
UC Riverside
2018 Publications

Title
Information fusion strategies for collaborative radio SLAM

Permalink
https://escholarship.org/uc/item/69g5b3rz

Authors
Morales, J.
Kassas, Z.

Publication Date
2018-04-23
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/69g5b3rz
https://escholarship.org
http://www.cdlib.org/


Information Fusion Strategies for

Collaborative Radio SLAM

Joshua Morales and Zaher M. Kassas

Department of Electrical and Computer Engineering

University of California, Riverside

{jmora047@ucr.edu, zkassas@ieee.org}

Abstract—Information fusion strategies for navigation using
signals of opportunity (SOPs) in a collaborative radio simulta-
neous and mapping (CoRSLAM) framework are studied. The
following problem is considered. Multiple autonomous vehicles
(AVs) with access to global navigation satellite system (GNSS)
signals are aiding their on-board inertial navigation systems
(INSs) with GNSS pseudoranges. While navigating, AV-mounted
receivers draw pseudorange measurements on ambient unknown
terrestrial SOPs and collaboratively estimate the SOPs’ states.
After some time, GNSS signals become unavailable, at which
point the AVs use the SOPs to aid their INSs in a CoRSLAM
framework. Two information fusion strategies are studied: (i)
sharing time-of-arrival (TOA) measurements from SOPs and (ii)
sharing time-difference-of-arrival (TDOA) measurements taken
with reference to an SOP. Experimental results are presented
demonstrating unmanned aerial vehicles (UAVs) navigating with
the CoRSLAM framework, reducing the final localization error
after 30 seconds of GPS unavailability from around 55 m to
around 6 m.

I. INTRODUCTION

Fully autonomous vehicles (AVs) must posses a reliable, ac-

curate, and tamper-proof navigation system. Today’s vehicular

navigation systems couple a global navigation satellite system

(GNSS) receiver with an inertial navigation system (INS) [1]

and potentially other dead-reckening type sensors (e.g., lasers

[2] and cameras [3]). Relying on GNSS poses an alarming

vulnerability: GNSS signals could become unavailable or

unreliable in environments such as deep urban canyons or

environments experiencing a malicious attack (e.g., jamming

or spoofing). Without GNSS aiding, the errors in the INS

(and other dead-reckoning type sensors) will accumulate and

eventually diverge, compromising the AV’s safe operation.

Introducing additional sensors may reduce the rate of error

divergence; however, this may violate cost, size, weight, or

power constraints.

Alternative to sensor-based approaches, signals of oppor-

tunity (SOPs) have been considered for navigation in the

absence of GNSS signals [4]–[6]. SOPs (e.g., AM/FM radio

[7], cellular [8]–[10], digital television [11], and iridium [12],

[13]) are free to use and reduce the need for expensive and

bulky aiding sensors. SOPs are abundant in GNSS-challenged

environments, making them attractive aiding sources for an
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INS whenever GNSS signals become unavailable [14]. How-

ever, unlike GNSS where the states of satellite vehicles (SVs)

are readily available, the states of SOPs (positions, clock

biases, and clock drifts) may not be known a priori and must

be estimated [15].

Navigating in an SOP environment can be done in two

frameworks: (1) a mapper/navigator framework in which some

mapping AVs with knowledge of their own states estimate the

states of the SOPs and share these estimates with navigating

AVs that have no knowledge of their own states [16] or (2) a

radio simultaneous localization and mapping (SLAM) frame-

work, where the states of unknown SOPs are simultaneously

estimated alongside the AV’s states [17]. However, in contrast

to the typical SLAM map which is composed of static states

(e.g., positions of walls, poles, trees, etc.), the radio SLAM

map is composed of dynamic stochastic states corresponding

to the SOPs’ clock errors (bias and drift).

Collaboration improves the navigation performance [18],

[19]. In collaborative radio SLAM (CoRSLAM), collaborating

AVs can improve their individual state estimates (attitude,

position, velocity, clock bias, and clock drift) by sharing and

fusing mutual measurements made on the dynamic stochastic

signal map [20]. The question of how such information should

be fused often arises during the design of any collaborative

navigation architecture. This paper is the first to study this

question in the context of aided-INS’s in a CoRSLAM frame-

work.

This paper makes two contributions. First, the estimation

uncertainties of two fusion strategies in a CoRSLAM environ-

ment are compared: (i) time-of-arrival (TOA) and (ii) time-

difference-of-arrival (TDOA) taken with reference to selected

SOPs. Second, the dependence of the estimation performance

on the TDOA SOP reference selection is studied. The use

of TOA and TDOA in radionavigation and localization have

been compared in other contexts. In [21], the use of GPS

pseudoranges as TOA and TDOA were shown to yield identi-

cal localization results. In [22], the Cramér-Rao lower bound

(CRLB) was shown to be identical for receivers with known

states that are using either TOA or TDOA to localize multiple

transmitters. In [23], the same conclusion was found for single

emitter localization and was shown to be independent of the

TDOA reference selection when the receivers were stationary

and time-synchronized, with the measurement noise being

independent and identically-distributed. These conclusions do
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not extend to the CoRSLAM framework studied in this paper

due to three reasons. The first pertains to the nature of

radio SLAM, which is the unavailability of the SOPs’ states

that are simultaneously estimated with the AVs’ states. The

second arises because the AV-mounted receivers’ and SOPs’

clocks are practically unsynchronized. The third is because the

measurement noise can not be assumed to be independent and

identically-distributed.

The remainder of this paper is organized as follows. Section

II describes the dynamics model of the SOPs and navigating

AVs as well as the receivers’ measurement model. Section III

describes the TOA and TDOA information fusion strategies.

Section IV compares the estimation performance of each strat-

egy. Section V presents experimental results of collaborating

UAVs using cellular signals to aid their INSs. Concluding

remarks are given in Section VI.

II. MODEL DESCRIPTION

A. SOP Dynamics Model

Each SOP will be assumed to emanate from a spatially-

stationary terrestrial transmitter, and its state vector will con-

sist of its three-dimensional (3-D) position states rsopm
,

[

xsopm
, ysopm

, zsopm

]T

and clock error states xclk,sopm
,

[cδtsopm
, cδ̇tsopm

]T, where c is the speed of light, δtsopm
is

the clock bias, δ̇tsopm
is the clock drift, m = 1, . . . ,M , and

M is the total number of SOPs.

The SOP’s discretized dynamics are given by

xsopm
(k + 1) = Fsop xsopm

(k) +wsopm
(k), k = 1, 2, . . . ,

Fsop =

[

I3×3 03×2

02×3 Fclk

]

, Fclk=

[

1 T

0 1

]

, (1)

where xsopm
=

[

rTsopm
, xT

clk,sopm

]T

, wsopm
is the pro-

cess noise, which is modeled as a discrete-time (DT) zero-

mean white noise sequence with covariance Qsopm
=

diag
[

03×3, c
2Qclk,sopm

]

, and

Qclk,sopm
=

[

Swδtsop,m
T + Sw

δ̇tsop,m

T 3

3 Sw
δ̇tsop,m

T 2

2

Sw
δ̇tsop,m

T 2

2 Sw
δ̇tsop,m

T

]

,

where T is the constant sampling interval. The terms Swδtsop,m

and Sw
δ̇tsop,m

are the clock bias and drift process noise power

spectra, respectively, which can be related to the power-law

coefficients,
{

hα,sopm

}2

α=−2
, which have been shown through

laboratory experiments to characterize the power spectral

density of the fractional frequency deviation of an oscillator

from nominal frequency according to Sδtsopm
≈

h0,sopm

2 and

Sδ̇tsopm
≈ 2π2h−2,sopm

[24].

B. Vehicle Dynamics Model

The nth AV state vector is xrn =
[

xT

Bn
, xT

clk,rn

]T

, where

xBn
is the INS’s state vector, xclk,rn is the AV-mounted

receiver’s clock state vector, n = 1, . . . , N , and N is the total

number of AVs.

The INS 16-state vector is

xBn
=

[

B
Gq

T

n
, rTrn , vT

rn
, bTgn , bTan

]T

,

where rrn and vrn are the 3-D position and velocity, respec-

tively, of the body frame expressed in a global frame, e.g., the

Earth-centered Earth-fixed (ECEF) frame; bgn and ban
are the

gyroscope and accelerometer biases, respectively; and B
Gqn

is

the 4-D unit quaternion vector, which represents the orientation

of the body frame with respect to a global frame [25].

1) Receiver Clock State Dynamics: The nth AV-mounted

receiver’s clock states will evolve according to

xclk,rn(k + 1) = Fclkxclk,rn(k) +wclk,rn(k), (2)

where wclk,rn is the process noise vector, which is modeled as

a DT zero-mean white noise sequence with covariance Qclk,rn ,

which has an identical form to Qclk,sopm
, except that Swδtsop,m

and Sw
δ̇tsop,m

are now replaced with receiver-specific spectra

Swδtr,n
and Sw

δ̇tr,n
, respectively.

2) INS State Kinematics: The INS states will evolve in time

according to

xBn
(k + 1) = fBn

[

xBn
(k),Bωn(k),

G an(k)
]

,

where fBn
is a vector-valued function of standard kinematic

equations, which are driven by the 3-D rotational rate vector
Bωn in the body frame and the 3-D acceleration of the IMU
Gan in the global frame [26].

3) IMU Measurement Model: The IMU on the nth AV

contains a triad-gyroscope and a triad-accelerometer, which

produce measurements nzimu ,
[

nωT

imu,
naT

imu

]T

of the

angular rate and specific force, which are modeled as

nωimu = Bωn + bgn + ngn (3)

naimu = R
[

Bk

G q
n

]

(

Gan − Ggn

)

+ ban
+ nan

, (4)

where Bk

G q
n

represents the orientation of the body frame

in a global frame at time-step k, R [qn] is the equivalent

rotation matrix of qn, Ggn is the acceleration due to gravity

of the nth AV in the global frame, and ngn and nan
are

measurement noise vectors, which are modeled as zero-mean

white noise sequences with covariances σ2
gn
I3×3 and σ2

an
I3×3,

respectively.

C. Pseudorange Measurement Model

The pseudorange measurements made by the nth receiver

on the mth SOP, after discretization and mild approximations

discussed in [17], are modeled as

nzsopm
(j) = ‖rrn(j)− rsopm

‖2

+ c ·
[

δtrn(j)− δtsopm
(j)

]

+ nvsopm
(j), (5)

where nvsopm
is the measurement noise, which is modeled as a

DT zero-mean white Gaussian sequence with variance nσ2
sopm

.

The pseudorange measurement made by the nth receiver on
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the lth GNSS SV, after compensating for ionospheric and

tropospheric delays, is related to the receiver states by

nzsvl
(j) = ‖rrn(j)− rsvl

(j)‖2

+ c · [δtrn(j)− δtsvl
(j)] + nvsvl

(j), (6)

where nzsvl
, nz′svl

−cδtiono−cδttropo, δtiono and δttropo are

the ionospheric and tropospheric delays, respectively; nz′svl
is

the uncorrected pseudorange; nvsvl
is the measurement noise,

which is modeled as a DT zero-mean white Gaussian sequence

with variance nσ2
svl

; and l = 1, . . . , L, where L is the total

number of GNSS SVs.

III. COLLABORATIVE RADIO SLAM FRAMEWORK AND

FUSION STRATEGIES

In this section, a distributed extended Kalman filter (EKF)-

based CoRSLAM framework that fuses either TOA or TDOA

measurements from SOPs is presented and described in detail.

The EKF time and measurement update equations are provided

for each fusion strategy. This framework operates in one of

three modes: (1) a mapping mode when four or more GNSS

SVs are available (L ≥ 4), (2) a partial CoRSLAM mode

when one to three GNSS SVs are available (1 ≤ L ≤ 3),
and (3) a CoRSLAM mode when GNSS SVs are unavailable

(L = 0). The partial CoRSLAM mode is analogous to a partial

INS coasting mode that a traditional tightly-coupled GNSS-

aided INS operates in when at least one (but less than four)

GNSS SVs are available.

A. Distributed CoRSLAM Framework

In a CoRSLAM framework, the states of the SOPs are

continuously estimated along with the states of the AVs. This

can be achieved through an EKF with state vector

x ,

[

xT

r1
, . . . ,xT

rN
, xT

sop1
, . . . ,xT

sopM

]T

.

To estimate the components of this vector, a distributed

CoRSLAM framework in which AVs fuse information via

a collaborative, tightly-coupled, SOP-aided INS framework

is employed. A high-level diagram of this framework is

illustrated in Fig. 1.

In traditional distributed approaches, each AV monitors

a subset of the entire state vector, employing covariance

intersection (or one of its variants) to fuse estimates with

unknown inter-vehicle correlations and consensus algorithms

when a fully connected network is not always available. In

contrast, the approach of the framework in Fig. 1 is for each

AV to monitor the entire state vector, but to distribute the INSs

(the EKF prediction step) among the AVs and to optimize what

information is shared and how often it is transmitted for aiding

corrections. With the appropriate selection and transmission

scheme of Λn, identical estimates to a centralized approach

are produced.

In the following sections, the TOA and TDOA information

fusion strategies are described and compared. Both strategies

have a common prediction (time update) step, which uses the

Inertial

SOP
receiverIMU

AV 1

correction

x̂r1
(kjj)

GPS
receiver

Aiding

ΦB1
(k; j)

1
zsv

1
zsop

1
zimu

fΛn(k)g
N

n=2

x̂r1
(jjj)

Λ1(k)

navigation

system

AV 1

AV 2

AV 3

AV 4

AV N

Fig. 1. Distributed SOP-aided INS framework. All N AVs maintain their own
INSs. Each AV transmits a packet Λn(k) containing required information for
each AV to produce an INS aiding correction.

on-board INS of each vehicle. Both strategies use GNSS pseu-

doranges as TOA measurements if they are available during the

correction (measurement update) step. The distinction between

these strategies is in how the SOP pseudoranges are fused

to aid the AVs’ on-board INSs: either TOA or TDOA with

reference to selected SOPs.

B. Prediction

The EKF prediction produces x̂(k|j) , E[x(k)|Zj ] of

x(k), where E[ · | · ] is the conditional expectation operator,

Zj
, {z(i)}ji=1, z is a vector of INS-aiding measurements,

k ≥ j, and j is the last time-step an INS-aiding measurement

was available. Between aiding updates, the INS on-board the

nth AV integrates nzimu to produce a prediction of xBn
. The

one-step prediction is given by

x̂Bn
(j + 1|j) = fBn

[ x̂Bn
(j|j), nzimu(j + 1) ] , (7)

where the function fBn
contains standard INS equations,

which depend on the navigation frame used, the mechanization

type, and the INS error model used, which are described in

[26], [27]. Assuming there are κ time-steps between aiding

updates, the AV uses IMU data {nzimu(i)}
k
i=j to recursively

solve (7) to produce x̂Bn
(k|j), where k ≡ j+κ. The receiver’s

κ-step clock state prediction follows from (2) and is given by

x̂clk,rn(k|j) = Fκ
clkx̂clk,rn(j|j).

Each receiver locally produces the SOPs’ κ-step state predic-

tion, which follows from (1) and is given by

x̂sopm
(k|j) = Fκ

sop x̂sopm
(j|j), m = 1, . . . ,M.

The corresponding κ-step prediction error covariance is

given by

Px(k|j) = F(k, j)Px(j|j)F
T(k, j) +Q+(k, j), (8)

F(k, j) , diag
[

Fr1(k, j), . . . , FrN (k, j), Fκ
sop, . . . , F

κ
sop

]

,
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Frn(k, j),diag [ΦBn
(k, j), Fκ

clk] , ΦBn
(k, j),

k
∏

i=j

ΦBn
(i),

where ΦBn
(i) is the Jacobian of fBn

evaluated at x̂Bn
(i|j).

The matrix Q+(k, j) is the propagated process noise covari-

ance, which has the form

Q+(k, j) , diag
[

Q+
r1
(k, j), . . . ,Q+

rN
(k, j),

Q+
sop1

(k, j), . . . , Q+
sopM

(k, j)
]

,

Q+
rn
(k, j) ,

k
∑

i=j

Frn(i, j)Qrn(i)F
T

rn
(i, j),

Q+
sopm

(k, j) ,
k
∑

i=j

F(i−j)
sop Qsopm

[FT

sop]
(i−j),

where Qrn(i) , diag
[

Qd,Bn
(i), c2Qclk,rn

]

and Qd,Bn
is the

nth AV’s DT linearized INS process noise covariance, whose

structure is dependent on the gyroscope’s and accelerometer’s

error models used and is described in [26], [27].

C. Vehicle-to-Vehicle Communication

To produce the prediction error covariance (8) at each

vehicle, the matrices {ΦBn
(k, j)}Nn=1 must be available. The

components of these matrices are a function of the INS data

from each respective AV. IMU data rates are typically between

100 Hz to 400 Hz, making the transmission of raw accelerom-

eter and gyroscope data undesirable for several reasons: (i)

large communication bandwidth requirement, (ii) packet drops

due to lossy communication channels, and (iii) access to

the raw IMU data may not be available. To address these

issues, instead of transmitting raw IMU data, a packet Λn

is broadcasted by the nth AV at the fixed rate of measurement

epochs, which is given by

Λn(k) , {x̂Bn
(k|j),ΦBn

(k, j), nzsv(k),
nzsop(k)} , (9)

where nzsv and nzsop are GNSS and SOP pseudoranges,

respectively, which are discussed further for each strategy in

the following two subsections. The transmission of Λn has

been shown to require significantly less communication rate

and its performance was robust to moderate probability of

packet loss [28]. Assuming a fully-connected graph, as in Fig.

1, the packets {Λn(k)}
N
n=1 contain all relevant information

required for each AV to compute the EKF update and the

corresponding corrected estimation error covariance.

In the following two subsections, the correction equations

are developed for two information fusion strategies: (1) TOA

and (2) TDOA with SOP referencing.

D. TOA Information Fusion Strategy

In this subsection, the EKF-based CoRSLAM measurement

update for fusing TOA measurements from SOPs is described.

Specifically, the correction to the estimation error x̃(k|k) is

provided, since it will be compared with the estimation error

of the TDOA fusion strategy, denoted ˜̄x(k|k), in Section IV.

The EKF measurement update will correct the AVs’ INS and

clock errors given the measurement vector

z ,
[

zT

sv, z
T

sop

]T

, (10)

zsv ,

[

1z
T

sv, . . . ,
Nz

T

sv

]T

, zsop ,

[

1z
T

sop, . . . ,
Nz

T

sop

]T

,

nzsv = [nzsv1
, . . . , nzsvL

]
T
, nzsop =

[

nzsop1
, . . . , nzsopM

]T
.

The correction equations are described next for: (1) mapping

(L ≥ 4) and partial CoRSLAM mode (1 ≤ L ≤ 3) and (2)

CoRSLAM mode (L = 0).
1) Correction Equations for Mapping and Partial

CoRSLAM: Given a prediction error x̃(k|j), the error

correction and corresponding corrected error covariance are

given by

x̃(k|k) = x̃(k|j)− L(k)S−1(k)ν(k),

Px(k|k) = Px(k|j)− L(k)S−1(k)LT(k), (11)

L(k) , Px(k|j)H
T(k), (12)

S(k) , H(k)L(k) +R(k), (13)

ν(k) , z(k)− ẑ(k|j), (14)

where ẑ(k|j) is a vector containing the predicted GNSS

pseudoranges and the predicted SOP TOA measurement set.

The matrix H is the measurement Jacobian and has the form

H =

[

Hsv,r 0NL×5M

Hsop,r Hsop

]

, Hsv,r , diag
[

1Hsv,r, . . . ,
NHsv,r

]

,

nHsv,r =







01×3
n1̂T

sv1
01×9 h

T

clk
...

...
...

...

01×3
n1̂T

svL
01×9 h

T

clk






,

Hsop,r , diag
[

1Hsop,r, . . . ,
NHsop,r

]

,

where nHsop,r has the same structure as nHsv,r, except n1̂T

svl

is replaced with n1̂T

sopm
,

Hsop ,
[

1HT

sop, . . . ,
NHT

sop

]T

,

nHsop = diag
[

nHsop1
, . . . , nHsopM

]

,

n1̂svl
,

r̂rn − rsvl

‖r̂rn − rsvl
‖
, n1̂sopm

,
r̂rn − r̂sopm

‖r̂rn − r̂sopm
‖
,

nHsopm
,

[

−n1̂T

sopm
, −hT

clk

]

, hclk , [1, 0]
T
,

and R is the measurement noise covariance. Note that R is

not necessarily diagonal, since there are no assumptions made

on the measurement noise statistics, except that R ≻ 0.

2) Correction Equations for CoRSLAM: The CoRSLAM

mode is similar to the mapping and partial CoRSLAM modes,

with the exception that GNSS SV pseudoranges are no longer

available, i.e., z ≡ zsop. The state and covariance correction

are identical, except that the Jacobian is adjusted to account for

GNSS SV pseudoranges no longer being available, specifically

H ≡ [Hsop,r, Hsop] . (15)
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E. TDOA with SOP Referencing Information Fusion Strategy

In this information fusion strategy, TDOA measurements are

computed at each receiver by differencing the drawn pseudor-

anges with a selected reference SOP. The produced estimation

error and covariance of x when TDOA measurements are used

will be denoted ˜̄x, and Px̄, respectively.

1) TDOA Measurements: Each receiver is free to select

an arbitrary reference SOP, i.e., the SOP measurement set

computed by the nth AV becomes

nz̄T

sop ,
[

nz̄sop1
, . . . , nz̄sopM

]T
,

nz̄sopm
,nzsopm

− nzsopιn
(16)

=‖rrn(j)− rsopm
‖2 − ‖rrn(j)− rsopιn

‖2

+ c · [δtsopm
(j)− δtsopιn

(j)]

+ nvsopm
(j)− nvsopιn

(j),

where ιn is the reference SOP number used by the nth AV

and m ∈ {1, . . . ,M}\ιn. Each receiver replaces the SOP

TOA measurements zsop with the SOP TDOA measurements

z̄sop in the transmitted packet (9). Note that since the SOP

transmitters are not synchronized, the TDOA measurements

(16) are parameterized by the clock biases of both transmitters;

therefore, both of these biases must be estimated. This differs

from traditional TDOA-based localization approaches that

assume synchronized transmitters, which allow for these biases

to cancel and to be removed from the estimator.

The measurement set available to each receiver in the TDOA

fusion strategy may be written in terms of the measurement

set (10) of the TOA fusion strategy as

z̄ ,

[

zsv

z̄sop

]

=

[

INL×NL 0NL×NM

0NM×NL T

][

zsv

zsop

]

, Ξz (17)

where INL×NL is an NL×NL identity matrix and T is the

difference operator matrix that maps zsop to z̄sop, which has

the form

T = diag [Tι1 , . . .TιN ] , (18)

Tιn =





















1 . . . 0 −1 0 . . . 0
...

. . .
...

...
...

. . .
...

0 . . . 1 −1 0 . . . 0
0 . . . 0 −1 1 . . . 0
...

. . .
...

...
...

. . .
...

0 . . . 0 −1 0 . . . 1





















, (19)

where the column of “−1” resides in column ιn. The pre-

diction error covariance Px̄(k|j) is dependent only on the

IMU data; therefore, has the same form as (8). The correction

equations are summarized next.

2) Correction Equations for Mapping and Partial

CoRSLAM: The following equations are valid for both L ≥ 4
and 1 ≤ L ≤ 3:

˜̄x(k|k) = ˜̄x(k|j)− L̄(k)S̄−1ν̄(k), (20)

Px̄(k|k) = Px̄(k|j)− L̄(k)S̄−1(k)L̄T(k), (21)

L̄(k) , Px̄(k|j)H̄
T(k) (22)

S̄(k) , H̄(k)L̄(k) + R̄(k) (23)

ν̄(k) , z̄(k)− ˆ̄z(k|j), (24)

where ˆ̄z(k|j) is the predicted GNSS pseudoranges and SOP

TDOA measurement set and H̄ is the corresponding measure-

ment Jacobian, which is related to H through

H̄ ,

[

INL×NL 0NL×NM

0NM×NL T

] [

Hsv,r 0NL×5M

Hsop,r Hsop

]

.

The measurement noise covariance is given by R̄ = ΞRΞT.

3) Correction Equations for CoRSLAM: The CoRSLAM

mode is similar to the mapping and partial CoRSLAM modes,

with the exception that GNSS SV pseudoranges are no longer

available, i.e., z̄ ≡ z̄sop. The state and covariance corrections

are identical, except that the dimension of INL×NL reduces

to zero, modifying the measurement Jacobian to take the form

H̄ = TH, (25)

where H is the measurement Jacobian (15) from the TOA

fusion strategy when L = 0.

IV. STRATEGY PERFORMANCE COMPARISON

In this section, the estimation performance of the two infor-

mation fusion strategies presented in Section III are studied.

First, it is shown that the TDOA estimation performance is

invariant to the SOP reference selection. Then, it is shown

that the TOA strategy yields less than or equal estimation error

covariance corresponding to the AVs’ positions than the TDOA

strategy.

A. TDOA SOP Reference Selection

In this subsection, it is shown that the estimation error

and error covariance are invariant to the choice of the SOP

reference, which is summarized in Theorem IV.1.

Theorem IV.1. Consider an environment comprising N re-

ceivers and M unknown SOPs with arbitrary: (i) receiver

and SOP clock qualities (i.e., arbitrary {Qclk,rn}
N
n=1 and

{Qclk,sopm
}Mm=1 ), (ii) geometric configurations, and (iii) mea-

surement noise covariance (i.e., R ≻ 0, but not necessarily

diagonal). The EKF-based CoRSLAM yields an estimation

error and corresponding estimation error covariance that are

invariant to each receiver’s SOP reference selection.

Proof. The proof will only consider the CoRSLAM mode

(L = 0), i.e., z̄ ≡ z̄sop. The proof can be straightforwardly

extended to the other modes (1 ≤ L ≤ 3 and L ≥ 4). Given
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˜̄x(k|j), the correction ˜̄x(k|k) can be computed from (20).

Substituting (25) into (22)-(24) gives

L̄(k) = Px(k|j)H
T(k)TT

= L(k)TT, (26)

S̄(k) = TH(k)L(k)TT +TR(k)TT

= TS(k)TT, (27)

ν̄(k) = Tz(k)−Tẑ(k|j)

= Tν(k). (28)

Substituting (26)-(28) into (20) yields

˜̄x(k|k) = ˜̄x(k|j)− L(k)TT

· [TS(k)TT]−1Tν(k). (29)

Recall that T is the difference operator, which computes the

TDOA measurements when the nth receiver references the

drawn pseudoranges with respect to an arbitrary SOP number

ιn and has the block diagonal structure (18).

Next, consider the block of T that corresponds to the nth

receiver, which can be written as

Tιn = Jιn − veTιn , (30)

where Jιn ∈ R
[(M−1)×M ] is formed by removing the ιthn row

from an identity matrix,

v , [1, . . . , 1]T ∈ R
(M−1),

and eιn denotes the ιthn standard basis vector of appropriate

dimension consisting of a 1 in the ιthn element and zeros else-

where. From (30), it is easy to verify that Tιn ∈ R
[(M−1)×M ]

is full row-rank and that 1 ,
[

vT, 1
]T

is a basis for the null

space of Tιn ; therefore,

0 = Tιn1 =

M
∑

i=1

Tιnei

⇒ −

M
∑

i=1
i6=q

tιn,i = tιn,q, ∀ q ∈ [1, . . . ,M ], (31)

where tιn,i , Tιnei and tιn,q , Tιneq denote the ith and

qth column of Tιn , respectively. Partitioning Tιn into columns

yields

Tιn = [tιn,1, . . . , tιn,M ]

= [Tιn,1:M−1, tιn,M ] , (32)

where Tιn,1:M−1 denotes the matrix consisting of the columns

tιn,1 through tιn,M−1. Substituting the left side of (31) for

q ≡ M into the last column of (32) gives

Tιn =

[

Tιn,1:M−1,−

M−1
∑

i=1

tιn,i

]

. (33)

Next, consider the difference operator matrix

T′ = diag
[

Tι′
1
, . . .Tι′

N

]

, (34)

which forms the set of TDOA measurements when the nth

receiver uses SOP ι′n as its reference, where ι′n ∈ [1, . . . ,M ].
Proceeding in a similar manner that was used to write Tιn as

(33), it is straight forward to show that Tι′n
can be written as

Tι′n
=

[

Tι′n,1:M−1,−
M−1
∑

i=1

tι′n,i

]

. (35)

Note that since Tιn and Tι′n
are full row-rank, the matrices

Tιn,1:M−1 and Tι′n,1:M−1 are square and invertible; therefore,

there exists a matrix En, such that

Tι′n,1:M−1 = E−1
n Tιn,1:M−1. (36)

From (36), the columns of Tι′n,1:M−1 are related to the

columns of Tιn,1:M−1 through

tι′n,i = E−1
n tιn,i, i = 1, . . . ,M − 1. (37)

Substituting the right side of (36) and (37) into the right side

of (35) yields

Tι′n
=

[

E−1
n Tιn,1:M−1,−E−1

n

M−1
∑

i=1

tιn,i

]

= E−1
n Tιn . (38)

The relationship between T′ and T can be found by substi-

tuting (38) into (34) for n = 1, . . . , N , which gives

T′ = diag
[

E−1
1 Tι1 , . . . ,E

−1
N TιN

]

= E−1T, (39)

where E−1 , diag
[

E−1
1 , . . . ,E−1

N

]

. Solving (39) for T and

substituting into (29) gives

˜̄x(k|k) = ˜̄x(k|j)− L(k)T′TET

· [ET′S(k)T′TET]−1ET′ν(k)

= ˜̄x(k|j)− L(k)T′TET

· E−T[T′S(k)T′T]−1E−1ET′ν(k)

= ˜̄x′(k|k), (40)

where ˜̄x′(k|k) is the estimation error correction when the

difference operator matrix T′ is used. The last step in (40)

follows from ˜̄x(k|j) = ˜̄x′(k|j), since they only depend on

IMU data, making (40) take the same form as (29), except

that T is replaced with T′.

Next, consider the EKF Riccati equation, which governs the

time-evolution of the estimation error covariance

Px̄(j + κ|j) =F
{

Px̄(j|j − κ)−Px̄(j|j − κ)H̄T(j)

·
[

H̄(j)Px̄(j|j − κ)H̄T(j) + R̄(j)
]−1

· H̄(j)Px̄(j|j − κ)
}

FT +Q+(j + κ, j),
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where the time arguments (j + κ, j) have been dropped from

F to simplify the notation. Substituting (25) into H̄ and using

the relationship found in (38) gives

Px̄(j + κ|j)

=F
{

Px̄(j|j − κ)−Px̄(j|j − κ)HT(j)TT

·
[

TH(j)Px̄(j|j − κ)HT(j)TT +TR(j)TT
]−1

·TH(j)Px̄(j|j − κ)
}

FT +Q+(j + κ, j)

=F
{

Px̄(j|j − κ)−Px̄(j|j − κ)HT(j)T′TET

·E−T
[

T′H(j)Px̄(j|j−κ)HT(j)T′T+T′R(j)T′T
]−1

E−1

·ET′H(j)Px̄(j|j − κ)
}

FT +Q+(j + κ, j)

=Px̄
′(j + κ|j),

where Px̄
′(j + κ|j) is the prediction error covariance when

the difference operator matrix T′ is used.

B. TOA Versus TDOA

In this subsection, it is shown that fusing TOA measure-

ments from unknown SOPs produces a less than or equal

(in a positive semi-definite sense) position estimation error

covariance matrix for each AV than fusing TDOA.

Theorem IV.2. Consider an environment comprising N re-

ceivers and M unknown SOPs with arbitrary: (i) receiver

and SOP clock qualities (i.e., arbitrary {Qclk,rn}
N
n=1 and

{Qclk,sopm
}Mm=1), (ii) geometric configurations, and (iii) mea-

surement noise covariance (i.e., R ≻ 0, but not necessarily

diagonal). The EKF-based CoRSLAM that fuses pseudoranges

with a TOA fashion yields a less than or equal (in a positive

semi-definite sense) position estimation error covariance for

each of the AVs than a TDOA fashion.

Proof. Define the correction (measurement update) estimation

error covariance associated with the nth receiver’s position for

fusing TOA measurements at time-step k as

Prrn
(k|k) , ΥnPx(k|k)Υ

T

n (41)

and the correction (measurement update) estimation error

covariance associated with the nth receiver’s position for

fusing TDOA measurements at time-step k as

Pr̄rn
(k|k) , ΥnPx̄(k|k)Υ

T

n, (42)

where

Υn ,
[

03×γn,1
, I3×3, 03×γn,2

]

,

γn,1 , 17n−14, and γn,2 , 17(N−n)+5M−11. Substituting

(11) and (21) into Px(k|k) and Px̄(k|k) in (41) and (42),

respectively, and differencing yields

Pr̄rn
(k|k)−Prrn

(k|k)

= Υn

[

L(k)S−1(k)LT(k)− L̄(k)S̄−1(k)L̄T(k)
]

ΥT

n. (43)

Note that the prediction error covariances Px(k|j) and

Px̄(k|j) are only a function of the IMU data, making them

independent of the information fusion type, i.e., Px(k|j) =

Px̄(k|j); therefore, they have canceled and did not appear in

(43). Substituting (26) and (27) into (43) gives

Pr̄rn
(k|k)−Prrn

(k|k)

=Υn

[

L(k)S−1(k)LT(k)

− L(k)TT
(

TS(k)TT
)−1

TTLT(k)
]

ΥT

n

=ΥnL(k)
[

S−1(k)−T
(

TS(k)TT
)−1

TT
]

LT(k)ΥT

n.

(44)

Define the matrices

A(k) , Sc(k)T
T ∈ R

NM×N(M−1), (45)

Bn(k) , ΥnL(k)S
−1
c (k) ∈ R

3×NM , n = 1, . . . , N, (46)

where Sc is the Cholesky decomposition of S, i.e., S = ScS
T

c .

Since S is symmetric positive definite, Sc is unique and

invertible. Substituting (45) and (46) into (44) yields

Pr̄rn
(k|k)−Prrn

(k|k)

=Bn(k)
[

INM×NM −A(k)
[

AT(k)A(k)
]−1

AT(k)
]

BT

n(k),

(47)

where INM×NM is a NM ×NM identity matrix. Define the

matrix

Ω(k) , A(k)
[

AT(k)A(k)
]−1

AT(k). (48)

Substituting (48) into (47) gives

Pr̄rn
(k|k)−Prrn

(k|k) = Bn(k)M(k)BT

n(k), (49)

where M(k) , INM×NM −Ω(k). Note that,

(i) The matrix Ω ∈ R
NM×NM is an orthogonal projection

matrix, since it satisfies Ω2 = Ω = ΩT. It has N(M−1)
eigenvalues of ones and N eigenvalues of zeros, since

rank(Ω) = rank(A) = N(M − 1). Therefore, Ω is

positive semi-definite.

(ii) The matrix M is also an orthogonal projection matrix,

and its eigenvalues consist of N ones and N(M − 1)
zeros [29]; therefore, it is positive semi-definite.

It follows from (ii) that

Bn(k)M(k)BT

n(k) � 0. (50)

From (49) and (50), it can be concluded that

Pr̄rn
(k|k) � Prrn

(k|k). (51)

C. Simulation Results

This subsection presents simulation results demonstrating

Theorem IV.2 for an environment consisting of N = 4 UAV-

mounted receivers and M = 6 SOP transmitters.

The UAVs’ simulated trajectories included two straight

segments, a climb, and a repeating orbit, performed over a

200 second period, which were generated using a standard

six degree of freedom (DoF) kinematic model for airplanes

[27]. The error-corrupted IMU data was set to correspond to

a consumer grade IMU and was generated using the vehicles’
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simulated specific forces and rotation rates through (3) and

(4). Each UAV-mounted receiver was set to be equipped with

a typical temperature-compensated crystal oscillator (TCXO),

with {h0,rn , h−2,rn}
4
n=1 = {9.4× 10−20, 3.8× 10−21}.

GPS L1 C/A pseudoranges were generated at 1 Hz ac-

cording to (6) using SV orbits produced from Receiver In-

dependent Exchange (RINEX) files downloaded on October

22, 2016 from a Continuously Operating Reference Station

(CORS) server [30]. Eleven satellites were set to be available

(L = 11) for t ∈ [0, 50) seconds, and unavailable (L = 0)
for t ∈ [50, 200] seconds. Pseudoranges were generated to

the SOPs at 5 Hz according to (5) and the SOP dynamics

discussed in Subsection II-A. Each SOP was set to be equipped

with a typical oven-controlled crystal oscillator (OCXO), with

{h0,sopm
, h−2,sopm

}6m=1 = {8× 10−20, 4× 10−23}. The SOP

emitters’ positions {rsop,m}
6
m=1 were surveyed from cellular

tower locations in downtown Los Angeles, California. The

simulated trajectories, SOP emitters’ positions, and the UAVs’

positions at the time GPS was set to become unavailable are

illustrated in Fig. 2.

UAVs' trajectories GPS cutoff locationSOPs' positions

UA
V1

UA
V1

SOP1SOP1

Fig. 2. True trajectories the UAVs traversed (yellow), SOP emitters’ positions
(blue pins), and the UAVs’ positions at the time GPS was cut off (red).

The CoRSLAM information fusion strategies (1) TOA and

(2) TDOA with SOP referencing, described in Subsection

III-D and Subsection III-E, respectively, were compared.

Errors for a traditional tightly-coupled GPS-aided INS are

also provided for a comparative analysis. Fig. 3 shows the

resulting estimation error trajectories and corresponding ±3σ
estimation error standard deviations for both strategies for

the north, east, and down position states for UAV 1 and

SOP 1. Fig. 4 illustrates the logarithm of the determinant of

the estimation error covariance of the same UAV’s position

states, log
{

det
[

Prr1

]}

, which is related to the volume of

the uncertainty ellipsoid. It is worth mentioning that these are

representative results. Similar behavior of the estimation error

uncertainties in the position states was reported for the other

UAVs and SOPs.

The following performance comparison may be concluded

from these plots. First, the errors associated with the dis-

tributed SOP-aided INS, regardless of the CoRSLAM in-

formation fusion strategy remained bounded after GPS was

cut off, whereas the errors associated with an unaided INS

began to diverge. Second, the TOA information fusion strategy

consistently produced lower log
{

det
[

Prr,1
(k|k)

]}

than the

TDOA with SOP referencing for the entire UAV trajectory,
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Fig. 3. Estimation error trajectories and ±3σ bounds for the (1) TOA and (2)
TDOA with SOP referencing information fusion strategies for the environment
depicted in Fig. 2. (a)-(c) Correspond to UAV 1 north, east, and down position
errors, respectively. (d)-(f) Correspond to SOP 1 north, east, and down position
errors, respectively. The red dotted line marks the time GPS pseudoranges
were set to become unavailable (L = 0).
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Fig. 4. The logarithm of the determinant of the position estimation error
covariance of UAV 1 for the environment depicted in Fig. 2.

which included a straight segment, a banked turn, and a

repeating orbit.

V. EXPERIMENTAL RESULTS

A field experiment was conducted using two UAVs

equipped with consumer-grade IMUs and software-defined

radios (SDRs) to demonstrate the TOA and TDOA information

fusion strategies discussed in Section III. To this end, two
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antennas were mounted on each UAV to acquire and track GPS

signals and multiple cellular transmitters, whose signals were

modulated through code division multiple access (CDMA).

The GPS and cellular signals were simultaneously downmixed

and synchronously sampled via two-channel Ettus R© universal

software radio peripherals (USRPs). These front-ends fed their

data to the Multichannel Adaptive TRansceiver Information

eXtractor (MATRIX) SDR, which produced pseudorange mea-

surements from all GPS L1 C/A signals in view and three

cellular transmitters [16]. The IMU data was sampled from

the UAVs’ on-board proprietary navigation system, which was

developed by Autel Robotics R©. Fig. 5(a) depicts the hardware

and software setup and Fig. 5(b) illustrates the experimental

environment.

TrueTrueTrueTrueInitial uncertainty

Final uncertainty

Estimated Tx location True Tx location

GPS cutoff point

Estimated Tx locationTrue Tx location

Trajectories

True
SOP-aided INS
(with GPS)

CoRSLAM with
TOA

INS only

(c) (d) (e) (f)

MATLAB-based
SOP-aided INS

MATRIX SDR
LabVIEW-based

Cellular and GPS antennas

Universal software

IMU data

PseudorangesCDMA

radio peripheral
(USRP)

Signals

(a)

(b)

Tx 1

Tx 2

Tx 3

UAV 1

UAV 2

Fig. 5. (a) Experiment hardware setup. (b) Experimental environment with
three cellular transmitters (Tx) and two UAVs. (c)-(f) Mapping and navigation
results for CoRSLAM with TOA information fusion.

Experimental results are presented for three frameworks:

(i) CoRSLAM with TOA information fusion, (ii) CoRSLAM

with TDOA information fusion, as described in Section III and

(iii) for comparative analysis, a traditional GPS-aided INS.

The UAVs traversed the white trajectories plotted in Figs.

5(d)–(e), in which GPS was available for the first 50 seconds

then unavailable for the last 30 seconds. The north-east root

mean squared errors (RMSE) and final errors for all three

frameworks for the UAVs are summarized in Table. I. The final

estimated transmitter location and corresponding uncertainty

for two of the transmitters are shown in Fig. 5(c) and Fig. 5(f).

The final localization errors for the three transmitters were 9.0,

7.9, and 52.8 m, respectively. The north-east 99th-percentile

initial and final uncertainty ellipses of the transmitter position

states are illustrated in Fig. 5(b). Note that the relatively large

estimation error of the third transmitter, which is attributed to

poor receiver-to-transmitter geometry, is captured within the

larger estimation uncertainty ellipse.

TABLE I
EXPERIMENTAL ESTIMATION ERRORS

Framework GPS-aided INS CoRSLAM-TOA CoRSLAM-TDOA

Vehicle UAV 1 UAV 2 UAV 1 UAV 2 UAV 1 UAV 2

RMSE (m) 21.5 18.9 3.1 4.2 3.3 4.4

Final Error (m) 57.3 54.7 4.3 6.0 4.4 6.2

VI. CONCLUSION

This paper studied two information fusion strategies for

CoRSLAM: TOA measurements and TDOA measurements

with SOP referencing. It was shown that using TOA mea-

surements results in smaller AVs’ position estimation error

covariance than using TDOA measurements, regardless of the

selected SOP reference. Experimental results demonstrated

two UAVs navigating with CoRSLAM using TOA measure-

ments from three cellular transmitters in the absence of GPS,

which yielded trajectory RMSE reductions of 85.6% for UAV

1 and 77.8% for UAV 2 when compared to unaided INSs.
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