histogram Sketch
	Other Types of Histograms
	Other Synopses

	Sampling as the Most Common Summarization Technique
	Other Summarization Techniques

	A Fast- and Space-Efficient Equi-Depth Histogram
	Definitions
	BAr Splitting Histogram (BASH)
	Bars Initialization
	Merging and Splitting Operation
	Computing Final Buckets

	Formal Analysis
	Approximation Analysis
	Space Complexity Analysis
	Time Complexity Analysis

	Experimental Results
	Data Sets
	BASH Timing Results
	BASH Space Usage Results
	BASH Error Results
	Histograms vs Sampling
	Discussion

	Biased Histograms on Data Streams
	Biased Histogram Computation
	Definitions
	Bar-Splitting Biased Histogram (BSBH)
	Biased Sampling

	Formal Analysis
	Experimental Results
	Data sets
	BSBH versus CKMS
	Scalability
	Biased Sampling versus Uniform Sampling
	The Effect of Concept Shifts
	Discussion

	Related Work

	Conclusion and Future Work
	Future Research Directions

	References

