
UC San Diego
Technical Reports

Title
Cone: A Distributed Heap Approach to Resource Selection

Permalink
https://escholarship.org/uc/item/69g311p1

Authors
Bhagwan, Ranjita
Mahadevan, Priya
Varghese, George
et al.

Publication Date
2004-03-22

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/69g311p1
https://escholarship.org/uc/item/69g311p1#author
https://escholarship.org
http://www.cdlib.org/

Cone: A Distributed Heap Approach to Resource Selection

Ranjita Bhagwan, Priya Mahadevan, George Varghese, Geoffrey M. Voelker

University of California, San Diego

Abstract

In this paper, we propose a new distributed heap-based data

structure called Cone. Cone maintains an ordering of key

values in a distributed fashion, and can support queries of

the form, “Find x resources of size > S.” Cone can be built

on any routing substrate as long as the substrate supports

longest prefix match-based lookups. We describe the Cone

data structure, the operations it supports, and its load balanc-

ing properties. We have implemented and evaluated Cone

on a 1000-node ModelNet emulation platform and a 50-node

PlanetLab distributed testbed. We show that Cone has good

load-balancing properties and that it is stable and reactive

even when there is considerable amount of dynamism in the

system.

1 Introduction

Distributed Hash Tables (DHTs) are a popular architecture

for building wide-area distributed applications. They have

been used as the basic building block for a number of file-

sharing networks, storage systems, and content delivery net-

works. The root of this popularity lies in the fact that DHTs

provide very desirable properties such as resilience and self-

organization.

However, there are a number of other applications

such as distributed computing platforms [5], distributed

testbeds [14], and server selection for massively multi-player

online games [7] that would benefit from using DHTs, but

would not be very well supported by current popular DHT ar-

chitectures. DHTs have been largely limited to exact match

queries and support simple mapping and lookup operations,

while these applications require more advanced functional-

ity.

Consider the following example. A distributed computing

platform needs to discover four of the most lightly loaded

servers to run a compute-intensive application. DHTs in

their native state do not have any global information about

server load of hosts, and hence will not be able to perform

this resource discovery operation. Consequently, to build

peer-to-peer applications that require resource discovery of

this nature, a different kind of distributed data structure is

required. The data structure needs to be able to perform

queries of the nature “Find x resources that have value >

V” or “Find the x largest resources available”.

Thus a fundamental question we pose in this paper is to

ask whether a distributed data structure can go beyond ex-

act and range lookups to also provide heap functionality.

The answer to this question has both theoretical and prac-

tical ramifications. On the practical side, a positive answer

can offer similar benefits to P2P distributed computing and

other resource selection problems that scalable DHTs such

as Chord offer to P2P content sharing. On the theoretical

side, a positive answer opens the door to investigating other

distributed data structures with richer abstract operations.

In this paper, we propose a new distributed data structure

called Cone that implements a distributed heap to maintain

an ordering of objects based on their attributes — without

using an index. Cone can support ordering based on any

aggregate operator (such as max, min, sum, union, etc.).

In spite of having a tree structure, Cone has the same load-

balancing properties as a DHT. Cone is an independent data

structure and can be built on any routing substrate.

However, we believe that there is considerable intellec-

tual leverage building on the techniques already developed

within DHTs. Building on existing DHTs has the advantage

of adding new functions (heap functionality) without losing

useful older functions (exact match). Our general strategy is

to start with a Chord-like ring of identifiers, and then to build

a trie on these identifiers leading to a structure that resembles

a cone. We then augment the trie to contain additional in-

formation (e.g., the max resource value in the subtree).

Hence in this paper we also introduce the notion of aug-

menting DHTs — that is, starting with a DHT such as Chord

or CAN as a substrate, we show an instance of how one can

augment the DHT with minimal additional state to support

an additional data structure and functionality. However, it is

important to note that Cone does not use any of the DHT’s

primitives for querying: it only uses the DHT when a new

node joins or an old one leaves. As a result, in practice, we

believe Cone will be more efficient than solutions that use a

DHT-based index.

The main contributions of this paper are:

1. To introduce the generic approach of augmenting DHTs

to enhance their search capability. Our approach augments a

DHT and builds a prefix trie on node IDs and adds augment-

ing information to nodes. We illustrate this approach for the

most part using a Max operator applied to resource selection;

however, we also briefly comment on the generality of this

approach using other operators in Section 8.

2. To apply the augmentation approach to introduce a new

distributed data structure called a Cone. Cones support a

1

variety of queries to locate resources, such as locating a re-

source of maximum size or a resource of at least a given size.

For a DHT with N nodes and IDs of m bits, queries and up-

dates take an expected-case O(logN) and worst-case O(m)

messages.

3. To provide an analysis of the load-balancing properties

of Cone with minimal assumptions made on the probabil-

ity distribution of resources. Although Cone is essentially

a lightweight tree, we show that it has the same small load

imbalance factor as a DHT (i.e., log N). We also discuss

several techniques for balancing load in Cone.

4. We implement Cone and evaluate it on ModelNet, an

emulation framework for distributed systems, and on the

PlanetLab distributed testbed. Our experiments showcase

the performance and load balancing properties of Cone, and

also show how the data structure reacts to rapid changes in

key values and group membership in the system.

The rest of the paper is structured as follows. Section 2

describes related work. Section 3 describes the Cone data

structure and Section 4 presents the Cone operations and pro-

vide bounds on the number of messages used for the opera-

tions. In Section 5, we calculate the load imbalance factor in

Cone and describe several load-balancing technique to im-

prove it. In Section 6, we describe the system design and

implementation of the Cone data structure. In Section 7, we

present the results of our evaluation of the Cone system. In

Section 8, we discuss some extensions that could be applied

to the Cone data structure to enhance its functionality. Sec-

tion 9 summarizes the contributions of this paper, describes

future work and concludes.

2 Related Work

Iamnitchi et al. [11] propose heuristic solutions for decen-

tralized distributed resource discovery; heuristic solutions

may not scale well to a large number of resources. [1,16,17]

modify DHTs to do resource discovery by mapping key

ranges to different nodes in a DHT, with each node in the

DHT keeping track of all resources that fall within its key

range. These solutions have load-balancing problems, since

it is possible that a large number of resources have the same

key value and this could lead to overburdening some nodes

in the DHT. Also, node joins and leaves can cause a sub-

stantial amount of index copying and maintenance overhead.

Our approach circumvents these problems by not using dis-

tributed indices. Each host is responsible for maintaining its

own key value.

Systems such as Astrolabe [20], PIER [10] and

INS/Twine [3] also maintain distributed indices, but their

concentration is not on supporting range-based queries and

heap functions. SOMO [22] uses a tree-like overlay on

DHTs to perform metadata gathering and dissemination.

Cone is an augmentation to DHTs, and not a DHT over-

lay. Hence it does not require DHT-based lookups for op-

erations other than node join and leave. Moreover, SOMO

in its current form does not support range-based searches or

heap functions. SDIMS [21] concentrates on aggregating in-

formation in DHTs by mapping attribute names and values

along different routes in the DHT. In contrast, Cone does not

map information to the DHT ID space. In that sense, Cone is

an independent data structure, only using DHTs when hosts

join or leave.

Skip graphs [2] and SkipNet [9] can provide range

searches that can be used for resource location. They also

provide additional features such as enumerative queries. Our

approach does not support enumerative queries, but it can be

used to support any aggregate operator on keys (e.g., Max,

Sum, etc.) It appears fundamentally difficult to modify skip

graphs or SkipNet to also perform aggregate operations on

keys because there is no aggregating node (as in a tree) for a

level but instead there is a list of nodes. While we focus in

this paper on the Max aggregate operator, Cone can be used

for other operators as well, such as set union. Also, skip

graph operations in the worst case can take O(N) messages,

while Cone operations require O(m) messages in the worst

case, where m is the number of bits in the DHT ID.

3 Cone data structure

In this section, we describe the Cone data structure and how

it is integrated with a DHT. Although Cone can be built based

on any aggregate operator, for most of this paper we focus on

the Max operator. We briefly suggest other aggregate oper-

ators such as union in Section 8. As with a heap, the Cone

data structure is a tree of nodes, with the maximum key at

the root of each subtree. However, Cone differs from a stan-

dard heap in two ways. First, the same physical node can be

the root of all logical subtrees to which it belongs. Second,

the underlying tree is a trie, and hence may not be perfectly

balanced. We exploit these differences to smoothly integrate

Cone with DHTs.

Cone uses a simple binary tree-based data structure with

the following property. For any non-leaf node N :

N =

�

left(N) if left(N):key > right(N):key

right(N) otherwise

This formula implies that if a node N is at level l > 0 in the

tree, it is one of its own children. Further, this also implies

that node N exists in all levels 0; : : : ; l of the tree.

Figure 1 shows a simple example of a Cone tree for finding

the node with the maximum key. At the lowest level, two

sibling leaf node keys are compared and the node with the

larger key is made the parent. Next, the siblings at the next

level are compared; the larger one becomes the parent, and

so on. Finally, the root is the node with the largest key.

We now describe how the Cone structure can be integrated

with a DHT. Assume the DHT uses an m-bit ID space. The

Cone data structure starts with a trie built over the ID space

of the DHT. The trie has m levels with the DHT forming the

lowest level. When a node joins the DHT, it also joins the

2

7 5 10 6 4 5

7 10 6 5

10 6

10

Figure 1: A basic Cone tree.

5 10 6

5 10 6

10 6

10

DHT

-

IP2

-

IP2

-

-,IP1

-,IP5

-

-,IP1

-,IP5

-

-

IP2

-

-

IP2

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

Logical

represen-
tation

Physical
represen-

tation

Table

for
node 1

Table

for
node 2

Table

for
node 5

level 0

level 1

level 2

level 3

level 3

level 2

level 1

node ID

Figure 2: An example Cone tree constructed from 3 nodes over-

layed on a DHT with a 3-bit ID space. The 3 nodes have IDs 1,

2 and 5, with key values 5, 10 and 6, respectively. The tree is the

logical representation, while the tables for each node show how the

data structure is physically maintained in a distributed fashion.

lowest level of Cone, i.e., nodes form the Cone tree leaves.

Their positions in Cone are determined by their (random)

IDs. This ensures that node joins occur at random points in

the Cone tree, which is essential for load-balancing. Cone

is a dynamic data structure and nodes can join and leave at

any time, just as they join and leave the DHT. Cone can also

support multiple simultaneous joins and leaves to the extent

that the DHT can. Note that the Cone key is in no way related

to the DHT ID of the node. The ID only decides the node’s

position in the DHT and its position at the lowest level in

Cone; the key determines all positions that the node occupies

at the higher levels of Cone.

Figure 2 shows an example of a 3-bit Cone/DHT struc-

ture. The shaded circles denote nodes that have joined the

network with the corresponding IDs; unshaded circles repre-

sent unassigned node IDs. The tables below each node show

the state stored at the node used to maintain the Cone data

structure.

Each node in Cone maintains a table consisting of m en-

tries, one for each level of the tree. Each entry represents

an edge in the tree, and holds the IP address (not the DHT

ID) of the node which is the immediate parent of the node

at that level. If a node is a parent to a different node at a

given level, the table entry for that level also contains the IP

address of the child node. So a l

th-level table entry X;Y

for a node implies that at level l, its parent is x and its child,

apart from itself, is y. A “-” represents an edge from a node

to itself. For example, in Figure 2, node 1 has an edge to

itself from level 0 to level 1. This is because node 1 does

not have an immediate sibling, so by default it is its own par-

ent. However, since node 1’s key (5) is less than node 2’s

key (10), at the second level node 1 points to node 2. Hence

its table holds the IP address of 2 in the second position. To

complete the representation of this edge, the second table en-

try for node 2 also maintains the IP address of its immediate

child, which is node 1. Hence node 2’s second-level table

entry is “-, IP
1

”, denoting that node 2 is its own parent, and

its immediate child, other than itself, is node 1.

4 Cone operations

In this section, we show how Cone can be maintained in a

completely distributed fashion using O(logN) state at each

node. Cone supports four main operations — join, leave, find

and change key. We describe these in the following subsec-

tions. Note that in the following figures, we have simplified

the table entries of the form “IP
x

” to “X” for clarity.

4.1 Join

When a node R joins the network, it joins the DHT using

the DHT’s join operation. In addition, it also joins the Cone

tree by first using the DHT to find a node S with which it

shares the longest common prefix (its neighbour). Note that

S may not be unique. Using S, R finds the least common

ancestor (LCA) in the tree that it shares with S . This is

the point at which R joins the Cone tree. Figure 3 shows

an example. A node with ID 0 (binary:000) joins with key

20, as shown in Figure 3(a). Its neighbour, with which it

shares the longest common prefix, is node 1 (binary:001).

By comparing prefixes, node 0 knows that their LCA is at

level 1 of the tree, or at the 00* position of the trie, which in

this case is node 1 itself.

Once the LCA is found, the “trickling” phase of the insert

begins. The new node trickles up starting from the LCA; the

level up to which it goes is determined by its key. Going

back to the example, the two nodes 0 and 1 compare their

keys, finding that node 0 has a larger key (20) than node 1

(5). Hence the parent of the two nodes should now be node 0.

Node 0 enters “-, 1” in its first table entry, denoting that it is

its own immediate parent and its immediate child at level 1 is

node 1. Likewise, node 1 needs to change its table to reflect

that its parent at level 1 is node 0. It therefore replaces the

“-” in its first table entry with “0”, as shown in Figure 3(b).

At level 2, node 0 knows that it has to compare its key

with node 2 by referring to node 1’s table. In doing so, node

0 finds that it has a higher key than node 2, and a change

similar to the previous step results in Figure 3(c). Similarly,

at the third level, node 0 takes over as the root since it has a

higher key than node 2. From the third-level table entry of

3

20 5 10 6

5 10 6

10 6

10

-

-,1

-,5

-

-,1

-,5

0 1 2 3 4 5 6 7node ID 0 1 2 3 4 5 6 7node ID

-

-

2

-

-

2

-

2

-

2

?

?

?

?

?

?

(a)

20 5 10 6

20 10 6

10 6

10

-

-,1

-,5

-

-,1

-,5

0 1 2 3 4 5 6 7node ID 0 1 2 3 4 5 6 7node ID

-

-

2

-

-

2

0

2

0

2

-, 1

?

?

-, 1

?

?

(b)

20 5 10 6

20 10 6

20 6

10

-

0

-,5

-

0

-,5

0 1 2 3 4 5 6 7node ID 0 1 2 3 4 5 6 7node ID

-

-

2

-

-

2

00-

-,2

?

-

-,2

?

(c)

20 5 10 6

20 10 6

20 6

20

-

0

-

0

0 1 2 3 4 5 6 7node ID 0 1 2 3 4 5 6 7node ID

-

-

0

-

-

0

00-

-,2

-, 5

-

-,2

-, 5

(d)

Figure 3: The Cone join operation.

node 2, node 0 learns that node 5 was an immediate child of

node 2. As shown in Figure 3(d), it changes its own table to

make node 5 its child at level 3, and informs node 5 that it is

now its parent at level 3. Consequently, node 5 changes its

third-level table entry from 2 to 0. This concludes the join

operation.

Complexity: Both finding the least common ancestor

and the trickling take expected O(logN) messages, making

the expected number of messages required for a node join

O(logN).

4.2 Leave operation

When a node leaves the network unexpectedly, it can mo-

mentarily create up to m disconnected components of the

Cone tree. This is the worst case, which happens if the root

leaves. Consider the example tree shown in Figure 3(d).

Suppose the root leaves, as shown in Figure 4(a). This cre-

ates three disconnected subtrees of the Cone tree, shown in

Figure 4(b), which need to be reconnected. The roots of

these subtrees detect (by timeouts) that their parent has left

and make themselves their parents by changing their tables.

The stabilization of Cone after arbitrary failures relies on the

stabilization of the underlying DHT together with a simple

tree stabilization mechanisms in which each node periodi-

cally checks for and corrects (if necessary) its parent. As

shown in Figure 4(b), node 1 becomes its own parent at level

1, node 2 becomes its own parent at level 2, and node 5 be-

comes its own parent at level 3.

The reconnect operation proceeds as follows. Each

disconnected sub-tree root finds its parent using the DHT

and re-attaches to it. Node 1, which is the root of the sub-

tree consisting of nodes 0 (binary:000) and 1 (binary:001),

or what we call the “00* sub-tree”, needs to find its parent

at level 2, which is the node at position 0* in the trie. To

do so, node 1, using the DHT, looks up a node in the neigh-

bouring 01* sub-tree. Consequently, node 1 discovers node

2 (binary:010). Node 1 then uses node 2’s table to trace back

to the node at the 0* position in the trie, which in this case is

node 2 itself. This is shown in Figure 4(c). In this way node

1 can reconnect to node 2, its parent at the second level, and

the two nodes make appropriate adjustments to their table

entries. Similarly, to reconnect to the main tree, node 2 finds

node 5 and becomes its child at level 3. However, in the ex-

ample, node 5 has a smaller key than node 2. Consequently,

node 2 takes over as root after the nodes make the required

changes to their respective tables.

Complexity. The reconnect phase for every discon-

nected subtree takes expected O(log N) messages. This

is because the DHT lookup to find a node in the clos-

est subtree takes O(logN) messages, and the trace-back

to find the point of reconnection also takes O(logN) mes-

sages. The expected number of disconnected sub-trees is

O(logN). Hence the expected number of messages for

an involuntary leave to be handled is O((logN)

2

). How-

ever, the reconnect phases can be performed in parallel,

so the entire delete operation takes as long as the longest

reconnect phase, which is O(logN). Note that, if a

node terminates gracefully, the leave operation can be im-

plemented using O(logN) messages.

4.3 Find operations

The Cone data structure can be used to find a node contain-

ing a resource greater than a specified threshold x by starting

from any node in the DHT, and tracing up the tree until the

search reaches a node satisfying the given condition. At this

point search terminates. Hence the search completes with

expected O(logN) messages. Note that finding the largest

value node, a traditional heap operation, is a special case.

The Cone query messages traverse IP-level hops. Hence,

compared to DHT based solutions, Cone is much more ef-

ficient, since it does not use any DHT lookups to satisfy a

query.

4.4 Change key

Changing the key can be gracefully handled in Cone using

expected logN messages. A change in key value of a node

can cause it to be higher than that of its parent in the Cone

tree, or lower than its child. Thus the node either trickles up

(in the former case) or down (in the latter case) until the Cone

property is restored. Note that change key (O(logN) mes-

sages) is far more efficient than node deletion (O((logN)

2

)

messages). This is advantageous because we expect key

changes to be much more frequent (as resources get used

4

20 5 10 6

20 10 6

20 6

20

-

0

-

0

0 1 2 3 4 5 6 7node ID 0 1 2 3 4 5 6 7node ID

-

-

0

-

-

0

00-

-,2

-, 5

-

-,2

-, 5

(a)

5 10 6

5 10 6

10 6

6

-

-

-

-

0 1 2 3 4 5 6 7node ID 0 1 2 3 4 5 6 7node ID

-

-

-

-

-

-

--

(b)

5 10 6

5 10 6

10 6

10

-

-,1

-,5

-

-,1

-,5

0 1 2 3 4 5 6 7node ID 0 1 2 3 4 5 6 7node ID

-

-

2

-

-

2

-

2

-

2

(c)

Figure 4: The Cone leave operation.

and freed) than involuntary node failures. For example, in

a distributed computing application that builds Cone using

free CPU cycles as the key, when a new job starts on a host,

its key decreases, and when a job finishes executing, the key

increases.

5 Load Balancing

As in DHTs, some nodes in Cone (nodes at higher levels

in Cone) will experience more load than others. For DHTs

like Chord [18] the imbalance factor in the number of items

stored at a node is O(logN). Thus in Chord the load imbal-

ance factor (the expected ratio of the maximum load to the

minimum load faced by a node), assuming uniform access to

items, is also O(logN).

In this section, we first describe two kinds of load on a

node in Cone and then present an analysis that shows that,

despite the Cone data structure being a binary tree, the load

imbalance factor for both aspects of load-balancing is the

same as that of a DHT: O(logN). Moreover, the analysis

does not assume any specific distributions of resource values

(keys) or query values. Finally, we outline several techniques

that can be used to further improve load balancing in Cone.

In Cone, there are two aspects to load balancing:

Data traffic: The load of query satisfaction should be

shared equally by nodes that are capable of satisfying the

query. Let N
1

; : : : ; N

k

have key values greater than q. Let

P

D

(N

1

) be the probability that N
1

satisfies a query find

> q. Ideal data load balance is achieved when, for any

i; j � k; i 6= j; P

D

(N

i

) = P

D

(N

j

).

Control traffic: The amount of control traffic passing

through all nodes in the system should ideally be the same.

Let P
C

(N

i

) be the probability that, for some query, a con-

trol message is sent to node N
i

. Ideal control load balance is

achieved when for any i; j � k; i 6= j; P

C

(N

i

) = P

C

(N

j

).

In the following subsections we show that, in both data

and control load balancing, the imbalance factor is h, where

h = log(N) and N is the number of nodes in the system.

In our analysis, we assume that all nodes generate queries

using the same distribution, and have the same frequency of

requests. Note that we make no assumptions about the prob-

ability distribution of resources; thus our results are equally

valid for resource distributions that range from a uniform dis-

tribution to a power law.

Below, we assume for simplicity that the number of nodes

in the Cone tree, which is N , is equal to the total number of

IDs allowed in the DHT, which is 2m. However, the results

generalize to provide identical results for the more general

case that the number of nodes is smaller than 2

m.

5.1 Data traffic load

The worst-case data load imbalance occurs when two nodes

N

1

and N

2

are the only two nodes that can satisfy a given

query, and one of these nodes, say N
2

, is at the root (adding

more nodes only reduces data imbalance). If N
1

is a leaf,

the data imbalance can be O(N). Fortunately, the analysis

below shows that randomization of node IDs makes this sce-

nario relatively rare.

In the degenerate case, N
1

and N
2

hash to the same value

in the DHT. The probability of this happening is 1=2h. In

this case, one node say N

1

does not respond to any queries

other than the ones that originate at N
1

itself, while all the

other data load is taken by N

2

, which forms the root of the

Cone tree, and therefore has a maximum height of h. Hence

the difference in levels of the two nodes is h. This scenario

creates the maximum imbalance factor for the the data traffic

load faced by two nodes in Cone, which is 2h�1. Similarly,

for the case that the two nodes are adjacent in the DHT, N
1

stays at level 0 while N
2

goes up to level h. In this case too,

the imbalance factor is 2h � 1. The probability of the two

nodes being adjacent in the DHT is 1/2h.

We now generalize this observation. Let N
2

be the larger

of the two nodes. Then, the probability that N
1

is in an ad-

jacent sub-tree of height k is 2

k/2h, since the mapping of

nodes to IDs is random. Hence the probability of the two

nodes N
1

and N
2

being in adjacent sub-trees each of height

k is 1/2h�k, and N
2

loses to N
1

at level k.

Also, the probability that N
1

satisfies the query is 2k/2h,

assuming the query starts at a randomly chosen point in the

5

N2

N2

N2

N2

k

2k-1

N1

Figure 5: Control traffic load imbalance in Cone.

Cone tree. All other queries go to N
2

. Hence the probability

that N
2

satisfies the query is 1 - 2k=2h. This makes the ratio

of the data traffic load of the two nodes (2h�2

k

)=2

k. So for

a fixed value of k, the expected value of the data imbalance

is (1=2h�k)(2h � 2

k

)=2

k = (2

h

� 2

k

)=2

h.

Summing over all values of k, we can calculate the ex-

pected value of the data imbalance factor as

2

h

� 1

2

h

+

1

2

h

((2

h

� 1) + (2

h

� 2) + : : :+ (2

h

� 2

h�1

))

= 1�

1

2

h

+ h� �

n

k=1

1

2

k

= h = logN

5.2 Control traffic load

We now calculate the maximum control imbalance factor in

the Cone tree. For this analysis, we assume that the key value

distribution is the same as the query value distribution, and

that this distribution is continuous.

Consider the Cone tree depicted in Figure 5. The proba-

bility that any query originating at node N
1

will reach its an-

cestor node N
2

at level k is equal to the probability that the

query value is larger than the key values of all 2k�1 nodes

in the sub-tree of height k � 1. This is the same as picking

2

k�1 + 1 (where the extra one represents the query) samples

from a distribution, and estimating the probability that one of

them (i.e., the query) is the maximum (Note that because the

distribution is continuous we can ignore the probability that

the key value is equal to one of the 2

k�1 resource values.).

By symmetry any sample could be the maximum with equal

probability, and hence this probability is 1=(2k�1 + 1).

Next, the number of nodes from which queries can reach

N

2

at level k is 2

k�1. Recall that N
2

is one of its own

children (its right child in Figure 5 at level k), and no re-

quests come to N

2

at level k from the right sub-tree, since

all request messages to it from this sub-tree are accounted

for at earlier levels. Hence the expected number of queries

reaching N

2

at level k is that coming from only the left

sub-tree, which is 2k�1 � 1=(2k�1 + 1). Consequently, the

root of the Cone tree has to handle an expected number of

�

h

k=1

(2

k�1

=(2

k�1

+1)) < h query messages, since the root

is present at every level of the tree. On the other hand, a node

that occupies only a leaf position in the Cone tree needs to

handle an expected value of 1 control message. Hence the

control imbalance factor is h = logN .

If the key distribution and the query distribution are dis-

tinct, we can no longer rely on symmetry and the results will

depend on the specific distributions chosen. However, the

basic framework of the analysis can still be reused. It is pos-

sible that for largely varying key and query distributions, the

imbalance factor will be high, with nodes closer to the root

facing larger amounts of control traffic. In such cases, nodes

can use the change key operation to demote themselves in

the tree, which will in effect reduce the amount of control

traffic they deal with. In Section 7.3, We evaluate our imple-

mentation of the Cone data structure and confirm the results

of this analysis.

5.3 Load balancing techniques

In our analysis for control load we have assumed that the

query distribution is the smae as the control distribution.

However, this may not be the case, and the load imbalance

factor can be high in certain situations. There exist several

techniques that mitigate this problem. In this section, we

shortly describe these techniques, a few of which we evalu-

ate in more detail.

One technique that can be used to further balance control

load is to use what we call random fingers. In this technique,

when a query is made at a node N
1

, it first checks if it satis-

fies the query. If not, it tries f other nodes in the DHT to see

if they satisfy the query. It could use the nodes that already

exist in its routing table. If not, the query is propagated up

the Cone tree. It is possible that these random queries satisfy

the query, and so we do not have to use the Cone tree to find a

suitable query result. Since the routing table already has the

IP address of the nodes, using the random fingers approach

will increase the query cost by at most f DHT hops.

Another technique to balance load is to use a variable

node degree. The analysis indicates that both data and con-

trol load imbalance are proportional to tree height. Thus the

simplest technique to reduce imbalance further is to use tries

of higher radix (rather than the binary tries we used so far).

Note that higher node degrees also makes search proportion-

ately faster, at the cost of making node joins and leaves more

expensive, which is a preferable trade-off because we expect

joins and leaves to occur much less frequently than queries.

Nodes at lower levels can cache previous query results,

thereby reducing the control traffic load on nodes at higher

levels. However, stale cache entries can result in repeated

queries in the Cone tree, thus increasing the control load. It

remains to be seen how these two opposing trends interact.

The use of Virtual servers to perform load-balancing has

been studied in [15]. A node can create several virtual

servers, the number of which depends on its key value. Do-

ing so potentially improves the data load imbalance factor of

the system.

Apart from the techniques mentioned above, several

6

CHORD

Connectivity
mainenance

APPLICATION

Query

Consistency

maintenance

Query

propagation

CONE

Figure 6: Global overview of the system.

application-level techniques may also be applied to the Cone

structure. Let us consider an example of resource selection

application where the host’s key represents the amount of

free resources on that node. In this case, when a host X sat-

isfies a query made by a node Y , Y may use some resources

on X thus reducing X’s key value. In that case, X may drop

down to lower levels in the Cone structure, thereby reducing

the control and data load on that host. We evaluate one such

strategy in Section 7.

6 System Design and Implementation

In this section we describe the software architecture and

design that we used to implement the Cone data structure.

We also describe how our system deals with disconnections

caused by multiple simultaneous failures of clients.

6.1 System structure

Figure 6 gives a global picture of the system. Cone is layered

on the Chord DHT and interacts with it only when nodes join

or leave the system. At these times, Cone uses the DHT’s

lookup primitive to find other hosts in the system to connect

with. The application uses an interface that the Cone system

provides for its queries. All query traffic and data structure

consistency maintenance is internal to Cone and does not use

the DHT.

Now we describe the design and the various components

of the Cone system that are implemented on each host in the

system. The system architecture, as shown in Figure 7 con-

sists principally of four components: the connectivity man-

ager, the key comparator, the prober, and the query resolver.

Each component is described below.

The Cone API supports two main operations: set key

and query. The application uses the former to change the

key value of the host, while it uses the latter to query the

data structure. The API can be accessed remotely, so that an

Connectivity
Manager

Key
Comparator

Prober Query

Resolver

Chord Module

Routing API

Neighboring

Prober

Neighboring

Chord Module

NeighborTable

parent

child-1

child-2

child-l

Application

Cone API

Connectivity
Manager

Key
Comparator

Key
Comparator

ProberProber Query

Resolver

Query

Resolver

Chord ModuleChord Module

Routing APIRouting API

Neighboring

Prober

Neighboring

Chord Module

Neighboring

Chord Module

NeighborTable

parent

child-1

child-2

child-1

child-2

child-l

Application

Cone APICone API

Figure 7: The Cone system design. All components within

the shaded area are part of the Cone system.

application can communicate with the Cone layer of a host

over the network.

The connectivity manager is responsible for keeping the

Cone client connected to the rest of the system. It performs

three major functions: it implements the join procedure as

described in Section 4.1 and the reconnect procedure that

follows a leave as explained in Section 4.2. When the client

first joins the system, the connectivity manager requests the

address of the closest neighbour from the routing API, af-

ter which it executes the join operation. The connectivity

manager uses the prober to poll the client’s parent so that it

may detect when the parent leaves, disconnecting the client

(and the sub-tree rooted at the client) from the rest of the

system. When such a disconnect happens, the connectivity

manager uses the Routing API to find another client to con-

nect to, as explained in Section 4.2. It is also responsible

for accepting and responding to join and reconnect re-

quests from other clients in the system.

The key comparator’s principal function is to maintain the

consistency of the data structure, i.e., it maintains the invari-

ant that the key of the parent is always greater than or equal

to that of its child. This component also uses the prober to

poll the parent node. If it discovers that the parent’s key is

smaller than its own key, it takes over as the parent.

The main function of the prober is to poll the host’s parent

and supply information on the availability and the key value

of the parent to the connectivity manager and the key com-

parator. In our implementation, the prober polls its parent

every second. It should be noted that the prober only probes

the parent, and no other node. This simplifies the system

design in two main ways — first, the client does not have

to store any hard state related to its children, and second,

by ensuring that all probes go in one direction (upwards), we

7

2 5 10 6

5 10 6

10 8

10

8

82 5 10 6

5 10 6

10 8

10

8

8

(a)

2 5 6

5 6
RECONNECT

RECONNECT

2 5 6

5 6

2 5 6

5 6
RECONNECT

RECONNECT

(b)

2 5 6

5 6

5

2 5 6

5 6

5

(c)

2 5 6

5 6

6

2 5 6

5 6

6

(d)

Figure 8: Dealing with simultaneous failures.

avoid several race conditions and cycles that could be caused

in the process of maintaining structure connectivity and con-

sistency. We note that the prober does not use the Chord

layer for communication with other Cone clients.

The query resolver The Cone API forwards all query re-

quests to the query resolver. Given the query parameters,

it first checks to see if the host satisfies the query request.

If not, it returns the address of the parent. Hence our cur-

rent implementation of Cone supports only iterative queries.

However, we intend to extend the query resolver to support

recursive queries as well.

The routing API provides a longest prefix match-based

lookup operation to Cone. In our implementation we

use Chord as the routing substrate, which provides clos-

est successor-based lookup. However, since Cone requires

longest prefix match-based routing, the API implementation

requires a wrapper around Chord to extract a longest prefix

match from it. The Chord lookup implementation can pro-

vide both the predecessor and the successor of a given ID.

We now show that either the predecessor or the successor

will have a longest prefix match with the ID.

Claim: Consider an ID, say LR

1

, and an ID LR

2

which

provides the longest prefix match to LR

1

. L is the longest

prefix that is common to the two IDs. Now, let us say that

there exists an IDA betweenLR
1

andLR
2

such thatLR
1

<

A < LR

2

. In other words,A is closer to LR
1

than LR2 is to

LR

1

. Then, A also provides a longest prefix match to LR
1

.

Proof: We shall prove this claim by contradiction. Sup-

pose A did not have a longest prefix match with LR
1

. Then,

let A be L0

MR

3

, such that jL0

j < jLj, which means that A

differs from bothLR
1

andLR
2

in a more significant bit than

LR

1

and LR
2

do from each other. But if this is the case, ei-

ther A < LR

1

or A > LR

2

, which is a contradiction. By

symmetry this argument would hold also for the case that

LR

2

< A < LR

1

.

So Chord can be used to lookup an ID LR

1

and obtain

the two hosts that are losest to this ID, the predecessor and

the successor. Using the above claim we conclude that one

of the two has to provide a host ID with the longest prefix

match to LR
1

.

Using this simple principle, we build a wrapper around

Chord to implement longest prefix match-based lookups.

This wrapper serves as the routing API.

6.2 Dealing with simultaneous failures

In Section 3, we explained how the Cone data structure re-

covers when a single node leaves the system. However, in

reality, it is possible that multiple Cone clients may leave the

system simultaneously. In this case, there could be multiple

disconnected sub-trees of varying heights seeking to recon-

nect. To reconnect, each sub-tree root seeks a node in its

neighbouring sub-tree. However, in the scenario of multiple

simultaneous disconnects, it is possible that client C
A

from

sub-tree A sends a reconnect request to client C
B

from

sub-tree B, and vice-versa. This could potentially cause a

cycle. To break this cycle, we use a global arbitrary ordering

of requests — if a client C
A

receives a reconnect request

from a client C
B

to which it has already sent a reconnect

request, it takes over as parent of C
B

if and only if its ID is

less than that of C
B

.

We show an example of such an event in Figure 8. Two

nodes, with keys 10 and 6, simultaneously fail, as shown in

Figure 8(a). This causes two disconnected sub-trees of the

same height, and the roots of these two sub-trees both start

the reconnect operation to each other (Figure 8(b)). This

potentially causes a cycle. The tie is broken when the node

with key 5 detects that it is trying to reconnect to the same

node from which it has received a reconnect request. It

realizes that there have been multiple simultaneous failures,

promotes itself to root, and takes over as the parent of node

with key 6 (Figure 8(c)). Following this, the key comparator

detects the inconsistency in the data structure and corrects

it (Figure 8 (d)). In this way, we ensure that after a tran-

sient period of disconnectivity, the data structure stabilizes

and reaches a consistent state.

6.3 Implementation Status

We have implemented Cone using MIT’s implementation of

the Chord DHT, and ibasync, part of the SFS toolkit [13].

The current implementation consists of all the system com-

ponents described above. While we have implemented the

Cone data structure in its totality in our prototype, there are

several optimizations that we have not yet implemented, but

intend to in the near future.

8

7 Prototype Evaluation

We evaluated the Cone implementation in two different net-

work environments, the ModelNet [19] emulation platform

and the PlanetLab [14] distributed testbed. With Model-

Net we evaluated large-scale Cone deployments of 1,000

hosts on an emulated network, and with PlanetLab we evalu-

ated smaller-scale Cone deployments of 50 hosts widely dis-

tributed on the Internet. Using these testbeds, we evaluated

the worst-case performance of the Cone implementation, its

load balancing properties, and its performance and behavior

under highly dynamic system configurations.

7.1 Testbeds

We used the ModelNet and PlanetLab testbeds to evaluate

the Cone implementation. ModelNet consists of edge ma-

chines and emulator machines. The edge nodes are respon-

sible for hosting the target applications (Cone and the query

executables). The emulator nodes are responsible for impos-

ing the hop-by-hop delay, bandwidth, loss rate, and conges-

tion of an Internet topology. For our experiments, we used

a 10,000 node INET [6] topology with both bandwidth and

latency limits. We used 10 2Ghz Pentium-4’s running Linux

2.4.20 as our edge machines and multiplexed 1,000 instances

of Cone daemons across these 10 machines. This is feasi-

ble since Cone is neither bandwidth nor CPU intensive. We

used two emulator machines (1.4Ghz Pentium III, running

FreeBSD-4.7) to impose the specified network attributes, in-

cluding loss rate and congestion, among the Cone daemons

running on the edge machines.

We also ran our system on a 50-node PlanetLab popula-

tion. The PlanetLab nodes chosen were primarily distributed

across educational institutions in the Continental USA. Each

PlanetLab host ran one instance of the Cone daemon.

In all of our experiments on both testbeds, each host held

a single key value, and each child host probed its parent host

every 1 second to maintain the consistency of the data struc-

ture.

7.2 Performance

In our first experiment we evaluate the worst-case perfor-

mance of Cone on ModelNet and on PlanetLab. To perform

this evaluation, we first start a Cone system with a fixed size.

The keys assigned to the hosts followed an exponential dis-

tribution with mean 50,000. We gave the system time to sta-

bilize and the data structure to become consistent. We then

queried every host in the system for the maximum key value

in a round-robin fashion, i.e., after the query to one node re-

turned, we immediately queried the next node. The time to

query the maximum is the worst-case query time, since ev-

ery query will be routed to the root of the Cone tree. We

performed 10 such iterations of querying every node in the

system.

On ModelNet, we repeated the experiment for system

sizes of 10, 50, 100 and 1000. On PlanetLab, we used sys-

tems of size 10, 20, 30, 40 and 50. Figure 9 shows the aver-

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 100 1000

T
im

e
 (

m
s
)

No. of PlanetLab hosts

PlanetLab
ModelNet

Figure 9: Worst-case performance of Cone:Comparison be-

tween ModelNet and PlanetLab.

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140

P
e

rc
e

n
ta

g
e

 o
f

n
o

d
e

s

Number of queries

data load
control load

Figure 10: Distribution of the load on nodes using exponen-

tial key distribution and exponential query distribution with

the same mean of 50,000.

age query time for the maximum key for systems of different

sizes on ModelNet and on PlanetLab. From the ModelNet

results, we see that worst-case query time of Cone increases

logarithmically with system size. It is difficult to make such

observations with the PlanetLab curve since the population

is small. However, we see a sizable difference in the perfor-

mance of the system on the two frameworks. We believe that

this is because ModelNet uses an INET topology with band-

width and latency constraints, while the PlanetLab hosts are

located in well-connected educational institutions many of

which are connected to each other on Internet2.

7.3 Load balancing

We evaluated the load-balancing properties of Cone on a

1000-node ModelNet population. In this section, we de-

scribe our methodology and summarize our results.

The experimental setup was as follows. We emulated 1000

hosts on ModelNet, with each host running an instance of

9

0

10

20

30

40

50

60

0 20 40 60 80 100 120

P
e

rc
e

n
ta

g
e

 o
f

n
o

d
e

s

Number of queries

data load
control load

Figure 11: Distribution of the load on nodes using exponen-

tial key distribution and uniform random query distribution

with the same mean of 50,000

Cone. The Cone keys were chosen from an exponential dis-

tribution with a mean value of 50000. Once the Cone data

structure had stabilized, we queried each of the 1000 hosts

in a round-robin fashion for a specific query value, say X.

Hence the queries were of the form, “Find 1 resource with

key value at least X”. For each experiment, we performed 10

iterations of round-robin queries across all hosts for a total

of 10,000 queries.

The goal of our first experiment was to confirm our the-

oretical analysis of the load balancing properties of Cone

when key and query distribution are the same. Therefore

in our first load-balancing experiment, the query values also

followed an exponential distribution with a mean value of

50,000. Once the queries completed, we measured how

many of the queries were satisfied by each host, thereby cal-

culating the data load for each host. We also measured how

many query messages went through each host, thereby cal-

culating the control load on each host.

Figure 10 shows the distribution of the data load and con-

trol load for all 1000 hosts. We calculated that both the data

load and control load values for 90% of all nodes are within

one standard deviation of the mean, thereby confirming our

hypothesis about a good load balance being achieved when

both node keys and query keys follow the same distribution.

Furthermore, we found that the maximum control load on

any node is roughly 124, while the minimum is 10. This

makes the control imbalance factor for the system 12.4. Ac-

cording to our analysis for control load in Section 5.2, the

control load imbalance should be log(N), which is our case

is 10 (since there are 1000 nodes). The empirical value of

control imbalance is only slightly more than the expected

control imbalance factor, supporting our earlier analytical

findings.

To see how using different key and query distributions af-

fects load balance, we repeated the above experiment with

the queries instead following a uniform random distribution

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16 18 20

P
e

rc
e

n
ta

g
e

 o
f

n
o

d
e

s

Number of queries

data load
control load

Figure 12: CDF of load on nodes using exponential key and

query distributions, key values decrease by the query values.

with the same mean value of 50,000. The key distribution

remained exponential with the same mean. Figure 11 plots

the control load and data load distributions for the queries.

In spite of differing key and query distributions, the load-

balancing for this setup is good, with 90% of all nodes hav-

ing a load within one standard deviation of the mean. The

control load imbalance for this graph is less than 10.

We mentioned in Section 7.3 that applications can use

an application-specific load-balancing technique to improve

load-balancing. We now evaluate one such technique.

Let us consider a resource selection application, such as

a distributed computing platform, in which the resource is

CPU cycles and the key of each host represents the num-

ber of CPU cycles it is willing to provide. The application

queries Cone to provide it with a host that has at leastX CPU

cycles to provide. Once Cone responds with the address of a

suitable host, say H , the application runs a job on the host,

effectively decreasing the available CPU cycles on H by X .

Hence the key value of H drops, and H also drops down to

lower levels in the Cone tree. This will have the affect of

reducing both the control and data load on H . So, the more

queries that the host H satisfies, the lower its key gets. This

drops it further down the Cone tree, thereby reducing both

its control and data load.

To investigate the effectiveness of this application behav-

ior, we performed the query experiment using the same ex-

ponential key distribution with mean 50,000. In this exper-

iment, however, we use an exponential query distribution

with mean 1000. And each time a host satisfies a query, we

reduce its key by the query value. All other parameters for

the experiment remain the same as before.

Figure 12 shows the results of this experiment. In this

case, we see that the maximum data load and control load

(number of queries) on hosts are 18 and 19, respectively,

which is much smaller than that shown in Figures 10 and 11.

As a result, we conclude that application-specific load-

balancing techniques can be successful in balancing both

10

data and control load on Cone.

7.4 System Dynamics

Our main goal in this section is to explore how well Cone

operates when faced with a large amount of dynamism in the

system, created not only by key value changes, but also by

membership changes. We first show how Cone copes with

frequent key changes while the membership remains con-

stant. We then explore how Cone reacts with membership

changes as well as key changes.

7.4.1 Changes in key value

In this section, we evaluate three key aspects of Cone: its

reactiveness to rapid changes in key values, its stability to

random and frequent changes in key values, and the accuracy

of its query results.

To do this evaluation, we performed the following exper-

iment. We ran Cone on 50 PlanetLab machines chosen to

be geographically distributed across the continental USA.

The experiment consisted of running two separate processes,

vary-ds and query-ds. At a high level, vary-ds cre-

ates the Cone data structure and causes it to change fre-

quently, while query-ds queries the Cone data structure to

find the host with the maximum key value. Both processes

run on a local (not PlanetLab) machine and they communi-

cate with the Cone daemons on the PlanetLab hosts using the

Cone API.

The vary-ds process starts the Cone daemon on all

PlanetLab hosts and it initializes the key value for the hosts

using the set key operation. It sets keys of the hosts based

on an exponential distribution with a mean value of 50,000.

Once the Cone daemon is running on all 50 hosts, vary-ds

iteratively changes the keys of hosts in the following way. In

each iteration, it generates one change key event, either

on the host with the maximum key or on a randomly chosen

host according to a random choice. For each change key,

vary-ds chooses a new key from the same exponential dis-

tribution with mean 50,000. By changing the key of the

maximum host, vary-ds forces the maximum key value

to drop. By changing the key of a randomly chosen host,

vary-ds maintains the intended key value distribution in

the system. In both cases, it introduces inconsistency into

the data structure and forces Cone to adapt and re-arrange it-

self. Introducing change in the system every 6 seconds is an

aggressive policy. Using the analogy of half-life of a peer-

to-peer system as defined in [12], this implies that half the

system is changing state in 25x6=150 seconds, or every two-

and-a-half minutes. For applications such as a distributed

computing platform, this translates to the application ask-

ing for resources and changes the resource values of half the

hosts in the system every two-and-a-half minutes, thus mak-

ing it a very dynamic system.

The query-ds process queries the Cone data structure

to find the maximum key. It runs on the same local ma-

chine as vary-ds and uses the Cone API on the Planet-

Lab host to make the query. It uses a round-robin strategy

 0

 50000

 100000

 150000

 200000

 250000

 300000

 20 22 24 26 28 30

M
a

x
im

u
m

 k
e

y
 v

a
lu

e

Time (minutes)

Cone
Actual

Figure 13: The reactiveness of Cone to key changes in the

PlanetLab experiment.

to make queries, i.e., after the query to one host completes,

query-ds starts querying the next host without delay, and

so on. One cycle of queries takes approximately 18 seconds

to complete.

We keep the two processes vary-ds and query-ds in-

dependent and unsynchronized since we wish to model how

applications will interact with Cone: some applications will

be changing the key values while others will query the data

structure.

Both processes run continuously for approximately 50

minutes. Figure 13 shows the results of this experiment from

minute 20 through minute 30 of the experiment. The x-axis

shows time duration in minutes, while the y-axis shows the

maximum key values. The dotted line shows the true maxi-

mum key value, while the bold line shows Cone’s replies to

queries for the maximum key.

In terms of reactiveness, the figure shows that there is a

brief lag between when the maximum value changes and

when the Cone queries begin to return the new maximum

value. On the average, this lag is 2.2 seconds. From the per-

formance results in Figure 9, we see that query time for a

50-host PlanetLab system is approximately 360 ms. Thus,

on an average, 180 ms out of the 2.2 second-lag is purely

query time added on after the system has reached a consis-

tent state. So, it roughly takes 2 seconds for the system to

stabilize. Considering that the parent query interval is 1 sec-

ond, the system takes an average of only 2 probe periods to

regain consistency after a change in the maximum value. Of

course, for larger systems this probe period will be higher,

but the increase would be logarithmic in the size of the sys-

tem given the structure of Cone.

The absolute time that Cone takes to reach a consistent

state can be further reduced by increasing the frequency at

which hosts probe their parents. Hence there is a trade-off

between the reactiveness of the system and the bandwidth

used to maintain the consistency of the data structure. We

calculated that to maintain a 50-host Cone, the system re-

11

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50

A
c
c
u

ra
c
y

Time (minutes)

Change key ever 6 sec
Change key every 30 sec

Figure 14: The accuracy of Cone in the PlanetLab experi-

ment, with key values changing frequently.

quires roughly 760 bps per host on average. This includes

not only the traffic that Cone generates, but also the traf-

fic that Chord generates for DHT maintenance. We intend

to study how this bandwidth usage changes with different

probing frequencies in Cone.

Figure 13 also shows that the Cone data structure remains

stable in spite of random key changes and frequent changes

to the maximum key value. It responds correctly to queries

albeit with a lag of 2.2 seconds on the average. On some

occasions, the query results dip considerably when the the

maximum key changes. This happens to the queries that

query-ds issues before the child of the host with the pre-

vious maximum key probes its parent and discovers that its

parent does not hold the maximum key any more. In this

situation, it routes all queries to its parent, even though the

parent no longer holds the maximum key value. This situ-

ation can be remedied if the child, before responding to the

query, checked to see if its parent still holds the maximum

key. We intend to add this optimization to the system in the

near future.

Finally, we evaluated the accuracy of Cone. We define the

accuracy of a set of Cone queries as the percentage of these

queries that were successful in retrieving the true maximum

key. First, we repeated the above experiment by changing

keys every 30 seconds instead of every 6 seconds. All other

parameters remained the same as the previous run. We then

measured the accuracy of Cone for the two experiments, ag-

gregating every 250 successive queries. In our experiments,

250 queries were made approximately every 100 seconds.

In Figure 14, we plot the level of accuracy for the two ex-

periments versus time. The accuracy for the first run (key

changes every 6 seconds) is not very good. This is not sur-

prising since, as we calculated, there is an average lag of

2.2 seconds for every change in maximum value, and that

the maximum value changes at least once every 12 seconds

on average. The ratio of time that Cone returns an incorrect

maximum value is therefore approximately 2.2/12, which is

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 2 4 6 8 10

M
a

x
im

u
m

 k
e

y
 v

a
lu

e

Time duration (minutes)

Cone
Actual

Figure 15: Key changes in PlanetLab.

0.18. Hence the expected accuracy is 82%. The calculated

average accuracy for this curve over the entire experiment is

87.9%.

For the second run of the experiment, the accuracy is bet-

ter. This is because the lag of 2.2 seconds forms a con-

siderably smaller fraction of the time duration of 30 sec-

onds between changes of the maximum key. This fraction

is 0.07, which makes the expected value or accuracy 93%.

The calculated average accuracy for this run is 97.4%. Us-

ing the same calculation, we determine that to achieve 99%

accuracy, the time duration between maximum key changes

should be at least 2.2/0.01 = 220 seconds. However, note that

since increasing the probe frequency decreases the lag, it will

also increase the level of accuracy. We intend to explore how

this probe frequency affects the lag, and as a consequence,

the accuracy of Cone.

7.4.2 Changes in membership

To measure how Cone’s reactiveness is affected by member-

ship changes, we next performed an experiment in which the

hosts as well as the maximum key in the system changed pe-

riodically. The experimental setup was as follows. We used

a population of 50 PlanetLab hosts. They use an exponen-

tial key distribution with a mean of 50,000. To perform this

experiment, we had three controlling processes: join-ds,

leave-ds, and query-ds.

The join-ds process causes hosts to join the Cone sys-

tem. It uses a Poisson process with a mean inter-arrival time

of 12 seconds to control the join events. The leave-ds

process causes the host with the maximum key to leave the

Cone system. It also uses a Poisson process with the same

mean of 12 seconds to model inter-departure times. The

leave-ds process always makes the node with the max-

imum key leave so that it induces a considerable amount of

churn in the system within the duration for which this exper-

iment was run. As in the previous experiment, we also had

a query-ds process that continuously queried all nodes in

the system in a round-robin fashion.

12

At the start of the experiment, only join-ds operates

until 40 of the PlanetLab hosts have joined the system. At

this point, both the join-ds and the leave-ds processes

operate, thus keeping the steady state size of the system at

40. The half-life of the system in the course of this ex-

periment was therefore 6*20 = 120 seconds, or 2 minutes.

We use such a small half-life so that we can evaluate the

Cone system under a significant amount of stress. Note that

query-ds also starts running right at the start of the exper-

iment.

We ran this experiment for 10 minutes. Figure 15 shows

the results of this run. The x-axis shows the time duration

of the experiment, while the y-axis shows the maximum key

values in the system. We plot one curve for the actual maxi-

mum key value of the system and one for the query responses

that Cone provides. We first see an increase in the maximum

value as more and more hosts join the system. We see a sud-

den increase after the 1st minute of the run because a host

joined the system with a key of roughly 370,000 (mean value

is 50,000). All subsequently joining nodes had a smaller key

value, and hence this host stayed as the root of the Cone

structure until the leave-ds process started.

Once the leave-ds process started, the maximum key

value in the system fell. As in the previous experiment with

key changes, we notice that there is a lag between when the

key changed and when Cone responded to the key change

with correct query results. On average in this experiment,

this lag is 6.6 seconds. This is more significant than in the

previous case since host joins and leaves create a lot of re-

ordering not only in Cone, but also in the Chord DHT. While

for this experiment, a lag of 6.6 seconds causes the accuracy

of the system to be low, namely 45%. However this is be-

cause the half-life of the experimental system was extremely

aggressive, i.e., 2 minutes. In a recent study [4], the findings

indicated that the half-life of a highly dynamic wide-area

file-sharing system was approximately 4 hours. Using this

more realistic value of half-life, we measure the accuracy to

be 99%.

8 Extensions to Cone

In this paper, we have concentrated on designing and evalu-

ating the Cone data structure for the Max operator with one

key value per host, In reality, the Cone structure is much

more generic. In this section, we describe some extensions

that can be applied to Cone to broaden the range of applica-

tions it can be used with.

Using Cone for multiple data items per host: While cone

uses only one key value per host, one could extend it to sup-

port multiple data items per host. Each host in Cone could

maintain a list of data items which are sorted based on their

key values. A host advertises its key as the maximum of

all keys that it stores. The advertised key value of a host can

change when new keys are inserted in the system, or old keys

are removed from it. Hence key inserts and deletes translate

to the change key operation describe earlier. However,

to prevent data item loss when a Cone host leaves the sys-

tem, the keys have to be replicated on a number of other

hosts. This is a generic shortcoming of all distributed index-

ing schemes.

Using multiple attributes in a single Cone: Cone supports

ordering based on one key value. However, this key could be

constructed in many ways. For example, if we want to rep-

resent two attribute values in a single key, we can use several

database techniques such as bit-interleaving. This approach

does have some problems since bit-interleaving reduces the

accuracy of the ordering. This can be mitigated by perform-

ing multiple queries on Cone and selecting the result which

best matches our query.

Using Cone for union operations: In this paper, our con-

centration has been on the Max (or greater than) operator.

The descriptions in this paper hold for any operation that de-

scribes a total order. However, with a few changes, Cone

can also be used for operations such as union. To do this, a

parent node holds the union of its child’s values and its own

values. When one searches for a particular value in the sys-

tem, the request trickles up the Cone tree until it finds a node

that holds the value in its union set. The request then trickles

down one path in the Cone tree until it finds the node that first

advertised the requested value. Hence the maximum number

of hops in this case would be 2log(N).

9 Conclusion and Future Work

In essence, Cone builds a tree over random IDs assigned

to nodes. The standard argument against trees (compared

to richer hypercube-like interconnections such as Chord and

Pastry) is that of load balance and fault tolerance. For a tree,

it may appear that all requests must pass through the root,

leading to a O(N) load imbalance. However, the combina-

tion of random assignment of resources to tree leaves (re-

gardless of resource values, because of random ID assign-

ment) and short-cutting at sub-trees is surprisingly powerful.

Our analysis and evaluation confirm this. The Cone struc-

ture remains stable in the face of rapid key value changes

and rapid membership changes.

A fundamental trade-off we made while designing Cone

was to give up some functionality for simplicity and per-

formance. Cone in its current form cannot efficiently sup-

port enumerative operations such as “Find all objects with

value V”. However, for our targeted applications, we believe

this nature of query to be of secondary importance. How-

ever, we intend to develop algorithms to efficiently support

closed-range queries such as “Find an object that has value

> V and < W”. We also intend to explore the possibilities

of supporting multiple attributes using well-known database

techniques such as bit-interleaving. Another direction of ex-

ploration is building Cone without a DHT. Since Cone is a

heap as well as a trie , it can also be used for routing based

on identifiers [8].

13

In the near future, we plan to study how the reactiveness of

Cone can be improved by changing probe values and by pig-

gybacking key value probes on query traffic. We believe that

these changes will significantly improve the lag we saw in

Section 7.4. We also wish to implement caching in the Cone

system. This will not only reduce query time, but it will

also help to load-balance the control traffic in Cone. Apart

from these, we also intend to implement recursive lookups in

Cone. We also wish to study in more detail the Cone exten-

sions mentioned in Section 8. Completely working out such

extensions will take us closer to realize the promise of the

general approach of augmentation.

References

[1] A. Andrzejak and Z. Xu. Scalable, efficient range queries for

grid information services. In Proceedings of P2P2002.

[2] J. Aspnes and G. Shah. Skip graphs. In Fourteenth Annual

ACM-SIAM Symposium on Discrete Algorithms, 2003.

[3] M. Balazinska, H. Balakrishnan, and D. Karger. INS/Twine:

A scalable peer-to-peer architecture for intentional resource

discovery. In Proceedings of Pervasive2002, 2002.

[4] R. Bhagwan, S. Savage, and G. M. Voelker. Understanding

availability. In Proceedings of the second international work-

shop on peer-to-peer systems (IPTPS), 2003.

[5] Berkeley open infrastructure for network computing (boinc).

http://boinc.ssl.berkeley.edu/.

[6] H. Chang et al. Towards capturing representative as-level in-

ternet topologies. In Proc. of ACM SIGMETRICS, 2002.

[7] Everquest website. http://everquest.station.sony.com.

[8] M. J. Freedman and R. Vingralek. Efficient peer-to-peer

lookup based on a distributed trie. In Proceedings of IPTPS,

2002.

[9] N. J. A. Harvey et al. SkipNet:a scalable overlay network with

practical locality properties. In Proceedings of USITS 2003,

Seattle, WA.

[10] R. Huebsch et al. Querying the internet with PIER. In Twenty-

ninth International Conference on Very Large Data Bases,

Berlin, Germany, September 2003.

[11] A. Iamnitchi and I. Foster. On fully decentralized resource

discovery in grid environments. In International Workshop

on Grid Computing, 2001.

[12] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis

of the evolution of peer-to-peer systems. In Proceedings of

PODC, 2002.

[13] D. Mazieres. A toolkit for user-level file systems. In Proc. of

the Usenix technical conference, 2001.

[14] The PlanetLab website. http://www.planet-lab.org.

[15] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Sto-

ica. Load balancing in structured p2p systems. In Proceedings

of IPTPS 2003.

[16] C. Schmidt and M. Parashar. Flexible information discovery

in decentralized distributed systems. In Proceedings of HPDC

2003, Seattle, WA.

[17] D. Spence and T. Harris. XenoSearch: Distributed resource

discovery in the XenoServer open platform. In Proceedings

of HPDC 2003, Seattle, WA.

[18] I. Stoica et al. Chord: A scalable peer-to-peer lookup service

for internet applications. In Proceedings of ACM SIGCOMM,

2001.

[19] A. Vahdat et al. Scalability and accuracy in a large-scale net-

work emulator. In Proc. of OSDI, 2002.

[20] R. van Renesse, K. P. Birman, and W. Vogels. Astrolabe: A

robust and scalable technology for distributed systems moni-

toring, management, and data mining. ACM Transactions on

Computer Systems, 21(3), 2003.

[21] P. Yalagandula and M. Dahlin. A scalable distributed infor-

mation management system. Technical Report Tr-03-47, Uni-

versity of Texas, Austin.

[22] Z. Zhang, S.-M. Shi, and J. Zhu. SOMO: Self-organized

metadata overlay for resource management in p2p dht. In Pro-

ceedings of IPTPS 2003.

14

