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Abstract
Objective Small for gestational age (SGA) preterm infants (PT) are at greatest risk for growth failure. Our objective was to
assess the impact of an exclusive human milk diet (HUM) on growth velocities and neonatal morbidities from birth to
discharge in a SGA population.
Study design Multicenter, retrospective cohort study, subgroup analysis of SGA PT comparing a cow’s milk diet (CMD)
with HUM diet.
Results At birth 420 PT were classified as SGA (197 CMD group, 223 HUM group). Demographics and anthropometric
measurements were similar. HUM group PT showed improvement in length Z score at discharge (p= 0.024) and reduction
in necrotizing enterocolitis (NEC) (p= 0.004).
Conclusion SGA PT fed a HUM diet had significantly decreased incidence of NEC, surgical NEC, and late-onset sepsis.
Due to concerns about growth in a HUM diet, it is reassuring SGA infants fed the HUM diet had similar growth to CMD diet
with trends toward improvement.

Introduction

Previously, our group published a multicenter retrospective
cohort study comparing infants who received a cow’s milk
diet (CMD) of mother’s own milk (MOM) fortified with
cow’s milk-based fortifier (CMF) and/or preterm formula to
infants who received an exclusive human milk diet (HUM)
of MOM and/or donor human milk (DHM) fortified with
human milk-based fortifier (HMBF) [1, 2]. This pre-post

cohort study demonstrated improved outcomes in necro-
tizing enterocolitis (NEC), late-onset sepsis, and broncho-
pulmonary dysplasia (BPD) after implementation of the
HUM diet. Infants born small for gestational age (SGA),
defined as <10th percentile for weight, are at higher risk for
postnatal growth failure at discharge [3–6]. Our previous
study included both SGA and appropriate for gestational
age (AGA) infants in their cohorts.

The American Academy of Pediatrics, Committee on
Nutrition updated their policy statement in December 2017
on breastfeeding and DHM use specific for high-risk pre-
term infant populations [7]. DHM use is now widely used in
the US for preterm infants weighing less than 1500 g birth
weight (BW) when MOM is not available or is contra-
indicated. MOM is always preferred because of the known
biological components affected by pasteurization used in
DHM. There are significant short- and long-term beneficial
effects of feeding preterm infants a HUM diet compared to a
mixed CMD diet, including decreased late-onset sepsis,
reduction in BPD, mortality, and decreased risk of devel-
oping NEC supported by multiple published studies com-
prising of randomized controlled trials [8–11].

However, there still remain concerns about the growth of
infants receiving a HUM diet, as human milk must be
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fortified for the most high-risk and premature infants to
achieve adequate nutrient intake [12–14]. Hair et al. illu-
strated that the use of a HUM diet was safe and did not
negatively impact growth of infants at a single study site in
infants <1250 g BW [15]. Human milk should be fortified
with protein, minerals, and vitamins to ensure optimal
nutrient infant for infants weighing <1500 g BW. It is
established that both MOM and DHM have large variability
in nutritional content in terms of calories per ounce, protein,
carbohydrate, and fat content. Therefore, in order to avoid
postnatal growth failure, a diet with human milk, either
MOM or DHM, must be supplemented with fortification,
either CMF or HMBF.

The primary aim of this study is to assess the impact of
the HUM diet on anthropometric growth velocities from
birth to discharge in the SGA infant population. The sec-
ondary outcomes assessed focus on the impact of the HUM
diet on neonatal morbidities, specifically NEC and mortal-
ity, in this SGA infant population.

Methods

In a previously published multicenter, retrospective cohort
study, infants who received a CMD diet of MOM fortified
with CMF and/or preterm formula were compared to growth
of infants who received a newly introduced HUM diet
feeding protocol consisting of MOM and/or DHM with
HMBF [1, 2]. Groups compared were infants fed a CMD
diet to infants fed a HUM diet. All infants <1250 g BW and
SGA were included. SGA was defined as <10th percentile
for weight in grams at birth [3]. Excluded infants had major
congenital anomalies, died in the first 12 h of life or were
transferred in from an outside hospital after 7 days of life.
The Institutional Review Board at each study site approved
this retrospective study.

Study outcomes

Study data were collected for approximately 2 years prior
to and after introduction of a HUM diet. Primary data
were extracted from the electronic medical record and
included infant diet, demographics, growth parameters,
and outcomes. Each study site had detailed documentation
of feeding protocol and time frame for data collection [1].
Participating centers were Baylor College of Medicine
(BCM) (Houston, TX), Good Samaritan San Jose Hospital
(GSH) (San Jose, CA), Northwestern Prentice Women’s
Hospital (Chicago, IL), and Winnie Palmer Hospital
(Orlando, FL). BCM was the largest trial contributor with
62% infants; however, all sites were level 4 NICUs in
both academic and private institutions. There were dif-
ferences among the sites with respect to specific feeding

protocols documented in detail. Full feedings were con-
sidered 140–160 ml/kg/day [1]. At BCM in the HUM diet
group, enteral feeds were started with trophic feeds of
20 ml/kg/day for 3 days, and advanced by 20 ml/kg/day as
tolerated to goal of 140–160 ml/kg/day. HMBF was added
(Prolacta Biosciences, Industry, CA) at 60 ml/kg/day
volume for an additional 4 kcal/oz, at 100 ml/kg/day at for
an additional 6 kcal/oz, and if weight gain was <15 g/kg/
day, an additional 8–10 kcal/oz was provided. At BCM in
the CMD diet group, fortification did not start until feeds
were at 100 ml/kg/day. At the GSH, the HUM group feeds
were fortified at 100 ml/kg/day with 4 kcal/oz, and then at
150 ml/kg/day an additional 6 kcal/oz was provided, and
if growth failure, addition of 8–10 kcal/oz was provided.
The CMD diet group at GSH followed the same protocol
as BCM. At Northwestern and Winne Palmer Hospital,
the HUM diet group was fortified with an additional
4 kcal/oz once feeds reached 100–120 ml/kg/day, and
advanced to 6 kcal/oz if weight gain was <15 g/kg/day,
and further advanced to 8 kcal/oz. In the CMD diet group
at Northwestern followed the same protocol as BCM. At
Winne Palmer Hospital, the CMD diet group was fortified
approximately at 120–150 ml/kg/day. All infants, regard-
less of whether SGA or AGA, received the same feeding
protocols at each institution, and no specific feeding
protocol was followed for SGA infants.

The original primary study outcomes have been pre-
viously published for the entire cohort consisting of both
SGA and AGA infants [1]. In this subgroup analysis of
the original data, we investigated the SGA cohort alone
specific for growth and neonatal outcomes. Growth
velocities from birth to discharge were calculated and
compared between CMD diet and HUM diet groups.
Weight velocity was calculated in in grams per kilogram
per day (g/kg/day) using the exponential method [16].
Length velocity was calculated in centimeters per day
(cm/day). Head circumference (HC) velocity was calcu-
lated in centimeters per day (cm/day). Z scores were
calculated for the growth velocities using either Fenton
growth curves if infants were discharged home
before 50 weeks’ postmenstrual age (PMA) or World
Health Organization growth curves for infants discharged
home after 50 weeks’ PMA [3, 17]. Growth data were
adjusted for length of stay, antenatal steroids, and by
study site.

Outcomes defined

PMA at discharge was defined as the number of weeks
and days added to gestational age at birth. As described by
the Fenton growth curve, SGA was defined as BW
in grams <10th percentile and AGA was defined as BW in
grams between the 10th and 90th percentiles [3]. Common
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neonatal outcomes measured included NEC defined as
Bell’s stage IIA or greater with presence of pneumatosis
intestinalis on abdominal radiograph reviewed by a
pediatric radiologist [18]. Surgical NEC was defined as
NEC requiring surgical intervention within the acute
phase of illness [1]. All NEC cases were reviewed indi-
vidually at time of data collection to delineate between
spontaneous intestinal perforations versus NEC. BPD was
defined as mild BPD in infants <32 weeks’ gestation with
need for supplemental oxygen for greater than or equal to
28 days, moderate BPD was defined as requiring sup-
plemental oxygen for greater than or equal to 28 days with
less than 30% FiO2 at 36 weeks’ PMA, and severe BPD
was defined as requiring supplemental oxygen for greater
than or equal to 28 days with greater than or equal to 30%
FiO2 or positive pressure at 36 weeks’ PMA [19]. Late-
onset sepsis was defined as a positive blood culture
obtained after 72 h of life. Patent ductus arteriosus (PDA)
was measured by echocardiogram read by a board-
certified pediatric cardiologist. Severe intraventricular
hemorrhage was diagnosed by head ultrasound read by a
board-certified pediatric radiologist using the Papile
grading method [20].

Statistical analysis

The distributions of quantitative variables were summarized
using the median and interquartile range with diet group
comparisons made using the Wilcoxon rank-sum test.
Categorical variables were compared between the study
groups using Fisher’s exact test. A 5% significance level
was used for all comparisons.

Results

Of the original 1587 infants among the four study centers,
there were 420 infants who were classified as less than the
10th percentile, defined with Fenton growth curves, inclu-
ded in this analysis [1, 3]. There were 197 infants in the
CMD group, pre-initiation of the HUM feeding protocol,
and 223 infants in the HUM group, post initiation of the
HUM feeding protocol. Infant demographics and anthro-
pometric measurements were similar (Table 1).

The primary outcomes for growth measurements
between the CMD and HUM groups are shown in Table 2.
Length discharge Z score was greater on the average in the
HUM group (p= 0.024). Although not significant, all
other parameters (velocity, discharge Z score, and change
in Z score from birth to discharge) for weight, length, and
HC were numerically superior in the HUM group. Diag-
nosis of SGA at discharge was not significantly different
between the groups (p= 0.14). Of the original 197 infants

in the CMD group, 168 infants (85%) remained SGA at
discharge and of the original 223 infants in the HUM
group, 201 (90%) remained SGA at discharge. Length
of stay was not significantly different between the groups
(p= 0.91).

The neonatal morbidities for the CMD and HUM
groups are presented in Table 3. Among the SGA
infants in this study, late-onset sepsis (p= 0.017), NEC
(p= 0.004), and surgical NEC (0.045) were significantly
lower in the HUM group. In our SGA population, the
number needed to treat is 11.1 infants to prevent one case
of NEC and 20 infants to prevent one case of surgical
NEC. Death was similar among the groups with 36 deaths
(18.2%) in the CMD group compared to 37 deaths
(16.6%) in the HUM group (p= 0.70). In addition, PDA
(p= 0.078), retinopathy of prematurity at any stage (p=
0.18), and BPD (p= 0.27) rates were lower in the
HUM group, but not significantly so. The HUM group
required a median of 2 fewer mechanical ventilation days
(p= 0.12).

Discussion

Use of a HUM diet in SGA infants improved length dis-
charge Z score, as evidenced previously in other studies
[15, 21]. In addition, use of a HUM diet in SGA infants
showed decreased late-onset sepsis, medical and surgical
NEC cases, thus providing further validation for the HUM
diet to reduce NEC [8, 22].

Table 1 Small for gestational age (SGA) infants’ characteristics
(n= 420).

CMD (n= 197) HUM (n= 223) p value

Malea 104 (53) 116 (52) 0.922

Racea

Black 72 (37) 76 (34) 0.610

Hispanic 46 (23) 45 (20) 0.477

White 63 (32) 86 (39) 0.184

Other 16 (8) 16 (7) 0.717

Gestational age (weeks)b 28.0 (26.0, 30.2) 28.0 (26.0, 30.0) 0.516

Birth weight (g)b 705.0 (566.0, 923.0) 760.0 (580.0, 965.0) 0.215

Birth weight Z scoreb –1.5 (–1.8, –1.2) –1.4 (–1.8, –1.1) 0.778

Birth length (cm)b 32.0 (30.0, 35.0) 33.0 (30.5, 36.0) 0.193

Birth length Z scoreb –1.6 (–2.3, –1.0) –1.6 (–2.2, –1.0) 0.594

Birth head circumference
(cm)b

23.5 (21.5, 26.0) 24.0 (21.5, 26.0) 0.497

Birth head circumference
Z scoreb

–1.4 (–2.1, –1.0) –1.5 (–2.0, –0.9) 0.712

Multiple gestationa 40 (20) 55 (25) 0.297

SGA at birtha 197 (100) 223 (100) 1.000

Antenatal steroidsa 162 (82) 187 (84) 0.697

aFrequency (%), Fisher’s exact test p value.
bMedian (interquartile range), Wilcoxon rank-sum test p value.
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This study is unique in that it is the first analysis in the
SGA infant population comparing growth and neonatal
morbidities at multiple institutions after implementation of a
feeding protocol using the HUM diet. This study provides
insight into differences among SGA infants and may pro-
vide evidence to target this high-risk population for a HUM
diet. Multiple institutions and the relatively large number of
infants enrolled in each group allows for increased gen-
eralizability of our results.

Growth outcomes in SGA infants

Further investigation into how the HUM diet impacts our
most fragile and small infants, the SGA population,

requires sincere equipoise. Controversy in evidence exists
with respect to the HUM diet and growth failure. In a
smaller retrospective study in a single level III NICU,
infants <1000 g BW fed the HUM diet had improved
feeding intolerance but persistent growth failure despite
adjustment for SGA [23]. SGA infants in this study were
not evaluated separately from all extremely low birth
weight (ELBW) infants. In addition, in Eibensteiner et al.,
192 ELBW infants were evaluated at multiple centers and
found no improvement in growth or neonatal morbidities,
again without distinction of the SGA population [24].
SGA infants are at a higher risk for growth failure, long-
term metabolic outcomes, higher risk for NEC and feed-
ing intolerance, and therefore, should be evaluated sepa-
rately. In contrast to these findings with specific focus on
the SGA population by Hair et al., premature SGA infants
fed the HUM diet exhibited greater catch-up growth
without negative metabolic outcomes as compared to
AGA infants [25]. In addition, premature SGA infants fed
a HUM diet show lower insulin levels, no difference in
adiposity in the groups, and improvement in body com-
position at 2-year follow-up [25]. Sullivan et al. showed
that there was no difference in growth between infants fed
HUM and infants fed a mixed CMD diet [8]. The ultimate
goal in premature neonatal nutrition is to optimize enteral
nutrition without increasing the risk of neonatal morbid-
ities and mortality, such as life-threatening NEC. In-
hospital growth is associated with long-term neurodeve-
lopmental outcomes and improving growth may reduce
overall morbidity associated with prematurity [26]. A
systematic review illustrated improvement of

Table 2 Small for gestational
age (SGA) infants’ primary
outcomes for growth parameters
(n= 420).

CMD (n= 197) HUM (n= 223) p value

Discharge weight (g)a 2385.0
(1920.0, 3255.0)

2390.0
(1980.0, 3045.0)

0.598

Discharge weight Z scorea –2.4 (–3.2, –1.6) –2.3 (–3.1, –1.8) 0.829

Weight Δ Z scorea –0.9 (–1.5, –0.1) –0.8 (–1.3, –0.4) 0.915

Weight velocity (g/d)a 19.6 (15.8, 23.2) 19.7 (16.5, 22.6) 0.843

Discharge length (cm)a 44.5 (42.0, 47.5) 45.0 (42.5, 47.5) 0.263

Discharge length Z scorea –3.3 (–4.4, –2.2) –3.0 (–3.9, –2.0) 0.024

Length Δ Z scorea –1.4 (–2.7, –0.4) –1.2 (–2.1, –0.4) 0.174

Length velocity (cm/week)a 0.9 (0.7, 1.0) 0.9 (0.8, 1.1) 0.210

Discharge head circumference (cm)a 32.5 (30.6, 35.3) 33.0 (31.0, 35.0) 0.828

Discharge head circumference Z scorea –1.6 (–2.4, –0.8) –1.5 (–2.6, –0.7) 0.563

Head circumference Δ Z scorea 0.0 (–0.9, 0.8) –0.1 (–1.0, 0.4) 0.286

Head circumference velocity (cm/week)a 0.7 (0.6, 0.8) 0.7 (0.6, 0.8) 0.179

SGA at birtha 197 (100) 223 (100) 1.000

SGA at dischargea 168 (85) 201 (90) 0.137

Postmenstrual age at discharge (weeks)a 39.6 (37.2, 43.8) 39.9 (37.4, 43.4) 0.901

Length of stay (days)a 77.0 (48.0, 121.0) 77.0 (48.0, 121.0) 0.913

aMedian (interquartile range), Wilcoxon rank-sum test p value.

Table 3 Small for gestational age (SGA) infants’ secondary outcomes
for neonatal morbidities (n= 420).

CMD (n= 197) HUM (n= 223) p value

NECa 33 (17) 17 (8) 0.004

Surgical NECa 18 (9) 9 (4) 0.045

PDAa 105 (53) 99 (44) 0.078

ROP, any stagea 13 (7) 8 (4) 0.182

Severe IVHa 15 (8) 15 (7) 0.850

Deatha 36 (18.2) 37 (16.6) 0.699

BPDa 81 (41) 79 (35) 0.268

Mechanical vent daysb 9.0 (2.0, 43.0) 7.0 (0.0, 41.0) 0.121

Late-onset sepsisa 53 (27) 38 (17) 0.017

aFrequency (%), Fisher’s exact test p value.
bMedian (interquartile range), Wilcoxon rank-sum test p value.
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neurodevelopmental outcomes with visual and cognitive
benefits into adolescence with the increasing dose
received of MOM in preterm infants [27].

The use of a HUM diet in infants <1250 g BW (both
SGA and AGA) is associated with a lower rate of NEC and
decreased parenteral nutrition days [1, 8, 9, 11]. However,
there remains a paucity of evidence in the literature
regarding a direct comparison of MOM fortified with CMF
to the HUM in the most high-risk and fragile SGA pre-
mature infant population.

Postnatal growth failure is a common complication of
prematurity and SGA infants are at even higher risk.
There are concerns that infants classified as SGA at birth
will have a high incidence of postnatal growth failure
[26]. In a cohort of 1776 SGA infants, 97% of them
remained SGA at 36 weeks’ corrected age [5]. Similarly
in our cohort, growth failure persisted at discharge in both
groups, with a slightly improved relative reduction in
SGA in the CMD group compared to HUM group,
although the difference did not achieve statistical sig-
nificance. Despite this smaller reduction in SGA at dis-
charge, both groups showed similar growth. The SGA
infants fed the HUM diet showed possible trends toward
improvement, with only the length discharge Z score
being statistically significant. These clinically improved
growth outcomes, although not statistically significant, in
addition to decreased mortality support the use of DHM
in the high-risk infant when MOM is not available and
further supports the use of early and rapid advancement of
fortification with HMBF for growth [8, 25].

In a study by Dusick et al., infants born with in utero
growth failure less than 1000 g BW had a higher incidence of
growth failure postnatally when compared to AGA [4].
Similarly, in a large retrospective study of 24,371 infants by
Clark et al., growth restriction at discharge is inversely related
to younger gestational age and weight at birth [6]. However,
another study reports similar growth velocities when com-
paring SGA to AGA infants, perhaps because of factors other
than fortification and attainment of full feedings [15]. These
concerns for the SGA infant population make them of unique
concern for further specialized investigation.

Neonatal morbidities in SGA infants

The reduction of NEC with use of a HUM diet evidenced in
larger infants remains consistent in our cohort of SGA
infants [1, 8, 9, 11]. In this cohort there were 53% fewer
cases of NEC in the HUM group. It is suspected that the
effect of cow’s milk in the premature infant diet is dose
dependent with fewer days to full feedings and fewer ven-
tilator days as the percentage of CMD decreased. Therefore,
limiting exposure to CMF in the SGA population should be
considered [22]. Moreover, significantly decreased

incidence of late-onset sepsis was evident in the HUM
group, consistent with previous reports [1].

Limitations

This study is limited by it being a secondary analysis of
previously collected data gathered retrospectively and
potentially unidentified time-dependent care changes. In
addition, a retrospective study may have misclassification of
NEC diagnosis, although the diagnosis was made by two
separate physicians in the original study’s Bell’s Staging
Criteria [18]. Despite these limitations, a significant differ-
ence in length discharge Z score was evident, and other
parameters favored the HUM group.

Conclusion

In this secondary analysis of a retrospective cohort study of
SGA infants after the initiation of a HUM feeding protocol,
those who received a HUM diet had significantly decreased
incidence of NEC, surgical NEC, and late-onset sepsis.
Although SGA infants fed a HUM diet had similar growth
to CMD infants for most outcomes, length was improved in
the HUM group. Due to concerns about growth in infants
who receive a HUM diet, it is reassuring that SGA infants
had similar growth to CMD with some possible trends
toward improvement. Further investigation into the specia-
lized needs of SGA infants to overcome postnatal growth
failure is needed.
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