Acute reversal of phospholamban inhibition facilitates the rhythmic whole-cell propagating calcium waves in isolated ventricular myocytes.

Authors
Chan, Yi-Hsin
Tsai, Wei-Chung
Song, Zhen
et al.

Publication Date
2015-03-01

DOI
10.1016/j.yjmcc.2014.12.024

Peer reviewed
Acute reversal of phospholamban inhibition facilitates the rhythmic whole-cell propagating calcium waves in isolated ventricular myocytes

Yi-Hsin Chan,a,b Wei-Chung Tsai,a,c Zhen Song,d Christopher Y. Ko,d Zhilin Qu,d James N. Weiss,d Shien-Fong Lin,a,e Peng-Sheng Chen,c Larry R. Jones,b Zhenhui Chen,a,b

A R T I C L E I N F O

Article history:
Received 23 September 2014
Received in revised form 8 December 2014
Accepted 30 December 2014
Available online 14 January 2015

Keywords:
Calcium
Sarcoplasmic reticulum
Phospholamban
Spontaneous calcium waves

A B S T R A C T

Phospholamban (PLB) inhibits the activity of cardiac sarcoplasmic reticulum (SR) Ca^{2+}-ATPase (SERCA2a). Phosphorylation of PLB during sympathetic activation reverses SERCA2a inhibition, increasing SR Ca^{2+} uptake. However, sympathetic activation also modulates multiple other intracellular targets in ventricular myocytes (VMs), making it impossible to determine the specific effects of the reversal of PLB inhibition on the spontaneous SR Ca^{2+} release. Therefore, it remains unclear how PLB regulates rhythmic activity in VMs.

Here, we used the Fab fragment of 2D12, a monoclonal anti-PLB antibody, to test how acute reversal of PLB inhibition affects the spontaneous SR Ca^{2+} release in normal VMs. Ca^{2+} sparks and spontaneous Ca^{2+} waves (SCWs) were recorded in the line-scan mode of confocal microscopy using the Ca^{2+}-fluorescent dye Fluo-4 in isolated permeabilized mouse VMs. Fab, which reverses PLB inhibition, significantly increased the frequency, amplitude, and spatial/temporal spread of Ca^{2+} sparks in VMs exposed to 50 nM free [Ca^{2+}]. At physiological diastolic free [Ca^{2+}] (100–200 nM), Fab facilitated the formation of whole-cell propagating SCWs. At higher free [Ca^{2+}], Fab increased the frequency and velocity, but decreased the decay time of the SCWs. cAMP had little additional effect on the frequency or morphology of Ca^{2+} sparks or SCWs after Fab addition. These findings were complemented by computer simulations. In conclusion, acute reversal of PLB inhibition alone significantly increased the spontaneous SR Ca^{2+} release, leading to the facilitation and organization of whole-cell propagating SCWs in normal VMs. PLB thus plays a key role in subcellular Ca^{2+} dynamics and rhythmic activity of VMs.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The rate at which Ca^{2+} is pumped into the lumen of cardiac sarcoplasmic reticulum (SR) by the SR Ca^{2+}-ATPase (SERCA2a) is tightly controlled by the regulatory protein phospholamban (PLB) [1,2]. Dephosphorylated PLB inhibits SERCA2a activity while increased β-adrenergic stimulation phosphorylates PLB by cAMP-dependent protein kinase (PKA) and Ca^{2+}/calmodulin-dependent protein kinase (CaMKII), reversing SERCA2a inhibition, thus enhancing the Ca^{2+} uptake into cardiac SR [3,4]. Multiple studies in living ventricular myocytes (VMs) treated with isoproterenol or the monoclonal anti-PLB antibody 2D12 [5,6], or isolated from PLB transgenic and knockout (PLB-KO) mice [7–10] have demonstrated that PLB modulates intracellular Ca^{2+} dynamics, regulating both inotropy and lusitropy.

In diastole, SR Ca^{2+} may be released via cardiac ryanodine receptor channel (RyR2) as Ca^{2+} sparks or spontaneous Ca^{2+} waves (SCWs), a process that is important to physiological rhythm and pathophysiological conditions such as the formation of delayed afterdepolarizations (DADs) and the syndrome of catecholaminergic polymorphic ventricular tachycardia (CPVT) [11–13]. The regulation of spontaneous SR Ca^{2+} release is very complicated, and involves many regulatory factors including both cytoplasmic and luminal Ca^{2+} [14], multiple protein kinases (e.g., PKA and CaMKII) [15–17], and junctional regulatory protein complexes [18,19]. Within this complex system, the specific role of PLB in the regulation of spontaneous SR Ca^{2+} release during β-adrenergic stimulation in VMs remains unclear. One reason is that besides PLB, β-adrenergic stimulation also phosphorylates RyR2 and other Ca^{2+} handling proteins regulating the SR Ca^{2+} release, making it impossible to
delineate whether the reversal of PLB inhibition alone is sufficient to augment spontaneous SR Ca²⁺ release and cause cell-wide SCWs. Previous studies using PLB-KO mice suggest that PLB ablation increases inotropy but not chronotropy [7]. However, the chronic absence of PLB induces multiple adaptive changes of intracellular Ca²⁺ handling proteins [20,21]. The specific role of PLB in rhythmic control in VM remains unclear.

PLB, as a key component of the Ca²⁺ clock, has also been shown to influence rhythmic activity of sinoatrial node cells [22]. Recent studies also indicate that PLB plays a key role in modulating the rhythmic Ca²⁺ activity in VMs. In particular, Kapoor et al. demonstrated that expression of Tbx18 induced rhythmic intracellular Ca²⁺ cycling events in VMs, mimicking the “Ca²⁺ clock” of native sinoatrial node cells. In this process, phosphorylation of PLB was 65-fold higher than that in the control VMs, indicating that the modulation of PLB helps to generate rhythmic activity [23]. Sirenek et al. also demonstrated that permeabilized VMs showed increased spontaneous Ca²⁺ releases with the self-organized and partial synchronization of Ca²⁺ sparks after PLB inhibition by drugs or 2D12 [24]. On the other hand, Bai et al. demonstrated that despite severe SR Ca²⁺ leak with multiple Ca²⁺ sparks or small wavelets, VMs from PLB-KO mice break up the formation of organized and whole-cell propagating SCWs in triggering the DADS [25]. They further showed that PLB ablation actually suppressed triggered activity and stress-induced ventricular tachycardia in the mouse model of PLB-KO plus RyR2 mutation. While these studies point to the regulation of rhythmic Ca²⁺ activity by PLB in VM, an important question that remains to be addressed is whether accelerating SR Ca²⁺ uptake by specifically removing PLB inhibition of the Ca²⁺ pump is pro-arrhythmic (i.e. increasing the automaticity in normal VMs) [24] or anti-arrhythmic (i.e. suppressing the DADS in the CPVT model) [25] in VMs.

In this study, we took advantage of the specific action of the Fab fragment of the monoclonal anti-PLB antibody 2D12 in blocking the interaction between PLB and SERCA2a in isolated permeabilized (skinned) murine VMs [5,6,26]. We demonstrate that acute and specific reversal of PLB inhibition can significantly increase the frequency, amplitude, and spatial/temporal spread of Ca²⁺ sparks, leading to the facilitation and organization of whole-cell propagating SCWs. These findings were complemented by computer simulations studying the effects of reversal of PLB inhibition in VMs [27,28].

2. Materials and Methods

2.1. Myocyte preparation

The study protocols were approved by the Institutional Animal Care and Use Committee of the Indiana University School of Medicine and the Methodist Research Institute, Indianapolis, Indiana. Hearts from adult C57Bl/6 mice were quickly excised by thoracotomy and retrogradely perfused on a Langendorff apparatus maintained at 37 °C. Hearts from adult C57Bl/6 mice were quickly excised by thoracotomy and the Methodist Research Institute, Indianapolis, Indiana. The study protocols were approved by the Institutional Animal Care and Use Committee of the Indiana University School of Medicine and the Methodist Research Institute, Indianapolis, Indiana. Hearts from adult C57Bl/6 mice were quickly excised by thoracotomy and retrogradely perfused on a Langendorff apparatus maintained at 37 °C. The enzyme digestion step consisted of perfusing Tyrode’s solution containing 1 mg/ml collagenase (Type II, 300 U/mg; Worthington) and 0.1 mg/ml protease (Type XIV, ≥ 3.5 U/mg; Sigma) for 6 min. Ventricular myocytes (VMs) were dissociated from digested ventricles by gentle mechanical dissociation and used within 3 h. The modified Tyrode’s solution contained (in mM) 136 NaCl, 5.4 KCl, 0.33 NaH₂PO₄, 1.0 MgCl₂, 10 HEPES, and 10 glucose, pH 7.4 (NaOH). All chemicals were obtained from Sigma unless indicated otherwise.

2.2. Myocyte permeabilization

VM membranes were permeabilized with saponin (0.005% w/v) for 60 s in a mock internal solution composed of (in mM) 100 potassium aspartate, 20 KCl, 10 HEPES, 0.5 EGTA, and 0.75 MgCl₂, pH 7.2 (KOH). Permeabilized VMs were then resuspended in a saponin-free mock internal solution composed of (in mM) 100 potassium aspartate, 20 KCl, 5 KH₂PO₄, 5 MgATP, 10 phosphocreatine, 5 U/ml creatine phosphokinase, 10 HEPES, 0.5 EGTA, 1 MgCl₂ (free), 0.015 Fluo-4 (Invitrogen), and 8% w/v dextran (molecular weight ~40,000; to prevent osmotic swelling), pH 7.2 (KOH) [27]. CaCl₂ was added to make free [Ca²⁺] of 50 nM to 1 μM. Free Ca²⁺ concentration and Mg²⁺ concentration were calculated with the use of WebMaxC Extended (maxchelator.stanford.edu). All experiments were performed at room temperature.

2.3. Fab fragment of 2012 antibody and labeling

Fab fragment of affinity-purified 2D12 was made using a commercial kit (Pierce). In some experiments, 2D12 and Fab were covalently labeled with Alexa-594 (Invitrogen).

2.4. Ca²⁺ spark/wave imaging and immunostaining imaging of the confocal microscopy

We imaged spontaneous Ca²⁺ activity by using the Leica TCS SP8 LSCM inverted microscope fitted with a > 40 x 1.24 NA oil immersion objective. The Ca²⁺ indicator dye Fluo-4 was excited at 488 nm wavelength with an argon/krypton laser with intensity attenuated to 1–3%. Emission wavelengths > 510 nm were detected by the photomultiplier. Fluorescence intensity space–time recordings were acquired in the line-scan mode (1.69 ms/line, 3000 lines/recording) along the longitudinal axis of the myocyte and digitized into 1024 × 1024 pixel images (8-bit) line-scan with nominal pixel dimensions of 98 nm. In some experiments, permeabilized VMs incubated in an internal solution with Fluo-4 were stained with Fab or 2D12 label with Alexa Fluor 594 nm at a concentration of 20 μM/mL for one hour. Samples were then directly examined by microscopy using the > 40 x 1.24 NA oil immersion objective and a pixel size of 138 nm. The immuno-histological images of Fab-PLB or 2D12-PLB label with Alexa Fluor 594 nm were obtained by illumination with 561 nm laser light, while fluorescence was collected in the long-pass range of > 580 nm by the photomultiplier.

2.5. Ca²⁺ spark detection and analysis

The SparkMaster plug-in for ImageJ software [29] was used to detect and analyze Ca²⁺ sparks. The analysis parameters were as follows: scanning speed, 502.0 lines/s; pixel size, 0.08–0.13 μm; spark threshold criteria, 3.8; background, 550–1330; and analysis intervals, 5 [27]. We measured Ca²⁺ spark cluster sizes (spatial widths in line-scan) using a custom algorithm that defines a Ca²⁺ spark cluster as Ca²⁺ sparks separated by less than the single spark average full-width in space and the single spark average full-duration in time.

2.6. Ca²⁺-ATPase assay

Ca²⁺-dependent ATPase activities of canine SR membranes were measured using an enzyme-coupled spectrophotometric assay [26]. The rate of NADH decay was measured at 340 nm in a SPECTRAMAX® PLUS (Molecular Devices) microplate spectrophotometer at 37 °C with 2 μg of membrane protein in buffer containing 50 mM MOPS (pH 7.0), 3 mM MgCl₂, 100 mM KCl, 5 mM Na₂SO₄, 3 μg/ml of the Ca²⁺ ionophore A23187, 3 mM ATP, and Ca²⁺/EGTA as indicated. Ca²⁺-ATPase activities were measured in the presence and absence of anti-PLB monoclonal antibody 2D12 or the Fab fragment of 2D12. All ATPase activities reported are Ca²⁺-dependent.

2.7. Computational simulation

We used a VM Ca²⁺ cycling model to simulate the Ca²⁺ sparks and waves in VMs with PLB inhibition [30]. In brief, the model is a three-dimensional Ca²⁺ release unit (CRU) network (65 × 27 × 11 = 19,305 CRUs) with the CRUs coupled via Ca²⁺ diffusion in the myoplasmic space and SR. Each CRU contains a cluster of 100 RyR channels, which were simulated using random Markov transitions. All simulations were...
carried out by clamping the membrane voltage at -80 mV. $[\text{Ca}^{2+}]_o = 10 \text{nM}$ was used to overload the cell to promote Ca$^{2+}$ waves. To simulate the effect of PLB inhibition by Fab, the K_Ca of the SR uptake was reduced. Computer simulations were performed on a single NVIDIA Tesla C2050 high-performance Fermi-based graphics-processing unit. Details regarding the numerical algorithms and implementation computing can be found in our recent publication [31].

2.8. Statistics

Data were expressed as means \pm SEM. The statistical significance was evaluated by t-test and analysis of variance (ANOVA) followed by Bonferroni post hoc tests. A value of $P < 0.05$ was considered statistically significant.

3. Results

3.1. Characterization of Fab fragment of 2012

Compared to the absence of antibody (Con, squares), both Fab ($+ \text{Fab}$, triangles) and 2D12 (+2D12, circles) shifted the Ca$^{2+}$-activation curve of the Ca$^{2+}$-dependent ATPase activity of cardiac SR membranes to the left, decreasing the K_Ca value from $0.30 \pm 0.04 \mu M$ to $0.15 \pm 0.03 \mu M$ and $0.11 \pm 0.02 \mu M$ ($n = 6, P = 0.02$ compared to control), respectively (Fig. 1A), thus restoring the high apparent Ca$^{2+}$ affinity of the Ca$^{2+}$ pump. These results suggest that the Fab, similar to the well-studied 2D12 [26], almost completely reversed PLB inhibition. Fab increased the Ca$^{2+}$-ATPase activity more than 2-fold at low free Ca$^{2+}$ concentrations (from 50 to 200 nM) as compared to the absence of PLB inhibition. However, Fab did not affect the maximal enzyme velocity of Ca$^{2+}$-ATPase activity at saturating Ca$^{2+}$ concentrations. Similar results were obtained when Ca$^{2+}$ uptake by SR vesicles was measured (data not shown).

We tested the binding efficacy of Fab or 2D12 to PLB in permeabilized, semi-intact VMs. Fab or 2D12, covalently labeled with Alexa-594 (20 μg/ml), was added directly to the bath and permeabilized VMs were imaged with confocal microscopy (Fig. 1B). After 15 min of antibody incubation, we found strong immunofluorescent signals showing a characteristic cross-striated staining pattern at about 2 μm intervals, suggesting that Fab penetrated well into permeabilized VMs and efficiently bound to PLB. In contrast, 2D12 fluorescence was usually localized at the periphery of the VMs and did not penetrate deep into VMs. In control experiments, we incubated permeabilized VMs with Fab (covalently labeled with Alexa-594) and peptide containing PLB residue 1–31. As shown in Fig. 1G, PLB1-31 completely blocked Fab binding to PLB, confirming the high specificity of Fab binding to PLB.

In addition, co-incubation with Fab (covalently labeled with Alexa-594) and the monoclonal anti-SERCA2a antibody 2A7-A1 (covalently labeled with Alexa-488) revealed co-localization of signals, consistent with the close proximity of the two proteins (Fig. 1H to J). These results suggest that Fab, as compared to the 2D12, is a better reagent for penetrating into the SR myocytes, and binds to native PLB more completely in the SR membrane of permeabilized VMs.

3.2. Effect of Fab on Ca$^{2+}$ sparks/SCWs

We next studied how Fab binding to PLB affects intracellular Ca$^{2+}$ cycling in VMs. Fig. 2 shows confocal images of Ca$^{2+}$ fluorescence from the Fluo-4 Ca$^{2+}$ indicator and immunofluorescence from Fab in the same permeabilized VM before and after the addition of Alexa-594-labeled Fab. At the baseline, 50 nM free [Ca$^{2+}$] produced multiple Ca$^{2+}$ sparks (Fig. 2A, left panel), which is consistent with the results of previous studies [16]. Approximately 15 min after Fab incubation, Ca$^{2+}$ spark clusters and mini-waves increased significantly (from 0.7 ± 0.1 to 1.9 ± 0.8 Hz) (Fig. 2A, middle panel). The background Ca$^{2+}$ signal decreased, which may result from a transient reduction in cytosolic Ca$^{2+}$ by increased SERCA2a uptake until a new leak–uptake balance is reached for SR. At the same time, Fig. 2B and C show the development of strong immunofluorescent signals from Alexa-594-labeled Fab in the same VM, confirming that PLB was bound efficiently by Fab (Fig. 2C). Furthermore, the SERCA inhibitor, thapsigargin (10 μM), completely abolished Ca$^{2+}$ sparks and clusters (Fig. 2A, right panel). These results suggest that Fab binding to PLB reverses its inhibition of SERCA2a. As a result, higher SR Ca$^{2+}$ contents caused increased spontaneous SR Ca$^{2+}$ release events.

cAMP activates PKA, leading to phosphorylation of PLB at Ser16 and reversal of PLB inhibition (Supplementary Figure S1), thus augmenting SR Ca$^{2+}$ content and spontaneous Ca$^{2+}$ release [3,24,32]. We used the cAMP response as a control to verify the extent of the Fab effect. We sequentially added cAMP before or after Fab or 2D12 addition to myocytes. Fig. 3A shows that with 200 nM free [Ca$^{2+}$], 2D12 only slightly increased the frequency of Ca$^{2+}$ sparks but did not generate SCW,
consistent with the findings of Sirenko et al. [24]. However, 20 μM cAMP following 2D12 incubation caused a transition from stochastic Ca\(^{2+}\) sparks to periodic and whole-cell SCWs, consistent with the previously reported effect of cAMP [24]. Importantly, as shown in Fig. 3B, Fab alone changed the Ca\(^{2+}\) activity from sparks/macrosparks into periodic and whole-cell propagating SCWs. Sequential addition of cAMP had little effect on the morphology or frequency of SCW in the VMs already treated with Fab (Fig. 3B, right panel). In separate experiments in which we
added cAMP first, the addition of Fab had no further effect on SCWs generated by cAMP (Fig. 3C). The above results demonstrate that Fab, which specifically dissociates PLB from the SERCA2a and reverses PLB inhibition, dramatically increases spontaneous Ca²⁺ release in VMs. Again, due to its poor binding efficiency in permeabilized VMs, 2D12 only marginally altered intracellular Ca²⁺ dynamics. These experiments show for the first time that acute elimination of PLB inhibition itself is sufficient to facilitate the formation of SCWs in VMs.

The specificity of Fab in the dose- and time-dependent effect on spontaneous subcellular Ca²⁺ releases was further studied in VMs.
Fig. 4A shows the time course of the XT line-scan of a VM exposed to 200 nM of free \([\text{Ca}^{2+}]\) after the addition of Fab (100 μg/ml). In 5 min, the \(\text{Ca}^{2+}\) activity evolved from small \(\text{Ca}^{2+}\) sparks at baseline into chains of \(\text{Ca}^{2+}\) clusters with increased amplitude, temporal and spatial spread. Fifteen minutes after the addition of Fab, periodic and organized SCWs propagated over the entire VM (Fig. 4A). In addition, Fig. 4B shows the time interval of 15 min after Fab was gradually titrated up in the cell suspension. As exposure concentration of Fab increased, the \(\text{Ca}^{2+}\) activity evolved from rare small \(\text{Ca}^{2+}\) spark clusters at baseline into chains of \(\text{Ca}^{2+}\) sparks and SCWs. The maximal effect of Fab was saturated after 40 μg/ml. In control experiments, the addition of affinity-purified monoclonal anti-SERCA2a antibody, 2A7-A1, which was purified in the same buffer as for 2D12, had no effect on the spontaneous subcellular \(\text{Ca}^{2+}\) release activity over 1 h (data not shown).

3.3. The \(\text{Ca}^{2+}\)-dependency of Fab effect in VMs

We recorded the local \(\text{Ca}^{2+}\) release in the XT line-scan in permeabilized VMs before and after Fab application (100 μg/ml) at different free \([\text{Ca}^{2+}]\) (Fig. 5). In each experiment, cAMP (20 μM) was added into the cell suspension 30 min after Fab application to test for any further change in local \(\text{Ca}^{2+}\) release. At 50 nM free \([\text{Ca}^{2+}]\), there were multiple stochastic spontaneous \(\text{Ca}^{2+}\) sparks in VMs at baseline (Fig. 5A). After Fab application, the frequency of \(\text{Ca}^{2+}\) sparks was increased about 1.5-fold from 11.3 ± 5.4 sparks s\(^{-1}\) (100 μm)\(^{-1}\) at baseline to 17.1 ± 4.8 sparks s\(^{-1}\) (100 μm)\(^{-1}\) (n = 12, P = 0.002). In addition, macrosparks and mini-waves were noted after Fab administration (Fig. 5A). The properties of the \(\text{Ca}^{2+}\) sparks at baseline and after Fab are summarized in Table 1. In particular, the amplitude of sparks increased from 1.7 ± 0.4 in \(F/F_0\) at baseline to 2.9 ± 0.8 in \(F/F_0\) (P = 0.002); the full-width at half-maximal amplitude (FWHM) increased from 2.2 ± 0.3 to 2.4 ± 0.3 μm (P = 0.04); the full duration at half-maximal amplitude (FDHM) increased from 20.5 ± 3.4 to 23.3 ± 3.4 ms (P = 0.002). There were no differences in the time constant of \(\text{Ca}^{2+}\) spark decay between the baseline vs Fab administration. cAMP (20 μM) after Fab application did not further change the frequency or morphology of \(\text{Ca}^{2+}\) sparks (Fig. 5A and Table 1). All these results suggest that Fab inhibition of PLB increased the frequency and magnitude of local \(\text{Ca}^{2+}\) release.

With physiological diastolic free \([\text{Ca}^{2+}]\) of 100 and 200 nM in permeabilized VMs at baseline, there were multiple \(\text{Ca}^{2+}\) sparks but no whole-cell SCW (Fig. 5B and C, panel a). After Fab administration, periodic SCWs formed and propagated in the whole-cell (P < 0.001). Table 2 shows characteristics of SCWs. Again, it should be noted that the formation of SCWs was accompanied by a significant reduction in background fluorescence, consistent with increased SR \(\text{Ca}^{2+}\) uptake and lowered cytoplasmic \(\text{Ca}^{2+}\) concentration after adding Fab (compare traces b to a in Fig. 5B and C). At 400 nM free \([\text{Ca}^{2+}]\), Fab converted the fractured partial organized SCWs at baseline into highly synchronized and organized SCWs (Fig. 5D). Further, in addition to increasing the amplitude (2.9 ± 0.3 vs 4.4 ± 0.4 in \(F/F_0\), P < 0.001) and shortening the \(\text{Ca}^{2+}\) decay time of SCWs from 89 ± 14 to 52 ± 8 ms after Fab addition (P < 0.001, Table 2), Fab significantly increased the frequency of the SCWs from 1.1 ± 0.4 to 1.6 ± 0.5 Hz (P = 0.001) (compare traces b to a in Fig. 5D). At 500 nM free \([\text{Ca}^{2+}]\), there were already periodic and organized SCWs in the VMs at baseline (Fig. 5E, panel a). As expected,

Figure 4. Time- and dose-dependent effects of Fab on intracellular \(\text{Ca}^{2+}\) activity. Confocal \(\text{Ca}^{2+}\) imaging of permeabilized VMs used Fluo-4 \(\text{Ca}^{2+}\) indicator under the line-scan mode. Baseline was obtained in the absence of Fab under the free \([\text{Ca}^{2+}]\) of 200 nM. (A) \(\text{Ca}^{2+}\) images were obtained at various time points (top) after Fab exposure (100 μg/ml). (B) \(\text{Ca}^{2+}\) images were obtained after the addition of Fab sequentially (top) at a time interval of 15 min. Plots were averages of at least 4 VMs.
Fab decreased the Ca\(^{2+}\) decay time of SCWs from 74 ± 12 to 54 ± 4 ms after Fab addition (\(P < 0.001\), Fig. 5E, red arrows), which is consistent with the idea that relief of PLB inhibition of SECA2a by Fab speeds up Ca\(^{2+}\) uptake. Importantly, Fab further increased the frequency of SCWs from 2.4 ± 0.1 at baseline to 2.8 ± 0.2 Hz, \(P < 0.001\) (Fig. 5E). In addition, Fab increased SCW velocity at these Ca\(^{2+}\) concentrations.
Table 1

Spontaneous Ca\(^{2+}\) wave characteristics.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Total spark number</th>
<th>Peak amplitude (F0/Fn)</th>
<th>FWHM (μm)</th>
<th>FDHM (ms)</th>
<th>Tau decay (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>678</td>
<td>1.8 ± 0.4</td>
<td>2.2 ± 0.3</td>
<td>20.5 ± 3.4</td>
<td>20.4 ± 4.4</td>
</tr>
<tr>
<td>Fab</td>
<td>1020</td>
<td>2.9 ± 0.8*</td>
<td>2.4 ± 0.3*</td>
<td>23.3 ± 3.3*</td>
<td>22.3 ± 7.9</td>
</tr>
<tr>
<td>cAMP</td>
<td>1014</td>
<td>2.8 ± 0.9*</td>
<td>2.4 ± 0.4*</td>
<td>23.8 ± 3.5*</td>
<td>22.0 ± 8.1</td>
</tr>
</tbody>
</table>

At 1000 nM free [Ca\(^{2+}\)], there was no significant difference in the frequency, velocity, or Ca\(^{2+}\) decay of SCWs between the baseline and after Fab application (Fig. 5F, red arrows), compatible with the finding that PLB inhibition did not affect maximal Ca\(^{2+}\)-ATPase activity in native SR vesicles at high micromolar free [Ca\(^{2+}\)] (Fig. 1A). Finally, for all free [Ca\(^{2+}\)] concentrations tested, sequential addition of cAMP (20 μM) 30 min after Fab application did not further change the frequency or morphology of SCWs in VMs (Fig. 5, panel c), respectively.

3.4. The computational modeling of the effects of reversal of PLB inhibition on Ca\(^{2+}\) cycling dynamics

To investigate whether Fab reversal of PLB inhibition alone can promote Ca waves, we carried out computer simulations using a VM model under Ca\(^{2+}\) overload condition for different kCa of the SERCA pump. Fig. 6 shows the computer simulation results of the effects of PLB inhibition on Ca\(^{2+}\) waves and oscillations. When kCa < 0.5 μM (Fig.6A), the VMs predominantly exhibited single sparks, spark clusters, and miniwaves. As kCa was decreased to simulate reversal of PLB inhibition, more and more spark clusters and non-persistent waves form. At kCa = 0.35 μM (Fig. 6B), persistent Ca\(^{2+}\) waves and periodic whole-cell Ca\(^{2+}\) oscillation occurred. As kCa was decreased further, the whole-cell Ca\(^{2+}\) oscillations became more periodic and the period decreased (compare Fig.6B and C). As shown in the bottom panels in Fig. 6, decreasing kCa increased the SR load, which is the dominant cause promoting Ca waves and oscillations in the simulations. These results are fully consistent with the experimental findings observed in the murine VMs.

4. Discussion

This present study shows that acute specific reversal of PLB inhibition by the anti-PLB monoclonal antibody had a significant impact on the subcellular Ca\(^{2+}\) activity in normal VMs. The experimental results and computational simulations demonstrate that reversal of PLB inhibition alone, with or without activating RyR2, was sufficient to initiate cell-wide SCWs in isolated permeabilized murine VMs.

4.1. New platform to investigate PLB in influencing subcellular Ca\(^{2+}\) activity

Animal models (e.g., PLB-KO mice) provide valuable tools to study the relationship between PLB and subcellular Ca\(^{2+}\) activity. However, the chronic PLB-KO mouse model is associated with compensatory adaptations. In particular, in response to the chronically elevated Ca\(^{2+}\) contents in the SR in PLB-KO mouse, RyR2 expression is reduced by 30% [20]. Therefore, the SR Ca\(^{2+}\) release process in PLB-KO mice is altered, which makes it difficult to determine whether the observed phenotype is due to loss of PLB alone or to the accompanying compensatory mechanisms [20].

Pharmacological interventions have been used to study the effects of PLB inhibition, but these drugs may have off-target effects. For example, studies of the actions of PLB on the spontaneous SR Ca\(^{2+}\) release are complicated at the cellular level when using protein phosphatase inhibitor, cAMP, or kinase itself to activate PKA or CaMKII. Because these interventions simultaneously target multiple proteins (e.g., RyR2, dihydropyridine receptors, CaMKII, PLB) that affect intracellular Ca\(^{2+}\) dynamics and cellular function, it is not possible to define a specific role for PLB in intracellular Ca\(^{2+}\) handling.

Biochemical studies have demonstrated that the intact monoclonal antibody, 2D12, specifically reversed SERCA2a inhibition by completely disrupting PLB binding to SERCA2a in native SR vesicles [26,33]. However, delivering 2D12 into living VMs remains challenging. Sham et al. used patch pipette to inject 2D12 into intact VMs and demonstrated that 2D12 reversed SERCA2a inhibition in VMs and mimicked the effects induced by β-adrenergic stimulation on the Ca\(^{2+}\) transient, without any notable cytotoxicity or off-target effect [5]. Alternatively, saponin-permeabilized VMs provide a semi-intact system, allowing direct access of protein/reagents to the intracellular space [34]. Recently, Sirenko et al. reported that the addition of 2D12 to permeabilized rabbit VMs induced a self-organized and partial synchronization of spontaneous Ca\(^{2+}\) releases [24]. However, being a relatively large-sized molecule of ~150 KD, 2D12 apparently has difficulty passing through the discrete pores of 30 Å diameter in permeabilized VMs created by saponin [35,36], which is shown in our study (Fig. 1). Here, we used the Fab fragment of 2D12, which is only ~1/3 the size of 2D12, to achieve deeper penetration and more efficient binding to PLB, and observed robust effects on subcellular Ca\(^{2+}\) activity in VMs (Figs. 1 to 3).

Specifically, Fab binding to PLB was directly monitored by immunofluorescent signals from the covalently labeled Alexa-594 fluorophore and correlated to increased intracellular Ca\(^{2+}\) release (Fig. 2). Also, the dose- and time-dependent changes of subcellular Ca\(^{2+}\) activity confirmed the specificity of Fab. To achieve the maximal reversal of PLB inhibition, we used a saturating dose of Fab (~100 μg/ml) in our experiments. Efficient Fab binding to PLB was verified by a strong correlation in Ca\(^{2+}\) dependency (i.e., large effect at low physiology concentration, small effect at high intracellular Ca\(^{2+}\) concentrations) between the effect of Fab on intracellular Ca\(^{2+}\) kinetics at the subcellular level and on Ca\(^{2+}\)-ATPase enzyme activity in vitro studies. A significant decrease in SCWs decay time

Table 2

Spontaneous Ca\(^{2+}\) wave characteristics.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Decay time (ms)</th>
<th>Velocity (μm/s)</th>
<th>Frequency (Hz)</th>
<th>ΔF/F₀</th>
<th>Free [Ca(^{2+})] (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>44 ± 6*</td>
<td>47 ± 8*</td>
<td>0.44 ± 0.16*</td>
<td>0.46 ± 0.13*</td>
<td>100 –</td>
</tr>
<tr>
<td>Fab</td>
<td>45 ± 7*</td>
<td>46 ± 9*</td>
<td>1.05 ± 0.21*</td>
<td>1.07 ± 0.21*</td>
<td>200 –</td>
</tr>
<tr>
<td>cAMP</td>
<td>46 ± 9*</td>
<td>53 ± 9*</td>
<td>1.12 ± 0.38</td>
<td>1.61 ± 0.55*</td>
<td>400 –</td>
</tr>
<tr>
<td>Baseline</td>
<td>44 ± 6*</td>
<td>47 ± 8*</td>
<td>0.44 ± 0.16*</td>
<td>0.46 ± 0.13*</td>
<td>500 –</td>
</tr>
<tr>
<td>Fab</td>
<td>45 ± 7*</td>
<td>54 ± 9*</td>
<td>1.23 ± 0.11</td>
<td>1.82 ± 0.24*</td>
<td>1000 –</td>
</tr>
<tr>
<td>cAMP</td>
<td>46 ± 9*</td>
<td>58 ± 9*</td>
<td>2.39 ± 0.11</td>
<td>2.87 ± 0.24*</td>
<td>61 ± 9</td>
</tr>
<tr>
<td>Baseline</td>
<td>44 ± 6*</td>
<td>47 ± 8*</td>
<td>0.44 ± 0.16*</td>
<td>0.46 ± 0.13*</td>
<td>60 ± 8</td>
</tr>
<tr>
<td>Fab</td>
<td>45 ± 7*</td>
<td>43 ± 9*</td>
<td>1.12 ± 0.38</td>
<td>1.61 ± 0.55*</td>
<td>60 ± 8</td>
</tr>
<tr>
<td>cAMP</td>
<td>46 ± 9*</td>
<td>52 ± 8*</td>
<td>1.23 ± 0.11</td>
<td>1.82 ± 0.24*</td>
<td>60 ± 9</td>
</tr>
<tr>
<td>Baseline</td>
<td>44 ± 6*</td>
<td>47 ± 8*</td>
<td>0.44 ± 0.16*</td>
<td>0.46 ± 0.13*</td>
<td>135 –</td>
</tr>
<tr>
<td>Fab</td>
<td>45 ± 7*</td>
<td>54 ± 9*</td>
<td>1.23 ± 0.11</td>
<td>1.82 ± 0.24*</td>
<td>135 –</td>
</tr>
<tr>
<td>cAMP</td>
<td>46 ± 9*</td>
<td>58 ± 9*</td>
<td>2.39 ± 0.11</td>
<td>2.87 ± 0.24*</td>
<td>135 –</td>
</tr>
</tbody>
</table>
at free $[Ca^{2+}]$ below 500 nM after Fab application is consistent with the well characterized effects of reversal of PLB inhibition. High concentrations of cAMP (20 μM) after Fab application did not cause any further change in subcellular Ca^{2+} activity at different baseline levels of free $[Ca^{2+}]$, indicating that PLB is efficiently saturated by Fab and uncoupled from Ca^{2+}-ATPase inhibition. Therefore, Fab appears to be a valuable new tool to selectively reverse PLB inhibition of SERCA2a in permeabilized VMs, and provides an attractive new system to delineate the role of PLB and other factors in the regulation of spontaneous SR Ca^{2+} release.

4.2. PLB is the key regulator in the rhythmic regulation of VMs

PLB is well known to regulate excitation–contraction coupling in heart. Here, by showing that acute reversal of PLB inhibition increased the Ca^{2+} sparks and facilitated the formation of SCWs, we demonstrate that PLB is also a powerful regulator for the formation of rhythmic subcellular Ca^{2+} activity in VMs. Note that reversal of PLB inhibition may affect SCWs in two ways: by enhancing SERCA2a uptake, PLB may buffer the diffusion of Ca^{2+} from the Ca^{2+} release site to the Ca^{2+} release site, leading to less effective Ca^{2+}-induced Ca^{2+} release and broken SCWs; on the other hand, reversal of PLB inhibition also increases Ca^{2+} SR content, leading to greater local Ca^{2+} releases favoring the propagation of SCWs. Further, our data suggest that acute reversal of PLB inhibition increased SCW velocity (Table 2). This phenomenon can be explained by the “sensitization” wave-front hypothesis proposed by Keller et al. [37]. Local increase in Ca^{2+} in SR, by acute reversal of PLB inhibition, may sensitize nearby RyR2 clusters, speeding up SCW propagation. When we modeled the effect of increasing the Ca^{2+} affinity of SERCA2a (decreasing K_{Ca} value), we indeed found that the latter effect predominated and Ca^{2+} waves were promoted, consistent with our experimental data (Figs. 5 and 6).

Our data may also be relevant to observations obtained using the PLB-KO mouse model [38,39]. Unlike our results in which acute removal of PLB inhibition in normal VMs promoted propagating SCWs, quiescent PLB-KO VMs did not exhibit cell-wide propagating SCWs [8,40]. When crossed with RyR2–R4496C mutant mice (a CPVT model), which show increased proclivity to SCWs, the double mutant VMs showed an increased frequency of Ca^{2+} sparks and miniwaves, but did not exhibit whole-cell propagating SCWs, suggesting that the reversal of PLB inhibition might be therapeutic in CPVT. However, it should be noted that in order to compensate the abnormal SR Ca^{2+} homeostasis, PLB-KO mouse downregulates the expression of RyR2 [20], which is expected to inhibit Ca^{2+} wave propagation. In addition, crossing PLB-KO with other mouse models is also known to cause various Ca^{2+} protein adaptations [21]. For example, mice with PLB-KO and SERCA2a replacement by the high Ca^{2+} affinity SERCA2b were shown to develop severe cardiac hypertrophy [41]. Further, Touch et al. found that PLB ablation caused further down-regulation of the Ca^{2+} pump in these mice but normalized global Ca^{2+} homeostasis in cardiomyocytes [42]. They suggest that the Ca^{2+} affinity of SERCA plays a more important role than the expression level and maximal turnover rate. Here, we showed that acute reduction in Ca^{2+} affinity of SERCA2a by reversing PLB inhibition, but with intact SERCA2a, caused a significant increase in intracellular Ca^{2+} release, consistent with the importance of PLB modulation of SERCA2a Ca^{2+} affinity in the regulation of intracellular Ca^{2+} dynamics. PLB is a key modulator of subcellular Ca^{2+} kinetics and may serve as a therapeutic target to improve inotropic function of the heart. Our data here indicates that PLB could also be targeted to induce chronotropic effects. For example, as a potential future direction of bio-pacemaker design [24], selective reversal of PLB inhibition could initiate rhythmic whole-cell propagating Ca^{2+} activity, i.e., a “Ca^{2+} clock” under physiological diastolic $[Ca^{2+}]$ conditions (i.e. 100 nM in our study) in quiescent VMs. On the other hand, while selective PLB inhibition provides a potentially promising way to enhance the SERCA2a activity and restores the normal SR Ca^{2+} load in patients with heart failure, the same intervention may potentially increase the risk of trigger activity or automaticity, leading to ventricular arrhythmia in the acute phase.

5. Limitations

The present studies were performed at room temperature, which affects the rate of SERCA2a activity. However, previous experiments with permeabilized myocytes were also usually performed at room temperature [16,17]. The SR Ca^{2+} content was not estimated in the study. We used the effect of cAMP as a positive control. We used permeabilized rather than intact VMs for these experiments. Permeabilization may cause lost accessory proteins or factors required for phosphorylation. Although similar results were obtained in intact and permeabilized VMs in previous studies [16,17,34], whether the results in permeabilized VMs can be directly extrapolated to intact myocytes is unstated. To minimize this limitation, we also performed computer simulation studies using an intact VM model. There are differences between K_{Ca} values used in simulation using a whole cell model and in vitro experiments using pure membranes in the test tubes (Fig. 1). Different K_{Ca} values were used in various simulation approaches in the literature. Because the results were consistent with those obtained with permeabilized VMs, these simulation studies strengthen the conclusions of our study.
Disclosures
None.

Funding Source
This study was supported in part by NIH Grants R37-HL049428 (LRJ), PO1 HL78931 (JNW), R0171140, a Medtronic-Zipes Endowment (PSC), the Indiana University Health-Indiana University School of Medicine Strategic Research Initiative and the Kawata and Laubisch endowments of the UCLA.

Acknowledgments
We thank Jin Guo, Glen A. Schmeisser, and Jian Tan for the technical support.

Appendix A. Supplementary data
Supplementary data to this article can be found online at http://dx.doi.org/10.1016/jjmcc.2014.12.024.

References
[21] Laputta EG, Maltese VA, Vinogradova TM. A coupled system of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ Res 2010;106:659–73.