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A method for estimating the effective number of loci affecting a
quantitative character

Montgomery Slatkin1

1 Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA

Abstract
A likelihood method is introduced that jointly estimates the number of loci and the additive effect
of alleles that account for the genetic variance of a normally distributed quantitative character in a
randomly mating population. The method assumes that measurements of the character are
available from one or both parents and an arbitrary number of full siblings. The method uses the
fact, first recognized by Karl Pearson in 1904, that the variance of a character among offspring
depends on both the parental phenotypes and on the number of loci. Simulations show that the
method performs well provided that data from a sufficient number of families (on the order of
thousands) are available. This method assumes that loci are in Hardy-Weinberg and linkage
equilibrium but does not assume anything about linkage relationships. It performs equally well if
all loci are on the same non-recombining chromosome provided they are in linkage equilibrium.
The method can be adapted to take account of loci already identified as being associated with the
character of interest. In that case, the method estimates the number of loci not already known to be
affect the character. The method applied to measurements of crown-rump length in 281 family
trios in a captive colony of African green monkeys (Chlorocebus aethiopus sabaeus) estimates the
number of loci to be 112 and the additive effect to be 0.26 cm. A parametric bootstrap analysis
shows that a rough confidence interval has a lower bound of 14 loci.

Keywords
Wright-Castle method; quantitative genetics

The number of loci responsible for the variance of a quantitative character is an important
part of its genetic architecture and affects the character's potential for short term and long
term evolution. Existing methods for estimating the number of loci are of two types which
estimate somewhat different quantities. The first type assumes that two populations that
differ in the character mean are hybridized to form an F1 population. The variance in the F2
and backcross populations depend on the minimum number of loci responsible for the
difference in the population mean. This idea was first presented by Castle (1921), using
formulas derived by Sewall Wright. The method as originally proposed, often called the
Wright-Castle method, assumes completely inbred lines that are homozygous at all loci.
Lande (1981) showed that the assumption of complete homozygosity in the parental
populations was unnecessary and that essentially the same method can be applied to
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populations that are initially outbred. Therefore, the Wright-Castle method is more generally
applicable, and the method has become widely used. Lande noted that his method can be
adapted to estimating the number of loci in a single population if divergent populations are
derived from that population by the application of directional selection.

I will call the Wright-Castle method applied to outbred populations the Wright-Castle-Lande
(WCL) method. Several authors further developed and tested this method (Cockerham,
1986; Otto and Jones, 2000; Zeng, 1992). As Lande emphasized, the WCL method estimates
only the minimum number of loci accounting for differences in population means. If two
lines carry alleles that have effects discordant with the average difference between
populations (e. g. if the allele that reduces the mean happens to be in higher frequency in the
population that has the larger mean), then the actual number of loci affecting the difference
in the mean will be necessarily larger than the estimated number (Lande, 1981).

In contrast to the WCL method, the second type of method estimates the number of loci
affecting the variance of a character in a single population. These methods are less widely
known and less commonly used, in part because they are not as well developed theoretically.
Pearson (1904a; 1904b) was the first to point out that, under the assumptions of Mendelism
(at that time newly rediscovered), the variance of a quantitative character in offspring
depends on the average of the character in the parents, i. e. the midparent value. Pearson
presented this result to demonstrate the incompatibility of Mendelism with the biometrical
theory of inheritance, in which the variance is independent of the midparent value. The
intuition behind Pearson's result is simple. If the midparent value is near the limits of the
range of variation of the character, the parents are probably homozygous for alleles that
affect the character in the same way. Consequently, there will be less genetic variance
among their offspring than there will be if the midparent value is near the middle of the
character's range.

Although Pearson's result was known, it appears not to have been used as a way to estimate
the number of loci affecting a quantitative character until 1969 (Penrose, 1969). Penrose
showed that the difference in correlation structure between a parent and its offspring and
between a pair of full siblings could yield an estimator of the number of loci responsible for
the variance in a randomly mating population. From the data presented by Pearson and Lee
(1903), Penrose inferred that human stature was governed by six loci but with a large error
in the estimate. Penrose also analyzed data on finger ridge counts and concluded that the
number of loci is indefinitely large. Stark (1976) and Fain (1976; 1978) elaborated on
Penrose's derivation. Subsequent development of theory of this type focused on the problem
of detecting the presence of a single major gene, e. g. (Ott, 1979).

Felsenstein recognized that the dependence of the offspring variance on the midparent could
be used directly to estimate the number of loci and lectured on that topic at the 13th
International Congress of Genetics in 1973. Although the abstract of that presentation was
published (Felsenstein, 1973), he did not publish a paper describing his method (J.
Felsenstein, personal communication). Karlin, Carmelli and their collaborators followed an
independent but related line of research based on indices designed to distinguish between
major-gene and multifactorial models (Karlin and Carmelli, 1978; Karlin et al., 1979; Karlin
et al., 1983; Karlin et al., 1981)

In this paper, I introduce another method for estimating the number of loci. It is of the same
type as those of Penrose and Felsenstein, but instead of using the relationship of the
midparent to the offspring variance, it uses the dependence of the offspring variance on the
parental phenotypes separately. That modification leads to a simple calculation of the
approximate joint likelihood of the number of loci and the average additive effect of an

Slatkin Page 2

Theor Popul Biol. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



allelic substitution, from which maximum likelihood estimates (MLEs) of both parameters
can be obtained. This method does not assume that loci are unlinked, only that they are in
linkage equilibrium. The same estimate of the number of loci is obtained even if all loci are
in linkage equilibrium on a single non-recombining chromosome. When allele frequencies
and additive effects vary among loci, effective numbers of loci and effective additive effects
can be defined. Furthermore, if some loci are already known to affect the character and the
genotypes of those loci can be determined in parents and offspring, the method can be
adapted to obtain the MLEs of the number and additive effect of the remaining unknown
loci.

The performance of this method depends on the heritability of the character. Even the
heritability is 50% and 10 loci affect the character, the sample sizes needed to obtain
accurate estimates are large, on the order of thousands of parents and offspring. And the
sample size needed to obtain accurate estimates increases with the number of loci affecting
the character. Although it is unlikely that such large data sets would be obtained for the
purpose of estimating the number of loci, such large data sets have been collected for other
purposes, particularly for humans and colonies of non-human primates. To illustrate the use
of this method, it is applied to data from African green monkeys.

Symmetric additive model
Assume that a quantitative character is affected by n loci and an independent environmental
component. At each locus, there are two alleles denoted by + and – and the additive effect of
each + allele is a. The phenotype x of an individual is

(1)

where i is the number of + alleles and e is a normally distributed random environmental

component which has mean 0 and variance . At each locus, the frequency of the + allele is
p. Assuming both Hardy-Weinberg and linkage equilibrium, the distribution of i in a
population is binomial with probability p and sample size 2n. The population mean is x¯ =

2npa, the variance is  and the heritability is

.

Assume that a pair of parents with phenotypes, x1 and x2, have S offspring. The set of
phenotypes of the offspring is represented by a vector y = {y1,..., yS}. It is shown in
Appendix 1 that, under these assumptions, the expectation, variance and covariance of the
y's, given x1 and x2, can be calculated. For offspring j

(2)

(3)

where

(4)

(k=1, 2), and for full siblings j and j′
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(5)

Equation (2) is the standard equation for the regression of the offspring on the midparent.
Equation (3) confirms the results of Pearson (1904a; 1904b) and Felsenstein (1973) and is
the basis for the method developed in the next section. Note that the covariance, unlike the
variance, is independent of n. That is true because there is no dominance in the symmetric
additive model. With dominance, the covariance between full siblings will depends on n.

Approximate likelihood estimation
Suppose that the data consists of F families. The first step is to estimate from the data the

total variance , the heritability (h2), and the environmental component of the variance

. Then, the distribution of y is assumed to be multivariate normal with the mean value of
each yj given by Eq. (2), and the variance-covariance matrix is given by Eqs. (3)-(5). With

that assumption and the estimated values of h2 and , the likelihood of n and a for each
family is given by the probability of obtaining the offspring vector (y) from that multivariate
normal distribution. Assuming independence of families, the log-likelihoods for each family
are added and the joint MLE of n and a can be obtained, n̂ and â. In the program written to
implement this method, a grid search was used to obtain the MLE.

This method gives only the approximate likelihood. A full likelihood method would jointly

estimate h2, , n and a from all the data. The approach taken here was chosen because its
computational simplicity.

Effective number of loci
In a more realistic model, the allele frequencies and additive effects at each locus will not be
equal and there may be some dominance. In that case, it is possible to define an effective
number of loci, nE, and an effective additive effect, aE, for an equivalent symmetric additive
model:

(6)

and

(7)

where p¯ is the average frequency of + alleles across loci and

 is the heritability attributable to locus j. Equation
(6) differs from the effective number of loci defined by Lande (1981),

, where  is the contribution of locus j to the
additive genetic variance. Lande's nE involves the square of the variances and is necessarily
less than n, while nE defined by Eq. (6) may exceed n.
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Simulation tests
Symmetric model

In order to test the performance of this method, I simulated data, first under the symmetric
model and then under more general assumptions. The simulation program assumes n
biallelic loci. At locus j, the frequency of + is pj, the additive effect of a + allele is ak, and
the dominance effect is dj. In each family, the genotypes of the two parents are randomly
generated under the assumption of Hardy-Weinberg and linkage equilibrium, and then the
phenotype of each parent is determined by adding a random environmental component with

mean 0 and variance . In the case of no linkage, the genotypes of haploid gametes
produced by each parent are generated according to Mendel's first law applied to each locus
independently. The gametes are combined into the offspring and a random environmental
component is added to obtain the offspring phenotype. This process is repeated until a
specified number F of families are obtained. In the case of complete linkage, one of the two
chromosomes was chosen at random to be transmitted to each offspring.

For each simulated data set, the phenotypic variance  is computed and the heritability

(h2) and environmental component of the variance  are estimated by regressing the

offspring on the midparent. Then the dataset, along with the estimated values of h2 and , is
passed to a program that calculates the log-likelihood as described above for each family
and adds log-likelihoods across families for pairs of values of n and a. If, for a family, x1,
x2, n and a, result in either the computed variance (Eq. 3) being negative or the computed
covariance (Eq. 5) exceeding the computed variance (thus causing the variance-covariance
matrix to not be positive definite), the log-likelihood of a and n for that family is set to –∞.
Hence a single such family will cause the likelihood of that n and a combination to be 0. The
MLEs of n and a, n̂ and â, are obtained by performing a grid search.

The first set of simulations assumes the model under which the method was derived: each
locus had the same values of a and p. The joint log-likelihood surface for one replicate is
shown in Figure 1. The results shown are based on simulations of n=10 loci of additive

effect a=1. At each locus, the + allele had a frequency p=0.5. The value of  was set to 5
which ensured that h2 is approximately 0.5 in the simulated data. The simulated data set
contained F=10,000 parent-offspring trios. From this data set, a grid search with limits 2 and
50 for n with a step size of 1 and 0.5 and 2.0 with a step size of 0.03 for a found n̂=9 and
â=1.04. The shape of the log-likelihood surface is typical of other cases. There is a ridge that
follows a hyperbola in the n-a plane. The hyperbola reflects the fact that in Equation (3) the
variance depends primarily on the product na and only slightly on n separately.

The performance of the method, even with data simulated under the symmetric model,
depends on both the sample size and the heritability. Figure 2 shows the results of applying
the method to 1000 replicates with different numbers of family trios, F, in which h2≈1/2.
The range of estimates decreases as F increases. With F=100,000, the range is small,
indicating that the approximate likelihood method is roughly consistent. The performance
depends on the heritability. For example in the replicates that generated the histograms in
Figure 2 for F=10,000, the average n̂ in 1000 replicates was 13.9 and the standard deviation
(sd) was 11.3. In a set of 1000 replicates with the same parameter values except h2≈0.25,
the average was 27.1 with sd=29.1. With h2≈0.75, the average was 11.0 with sd=2.4.

For a given F, the accuracy of the method decreases as the true number of loci simulated
increases. For example, in 1000 replicates of the symmetric model with n=20, a=1, p=0.5
and F=10,000, the average and standard deviation of n̂ were 36.4 and 37.6. If n=30 and the
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other parameters remained the same, the average and standard deviation of n̂ were 67.1 and
80.3. The upwards bias in the mean results partly from the fact that for some combinations
of x1, x2 and y, the likelihood is 0 because the variance computed from Eq. (3) is negative
for small n. Hence the lower bound of n is restricted.

If the same total number of offspring are measured, the method performs slightly better
when there are more families instead of more siblings per family. The result is illustrated in
Table 1, in which a total of 10,000 offspring were measured in each of 1000 replicate
simulations. F is the number of families and S is the number of siblings per family, adjusted
so that FS=10,000. There is slightly more bias in the mean and a slightly higher sd as S
increases. The reason for this trend is that there is some covariance between the phenotypes
of siblings, given the parental phenotypes (Eq. 5) and that covariance does not depend on n
or a separately. Therefore, the covariance slightly reduces the information provided by each
sibling about n and a.

Assuming complete linkage among the loci has no detectable effect on the results provided
that the loci are in linkage equilibrium. Some results are summarized in Table 2.

The estimates of n and a do not depend on p because the offspring variance, conditional on
the parental phenotypes (Eq. 3), does not contain p. The value of p is absorbed into the
heritability. In simulations, however, p plays an important role. Information about the
number of loci comes from differences in the offspring variance of parents with different
combinations of phenotypes. For the method to work, it is necessary to have most of the
range of parental phenotypes represented. Otherwise, there is insufficient variation among
families for the dependence of the offspring variance on n to be detectable. Assuming p=0.5
in the symmetric model ensures that the full range of parental phenotypes will be generated.
If instead p=0.2 and n=10, then the probability that any individual will have 10 or more +
alleles is only 5.6×10–4. Even with 104 family trios, no sensible estimates of n and a can be
obtained if p=0.2 is used to generate the data. There is then an important limitation of the
method. It is expected to perform well only if the phenotypes of the parents in a sample
represent the full or nearly full range possible values.

Nonsymmetric models
If the assumptions of the symmetric additive model are not satisfied, the likelihood method
can still be used to estimate n and a, but the values of n̂ and â obtained no longer directly
correspond to parameters of the simulation model. The symmetric simulation model was
modified to allow the allele frequency (pj), additive effect (aj) and dominance effect (dj) for
each locus to be specified. If F=100,000 families are simulated, then variation in the
estimates of n and a is comparable to what was found in the symmetric model (Fig. 2). I will
concentrate on those results in order to focus on what the method estimates when sampling
error is relatively small. The magnitude of the sampling error when fewer families are
simulated is also comparable to what was found in the symmetric model.

When more variation among loci is allowed, there is more variation in the estimated
parameter values even when large numbers of families are simulated. Some representative
results are shown in Figures 3 and 4. In Fig. 3, only the allele frequencies varied among loci,
while in Fig. 4 the additive and dominance effects were allowed to vary also. Even with very
large sample sizes (F=100,000) there is considerable variation especially in n̂. When such
variation is allowed, nE does not predict the results very well. aE is somewhat better as a
predictor. Figure 5 shows some typical results for two sets of replicates. For this figure,
F=1,000,000 families were simulated to further reduce the effects of sampling. If alleles are
additive in their effects (parts A and B), nE is a good predictor of n̂ in most cases, but the
relationship is worse when the dj are allowed to vary across loci also (parts C and D).
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Application to data from African green monkeys
To illustrate the use of the method introduced in the previous sections, it were applied to
measurements of crown-rump length in a captive colony of Caribbean-origin, African green
monkeys (Chlorocebus aethiopus sabaeus). The measurements were made in the Vervet
Research Colony at Wake Forest School of Medicine (Jasinska et al., 2012). All procedures
resulting in the nonhuman primate data followed USDA and NIH guidelines and were
approved by the Wake Forest School of Medicine IACUC. Wake Forest is fully accredited
by AAALAC. The data were kindly provided by Dr. Matthew J. Jorgensen of Wake Forest
University.

The data set consisted of measurements of crown-rump lengths of adults of 281 parent-
offspring trios. When more than one measurement was made on the same individual, the
average for that individual was used. Crown-rump length is sexually dimorphic. The
averages for females and males are 44.19 and 50.05 cm respectively. To equalize the
measurements of the two sexes, measurements in females were multiplied by the ratio,
1.132. This adjustment resulted in a roughly normal distribution of measurements in the two

sexes combined (Figure 6A). The total variance is , the heritability is
h2=0.725 (Fig. 6B) and the estimated environmental component of the variance is 0.553
cm2. With these parameter values, the MLE estimates are n̂=112 and â=0.26 cm. The
likelihood surface is shown in Figure 6C.

To find a rough lower bound on the estimated number of loci, I used a parametric bootstrap
analysis (Efron and Tibshirani, 1993). The parametric bootstrap method seems preferable to
using the asymptotic properties of the log-likelihood surface because the sample size is not
large enough for the likelihood surface to be approximately bivariate normal in the
neighborhood of the MLEs. I simulated 100,000 replicates of the symmetric model with
n=112, a=0.26 and p=0.5. Figure 6D shows the empirical cumulative distribution of n̂ which
has a 5% quantile for n of 14, indicated by the straight line on the graph. The data are
roughly consistent with variation in crown-rump in this population being governed by at
least 14 loci and probably many more.

Extensions of the basic method
Data from a single parent

The above theory can be modified if only one parent per family is available. If the other
parent is assumed to be drawn at random from the same population (i. e. mating is random
with respect to the character of interest), then Eqs. (2) and (3) are replaced by

(8)

and

(9)

where x̃1 is defined by Eq. (4). Because the covariance is created by the transmission from
only one parent. Eq. (5) is replaced by

(10)
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Therefore, the approximate likelihood can be obtained for families in which the phenotype
of only a single parent is available.

Two populations
Assume that the symmetric model is correct for each of two populations but that the
populations differ in the frequency of the + allele at each locus affecting the character. The
derivation of the mean and variance, given the parental phenotypes (Eqs. 3 and 4) is still
valid but with a modification of Equation (4). Assume that parent 1 is from population 1 and
parent 2 from population 2. Equation (4) is replaced by

(11)

where  and x¯k are the heritability and character mean in population k.

When considering individuals whose parents come from different populations, it would
probably be better to analyze data from each parent separately, because the genetic variance
in the two populations may be attributable to different numbers of loci. Either different loci
may be polymorphic in the two populations or the same loci are polymorphic but with
different allele frequencies.

Although the breeding design is the same as that of Lande (1981), this method uses patterns
of variation in the F1 population to estimate the number of loci responsible for variation in
each of the parental populations. In contrast, Lande's method uses the variance in the F2 and
backcross populations to estimate the number of loci responsible for the difference in means
of the parental populations. Because what is estimated by the two methods is not the same, a
comparison of their results may indicate whether the loci that are responsible for variation
within each population are or are not responsible for differences between their means.

Sex linkage
Another possible use of the single-parent theory is to test for sex linkage of loci affecting the
character. Assume that males are the heterogametic sex and that nA loci are on autosomes
and nX loci are on the X. The variance of the character in male offspring will be given by
Eq. (9) with n=nA. The X-linked loci are not transmitted to sons. The variance in female
offspring is given by Eq. (9) with n=nA+nX. It is possible in principle, then, to jointly
estimate nA and nX and to determine whether the average additive effects on autosomal and
X-linked loci are different. One can anticipate that very large sample sizes will be needed to
obtain accurate estimates.

Genotyping of some loci
The approximate likelihood method developed in the previous sections can be adapted to
analyzing a data set in which some loci that are known to affect the quantitative character
have been genotyped. I will call these loci the known loci and assume that their effect on the
character has been estimated accurately and that the known loci have been genotyped in
both parents and offspring. The known loci are assumed to be in linkage equilibrium with
one another and with the remaining unknown loci that also affect the character.

Assume there is no interaction among any of the loci, known and unknown, but there may
be dominance at the known loci. For any individual let the genotype of the known loci be
denoted by k = {k1,k2,...} where kj is the number of + alleles at locus j. Let G(k) denote the
average phenotype of individuals with genotype k at the known loci.
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Considering only the case of two parents and one offspring, assume the data consist of F sets
of trios of phenotypes and net genetic effects for each of F families
[x1,G(k1),x2,G(k2),y,G(ky)] where k1, k2 and ky are the genotypes of the two parents and
their offspring. If we assume that the symmetric model applies to the unknown loci, then
Appendix 2 shows it is possible to compute the approximate likelihood of the data as a
function of n, the number of unknown loci and a the additive effect of a + allele at each
unknown locus. The method is nearly the same as the one described above but with two
differences. First, the net effect of the known loci has to be subtracted from each phenotype:
x1 – G(k1), x2 – G(k2) and y – G(ky). Second, the heritability, h2, has to be replaced by

(12)

where  is the additive genetic variance attributable to the unknown loci, a
quantity that can be estimated from the data, as described in Appendix 2.

Discussion and Conclusions
The theory and results presented above show that it is possible to jointly estimate the
number of loci and the additive effect of an allelic substitution for a normally distributed
quantitative character in a randomly mating population. Although large sample sizes are
needed to obtain accurate estimates, data sets with such large sample sizes are sometimes
collected from humans and other species. The need for large sample sizes is not surprising
given the subtle way that offspring variance depends on the number of loci.

The approximate likelihood method relies on several simplifying assumptions. It estimates n
and a under a symmetric model that assumes equal allele frequency, equal additive effects
and no dominance. When those assumptions are violated, it is possible to define an effective
number of loci, nE, and an effective additive effect, aE, that reflect somewhat but not
perfectly what the method would estimate if sample sizes were very large. This limitation is
similar to that for the Wright-Castle-Lande method. Although Lande (1981) defined an
effective number of loci estimated by that method, later work by Zeng (1992) and by Otto
and Jones (2000) have shown that the estimates are sensitive to deviations from the
symmetric model used in their derivation. In the method presented here, the effective
additive effect, aE, is more robust to deviations from the symmetric model than is the
effective number of loci, nE.

The method does not require the assumption that loci be unlinked, only that they be in
linkage equilibrium. The assumption of linkage equilibrium is not very restrictive for
outbreeding species like humans that have large genomes, but would likely not be valid for
species with high selfing rates because of the extensive linkage disequilibrium found in such
species.

An important assumption of the method is that environmental effects on the character are
independent in each individual. That would not be true if there is a correlation created by an
environmental factor shared by family members. It is difficult to intuit the effect of allowing
for such correlations, and the analytic theory presented in Appendix 1 is no longer valid
because the parental phenotypes are no longer independent of each other. A few sets of
simulations of the symmetric model in which a common environmental effect was added to
the phenotype showed that n̂ tended to be smaller and â tended to be larger than their true
values, but the effect was weak unless the environmental correlations were large.
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Estimates of the number of loci affecting a quantitative character, obtained either from the
Wright-Castle-Lande method or the approximate likelihood method presented here, should
not be taken literally because of the uncertain relationship between the underlying genetic
model and the estimates obtained. Instead, those estimates should be viewed as indications
of the graininess of the genetic basis of a quantitative character, i.e. the extent of deviation
from the infinitesimal model in which there is a very large number of loci each of which has
a vanishingly small effect on the character. The infinitesimal model has gained support
recently from the results of genome-wide association studies (GWAS) that have been
performed in humans. Lango Allen et al. (2010) reported that 180 SNPs are significantly
associated with differences in human height. Together, the SNPs identified account for
roughly 10% of the heritability of height. Yang et al. (2010) showed that by including the
many SNPs near the threshold of significance more than 50% of the heritability of height
could be accounted for. Thus, the infinitesimal model is consistent with data for human
height. Methods for estimating the effective number of loci can be used to determine
whether that model applies to other quantitative characters as well or whether there is
evidence that variation in some characters is attributable to smaller number of loci.

Software Resources
A Mathematica program that implements the approximate likelihood method described in
this paper is posted at http://cteg.berkeley.edu/software.html.
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Appendix 1: Conditional means, variances and covariances
Assuming the symmetric model defined in the text, a quantitative character is determined by
n loci, each of which has an additive effect a. The loci are in Hardy-Weinberg and linkage
equilibrium and the frequency of the + allele at each locus is p. In an individual, the total
genetic contribution to the character is ia, where i is the number of + alleles. The phenotype
of this individual is

(A1)

where e is a normally distributed random variable which has mean 0 and variance .

Under these assumptions, i is binomially distributed in the population with probability p and
sample size 2n. Consequently the population mean and variance of the character are

(A2)

and

(A3)

and the heritability is
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(A4)

Given the measurement of a character in an individual, the conditional distribution of i is

(A5)

Pr(x | i) is a normal distribution with mean ai and variance . Pr(i) is a binomial distribution
that can be approximated by a normal distribution with mean 2np and variance 2np(1–p).
Hence, Pr(i | x) can be approximated by a normal distribution for which

(A6)

where

(A7)

and

(A8)

The quantity x̃ is the breeding value of an individual with phenotype x. Note that, although
the derivation leading to Eq. (A8) involves p, the result does not depend on p because it is
absorbed into h2.

Given that an individual carries i + alleles, the number j of + alleles carried by a gamete it
produces has a hypergeometric distribution:

(A9)

for which E(j | i) = i / 2 and

(A10)

We can now derive the mean and variance of the character, y, in the offspring of two
parents, labeled 1 and 2. The phenotypes of the parents are x1 and x2. Let i1 and i2 be the
numbers of + alleles in each parent and let j1 and j2 be the numbers of + alleles in gametes
produced by each parent. By assumption y = a(j1 + j2) + e. Therefore

(A11)
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where  for k=1 or 2. Equation (A11), which is equivalent to Equation
(2) in the text, shows that the expectation of y is given by the standard equation for the
regression of the offspring phenotype on the midparent. (x1+x2)/2, with regression
coefficient h2.

To find the variance of y, we substitute from the above expressions for the first and second
moments:

(A12)

from which follows the expression for Var(y | x1,x2) given by Equation (3) in the text.

We can also calculate the covariance between phenotypes in full siblings. Assume that
parents with phenotypes x1 and x2 have two offspring which have phenotypes y1 and y2.
The expectations and variances of y1 and y2 are equal and given by Eqs. (2) and (3) in the
main text. To find the covariance, we assume that parent k, which has ik + alleles, produces

two gametes that carry jk and . Because the two gametes represent independent
samples from the hypergeometric distribution (Eq. A9),

(A13)

Consequently

(A14)

and

(A15)

Appendix 2: Multiple classes of loci and the effective number of loci
Assume there are C classes of loci. All loci within a class c have the same additive effect
(ac) and the same allele frequency (pc). There is no dominance in any class. The method
described in Appendix 1 can be generalized to obtain an expression for the offspring
variance, given the parental phenotypes.

For class c, the number of loci is nc and number of + alleles is ic. Let i be a vector with
elements ic. Let jc be the number of + alleles in a randomly generated gamete and j be a

Slatkin Page 12

Theor Popul Biol. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



vector with elements jc. Let ac be the additive effect of a + allele in class c and a be a vector
with elements ac. An offspring is generated by combining two gametes and adding an
environmental component:

(A16)

where the . indicate the inner product of two vectors and the superscripts (m) and (f) indicate
the maternal and paternal gametes.

Given the phenotype of an individual, x, the distribution of i can be computed from

(A17)

Pr(x | i) is a normal distribution with mean a.i. Pr(i) is, under the assumption of linkage
equilibrium among the loci, the product of independent binomial distributions with sample
size 2nc and probability pc. Each of these binomial distributions is approximated by a
normal distribution with mean 2ncpc and variance 2ncpc(1–pc). By completing squares in
Eq. (A17), a little algebra shows that under these assumptions Pr(i | x) is multivariate normal
with a vector of means

(A18)

and a variance-covariance matrix given by

(A19)

where  is the additive component of genetic variance attributable to

class c loci and .

For gamete formation, assume that the distribution of jc is an independent hypergeometric
(Eq. A9 with a subscript c added to all variables). The assumption of independence is only
approximate. If the overall distribution of the total number of + alleles in a gamete is
hypergeometric, then there will be a slight negative correlation in the numbers in each class.

It follows from these assumptions that

(A20)

as expected. The expression for the variance is more complicated:
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(A21)

where .

This expression can be used to define an effective number of loci. In Eq. (A12), the variance
given the parental V(y | x(m), x(f)) is the sum of quadratic functions of x1 and x2. Taking the
second derivative with respect to either parental phenotype gives

(A22)

In Eq. (A21) the variance is also a quadratic function of the parental phenotypes, x(f) and
x(m). Therefore, the effective number of loci is defined to be the n that gives the same
second derivative of the variance:

(A23)

or

(A23)

Although (A23) was derived under the assumption that nc is large enough that the binomial
distribution of ic can be approximated by a normal distribution, it can be used as an effective
number even when the allele frequency and additive effect are different for each locus and

when there is dominance. In that case, 

(A24)

where n is the true number of loci.

Given nE, the effective additive effect of a + allele is obtained by equating the additive
genetic variance in the symmetric additive model to the additive variance for the actual
model:

(A25)

where  is the average allele frequency in the model. Therefore
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(A26)

Appendix 3: Genotypes of known QTNs
Of all the loci that affect the quantitative character of interest, assume that some are known,
meaning that they have been identified as affecting the character, and that their average
genotypic effects on the character have been determined. The remaining loci are unknown.
Assume all loci affecting the character, known and unknown, are in Hardy-Weinberg and
linkage equilibrium.

Let k = {k1,k2,...} be the genotype of an individual at the known loci, where kj is the number
of + alleles at locus j, and let G(k) be the average phenotype of an individual with genotype
k. The function G(k) can allow for dominance at each known locus and in principle allow
for interactions among the known loci. In the absence of gene interactions, G(k) is the sum
of effects of for each locus estimated separately. The additive effects and dominance effects
of the + allele at each known locus are not necessarily the same.

Assume that there is no interaction between the known loci as a group and the unknown loci,
and assume that the symmetric model is valid for the unknown loci. There are n unknown
loci and the frequency of the + allele at each is p. The additive effect of a + allele at each
unknown locus is a and there is no dominance. With these assumptions, the derivation in
Appendix 1 can be used here with only slight modification.

Consider an individuals with phenotype x and genotype k at the known loci, and let i be the
number of + alleles at the unknown loci. Using Bayes theorem

(A27)

Pr(x | i,k) is, by assumption, a normal distribution with mean G(k) + ai and variance . Pr(i
| k) = Pr(i) because of the assumption of linkage equilibrium. As in Appendix 1, Pr(i) is a
binomial distribution that can be approximated by a normal distribution that has mean 2np
and variance 2np(1 – p). Therefore, the numerator of Eq. (A27) is approximately a normal
distribution which has expectation

(A28)

where

(A29)

and

(A30)

The second moment is
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(A31)

The generation of gametes carrying j + alleles at the unknown loci is the same as in
Appendix 1. The genotype ky of the known loci in the offspring is assumed known.
Therefore, the rest of the derivation in Appendix 1 can be used to obtain

(A32)

and

(A33)

The formulas are the same as Eqns. (2) and (3) in the text once G(k) is subtracted from each
phenotype and h2 is replaced by η2.

Given a set of parent-offspring trios, the data for each family consist of genotypes at known

loci and phenotypes,  f = 1,2,...,F. The first step is to

estimate , h2, , and . from the phenotypes of the parents. The
next step is to estimate from the genotypes of the parents the additive genetic variance

attributable to known loci , from which the additive variance attributable to the

unknown loci can be estimated: . From that, we can estimate η2:

(A34)

The final step is to assume y(f) – G(ky) is normally distributed with mean and variance given
by Eqns. (A32) and (A33), from which the approximate likelihood can be computed for each
family.
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Figure 1.
Log-likelihood surface for one replicate of the symmetric model with p=0.5, a=1,

 and F=10,000 parent-offspring trios. n̂=9, â=1.04. In the grid search
2≤n≤50 with grid size 1 and 0.5≤a≤2 with grid size 0.03. The surface represents log(L)–
max[log(L)], where max[log(L)]=–24983.8.
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Figure 2.
Histograms of n̂ and â in 1000 replicates of data simulated under the symmetric model with

p=0.5, n=10, a=1 and . In each replicate, a grid search over the ranges 2≤n≤100 and
0.2≤a≤4 was performed to find the MLEs. F is the number of family trios in each simulated
data set.

Slatkin Page 19

Theor Popul Biol. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Histograms of n̂ and â in 1000 replicates of data simulated under the assumption that n=10
and a=1 but with allele frequencies that differed across loci. In each replicate, pj (the
frequency of the + allele at locus j) was drawn independently from a beta distribution with

mean 0.5 and variance 0.05. In each replicate,  was adjusted so that h2≈0.5. In each
replicate a grid search over the ranges 2≤n≤100 and 0.2≤a≤4 was performed to find the
MLEs. F is the number of family trios in each simulated data set.
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Figure 4.
Histograms of n̂ and â in 1000 replicates of data from F=10,000 parent offspring trios
simulated under the assumption that n=10 but with allele frequencies, additive effects and
dominance deviations that differed across loci. In each replicate, pj was drawn
independently from a beta distribution with mean 0.5 and variance 0.05, aj and dj were
drawn from uniform distributions with limits specified in each histogram. In each replicate,

 was adjusted so that h2≈0.5. In each replicate a grid search over the ranges 2≤n≤100 and
0.2≤a≤4 was performed to find the MLEs.
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Figure 5.
Comparison of effective and estimated numbers of loci (A and C) and additive effects (B
and D) in two sets of simulated data. In both sets, 100 replicate simulations of F=1,000,000
families were run for n=10 loci, the pj were drawn from a beta distribution with mean 0.5
and variance 0.03, and aj were drawn from a uniform distribution on (0.5, 1.5). In parts A
and B, dj=0, and in parts C and D, dj was drawn from a uniform distribution on (–0.5, 0.5).
nE and aE were computed for each replicate from Eqs. (10) and (11). The dashed lines are
the regression lines fitted to the points. The regression equations for each part are (A)
1.54+1.16x (B) 0.11+0.78x (C) −3.30+1.81x (D) 0.13+0.78x.
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Figure 6.
Results from the analysis of crown-rump length in 281 parent-offspring trios of vervet
monkeys (Chlorocebus aethiopus sabaeus). All measurements in females were multiplied by
1.132 to equalize the means of males and females. Part A shows the roughly normal
histogram of adjusted measurements in males and females combined. Part B shows the
regression of offspring on the midparent value. The regression equation is 13.88+0.725x.
Part C shows the difference between the maximum log-likelihood and the computed log-
likelihood for ranges of a and n. The MLEs are n̂=112 and â=0.26 cm. Part D shows the
cumulative distribution function (CDF) of the distribution of n̂ in 100,000 replicate
simulations of the symmetric model in which n=112, a=0.26, and F=281. The 5% quantile at
n=14 is indicated by the straight line.
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Table 1

Dependence of the performance of the likelihood method on the number of siblings per family measured.

n̂ sd â sd

F=10,000, S=1 6.0 2.8 0.96 0.15

F=5000, S=2 6.0 3.0 0.95 0.21

F=2500, S=4 6.3 4.0 0.96 0.18

F=1000, S=10 6.5 4.6 0.95 0.21

In all cases, the symmetric model with n=5, p=0.5 and a=1 was assumed. F is the number of independent families and S is the number of full
siblings per family. n̂ and â are the averages over 1000 replicate simulations and the sd values are the standard deviations
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Table 2

Dependence of performance of the likelihood method on whether loci are linked or unlinked. The results are
from 1000 replicates of the symmetric model with n=10, a=1 and p=0.5. The averages and standard deviations
for unlinked loci are calculated from the results shown in Figure 1.

Unlinked loci Completely linked loci

F n̂ (sd) â (sd) n̂ (sd) â (sd)

1000 27.7 (30.7) 1.06 (0.49) 27.3 (31.5) 1.07 (0.50)

10,000 13.9 (11.3) 0.97 (0.21) 14.1 (12.7) 0.98 (0.21)

100,000 10.7 (1.6) 0.98 (0.08) 10.7 (1.6) 0.97 (0.07)
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