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Abstract

Towards Generalist Agents through Scaling Offline Reinforcement Learning

by

Edwin Tyler Zhang

In recent years, there has been an increasing emphasis on developing generalist agents

capable of solving a diverse variety of tasks effectively. We hope that such an agent would

be capable of chaining several smaller tasks together, navigating from high-dimensional

inputs, and being simple and reliable to train, we will first introduce the current landscape

of generalist agents and the state of Deep Reinforcement Learning (RL) and Offline

RL. We’ll also discuss several major issues underlying these fields, such as training

instability and generalization failure. Next, we will explore several proposals for solving

such problems, namely through optimization techniques and diffusion. Finally, we will

discuss the major challenges and opportunities that lie ahead in the future for training

generalist agents.
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Chapter 1

Introduction

1.1 Solving the hardest problem

The pursuit of Artificial General Intelligence (AGI) has been driven by numerous

motivations, each distinct yet intertwined in their objective to further the boundaries of

the intellectual capabilities of humanity. One particularly compelling reason for pursuing

AGI originates from a perspective seemingly separate from the domain of AI itself - the

human yearning to improve our world, to unravel and conquer some of the most formidable

challenges encounterable to society. Some examples may include climate change, war,

economic inequality, cancer, corruption, sex-trafficking, and homelessness.

Engaging in the quest to solve the hardest possible social problems serves as a testament

to the relentless human spirit that ceaselessly aspires for advancement and achievement.

The paradox, however, lies in the realization that our own intelligence and computational

prowess, although remarkable, are inherently limited. Acknowledging this fundamental

constraint kindles the logical progression towards building a system that surpasses our

own intellectual abilities. Therefore, the fundamental question that drives this thesis is

this: ‘How does one draw closer towards the goal of building an agent more intelligent
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Introduction Chapter 1

than ourselves to improve our world?’

Before delving into the mechanics of building such a system, one must pause to define

‘intelligence’. Here, intelligence is defined as the capacity to accomplish a set objective,

with the level of intelligence commensurate to the difficulty of the goal. Under this

definition, Reinforcement Learning (RL) along with Markov Decision Processes (MDPs)

offer a robust, general learning framework for characterizing intelligence [1]. This definition

elegantly aligns with how computational problems are depicted - as functions that map

instances to solutions. Such problems can be reformulated as Reinforcement Learning

(RL) problems, where a reward of 1 is assigned for a correct solution, and 0 otherwise.

Here, I introduce the ‘Computability Hypothesis’, which asserts that almost all

problems of practical significance are computable. Thus this hypothesis implies that

nearly all practical problems can also be represented as a RL problem. Our paradigm

equates the two. Solving RL is solving intelligence. Therefore, creating practical AGI can

be seen as solving the hardest RL problem.

A natural question then arises from this reasoning: How does one gauge the ‘hardness’

of an RL problem? To answer this, I propose adopting a paradigm akin to computational

complexity theory. Imagine the optimal RL algorithm for a given problem - the ‘hardness’

of the problem could then be determined by the time and memory resources required

to run this algorithm. Thus, characterizing the hardness of MDPs is essential. Several

features contribute to this hardness measure for a given Markov Decision Process, including

the size of the state space, the size of individual states, and the sparsity of the reward

function. Other features worthy of note including the branching factor, horizon length,

credit assignment, spurious correlation, environment complexity (transition function

complexity), uncertainty, partial observability, nonhomogeneity, nonergodicity, limited

state space coverage, and exploration. While these are properties identifiable to the

research community now, numerous other undiscovered factors may also play significant
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roles. It is left to future work to formulate a quantitative ‘hardness’ measure from these

properties. Here, I proceed to the next section, where we begin to try to characterize the

properties of successful learning algorithms from Natural Language Processing (NLP),

and apply these lessons to RL.

1.2 Learnings from NLP

Drawing from the realm of Natural Language Processing (NLP), which has seen

tremendous successes in recent years, one can find potential avenues to address some

of these challenges. Applying lessons from NLP to RL can provide valuable insights

and innovative strategies to model and solve complex problems. This thesis, therefore,

embarks on the ambitious journey of deciphering properties of AGI, drawing from the

recent success of NLP.

The field of Natural Language Processing (NLP) offers three crucial insights that

significantly guide our approach towards AGI: firstly, scaling the model, or amplifying

the amount of computation; secondly, augmenting the quantity of data at our disposal

[2]; and thirdly, the usage of the transformer architecture [3].

The act of scaling the model is a critical factor that cannot be overstated. Nonetheless,

it must be emphasized that this scaling attains its true potential when performed in

conjunction with the expansion of data. However, simply increasing the model size without

feeding it with enough data to learn from can also lead to poor performance. The inverse

also holds - even with an abundance of data, if the model capacity is insufficient, the full

value of the data cannot be leveraged. Thus, the concurrent growth of both model size

and data quantity forms a symbiotic relationship that fuels the overall learning capacity

of the system.

Further, the transformer architecture plays a pivotal role in this pursuit. This

3



Introduction Chapter 1

groundbreaking architecture enables the parallelization of sequential processing, thereby

providing the necessary bandwidth to accommodate scaling. Beyond the benefits of

computational efficiency and scalability, transformers also give rise to emergent properties

such as in-context learning. These structures learn from their input data in a dynamic way,

adapting their output based on the input they’re currently processing. This capability

opens up a myriad of possibilities in tasks that require understanding the context, making

transformers a compelling choice for advanced learning systems.

Building on these insights, our goal then is to adapt and apply these lessons to the

field of Reinforcement Learning (RL). Can one harness the transformative potential of

these elements from NLP, and infuse it within RL algorithms to pave the way for more

advanced, and potentially general, forms of artificial intelligence? By exploring this

question, one embarks on a journey towards the realization of AGI, guided by the lessons

of NLP and the potential of RL.

1.3 Offline RL

In this thesis, the concentration will be on a specific subset of Reinforcement Learning

called Offline Reinforcement Learning (Offline RL), also referred to as batch RL [4].

Offline RL provides an avenue to learn policies directly from a fixed batch of data or a

dataset without further interactions with the environment. The key challenge in Offline

RL is to maximize reward and to derive optimal policies based on the existing data, rather

than exploring the environment for new data, as is done in traditional online RL.

The practical implications of this approach are quite profound. Offline RL presents

an attractive option for scenarios where online RL is either impractical or unsafe. This

often occurs in real-world problems where a simulator might not exist or where real-time

evaluation of the environment is costly, risky, or outright dangerous. For instance, in
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the context of self-driving cars, it would be reckless to allow a partially trained model to

operate in a live environment, potentially risking lives and property. Offline RL offers a

more viable solution in such cases, where learning can be accomplished using historical

driving data, mitigating these risks.

The inherent nature of Offline RL also makes it a far more scalable problem than its

online counterpart. By relying on fixed datasets, Offline RL eliminates the need for costly,

continuous environmental interactions and allows for greater computational parallelization,

enhancing scalability. This framework is greatly inspired by the success of NLP, where

the availability of enormous datasets and the capacity to train on these datasets offline

has revolutionized the field. By aligning Offline RL with the principles that have led to

breakthroughs in NLP, new pathways can be potentially unlocked towards AGI, leveraging

the benefits of both fields to drive our understanding and development of intelligence

beyond our current limitations.

1.4 Contribution

In alignment with this overarching vision, the first contribution in this thesis is the

development of a technique designed to bypass the often volatile Offline RL algorithms

by using only stable, supervised learning algorithms to allow future scaling of the model

and data.

This method, ”Closed-form Policy Improvement” [5], builds upon a unique mathemat-

ical approach. At the heart of it lies a Taylor Approximation applied to the estimate of

the value of an action in a given state. This estimate, widely known in the field of RL as

the Q-function, provides a measure of how beneficial a particular action is in a given state.

The Closed-form Policy Improvement method leverages this Q-function approximation to

improve the policy directly, given a Gaussian probability distribution over actions. This
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Gaussian distribution represents the uncertainty about the best action to take at a given

time. By taking a Taylor approximation of the Q-function, one can simplify the Policy

Improvement step to a Quadratically Constrained Linear Program (QCLP), allowing us

to solve Policy Improvement in closed-form.

This direct, closed-form solution offers a distinct advantage over traditional methods,

enabling the algorithm to train more stably and efficiently. By bringing together aspects

of supervised learning and RL in this unique way, the Closed-form Policy Improvement

method offers a powerful approach to handle the challenges associated with Offline RL,

paving the way for greater scalability and practical applicability in real-world generalist

agent implementations.

Following this initial breakthrough, the second major contribution follows: a method

for scaling Offline RL through the adoption of diffusion. The term ‘diffusion’ in this

context refers to a recently successful paradigm for generative modeling, which has gained

prominence through its application in models like Stable Diffusion and DALLE-2 [6, 7].

These models, while highly effective, are inherently computationally intensive as they

require multiple forward passes to generate outputs, a factor that can limit their practical

utility.

To address these challenges, the concept of a hierarchical policy in the diffusion process

is introduced [8], offering a novel approach to mitigating these computational demands.

The hierarchical policy essentially breaks down the problem into manageable, hierarchical

subtasks, making it possible to compute more efficiently and thereby offsetting the inherent

expense of the diffusion approach.

This introduction of a hierarchical policy facilitates an expansion in the reach of Offline

RL, enabling its application to a broader range of tasks, including longer tasks and those

involving higher-dimensional state spaces such as images. By effectively surmounting

the computational hurdles associated with diffusion-based modeling, one opens up new
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horizons for Offline RL, significantly enhancing its potential for scalability and applicability

to a wide range of complex, real-world problems.
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Chapter 2

Background

2.1 Reinforcement Learning.

RL aims to maximize returns in a Markov Decision Process (MDP) [1]M= (S,A, R, T, ρ0, γ),

with state space S, action space A, reward function R, transition function T , initial state

distribution ρ0, and discount factor γ ∈ [0, 1). At each time step t, the agent starts from

a state st ∈ S, selects an action at ∼ π(·|st) from its policy π, transitions to a new state

st+1 ∼ T (·|st, at), and receives reward rt := R(st, at). We define the action value function

associated with π by Qπ(s, a) = Eπ[
∑∞

t=0 γ
trt|s0 = s, a0 = a]. The goal of an RL agent is

to learn an optimal policy π∗ that maximizes the expected discounted cumulative reward

without access to the ground truth R and T and can thus be formulated as

π∗ = argmax
π

J(π) := Es∼ρ0,a∼π(·|s)[Q
π(s, a)] (2.1)

In this thesis, we consider offline RL settings, where we assume restricted access to the

MDPM, and a previously collected dataset D with N transition tuples {(sit, ait, rit)}Ni=1.

We denote the underlying policy that generates D as πβ, which may or may not be a
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mixture of individual policies.

2.2 Behavior Constrained Policy Optimization.

One of the critical challenges in offline RL is that the learned Q function tends to

assign spuriously high values to OOD actions due to extrapolation error, which is well

documented in previous literature [4, 9]. Behavior Constrained Policy Optimization

(BCPO) methods [4, 9, 10, 11, 12] explicitly constrain the action selection of the learned

policy to stay close to the behavior policy πβ, resulting in a policy improvement step that

can be generally summarized by the optimization problem below:

max
π

Es∼D
[
Eã∼π(·|s) [Q (s, ã)]− αD (π(· | s), πβ(· | s))

]
, (2.2)

where D(·, ·) is a divergence function that calculates the divergence between two action

distributions, and α is a hyper-parameter controlling the strength of regularization.

Consequently, the policy is optimized to maximize the Q-value while staying close to the

behavior distribution.

Different algorithms may choose different D(·, ·) (e.g., KL Divergence [11, 13], Rényi

divergence [14, 15], MSE [10] and MMD [9]).

2.3 Language Conditioned RL.

We additionally consider a language-conditioned RL setting where we assume that

the true reward function R is unknown, and must be inferred from a natural language

instruction L ∈ L. Formally, let F be the function space of R. Then the goal becomes

learning an operator from the language instruction to a reward function ψ : L 7→ F ,

9
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and maximizing the policy objective conditioned on the reward function ψ(L): J(π(· |

s,R)) = Ea∼π,s∼p

∑∞
t=0 γ

trt. This formulation can be seen as a contextual MDP [16],

where language is seen as a context variable that affects reward but not dynamics. Note

that the space of tasks that can be specified by language is much larger than that of

reward, due to the Markov restriction of the latter [17]. For example, “pour the milk” and

“pour the milk after five o’clock” are both valid instructions, but are indistinguishable

from a reward function if the state does not contain temporal information. We assume

access to a prior collected dataset D of N annotated trajectories τi = ⟨(s0, a0, ...sT ),Li⟩.

It will be clear from the context whether we are considering a regular dataset introduced

in the prior section or a language-conditioned dataset. The language conditioned policy

πβ, or the behavior policy, is defined to be the policy that generates the aforementioned

dataset. This general setting can be further restricted to prohibit environment interaction,

which recovers offline RL or imitation learning (IL). In this paper, we assume access to a

dataset of expert trajectories, such that πβ = optimal policy π⋆. Although this may seem

like a strong assumption, the setting still poses a challenging learning problem as many

unseen states will be encountered during evaluation and must be generalized to. Several

prior methods have failed in this setting [18, 19].

2.4 Goal Conditioned Imitation Learning and Hier-

archical RL.

Goal-conditioned reinforcement learning (RL) is a subfield of RL that focuses on learn-

ing policies that can achieve specific goals or objectives, rather than simply maximizing

the cumulative reward. This approach has been extensively studied in various forms in

the literature [20, 21, 22, 23, 24], although we focus on the hierarchical approach [25].

10
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Following [26], we formulate the framework in a two-level manner where a high level policy

πhi(ã|s) samples a goal state g = ã every c time steps. We refer to c as the temporal

stride. A low level policy (LLP) πlo(a|st, gt) then attempts to reach this state, which can

be trained through hindsight relabelling [27] the language-conditioned offline dataset D.

11



Chapter 3

Closed-form Policy Improvement

3.1 Introduction

The deployment of Reinforcement Learning (RL) [1] in real-world applications is often

hindered by the large amount of online data it requires. Implementing an untested policy

can be costly and dangerous in fields such as robotics [28] and autonomous driving [29].

To address this issue, offline RL (a.k.a batch RL) [30, 31] has been proposed to learn a

policy directly from historical data without environment interaction. However, learning

competent policies from a static dataset is challenging. Previous research has shown that

learning a policy without constraining its deviation from the data-generating policies

suffers from significant extrapolation errors, leading to training divergence [4, 9].

Current literature has demonstrated two successful paradigms for managing the trade-

off between policy improvement and limiting the distributional shift from the behavior

policies. Under the actor-critic framework [32], behavior constrained policy optimization

(BCPO) [4, 9, 10, 11, 12, 33, 34, 35, 36] explicitly regularizes the divergence between

learned and behavior policies, while conservative methods [37, 38, 39, 40, 41, 42] penalize

the value estimate for out-of-distribution (OOD) actions to avoid overestimation errors.

12
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However, most existing model-free offline RL algorithms use stochastic gradient descent

(SGD) to optimize their policies, which can lead to instability during the training process

and require careful tuning of the number of gradient steps. As highlighted by [10], the

performance of the offline-trained policies can be influenced by the specific stopping point

chosen for evaluation, with substantial variations often observed near the final stage of

training. This instability poses a significant challenge in offline RL, given the restricted

access to environment interaction makes it difficult to perform hyper-parameter tuning.

In addition to the variations across different stopping points, our experiment in Table 3.4

reveals that using SGD for policy improvement can result in significant performance

variations across different random seeds, a phenomenon well-documented for online RL

algorithms as well [43].

In this chapter, we aim to mitigate the aforementioned learning instabilities of offline

RL by designing stable policy improvement operators. In particular, we take a closer look

at the BCPO paradigm and make a novel observation that the requirement of limited

distributional shift motivates the use of the first-order Taylor approximation [44], leading

to a linear approximation of the policy objective that is accurate in a sufficiently small

neighborhood of the behavior action. Based on this crucial insight, we construct our

policy improvement operators that return closed-form solutions by carefully designing a

tractable behavior constraint. When modeling the behavior policies as a Single Gaussian,

our policy improvement operator deterministically shifts the behavior policy towards a

value-improving direction derived by solving a Quadratically Constrained Linear Program

(QCLP) in closed form. As a result, our method avoids the training instability in policy

improvement since it only requires learning the underlying behavior policies of a given

dataset, which is a supervised learning problem.

Furthermore, we note that practical datasets are likely to be collected by heterogeneous

policies, which may give rise to a multimodal behavior action distribution. In this scenario,
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a Single Gaussian will fail to capture the multiple modes of the underlying distribution,

limiting the potential for policy improvement. While modeling the behavior as a Gaussian

Mixture provides better expressiveness, it incurs extra optimization difficulties due to the

non-concavity of its log-likelihood. We tackle this issue by leveraging the LogSumExp’s

lower bound and Jensen’s inequality, again leading to a closed-form policy improvement

(CFPI) operator applicable to multimodal behavior policies. Empirically, we demonstrate

the effectiveness of Gaussian Mixture over the conventional Single Gaussian when the

underlying distribution comes from heterogenous policies.

In summary, our main contributions are threefold:

• CFPI operators that are compatible with single mode and multimodal behavior

policies and can be leveraged to improve policies learned by the other algorithms.

• Empirical evidence showing the benefits of modeling the behavior policy as a

Gaussian Mixture.

• One-step and iterative instantiations of our algorithm that outperform state-of-the-

art (SOTA) algorithms on the standard D4RL benchmark [45].

3.2 Closed-Form Policy Improvement

In this section, we introduce our policy improvement operators that map the behavior

policy to a higher-valued policy, which is accomplished by solving a linearly approximated

BCPO. We first show that modeling the behavior policy as a Single Gaussian transforms

the approximated BCPO into a QCLP and thus can be solved in closed-form (Sec.

3.2.1). Given that practical datasets are usually collected by heterogeneous policies,

we generalize the results by modeling the behavior policies as a Gaussian Mixture to

facilitate expressiveness and overcome the incurred optimization difficulties by leveraging

14
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the LogSumExp’s lower bound (LB) and Jensen’s Inequality (Sec. 3.2.2). We close this

section by presenting an offline RL paradigm that leverages our policy improvement

operators (Sec. 3.2.3).

3.2.1 Approximated behavior constrained optimization

We aim to design a learning-free policy improvement operator to avoid learning

instability in offline settings. We observe that optimizing towards BCPO’s policy objective

(2.2) induces a policy that admits limited deviation from the behavior policy. Consequently,

it will only query the Q-value within the neighborhood of the behavior action during

training, which naturally motivates the employment of the first-order Taylor approximation

to derive the following linear approximation of the Q function

Q̄(s, a; aβ) = (a− aβ)T [∇aQ(s, a)]a=aβ
+Q(s, aβ)

= aT [∇aQ(s, a)]a=aβ
+ const.

(3.1)

By Taylor’s theorem [44], Q̄(s, a; aβ) only provides an accurate linear approximation of

Q(s, a) in a sufficiently small neighborhood of aβ. Therefore, the choice of aβ is critical.

Recognizing (2.2) as a Lagrangian and with the linear approximation (3.1), we propose

to solve the following surrogate problem of (2.2) given any state s:

max
π

E
ã∼π

[
ãT [∇aQ(s, a)]a=aβ

]
,

s.t. D (π(· | s), πβ(· | s)) ≤ δ.

(3.2)

Note that it is not necessary for D(·, ·) to be a (mathematically defined) divergence

measure since any generic D(·, ·) that can constrain the deviation of π’s action from πβ

can be considered.

Single Gaussian Behavior Policy. In general, (3.2) does not always have a closed-
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form solution. We analyze a special case where πβ = N (µβ,Σβ) is a Gaussian policy,

π = µ is a deterministic policy, and D(·, ·) is a negative log-likelihood function. In this

scenario, a reasonable choice of µ should concentrate around µβ to limit distributional shift.

Therefore, we set aβ = µβ and the optimization problem (3.2) becomes the following:

max
µ

µT [∇aQ(s, a)]a=µβ
, s.t. − log πβ(µ|s) ≤ δ (3.3)

We now show that (3.3) has a closed-form solution.

Proposition 3.2.1. The optimization problem (3.3) has a closed-form solution that is given

by

µsg(τ) = µβ +

√
2 log τ Σβ [∇aQ(s, a)]a=µβ∥∥∥[∇aQ(s, a)]a=µβ

∥∥∥
Σβ

, (3.4)

where δ = 1
2
log det(2πΣβ) + log τ and ∥x∥Σ =

√
xTΣx.

Proof sketch. (3.3) can be converted into the QCLP below that has a closed-form solution

given by (3.4).

max
µ

µT [∇aQ(s, a)]a=µβ
,

s.t.
1

2
(µ− µβ)

TΣ−1
β (µ− µβ) ≤ log τ

(3.5)

A full proof is given in subsection 3.5.1.

Although we still have to tune τ as tuning α in (2.2) for conventional BCPO methods,

we have a transparent interpretation of τ ’s effect on the action selection thanks to the

tractability of (3.3). Due to the KKT conditions [46], the µsg returned by (3.4) has the

following property

log πβ(µsg|s) = −δ = log
πβ(µβ|s)

τ

⇐⇒ πβ(µsg|s) =
πβ(µβ|s)

τ

. (3.6)
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While setting τ = 1 will always return the mean of πβ, a large τ might send µsg out of the

support of πβ, breaking the accuracy guarantee of the first-order Taylor approximation.

3.2.2 Gaussian Mixture as a more expressive model

Performing policy improvement with (3.4) enjoys favorable computational efficiency

and avoids the potential instability caused by SGD. However, its tractability relies on the

Single Gaussian assumption of the behavior policy πβ. In practice, the historical datasets

are usually collected by heterogeneous policies with different levels of expertise. A Single

Gaussian may fail to capture the whole picture of the underlying distribution, motivating

the use of a Gaussian Mixture to represent πβ.

πβ =
N∑
i=1

λiN (µi,Σi),
N∑
i=1

λi = 1 (3.7)

However, directly plugging the Gaussian Mixture πβ into (3.3) breaks its tractability,

resulting in a non-convex optimization

max
µ

µT [∇aQ(s, a)]a=aβ
,

s.t. log
N∑
i=1

(
λi det(2πΣi)

− 1
2

· exp
(
− 1

2
(µ− µi)

TΣ−1
i (µ− µi)

))
≥ −δ

(3.8)

We are confronted with two major challenges to solve the optimization problem (3.8).

First, it is unclear how to choose a proper aβ while we need to ensure that the solution µ

lies within a small neighborhood of aβ. Second, the constraint of (3.8) does not admit a

convex form, posing non-trivial optimization difficulties. We leverage the lemma below to

tackle the non-convexity of the constraint.

Lemma 3.2.1. log
∑N

i=1 λi exp(xi) admits the following inequalities:
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1. (LogSumExp’s LB)

log
∑N

i=1 λi exp(xi) ≥ maxi {xi + log λi}

2. (Jensen’s Inequality)

log
∑N

i=1 λi exp(xi) ≥
∑N

i=1 λixi

Next, we show that applying each inequality in Lemma 3.2.1 to the constraint of (3.8)

respectively resolves the intractability and leads to natural choices of aβ.

Proposition 3.2.2. By applying the first inequality of Lemma 3.2.1 to the constraint of

(3.8), we can derive an optimization problem that lower bounds (3.8)

max
µ

µT [∇aQ(s, a)]a=aβ
,

s.t. max
i

{
− 1

2
(µ− µi)

TΣ−1
i (µ− µi)

− 1

2
log det(2πΣi) + log λi

}
≥ −δ,

(3.9)

and the closed-form solution to (3.9) is given by

µlse(τ) = argmax
µi(δ)

µi
T [∇aQ(s, a)]a=µi

,

s.t. δ = min
i
{1
2
log det(2πΣi)− log λi}+ log τ,

where µi(δ) = µi +
κiΣi [∇aQ(s, a)]a=µi∥∥∥[∇aQ(s, a)]a=µi

∥∥∥
Σi

,

and κi =
√

2(δ + log λi)− log det(2πΣi) .

(3.10)

Proposition 3.2.3. By applying the second inequality of Lemma 3.2.1 to the constraint of
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(3.8), we can derive an optimization problem that lower bounds (3.8)

max
µ

µT [∇aQ(s, a)]a=aβ
,

s.t.
N∑
i=1

λi

(
− 1

2
log det(2πΣi)

− 1

2
(µ− µi)

TΣ−1
i (µ− µi)

)
≥ −δ

(3.11)

and the closed-form solution to (3.11) is given by

µjensen(τ) = µ+
κiΣ[∇aQ(s, a)]a=µ∥∥∥[∇aQ(s, a)]a=µ

∥∥∥
Σ

, where

κi =

√√√√2 log τ −
N∑
i=1

λiµT
i Σ

−1
i µi + µTΣ

−1
µ ,

Σ =

(
N∑
i=1

λiΣ
−1
i

)−1

, µ = Σ

(
N∑
i=1

λiΣ
−1
i µi

)
,

δ = log τ +
1

2

N∑
i=1

λi log det(2πΣi)

(3.12)

We defer the detailed proof of Proposition 3.2.2 and Proposition 3.2.3 as well as how

we choose aβ for each optimization problem to subsection 3.5.2 and subsection 3.5.3,

respectively.

Comparing to the original optimization problem (3.8), both problems (3.9) and (3.11)

impose more strict trust region constraints, which is accomplished by enforcing the lower

bound of the log probabilities of the Gaussian Mixture to exceed a certain threshold, with

τ controlling the size of the trust region. Indeed, these two optimization problems have

their own assets and liabilities. When πβ exhibits an obvious multimodality as is shown in

Fig. 4.1 (L), the lower bound of log πβ constructed by Jensen’s Inequality cannot capture

different modes due to its concavity, losing the advantage of modeling πβ as a Gaussian
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Mixture. In this case, the optimization problem (3.9) can serve as a reasonable surrogate

problem of (3.8), as LogSumExp’s LB still preserves the multimodality of log πβ.

When πβ is reduced to a Single Gaussian, the approximation with the Jensen’s

Inequality becomes equality as is shown in Fig. 4.1 (M). Thus µjensen returned by (3.12)

exactly solves the optimization problem (3.8). However, in this case, the tightness of

LogSumExp’s LB largely depends on the weights λi=1...N . If each Gaussian component is

distributed and weighted identically, the lower bound will be logN lower than the actual

value. Moreover, there also exists the scenario (Fig. 4.1 (R)) when both (3.9) and (3.11)

can serve as reasonable surrogates to the original problem (3.8).

Fortunately, we can combine the best of both worlds and derives a CFPI operator

accounting for all the above scenarios, which returns a policy that selects the higher-valued

action from µlse and µjensen

µmg(τ) = argmax
µ∈{µlse(τ),µjensen(τ)}

Q(s, µ) (3.13)

3.2.3 Algorithm template

We have derived two CFPI operators that map the behavior policy to a higher-valued

policy. When the behavior policy πβ is a Single Gaussian, ISG(πβ, Q; τ) returns a policy

with action selected by (3.4). When πβ is a Gaussian Mixture, IMG(πβ, Q; τ) returns

a policy with action selected by (3.13). We note that our methods can also work with

a non-Gaussian πβ. section 3.8 provides the derivations for the corresponding CFPI

operators when πβ is modeled as both a deterministic policy and VAE. Algorithm 1 shows

that our CFPI operators enable the design of a general offline RL template that can

yield one-step, multi-step and iterative methods, where E is a general policy evaluation

operator that returns a value function Q̂t. When setting T = 0, we obtain our one-step
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Algorithm 1 Offline RL with CFPI operators

Input: Dataset D, baseline policy π̂b, value function Q̂−1, HP τ

1: Warm start Q̂0 = SARSA(Q̂−1,D) with the SARSA-style algorithm [1]

2: Get one-step policy π̂1 = I(π̂b, Q̂0; τ)
3: for t = 1 . . . T do

4: Policy evaluation: Q̂t = E(Q̂t−1, π̂t,D)
5: Get policy: π̂t+1 = I(π̂b, Q̂t; τ) (concrete choices of I includes IMG and ISG)
6: end for

method. We defer the discussion on multi-step and iterative methods to the section 3.7.

While the design of our CFPI operators is motivated by the behavior constraint, we

highlight that they are compatible with general baseline policies πb besides πβ. Sec. 3.4.2

and subsection 3.11.7 show that our CFPI operators can improve policies learned by IQL

and CQL [37].

3.2.4 Theoretical guarantees for CFPI operators

At a high level, Algorithm 1 follows the approximate policy iteration (API) [47] by

iterating over the policy evaluation (E step, Line 4) and policy improvement (I step, Line

5). Therefore, to verify E provides the improvement, we need to first show policy evaluation

Q̂t is accurate. We employ the Fitted Q-Iteration [1] to perform policy evaluation, which

is known to be statistically efficient (e.g. [48]) under the mild condition for the function

approximation class. Next, for the performance gap between J(π̂t+1)− J(π̂t), we apply

the standard performance difference lemma [49, 50].

Theorem 3.2.2. [Safe Policy Improvement] Assume the state and action spaces are

discrete.1 Let π̂1 be the policy obtained after the CFPI update (Line 2 of Algorithm 1).

1The assumption of discreteness is made only for the purpose of analysis. For the more general cases,
please refer to subsection 3.5.4.
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Then with probability 1− δ,

J(π̂1)− J(π̂β)

≥ 1

1− γ
Es∼dπ̂1

[
Q̄π̂β(s, π̂1(s))− Q̄π̂β(s, π̂β(s))

]
− 2

1− γ
Es∼dπ̂1Ea∼π̂1(·|s)

[
Cγ,δ√
D(s, a)

+ CCFPI(s, a)

]
:= ζ.

Similar results can be derived for multi-step and iterative algorithms by defining π̂0 = π̂β.

With probability 1− δ,

J(π̂T )− J(π̂β) =
T∑
t=1

J(π̂t)− J(π̂t−1) ≥
T∑
t=1

ζ(t),

where D(s, a) denotes number of samples at (s, a), Cγ,δ denotes the learning coefficient of

SARSA and CCFPI(s, a) denotes the first-order approximation error from (3.1). We defer

detailed derivation and the expression of Cγ,δ, ζ
(t) and CCFPI(s, a) in subsection 3.5.4.

Note that when a = aβ, CCFPI(s, a) = 0.

By Theorem 3.2.2, π̂1 is a ζ-safe improved policy. The ζ safeness consists of two parts:

CCFPI is caused by the first-order approximation, and the Cγ,δ/
√
D(s, a) term is incurred

by the SARSA update. Similarly, π̂T is a
∑T

t=1 ζ
(t)-safe improved policy.

3.3 Related Work

Our methods belong and are motivated by the successful BCPO paradigm, which

imposes constraints as in (2.2) to prevent from selecting OOD actions. Algorithms from

this paradigm may apply different divergence functions, e.g., KL-divergence [11, 13],

Rényi divergence [14, 15], MMD [9] or the MSE [10]. All these methods perform policy

improvement via SGD. Instead, we perform CFPI by solving a linear approximation of
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(2.2). Another line of research enforces the behavior constraint via parameterization.

BCQ [4] learns a generative model as the behavior policy and a Q function to select the

action from a set of perturbed behavior actions. [33] further show that the perturbation

model can be discarded.

The design of our CFPI operators is inspired by the SOTA online RL algorithm

OAC [51], which treats the single Gaussian evaluation policy as the baseline πb and

obtains an optimistic exploration policy by solving a similar optimization problem as (3.5).

Since the underlying action distribution of an offline dataset often exhibits multimodality,

we extend the result to accommodate a Gaussian Mixture πb and overcome additional

optimization difficulties by leveraging Lemma 3.2.1. Importantly, we successfully incor-

porate our CFPI operators into an iterative algorithm (Sec. 3.4.1). When updating the

critics, we construct the TD target with actions chosen by the policy improved by our

CFPI operators. This is in stark contrast to OAC, as OAC only employs the exploration

policy to collect new transitions from the environment and does not use the actions

generated by the exploration policy to construct the TD target for the critic training.

These key differences highlight the novelty of our proposed method. We defer additional

comparisons between our methods and OAC to subsection 3.3.1. In subsection 3.3.2, we

further draw connections with prior works that leveraged the Taylor expansion to RL.

Recently, one-step [52, 12] algorithms have achieved great success. Instead of iteratively

performing policy improvement and evaluation, these methods only learn a Q function via

SARSA without bootstrapping from OOD action value. These methods further apply an

policy improvement operator [11, 53] to extract a policy. We also instantiate a one-step

algorithm with our CFPI operator and evaluate on standard benchmarks.
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3.3.1 Detailed comparison with OAC

While Equation 3.4 yields the same action as the mean of the single Gaussian explo-

ration policy in OAC’s Proposition 1, it is crucial to note that Equation (6) only provides

the closed-form solution for our ISG, which assumes a single Gaussian baseline policy

πb. The single Gaussian assumption of πb often fails to capture the full complexity and

multimodality of the underlying action distribution of offline datasets, which motivates

the development of our IMG. In contrast, OAC exclusively addresses a single Gaussian

baseline policy.

When generalizing πb from a single Gaussian to a Gaussian Mixture, the optimization

problem (3.3) transforms into the optimization problem (3.8), resulting in a non-convex

constraint that breaks the tractability. Consequently, we must address the additional

optimization challenges. Our approach involves utilizing inequalities in Lemma 3.2.1,

ultimately leading to our CFPI operator IMG, which can handle both single-mode and

multimodal πb. Experiment results indicate that the one-step algorithm instantiated by

our IMG significantly outperforms the single Gaussian version, ISG, and other baselines,

as shown in Table 3.4 and Figure 3.1.

Moreover, our proposed CFPI operator can be incorporated into an iterative algorithm

(shown in Table 3.1) that solves the policy improvement step in each training iteration

and updates the critics with the TD target constructed from the actions chosen by the

policy improved through our IMG. In contrast, OAC only utilizes the exploration policy

from their Proposition 1 to gather new transitions from the environment and does not

use the actions generated by the exploration policy to construct the TD target for the

critic training. This further highlights the novelty of our proposed method.

In summary, while there are certainly similarities between our ISG and OAC’s Propo-

sition 1, we contend that our proposed CFPI operator IMG a significant advancement,
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particularly in its capability to accommodate both single-mode and multimodal behavior

policies.

3.3.2 Connection with prior works that leveraged the Taylor

expansion to RL

There has been a history of leveraging the Taylor expansion to construct efficient RL

algorithms. [49] proposed the conservative policy iteration that optimizes a mixture of

policies towards its policy objective’s lower bound, which is constructed by performing

first-order Taylor expansion on the mixture coefficient. Later, SOTA deep RL algorithms

TRPO [54] and PPO [55] extend the results to work with trust region policy constraints

and learn a stochastic policy parameterized by a neural network. More recently, [56]

developed a second-order Taylor expansion approach under similar online RL settings.

At a high level, both our works and previous methods propose to create a surrogate

of the original policy objective by leveraging the Taylor expansion approach. However,

our motivation to use Taylor expansion is fundamentally different from the previous

works [49, 54, 55, 56], which leverage the Taylor expansion to construct a lower bound of

the policy objective so that optimizing towards the lower bound translates into guaranteed

policy improvement. However, these methods do not result in a closed-form solution to

the policy and still require iterative policy updates.

On the other hand, our method leverages the Taylor expansion to construct a linear

approximation of the policy objective, enabling the derivation of a closed-form solution

to the policy improvement step and thus avoiding performing policy improvement via

SGD. We highlight that our closed-form policy update cannot be possible without directly

optimizing the parameter of the policy distribution. In particular, the parameter should

belong to the action space. We note that this is a significant conceptual difference
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between our method and previous works.

Specifically, PDL [49] parameterizes the mixture coefficient of a mixture policy as

θ. TRPO [54] and PPO [55] set θ as the parameter of a neural network that outputs

the parameters of a Gaussian distribution. In contrast, our methods learn deterministic

policy π(s) = Dirac(θ(s)) and directly optimize the parameter θ(s). We aim to learn a

greedy π by solving θ(s) = argmaxaQ(s, a). However, obtaining a greedy π in continuous

control is problematic [57]. Given the requirement of limited distribution shift in the

offline RL, we thus leverage the first-order Taylor expansion to relax the problem into a

more tractable form

θ(s) = argmax
a

Q̄(s, a; aβ), s.t. − log πβ(a|s) ≤ δ, (3.14)

where Q̄ is defined in Equation 3.1. By modeling πβ as a Single Gaussian or Gaussian

Mixture, we further transform the problem into a QCLP and thus derive the closed-form

solution.

Finally, we note that both the trust region methods TRPO and PPO and our methods

constrain the divergence between the learned policy and behavior policy. However, the

behavior policy always remains unchanged in our offline RL settings. As TRPO and PPO

are designed for the online RL tasks, the updated policy will be used to collect new data

and becomes the new behavior policy in future training iteration.

3.4 Experiments

Our experiments aim to demonstrate the effectiveness of our CFPI operators. Firstly,

on the standard offline RL benchmark D4RL [45], we show that instantiating offline RL

algorithms with our CFPI operators in both one-step and iterative manners outperforms
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Table 3.1: Comparison between our one-step policy and SOTA methods on the
Gym-MuJoCo domain of D4RL. Our method uses the same τ for all datasets except
Hopper-M-E (detailed in subsection 3.10.1). We report the mean and standard deviation
of our method’s performance across 10 seeds. Each seed contains an individual training
process and evaluates the policy for 100 episodes. We use Cheetah for HalfCheetah, M
for Medium, E for Expert, and R for Replay. We bold the best results for each task.

Dataset SG-BC MG-BC DT TT OnestepRL TD3+BC CQL IQL Our IMG(π̂β, Q̂0)

Cheetah-M-v2 40.6 40.6 42.6 46.9 55.6 48.3 44.0 47.4 52.1± 0.3
Hopper-M-v2 53.7 53.9 67.6 61.1 83.3 59.3 58.5 66.2 86.8± 4.0
Walker2d-M-v2 71.9 70.0 74.0 79.8 85.6 83.7 72.5 78.3 88.3± 1.6

Cheetah-M-R-v2 34.9 33.0 36.6 41.9 42.4 44.6 45.5 44.2 44.5± 0.4
Hopper-M-R-v2 12.4 21.2 82.7 91.5 71.0 60.9 95.0 94.7 93.6± 7.9
Walker2d-M-R-v2 22.9 22.8 66.6 82.6 71.6 81.8 77.2 73.8 78.2± 5.6

Cheetah-M-E-v2 46.6 51.7 86.8 95.0 93.5 90.7 91.6 86.7 97.3± 1.8
Hopper-M-E-v2 53.9 69.2 107.6 101.9 102.1 98.0 105.4 91.5 104.2± 5.1
Walker2d-M-E-v2 92.3 93.2 108.1 110.0 110.9 110.1 108.8 109.6 111.9± 0.3

Total 429.1 455.6 672.6 710.1 716.0 677.4 698.5 692.4 757.0± 27.0

SOTA methods (Sec. 3.4.1). Secondly, we show that our operators can improve a policy

learned by other algorithms (Sec. 3.4.2). Ablation studies in Sec. 3.4.3 further show our

superiority over the other policy improvement operators and demonstrate the benefit of

modeling the behavior policy as a Gaussian Mixture.

3.4.1 Comparison with SOTA offline RL algorithms

We instantiate a one-step offline RL algorithm from Algorithm 1 with our policy

improvement operator IMG. We learned a Gaussian Mixture baseline policy π̂β via

behavior cloning. We employed the IQN [58] architecture to model the Q value network

for its better generalizability, as we need to estimate out-of-buffer Q(s, a) during policy

deployment. We trained the Q̂0 with SARSA algorithm [1, 59]. subsection 3.10.1 includes

detailed training procedures of π̂β and Q̂0 with full HP settings. We obtain our one-step

policy as IMG(π̂β, Q̂0; τ).

We evaluate the effectiveness of our one-step algorithm on the D4RL benchmark
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Table 3.2: Comparison between our Iterative IMG and SOTA methods on the AntMaze
domain. We report the mean and standard deviation across 5 seeds for our method
with each seed evaluating for 100 episodes. The performance for all baselines is directly
reported from the IQL paper. Our Iterative IMG outperforms all baselines on 5 out of
6 tasks and obtains the best overall performance.

Dataset BC DT Onestep RL TD3+BC CQL IQL Iterative IMG

antmaze-umaze-v0 54.6 59.2 64.3 78.6 74.0 87.5 90.2± 3.9
antmaze-umaze-diverse-v0 45.6 49.3 60.7 71.4 84.0 62.2 58.6± 15.2
antmaze-medium-play-v0 0.0 0.0 0.3 10.6 61.2 71.2 75.2± 6.9
antmaze-medium-diverse-v0 0.0 0.7 0.0 3.0 53.7 70.0 72.2± 7.3
antmaze-large-play-v0 0.0 0.0 0.0 0.2 15.8 39.6 51.4± 7.7
antmaze-large-diverse-v0 0.0 1.0 0.0 0.0 14.9 47.5 52.4± 10.9

Total 100.2 112.2 125.3 163.8 303.6 378.0 400.0± 52.0

focusing on the Gym-MuJoCo domain, which contains locomotion tasks with dense rewards.

Table 3.1 compares our one-step algorithm with SOTA methods, including the other

one-step actor-critic methods IQL [52], OneStepRL [12], BCPO method TD3+BC [10],

conservative method CQL [37], and trajectory optimization methods DT [60], TT [61].

We also include the performance of two behavior policies SG-BC and MG-BC modeled

with Single Gaussian and Gaussian Mixture, respectively. We directly report results for

IQL, BCQ, TD3+BC, CQL, and DT from the IQL paper, and TT’s result from its own

paper. Note that OneStepRL instantiates three different algorithms. We only report its

(Rev. KL Reg) result because this algorithm follows the BCPO paradigm and achieves

the best overall performance. We highlight that OnesteRL reports the results by tuning

the HP for each dataset.

Results in Table 3.1 demonstrate that our one-step algorithm outperforms the other

algorithms by a significant margin without training a policy to maximize its Q-value

through SGD. We note that we use the same τ for all datasets except Hopper-M-E. In

Sec. 3.4.3, we will perform ablation studies and provide a fair comparison between our

CFPI operators and the other policy improvement operators.

We further instantiate an iterative algorithm with IMG and evaluate its effectiveness

28



Closed-form Policy Improvement Chapter 3

on the challenging AntMaze domain of D4RL. The 6 tasks from AntMaze are more

challenging due to their sparse-reward nature and lack of optimal trajectories in the static

datasets. Table 3.2 compares our Iterative IMG with SOTA algorithms on the AntMaze

domain. Our method uses the same set of HP for all 6 tasks, outperforming all baselines

on 5 out of 6 tasks and obtaining the best overall performance. subsection 3.7.1 presents

additional details with training curves and pseudo-codes.

3.4.2 Improvement over a learned policy

Table 3.3: Our ISG(πIQL, QIQL) improves the IQL policy πIQL on AntMaze. We report
the mean and standard deviation of 10 seeds. Each seed evaluates for 100 episodes.

Dataset πIQL (train) πIQL (1M) ISG(πIQL, QIQL)

antmaze-u-v0 87.4± 3.2 83.6± 3.2 85.1± 5.3
antmaze-u-d-v0 59.0± 5.7 55.8± 7.9 55.0± 9.1

antmaze-m-p-v0 71.1± 5.43 64.2± 13.2 75.5± 6.1
antmaze-m-d-v0 70.0± 6.16 66.8± 9.4 79.9± 3.8

antmaze-l-p-v0 34.4± 6.04 35.6± 7.0 37.7± 7.7
antmaze-l-d-v0 39.8± 9.09 38.8± 7.1 40.1± 5.6

Total 361.7± 35.6 344.7± 47.8 373.3± 37.5

In this section, we show that our CFPI operator ISG can further improve the per-

formance of a Single Gaussian policy πIQL learned by IQL [52] on the AntMaze domain.

We first obtain the IQL policy πIQL and QIQL by training for 1M gradient steps using

the PyTorch Implementation from RLkit [62]. We emphasize that we follow the authors’

exact training and evaluation protocols and include all training curves in subsection 3.11.6.

Interestingly, even though the average of the evaluation results during training matches

the results reported in the IQL paper, Table 3.3 shows that the evaluation of the final

1M-step policy πIQL does not match the reported performance on all 6 tasks. This demon-

strates how drastically performance can fluctuate across just dozens of epochs, echoing

the unstable performance of offline-trained policies highlighted by [10]. Thanks to the
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Table 3.4: Ablation studies of our Method on the Gym-MuJoCo domain. Again we
report the mean and standard deviation of 10 seeds, and each seed evaluates for 100
episodes. Our IMG outperforms baselines by a significant margin. At the same time,
the SGD-based method Rev. KL Reg exhibits substantial performance variations,
demonstrating the importance of a stable policy improvement operator.

Dataset SG-EBCQ MG-EBCQ SG-Rev. KL Reg MG-Rev. KL Reg ISG IMG

Cheetah-M-v2 53.3± 0.2 51.5± 0.2 47.1± 0.2 47.0± 0.2 51.1± 0.1 52.1± 0.3
Hopper-M-v2 86.8± 5.2 82.5± 1.9 70.3± 7.0 76.3± 6.9 75.6± 3.7 86.8± 4.0
Walker2d-M-v2 85.2± 5.1 85.2± 2.1 82.4± 1.0 82.8± 1.8 88.1± 1.1 88.3± 1.6

Cheetah-M-R-v2 43.5± 0.6 43.0± 0.3 44.3± 0.4 44.4± 0.5 42.8± 0.4 44.5± 0.4
Hopper-M-R-v2 88.5± 12.2 83.6± 10.3 99.7± 1.0 99.4± 2.1 87.7± 8.7 93.6± 7.9
Walker2d-M-R-v2 75.4± 4.6 73.1± 5.2 63.6± 28.5 69.7± 30.9 71.3± 4.4 78.2± 5.6

Cheetah-M-E-v2 81.8± 5.4 84.5± 4.6 78.9± 9.8 65.0± 10.1 91.1± 3.1 97.3± 1.8
Hopper-M-E-v2 40.0± 5.8 56.1± 6.2 76.6± 18.3 79.4± 32.6 70.3± 8.9 73.0± 10.5
Walker2d-M-E-v2 111.1± 1.8 111.1± 1.0 106.7± 4.1 107.1± 4.0 111.1± 1.1 111.9± 0.3

Total 665.5± 41.0 670.6± 31.9 669.7± 70.3 671.2± 89.1 688.9± 31.6 725.8± 32.4

Figure 3.1: Aggregate metrics [63] with 95% CIs based on results reported in Table 3.4.
The CIs are estimated using the percentile bootstrap with stratified sampling. Higher
median, IQM, and mean scores, and lower Optimality Gap correspond to better
performance. Our IMG outperforms baselines by a significant margin based on all four
metrics. section 3.9 includes additional details.

tractability of ISG, we directly obtain an improved policy ISG(πIQL, QIQL; τ) that achieves

better overall performance than both πIQL (train) and (1M), as shown in Table 3.3. We

tune the HP τ using a small set of seeds for each task following the practice of [12, 45]

and include more details in subsection 3.10.2 and subsection 3.11.6.

3.4.3 Ablation studies

We first provide a fair comparison with the other policy improvement operators,

demonstrating the effectiveness of solving the approximated BCPO (3.2) and modeling
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the behavior policy as a Gaussian Mixture. Additionally, we examine the sensitivity on τ ,

ablate the number of Gaussian components, and discuss the limitation by ablating the Q

network in subsection 3.11.2, subsection 3.11.3, and subsection 3.11.4, respectively.

Effectiveness of our CFPI operators. In Table 3.4, we compare our CFPI

operators with two policy improvement operators, namely, Easy BCQ (EBCQ) and Rev.

KL Reg from OneStepRL [12]. EBCQ doe not require training either, returning a policy by

selecting an action that maximizes a learned Q̂ from Nbcq actions randomly sampled from

the behavior policy π̂β. Rev. KL Reg sets D(·, ·) in (2.2) as the reverse KL divergence

and solves the problem via SGD, with α controlling the regularization strength. We omit

the comparison with the other learning-based operator Exp. Weight, as Rev. KL Reg

achieves the best overall performance in OneStepRL.

For all methods, we present results with π̂β modeled by Single Gaussian (SG-) and

Gaussian Mixture (MG-). To ensure a fair comparison, we employ the same Q̂0 and π̂β

modeled and learned in the same way as in Sec. 3.4.1 for all methods. Moreover, we tune

Nbcq for EBCQ, α for Rev. KL Reg, and τ for our methods. Each method uses the same

set of HP for all datasets. As a result, the Hopper-M-E performance of IMG reported in

Table 3.4 is different from Table 3.1. subsection 3.10.1 includes details on the HP tuning

and corresponding experiment results in Table 3.9, 3.10, 3.11 and 3.12.

As is shown in Table 3.4 and Fig. 3.1, our IMG clearly outperforms all baselines by a

significant margin. The SGD-based method Rev. KL Reg exhibits substantial performance

variations, highlighting the need for designing stable policy improvement operators

in offline RL. Moreover, our CFPI operators outperform their EBCQ counterparts,

demonstrating the effectiveness of solving the approximated BCPO.

Effectiveness of Gaussian Mixture. As the three M-E datasets are collected by an

expert and medium policy, we should recover the expert performance if we can 1) capture

the two modes of the action distribution 2) and always select action from the expert
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mode. In other words, we can leverage the Q̂0 learned by SARSA to select actions from

the mean of each Gaussian component, resulting in a mode selection algorithm (MG-MS)

that selects its action by

µmode = argmaxµ̂i
Q̂0(s, µ̂i),

s.t. {µ̂i|λ̂i > ξ},
∑

i=1:N
λ̂iN (µ̂i, Σ̂i) = π̂β,

(3.15)

ξ is set to filter out trivial components. Our MG-MS achieves an expert performance on

Hopper-M-E (104.2±5.1) and Walker2d-M-E (104.1±6.7) and matches SOTA algorithms

in Cheetah-M-E (91.3 ± 2.1). subsection 3.11.1 includes full results of MG-MS on the

Gym MuJoCo domain.

Table 3.4 show that with the same Q̂0, IMG with Gaussian Mixture π̂β outperforms

ISG with Single Gaussian π̂β on all M-R and M-E datasets. The Q̂0 is modeled and

learned in the same way as in Sec. 3.4.1. Here, we slightly abuse the notation and learn

both π̂β via behavior cloning. We highlight that we tune τ separately for IMG and ISG

and each method use the same set of HP for all 9 datasets. As a result, the Hopper-M-E

performance of IMG reported in Table 3.4 is different from Table 3.1.
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Our experiments are conducted on various types of 8GPUs machines. Different

machines may have different GPU types, such as NVIDIA GA100 and TU102. Training

a behavior policy for 500K gradient steps takes around 40 minutes, while training a Q

network for 500K gradient steps takes around 50 minutes.
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3.5 Proofs and Theoretical Results

3.5.1 Proof of Proposition 3.2.1

Proposition 3.5.1. The optimization problem (3.3) has a closed-form solution that is given

by

µsg(τ) = µβ +

√
2 log τ Σβ [∇aQ(s, a)]a=µβ∥∥∥[∇aQ(s, a)]a=µβ

∥∥∥
Σβ

, where δ =
1

2
log det(2πΣβ) + log τ (3.16)

Proof. The optimization problem (3.3) can be converted into the QCLP

max
µ

µT [∇aQ(s, a)]a=µβ
, s.t.

1

2
(µ− µβ)

TΣ−1
β (µ− µβ) ≤ δ− 1

2
log det(2πΣβ) (3.17)

Following a similar procedure as is in OAC [51], we first derive the Lagrangian below:

L = µT [∇aQ(s, a)]a=µβ
− η

(
1

2
(µ− µβ)

TΣ−1
β (µ− µβ)− δ +

1

2
log det(2πΣβ)

)
(3.18)

Taking the derivatives w.r.t µ, we get

∇µL = [∇aQ(s, a)]a=µβ
− ηΣ−1

β (µ− µβ) (3.19)

By setting ∇µL = 0, we get

µ = µβ +
1

η
Σβ [∇aQ(s, a)]a=µβ

(3.20)
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To satisfy the the KKT conditions [46], we have η > 0 and

(µ− µβ)
TΣ−1

β (µ− µβ) = 2δ − log det(2πΣβ) (3.21)

Finally with (3.20) and (3.21), we get

η =

√
[∇aQ(s, a)]

T
a=µβ

Σβ [∇aQ(s, a)]a=µβ

2δ − log det(2πΣβ)
(3.22)

By setting δ = 1
2
log det(2πΣβ) + log τ and plugging (3.22) to (3.20), we obtain the final

solution as

µsg(τ) = µβ +

√
2 log τ Σβ [∇aQ(s, a)]a=µβ√

[∇aQ(s, a)]
T
a=µβ

Σβ [∇aQ(s, a)]a=µβ

,

= µβ +

√
2 log τ Σβ [∇aQ(s, a)]a=µβ∥∥∥[∇aQ(s, a)]a=µβ

∥∥∥
Σβ

(3.23)

which completes the proof.
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3.5.2 Proof of Proposition 3.2.2

Proposition 3.2. By applying the first inequality of Lemma 3.2.1 to the constraint of (3.8),

we can derive an optimization problem that lower bounds (3.8)

max
µ

µT [∇aQ(s, a)]a=aβ

s.t. max
i

{
−1

2
(µ− µi)

TΣ−1
i (µ− µi)−

1

2
log det(2πΣi) + log λi

}
≥ −δ,

(3.24)

and the closed-form solution to (3.9) is given by

µlse(τ) = argmax
µi(δ)

µi
T [∇aQ(s, a)]a=µi

, s.t. δ =
1

2
min

i
{log λi det(2πΣi)}+ log τ

where µi(δ) = µi +
κiΣi [∇aQ(s, a)]a=µi∥∥∥[∇aQ(s, a)]a=µi

∥∥∥
Σi

, and κi =
√

2(δ + log λi)− log det(2πΣi).

(3.25)

Proof. Recall that the Gaussian Mixture behavior policy is constructed by

πβ =
N∑
i=1

λiN (µi,Σi), (3.26)

We first divide the optimization problem (3.24) into N sub-problems, with each sub-

problem i given by

max
µ

µT [∇aQ(s, a)]a=aβ

s.t. − 1

2
(µ− µi)

TΣ−1
i (µ− µi)−

1

2
log det(2πΣi) + log λi ≥ −δ,

(3.27)

which is equivalent to solving problem (3.3) for each Gaussian component with an

additional constant term log λi, and thus has a unique closed-form solution.

Define the maximizer for each sub-problem i as µi(δ), though µi(δ) does not always

exist. Whenever −1
2
log det(2πΣi)+log λi < −δ, there will be no µ satisfying the constraint
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as 1
2
(µ− µi)

TΣ−1
i (µ− µi) is always greater than 0. We thus set µi(δ) to be None in this

case. Next, we will show that there does not exist any µ̆ /∈ {µi(δ)|i = 1 . . . N}, s.t., µ̆

is the maximizer of (3.24). We can show this by contradiction. Suppose there exists a

µ̆ /∈ {µi(δ)|i = 1 . . . N} maximizing (3.24), there exists at least one j ∈ {1, . . . , N} s.t.

−1

2
(µ̆− µj)

TΣ−1
j (µ̆− µj)−

1

2
log det(2πΣj) + log λj ≥ −δ. (3.28)

Since µ̆ is the maximizer of (3.24), it should also be maximizer of the sub-problem j.

However, the maximizer for sub-problem j is given by µj(δ) ̸= µ̆, contradicting with the

fact that µ̆ is the maximizer of the sub-problem j. Therefore, the optimal solution to

(3.24) has to be given by

argmaxµi
µi

T [∇aQ(s, a)]a=aβ
where µi ∈ {µi(δ)|i = 1 . . . N} (3.29)

To solve each sub-problem i, it is natural to set aβ = µi, which reformulate the sub-problem

i as below

max
µ

µT [∇aQ(s, a)]a=µi

s.t.
1

2
(µ− µi)

TΣ−1
i (µ− µi) ≤ δ − 1

2
log det(2πΣi) + log λi,

(3.30)

Note that problem (3.30) is also a QCLP similar to the problem (3.3). Therefore, we can

derive its solution by following similar procedures as in subsection 3.5.1, resulting in

µi(δ) = µi+
κiΣi [∇aQ(s, a)]a=µi∥∥∥[∇aQ(s, a)]a=µi

∥∥∥
Σi

, where κi =
√
2(δ + log λi)− log det(2πΣi). (3.31)

We complete the proof by further setting δ = 1
2
mini {log λi det(2πΣi)}+ log τ .
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3.5.3 Proof of Proposition 3.2.3

Proposition 3.3. By applying the second inequality of Lemma 3.2.1 to the constraint of

(3.8), we can derive an optimization problem that lower bounds (3.8)

max
µ

µT [∇aQ(s, a)]a=aβ

s.t.
N∑
i=1

λi

(
−1

2
log det(2πΣi)−

1

2
(µ− µi)

TΣ−1
i (µ− µi)

)
≥ −δ

(3.32)

and the closed-form solution to (3.11) is given by

µjensen(τ) = µ+
κiΣ[∇aQ(s, a)]a=µ∥∥∥[∇aQ(s, a)]a=µ

∥∥∥
Σ

, where κi =

√√√√2 log τ −
N∑
i=1

λiµT
i Σ

−1
i µi + µTΣ

−1
µ ,

Σ =

(
N∑
i=1

λiΣ
−1
i

)−1

, µ = Σ

(
N∑
i=1

λiΣ
−1
i µi

)
, δ = log τ +

1

2

N∑
i=1

λi log det(2πΣi)

(3.33)

Proof. Note that problem (3.32) is also a QCLP. Before deciding the value of aβ, we first

derive its Lagrangian with a general aβ below

L = µT [∇aQ(s, a)]a=aβ
− η

(
N∑
i=1

λi

(
1

2
log det(2πΣi) +

1

2
(µ− µi)

TΣ−1
i (µ− µi)

)
− δ

)
(3.34)

Taking the derivatives w.r.t µ, we get

∇µL = [∇aQ(s, a)]a=aβ
− η

(
N∑
i=1

λi
(
Σ−1

i (µ− µi)
))

(3.35)
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By setting ∇µL = 0, we get

µ =

(
N∑
i=1

λiΣ
−1
i

)−1( N∑
i=1

λiΣ
−1
i µi

)
+

1

η

(
N∑
i=1

λiΣ
−1
i

)
[∇aQ(s, a)]a=aβ

= µ+
1

η
Σ [∇aQ(s, a)]a=aβ

,

where Σ =

(
N∑
i=1

λiΣ
−1
i

)−1

, µ = Σ

(
N∑
i=1

λiΣ
−1
i µi

)
,

(3.36)

Equation 3.36 shows that the final solution to the problem (3.32) will be a shift from the

pseudo-mean µ. Therefore, setting aβ = µ becomes a natural choice.

Furthermore, by satisfying the KKT conditions, we have η > 0 and

N∑
i=1

λi (µ− µi)
T Σ−1

i (µ− µi) = 2δ −
N∑
i=1

λi log det(2πΣi) (3.37)

Plugging (3.32) into (3.37) gives the equation below

N∑
i=1

λi

(
µ+

1

η
Σ [∇aQ(s, a)]a=µ − µi

)T

Σ−1
i

(
µ+

1

η
Σ [∇aQ(s, a)]a=µ − µi

)

= 2δ −
N∑
i=1

λi log det(2πΣi).

(3.38)
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The LHS of (3.38) can be reformulated as

N∑
i=1

λi

(
µ+

1

η
Σ [∇aQ(s, a)]a=µ − µi

)T

Σ−1
i

(
µ+

1

η
Σ [∇aQ(s, a)]a=µ − µi

)

=
1

η2

N∑
i=1

λi

(
Σ [∇aQ(s, a)]a=µ

)T
Σ−1

i

(
Σ [∇aQ(s, a)]a=µ

)
+

2

η

N∑
i=1

λi

(
Σ [∇aQ(s, a)]a=µ

)T
Σ−1

i

(
µ− µi

)
+

N∑
i=1

λi (µ− µi)
T Σ−1

i (µ− µi)

. (3.39)

We note that the second line of (3.39)’s RHS can be reduced to

2

η

N∑
i=1

λi

(
Σ [∇aQ(s, a)]a=µ

)T
Σ−1

i

(
µ− µi

)
=

2

η

(
Σ [∇aQ(s, a)]a=µ

)T (( N∑
i=1

λiΣ
−1
i

)
µ−

N∑
i=1

λiΣ
−1
i µi

)

=
2

η

(
Σ [∇aQ(s, a)]a=µ

)T (
Σ

−1
µ− Σ

−1

(
Σ

N∑
i=1

λiΣ
−1
i µi

))

=
2

η

(
Σ [∇aQ(s, a)]a=µ

)T (
Σ

−1
µ− Σ

−1
µ
)

= 0

. (3.40)
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Therefore, (3.39) can be further reformulated as

N∑
i=1

λi

(
µ+

1

η
Σ [∇aQ(s, a)]a=µ − µi

)T

Σ−1
i

(
µ+

1

η
Σ [∇aQ(s, a)]a=µ − µi

)

=
1

η2

N∑
i=1

λi

(
Σ [∇aQ(s, a)]a=µ

)T
Σ−1

i

(
Σ [∇aQ(s, a)]a=µ

)
+

N∑
i=1

λi (µ− µi)
T Σ−1

i (µ− µi)

=
1

η2

(
Σ [∇aQ(s, a)]a=µ

)T ( N∑
i=1

λiΣ
−1
i

)(
Σ [∇aQ(s, a)]a=µ

)
+

N∑
i=1

λi (µ− µi)
T Σ−1

i (µ− µi)

=
1

η2

(
Σ [∇aQ(s, a)]a=µ

)T
Σ

−1
(
Σ [∇aQ(s, a)]a=µ

)
+

N∑
i=1

λi (µ− µi)
T Σ−1

i (µ− µi)

=
1

η2
[∇aQ(s, a)]

T
a=µΣ [∇aQ(s, a)]a=µ +

N∑
i=1

λi (µ− µi)
T Σ−1

i (µ− µi)

. (3.41)

To this point, (3.38) can be reformulated as

1

η2
[∇aQ(s, a)]

T
a=µΣ [∇aQ(s, a)]a=µ +

N∑
i=1

λi (µ− µi)
T Σ−1

i (µ− µi)

= 2δ −
N∑
i=1

λi log det(2πΣi)

(3.42)

We can thus express η as below

η =

√√√√ [∇aQ(s, a)]
T
a=µΣ [∇aQ(s, a)]a=µ

2δ −
∑N

i=1 λi log det(2πΣi)−
∑N

i=1 λi (µ− µi)
T Σ−1

i (µ− µi)
(3.43)
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By setting δ = 1
2

∑N
i=1 λi log det(2πΣi) + log τ , we have

η =

√√√√ [∇aQ(s, a)]
T
a=µΣ [∇aQ(s, a)]a=µ

2 log τ −
∑N

i=1 λi (µ− µi)
T Σ−1

i (µ− µi)

=

√√√√ [∇aQ(s, a)]
T
a=µΣ [∇aQ(s, a)]a=µ

2 log τ −
∑N

i=1 λiµ
TΣ−1

i µ+ 2µT
∑N

i=1 λiΣ
−1
i µi −

∑N
i=1 λiµ

T
i Σ

−1
i µi

=

√√√√ [∇aQ(s, a)]
T
a=µΣ [∇aQ(s, a)]a=µ

2 log τ −
∑N

i=1 µ
TΣ

−1
µ+ 2µTΣ

−1
µ−

∑N
i=1 λiµ

T
i Σ

−1
i µi

=

√√√√ [∇aQ(s, a)]
T
a=µΣ [∇aQ(s, a)]a=µ

2 log τ + µTΣ
−1
µ−

∑N
i=1 λiµ

T
i Σ

−1
i µi

. (3.44)

Finally, plugging (3.44) into (3.36), with aβ = µ, we have

µjensen(τ) = µ+

√√√√2 log τ −
∑N

i=1 λiµ
T
i Σ

−1
i µi + µTΣ

−1
µ

[∇aQ(s, a)]
T
a=µΣ[∇aQ(s, a)]a=µ

Σ[∇aQ(s, a)]a=µ

= µ+
κiΣ[∇aQ(s, a)]a=µ∥∥∥[∇aQ(s, a)]a=µ

∥∥∥
Σ

,

where κi =

√√√√2 log τ −
N∑
i=1

λiµT
i Σ

−1
i µi + µTΣ

−1
µ

(3.45)

which completes the proof.
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3.5.4 Proof of Theorem 3.2.2

In this section, we prove the safe policy improvement presented in Section 3.2.3.

Algorithm 1 follows the approximate policy iteration (API) [47] by iterating over the

policy evaluation (E step, Line 4) and policy improvement (I step, Line 5). Therefore, to

verify E provides the improvement, we need to first show policy evaluation Q̂t is accurate.

In particular, we focus on the SARSA updates (Line 2), which is a form of on-policy

Fitted Q-Iteration [1]. Fortunately, it is known that FQI is statistically efficient (e.g. [48])

under the mild condition for the function approximation class. Its linear counterpart,

least-square value iteration, is also shown to be efficient for offline reinforcement learning

[64, 65]. Recently, [66] shows the finite sample convergence guarantee for SARSA under

the standard the mean square error loss.

Next, to show the performance improvement, we leverage the performance difference

lemma to show our algorithm achieves the desired goal.

Lemma 3.5.1 (Performance Difference Lemma). For any policy π, π′, it holds that

J(π)− J(π′) =
1

1− γ
Es∼dπ

[
Ea∼π(·|s)A

π′
(s, a)

]
,

where Aπ(s, a) = Qπ(s, a)− V π(s) is the advantage function.

Similar to [37], we focus on the discrete case where the number of states |S| and actions

|A| are finite (note in the continuous case, the D(s, a) would be 0 for most locations, and

thus the bound becomes less interesting). The adaptation to the continuous space can

leverage standard techniques like state abstraction [67] and covering arguments.

Next, we define the learning coefficient Cγ,δ of SARSA as

|Q̂π̂β(s, a)−Qπ̂β(s, a)| ≤ Cγ,δ√
D(s, a)

, ∀s, a ∈ S ×A.
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Define the first-order approximation error as

Q̄π̂β(s, a) := (a− aβ)T
[
∇aQ̂

π̂β(s, a)
]
a=aβ

+ Q̂π̂β(s, aβ),

then the approximation error is defined as:

CCFPI(s, a) := |Q̄π̂β(s, a)− Q̂π̂β(s, a)|.

Under the constraint D (π(· | s), π̂β(· | s)) ≤ δ (3.2) (or equivalently action a is close to

aβ), the first-order approximation provides a good estimation for the Q̂πβ .

Theorem 3.5.2 (Restatement of Theorem 3.2.2). Assume the state and action spaces

are discrete. Let π̂1 be the policy obtained after the CFPI update (Line 2 of Algorithm 1).

Then with probability 1− δ,

J(π̂1)− J(π̂β) ≥
1

1− γ
Es∼dπ̂1

[
Q̄π̂β(s, π̂1(s))− Q̄π̂β(s, π̂β(s))

]
− 2

1− γ
Es∼dπ̂1Ea∼π̂1(·|s)

[
Cγ,δ√
D(s, a)

+ CCFPI(s, a)

]
:= ζ.

Similar results can be derived for multi-step and iterative algorithms by defining π̂0 = π̂β.

With probability 1− δ,

J(π̂T )− J(π̂β) =
T∑
t=1

J(π̂t)− J(π̂t−1) ≥
T∑
t=1

ζ(t),

where D(s, a) denotes number of samples at s, a, the learning coefficient of SARSA is

defined as following:

Cγ,δ = maxs0,a0
√

2 ln(12SA/δ)·
√∑∞

h=0

∑
s,a γ

2h · µπ̂β

h (s, a|s0, a0)2Var [V π̂β (s′) | s, a] with

µπ
h(s, a|s0, a0) := P π(sh = s, ah = a, |s0 = s, a0 = a), and CCFPI(s, a) denotes the error
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from the first-order approximation (3.1), (3.2) using CFPI, i.e.

CCFPI(s, a) :=

∣∣∣∣(a− aβ)T [∇aQ̂
π̂β(s, a)

]
a=aβ

+ Q̂π̂β(s, aβ)− Q̂π̂β(s, a)

∣∣∣∣. Note that when

a = aβ, CCFPI(s, a) = 0.

proof of Theorem 3.2.2. We focus on the first update, which is from π̂b to π̂1. According

to the Sarsa update, we have |Q̂π̂β(s, a) − Qπ̂β(s, a)| ≤ Cγ,δ√
D(s,a)

, ∀s, a ∈ S × A with

probability 1− δ and this is due to previous on-policy evaluation result (e.g. [66]). Also

denote π̂1 := argmaxπ Q̄
π̂β . By Lemma 3.5.1,

J(π̂1)− J(π̂β) =
1

1− γ
Es∼dπ̂1

[
Ea∼π̂1(·|s)A

π̂β(s, a)
]

=
1

1− γ
Es∼dπ̂1

[
Ea∼π̂1(·|s)[Q

π̂β(s, a)− V π̂β(s)]
]

=
1

1− γ
Es∼dπ̂1

[
Ea∼π̂1(·|s)[Q

π̂β(s, a)−Qπ̂β(s, π̂β(s))]
]

≥ 1

1− γ
Es∼dπ̂1

[
Ea∼π̂1(·|s)[Q̂

π̂β(s, a)− Q̂π̂β(s, π̂β(s))]
]
− 2

1− γ
Es∼dπ̂1Ea∼π̂1(·|s)

[
Cγ,δ√
D(s, a)

]

≥ 1

1− γ
Es∼dπ̂1

[
Q̄π̂β(s, π̂1(s))− Q̄π̂β(s, π̂β(s))

]
− 2

1− γ
Es∼dπ̂1Ea∼π̂1(·|s)

[
Cγ,δ√
D(s, a)

+ CCFPI(s, a)

]

:= ζ(1).

where the first inequality uses |Q̂π̂β(s, a) − Qπ̂β(s, a)| ≤ Cγ,δ√
D(s,a)

and the last inequality

uses π̂1 := argmaxπ Q̄
π̂β . Here

Cγ,δ = max
s0,a0

√
2 ln(12SA/δ) ·

√√√√ ∞∑
h=0

∑
s,a

γ2h · µπ̂β

h (s, a|s0, a0)Var [V π̂β (s′) | s, a]

Similarly, if the number of iteration t > 1, then Denote

C
(t)
γ,δ := max

s0,a0

√
2 ln(12SA/δ) ·

√√√√ ∞∑
h=0

∑
s,a

γ2h · µ
π̂t
h (s, a|s0, a0)2

µ
π̂t−1

h (s, a|s0, a0)
Var [V π̂t (s′) | s, a],
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then we have with probability 1−δ, by the Corollary 1 of [68], the OPE estimation follows

|Q̂π̂β(s, a)−Qπ̂β(s, a)| ≤
C

(t)
γ,δ√
D(s, a)

and

J(π̂t)− J(π̂t−1) ≥
1

1− γ
Es∼dπ̂t

[
Q̄π̂t−1(s, π̂t(s))− Q̄π̂t−1(s, π̂t−1(s))

]
− 2

1− γ
Es∼dπ̂tEa∼π̂t(·|s)

[
C

(t)
γ,δ√
D(s, a)

+ CCFPI(s, a)

]
:= ζ(t),

then for multi-step iterative algorithm, by a union bound, we have with probability 1− δ

J(π̂T )− J(π̂β) =
T∑
t=1

J(π̂t)− J(π̂t−1) ≥
T∑
t=1

ζ(t).

On the learning coefficient of SARSA. The learning of SARSA is known to be

statistically efficient from existing off-policy evaluation (OPE) literature, for instance

[68, 69]. This is due to the on-policy SARSA scheme is just a special case of OPE task

by choosing π = π̂β.

Concretely, we can translate the finite sample error bound in Corollary 1 of [68] to the

infinite horizon discounted setting as: for any initial state,action s0, a0, with probability

1− δ,

|Q̂π̂β(s0, a0)−Qπ̂β(s0, a0)| ≤
1√

D(s0, a0)

√
2 ln(12/δ)

·

√√√√ ∞∑
h=0

∑
s,a

γ2h · µπ̂β

h (s, a|s0, a0)Var [V π̂β (s′) | s, a]
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Note the original statement in [68] is for vπ̂β − v̂π̂β , here we conduct the version for

Q̂π̂β −Qπ̂β instead and this can be readily obtained by fixing the initial state action s0, a0

for vπ. As a result, by a union bound (over S, A) it is valid to define

Cγ,δ = max
s0,a0

√
2 ln(12SA/δ) ·

√√√√ ∞∑
h=0

∑
s,a

γ2h · µπ̂β

h (s, a|s0, a0)Var [V π̂β (s′) | s, a]

and this makes sure the statistical guarantee in Theorem 3.2.2 follows through.

Similarly, for the multi-step case, the OPE estimator hold with the corresponding

coefficient

C
(t)
γ,δ := max

s0,a0

√
2 ln(12SA/δ) ·

√√√√ ∞∑
h=0

∑
s,a

γ2h · µ
π̂t
h (s, a|s0, a0)2

µ
π̂t−1

h (s, a|s0, a0)
Var [V π̂t (s′) | s, a].

Lastly, even the assumption on the state-action space to be finite is not essential for

Theorem 3.2.2 since, for more general function approximations, recent literature for OPE

[70] shows SARSA update in Algorithm 1 is still statistically efficient.
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3.6 Detailed Procedures to obtain Equation 3.13

We first highlight that we set the HP δ differently for Proposition 3.2.2 and 3.2.3.

With the same τ , we generate the two different δ for the two different settings. Specifically,

δlse(τ) = log τ +min
i

{
1

2
log det(2πΣi)− log λi

}
, (Proposition 3.2.2)

δjensen(τ) = log τ +
1

2

N∑
i=1

λi log det(2πΣi), (Proposition 3.2.3)

(3.46)

We next provide intuition for the design choices (3.46). Recall that the Gaussian

Mixture behavior policy is constructed by

πβ =
N∑
i=1

λiN (µi,Σi). (3.47)

With the mixture weights λi=1...N , we define the scaled probability π̆i(a) of the i-th

Gaussian component evaluated at a

π̆i(µi) = λiπi(a) = λi det(2πΣi)
− 1

2 exp{−1

2
(a− µi)

TΣ−1
i (a− µi)}, (3.48)

where πi(a) = N (a;µi,Σi) denotes the probability of the i-th Gaussian component

evaluated at a. Therefore, we can have log π̆i(µi) = log λi− 1
2
log det(2πΣi), which implies

that

δlse(τ) = log τ +min
i

{
1

2
log det(2πΣi)− log λi

}
= −

(
max

i

{
log λi −

1

2
log det(2πΣi)

}
− log τ

)
= −max

i

{
log

1

τ
π̆i(µi)

}
.

. (3.49)

By setting δlse(τ) in this way, µj = µj(δlse(τ)) will satisfy the following condition whenever

µj is a valid solution to the sub-problem j (3.27) due to the KKT conditions, ∀j ∈
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{1, . . . , N}.

− 1

2
(µj − µj)

TΣ−1
j (µj − µj)−

1

2
log det(2πΣj) + log λj = −δlse(τ)

⇐⇒ log π̆j(µj) = max
i

{
log

1

τ
π̆i(µi)

}
⇐⇒ π̆j(µj) =

1

τ
max

i
{π̆i(µi)}

(3.50)

To elaborate the design of δjensen(τ), we first recall that the constraint of problem (3.11)

is given by

N∑
i=1

λi

(
−1

2
log det(2πΣi)−

1

2
(µ− µi)

TΣ−1
i (µ− µi)

)
≥ −δjensen(τ). (3.51)

Note that the LHS of (3.51) is a concave function w.r.t µ. Thus, we can obtain its

maximum by setting its derivatives (3.52) to zero

∇µ

(
N∑
i=1

λi

(
−1

2
log det(2πΣi)−

1

2
(µ− µi)

TΣ−1
i (µ− µi)

))

=−
N∑
i=1

λiΣ
−1
i (µ− µi) = −Σ

−1
µ+ Σ

−1
µ

. (3.52)

Interestingly, we can find that the solution is given by µ = µ. Plugging µ = µ into the

LHS of (3.51), we can obtain its maximum as below

− 1

2

N∑
i=1

λi log det(2πΣi)−
1

2

N∑
i=1

λi(µ− µi)
TΣ−1

i (µ− µi)

≤
N∑
i=1

λi

(
−1

2
log det(2πΣi)

)
=

N∑
i=1

λi log πi(µi)

(3.53)
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The inequality holds as the covariance matrix Σi is a positive semi-definite matrix for

i ∈ {1 . . . N}. Therefore, our choice of δjensen(τ) can be interpreted as

δjensen(τ) = log τ +
1

2

N∑
i=1

λi log det(2πΣi) = −(
N∑
i=1

λi log πi(µi)− log τ) (3.54)
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3.7 Multi-step and iterative algorithms

By setting T > 0, we can derive multi-step and iterative algorithms. Thanks to

the tractability of our CFPI operators ISG and IMG, we can always perform the policy

improvement step in-closed form. Therefore, there is no significant gap between multi-step

and iterative algorithms with our CFPI operators. One can differentiate our multi-step

and iterative algorithms by whether an algorithm trains the policy evaluation step

E(Q̂t−1, π̂t,D) to convergence or not.

As for the policy evaluation operator E , the fitted Q evaluation [71, 72, 73] with a

target network [74] has been demonstrated to be an effective and successful paradigm to

perform policy evaluation [9, 10, 75, 76, 77] in deep (offline) RL. When instantiating a

multi-step or iterative algorithm from Algorithm 1, one can also consider the other policy

evaluation operators by incorporating more optimization techniques.

In the rest of this section, we will instantiate an iterative algorithm with our CFPI

operators performing the policy improvement step and evaluate its effectiveness on the

challenging AntMaze domains.

3.7.1 Iterative algorithm with our CFPI operators

In Sec. 3.4.1, we instantiate an iterative algorithm Iterative IMG with our CFPI

operator IMG. Algorithm 2 presents the corresponding pseudo-codes that learn a set of

Q-function networks for simplicity. Without loss of generality, we can easily generalize

the algorithm to learn the action-value distribution Z(s, a) as is defined in (3.57).

For each task, we learn a Gaussian Mixture behavior policy π̂β with behavior cloning.

Similar to Sec. 3.4.1, we employed the IQN [58] architecture to model the Q-value network

for its better generalizability. As our CFPI operator IMG returns a deterministic policy,

we follow the TD3 [77] to perform policy smoothing by adding noise to the action a′(s′)
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Algorithm 2 Iterative IMG

Input: Learned behavior policy π̂β, Q network parameters ϕ1, ϕ2, target Q network
parameters ϕtarg,1, ϕtarg,2, dataset D, parameter τ

1: Repeat
2: Randomly sample a batch of transitions, B = {(s, a, r, s′, d)} from D
3: Compute target actions:

a′(s′) = clip
(
IMG(π̂β, Q̂; τ)(s

′) + clip(ϵ,−c, c), aLow, aHigh

)
,

where Q̂ = min(Qϕ1 , Qϕ2), and ϵ ∼ N (0, σ)
4: Compute targets: y(r, s′, d) = r + γ(1− d)mini=1,2Qϕtarg,i

(s′, a′(s′))
5: Update Q-functions by one step of gradient descent using

∇ϕi

1
|B|
∑

(s,a,r,s′,d)∼B (Qϕi
(s, a)− y(r, s′, d))2 for i = 1, 2

6: Update target networks with: ϕtarg,i ← ρϕtarg,i + (1− ρ)ϕi for i = 1, 2
7: Until convergence

8: Output: IMG(π̂β, Q̂; τ)

in Line 4. After convergence, Algorithm 2 outputs an improved policy IMG(π̂β, Q̂; τ).

Table 3.5 compares our Iterative IMG with SOTA algorithms on the AntMaze domain.

The performance for all baseline methods is directly reported from the IQL paper [52].

Our method outperforms all baseline methods on on 5 out of 6 tasks and obtaining the

best overall performance. The training curves are shown in Fig. 3.2 with the HP settings

detailed in Table 3.6. We did not perform much HP tuning, and thus one should expect a

performance improvement after conducting fine-grained HP tuning.
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Table 3.5: Comparison between our iterative algorithm and SOTA methods on the
AntMaze domain of D4RL. We report the mean and standard deviation across 5 seeds
for our methods. Our Iterative IMG outperforms all baselines on 5 out of 6 tasks and
obtaining the best overall performance, demonstrating the effectiveness of our CFPI
operator when instantiating an iterative algorithm.

Dataset BC DT Onestep RL TD3+BC CQL IQL Iterative IMG

antmaze-umaze-v0 54.6 59.2 64.3 78.6 74.0 87.5 90.2± 3.9
antmaze-umaze-diverse-v0 45.6 49.3 60.7 71.4 84.0 62.2 58.6± 15.2
antmaze-medium-play-v0 0.0 0.0 0.3 10.6 61.2 71.2 75.2± 6.9
antmaze-medium-diverse-v0 0.0 0.7 0.0 3.0 53.7 70.0 72.2± 7.3
antmaze-large-play-v0 0.0 0.0 0.0 0.2 15.8 39.6 51.4± 7.7
antmaze-large-diverse-v0 0.0 1.0 0.0 0.0 14.9 47.5 52.4± 10.9

Total 100.2 112.2 125.3 163.8 303.6 378.0 400.0± 52.0

3.8 CFPI beyond Gaussian policies

In this thesis, we mainly discuss the scenario when the behavior policy πβ is from the

Gaussian family and develop two CFPI operators. However, our methods can also work

with a non-Gaussian πβ. Next, we derive a new CFPI operator IDET that can work with

deterministic πβ. We then show that IDET can also be leveraged to improve a general

stochastic policy πβ without knowing its actual expression, as long as we can sample from

it.

3.8.1 Deterministic behavior policy

When modeling both π = µ and πβ = µβ as deterministic policies, we can derive the

following BCPO from the problem (3.2) by setting D(·, ·) as the mean squared error.

max
µ

µT [∇aQ(s, a)]a=µβ
, s.t.

1

2
∥µ− µβ∥2 ≤ δ. (3.55)
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Figure 3.2: Iterative IMG training results on AntMaze. Shaded area denotes one
standard deviation.

Algorithm 3 Policy improvement of IDET with a stochastic πβ

Input: State s, stochastic policy πβ, value function Q̂, δ, number of candidate actions to
sample M

1: Sample candidate actions {a1, . . . , aM} from πβ
2: Obtain the EBCQ policy πEBCQ with action selected by

πEBCQ(s) = argmaxm=1...M Q̂(s, am)

3: Return IDET(πEBCQ, Q̂; δ) by calculating (3.56)

Problem (3.55) has a similar form as the problem (3.17). We can thus obtain its closed-

form solution µ = µdet(δ) as below

µdet(δ) = µβ +

√
2δ

∥ [∇aQ(s, a)]a=µβ
∥
[∇aQ(s, a)]a=µβ

. (3.56)

Therefore, we can derive a new CFPI operator IDET(πβ, Q; δ) that returns a policy with

action selected by (3.56).

We further note that the problem (3.55) can be seen as a linear approximation of the

objectives used in TD3 + BC [10].
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Hyperparameter Value

Shared HP Optimizer Adam [78]
Normalize states False
activation function ReLU
Mini-batch size 256

Gaussian components (N) 8
Number of gradient steps 500K
Policy architecture MLP

MG-BC Policy learning rate 1e-4
Policy hidden layers 3
Policy hidden dim 256
Threshold ξ in (3.15) 0.05

Number of gradient steps 1M
Critic architecture IQN [58]
Critic hidden dim 256
Critic hidden layers 3
Critic learning rate 3e-4

Iterative IMG Number of quantiles Nq 8
Number of cosine basis elements 64
Discount factor 0.99
Target update rate 5e-3
Target update period 1
log τ 1.5

Table 3.6: Hyperparameters for our Iterative IMG.

3.8.2 Beyond deterministic behavior policy

Though we assume πβ to be a deterministic policy during the derivation of IDET, we

can indeed leverage IDET to tackle the more general case when we can only sample from

πβ without knowing its actual expression.

Algorithm 3 details the procedures to perform the policy improvement step for a

stochastic behavior policy πβ. We first obtain its EBCQ policy πEBCQ in Line 1-2. As

πEBCQ is deterministic, we further plug it in IDET in Line 3 to return an improved policy.
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Table 3.7: IDET results on the Gym-MuJoCo domain. We report the mean and
standard deviation 5 seeds and each seed evaluates for 100 episodes.

Dataset DET-BC VAE-BC VAE-EBCQ IDET with πdet IDET with πvae

Walker2d-Medium-v2 71.2± 2.0 70.6± 3.0 70.6± 3.4 79.5± 12.9 86.5± 6.3

Walker2d-Medium-Replay-v2 19.5± 12.6 19.4± 2.9 33.5± 7.3 57.1± 11.6 62.6± 7.1

Walker2d-Medium-Expert-v2 74.4± 0.4 74.9± 7.6 82.7± 11.9 111.2± 1.8 111.1± 0.9

3.8.3 Experiment results

To evaluate the performance of IDET, we first learn two behavior policies with two

different models. Specifically, we model πdet with a three-layer MLP that outputs a

deterministic policy and πvae with the Variational auto-encoder (VAE) [79] from BCQ [4].

Moreover, we reused the same value function Q̂0 as in Section 3.4.1. We present the results

in Table 3.7. DET-BC and VAE denote the performance of πdet and πvae, respectively.

VAE-EBCQ denotes the EBCQ performance of πvae withM = 50 candidate actions. Since

πdet is deterministic, its EBCQ performance is the same as DET-BC. As for our two

methods, we set δ = 0.1 for all datasets. We can observe that both our IDET with πdet

and IDET with πvae largely improve over the baseline methods. Moreover, IDET with πvae

outperforms VAE-EBCQ by a significant margins on all three datasets, demonstrating

the effectiveness of our CFPI operator.

Indeed, our method benefits from an accurate and expressive behavior policy, as

IDET with πvae achieves a higher average performance compared to IDET with πdet, while

maintaining a lower standard deviation on all three datasets.

We also note that we did not spend too much effort optimizing the HP, e.g., the VAE

architectures, learning rates, and the value of τ .
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3.9 Reliable evaluation to address the statistical un-

certainty

Figure 3.3: Comparison between our methods and baselines using reliable evaluation
methods proposed in [63]. We re-examine the results in Table 3.4 on the 9 tasks from
the D4RL MuJoCo Gym domain. Each metric is calculated with a 95% CI bootstrap
based on 9 tasks and 10 seeds for each task. Each seed further evaluates each method
for 100 episodes. The interquartile mean (IQM) discards the top and bottom 25%
data points and calculates the mean across the remaining 50% runs. The IQM is more
robust as an estimator to outliers than the mean while maintaining less variance than
the median. Higher median, IQM, mean scores, and lower Optimality Gap correspond
to better performance. Our IMG outperforms the baseline methods by a significant
margin based on all four metrics.

To demonstrate the superiority of our methods over the baselines and provide reliable

evaluation results, we follow the evaluation protocols proposed in [63] to re-examine the

results in Table 3.4. Specifically, we adopt the evaluation methods for all methods with

Ntasks ×Nseeds runs in total.

Moreover, we obtain the performance profile of each method, revealing its score

distribution and variability. In particular, the score distribution shows the fraction of

runs above a certain threshold η and is given by

F̂ (η) = F̂ (η;x1:Ntasks,1:Nseeds
) =

1

Ntasks

Ntasks∑
m=1

1

Nseeds

Nseeds∑
n=1

1 [xm,n ≥ η]

Evaluation results in Fig. 3.3 and Fig. 3.4 demonstrate that our IMG outperforms the

baseline methods by a significant margin based on all four reliable metrics.
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Figure 3.4: Performance profiles (score distributions) for all methods on the 9 tasks
from the D4RL MuJoCo Gym domain. The average score is calculated by averaging
all runs within one task. Each task contains 10 seeds, and each seed evaluates for 100
episodes. Shaded area denotes 95% confidence bands based on percentile bootstrap
and stratified sampling [63]. The η value where the curves intersect with the dashed
horizontal line y = 0.5 corresponds to the median, while the area under the performance
curves corresponds to the mean.

3.10 Hyper-parameter settings and training details

For all methods we proposed in Table 3.1, Table 3.3, and Table 3.4, we obtain the mean

and standard deviation of each method across 10 seeds. Each seed contains individual

training process and evaluates the policy for 100 episodes.

3.10.1 HP and training details for methods in Table 3.1 and

Table 3.4

Table 3.8 includes the HP of methods evaluated on the Gym-MuJoCo domain. We

use the Adam [78] optimizer for all learning algorithms and normalize the states in

each dataset following the practice of TD3+BC [10]. Note that our one-step offline RL

algorithms presented in Table 3.1 (Our IMG) and Table 3.4 (IMG, ISG, MG-EBCQ, SG-
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EBCQ, MG-MS) require learning a behavior policy and the value function Q̂0. Therefore,

we will first describe the detailed procedures for learning Single Gaussian (SG-BC) and

Gaussian Mixture (MG-BC) behavior policies. We next describe our SARSA-style training

procedures to estimate Q̂0. Finally, we will present the details for each one-step algorithm.

Hyperparameter Value

Shared HP Optimizer Adam [78]
Normalize states True
Policy architecture MLP
Policy learning rate 1e-4
Policy hidden layers 3
Policy hidden dim 256
Policy activation function ReLU
Threshold ξ in (3.15) 0.05

Gaussian components (N) 4
Number of gradient steps 500K

MG-BC Mini-batch size 256

Number of gradient steps 500K
SG-BC Mini-batch size 512

Number of gradient steps Table 3.16
Critic architecture IQN [58]
Critic hidden dim 256
Critic hidden layers 3
Critic activation function ReLU

SARSA Number of quantiles Nq 8
Number of cosine basis elements 64
Discount factor 0.99
Target update rate 5e-3
Target update period 1

Our IMG (Table 3.1) log τ 0 for Hopper-M-E;
0.5 for the others

IMG & ISG(Table 3.4) log τ 0.5 for all tasks

MG-EBCQ Number of candidate actions Nbcq 5
SG-EBCQ Number of candidate actions Nbcq 10

MG-Rev. KL Reg α 3.0
& SG-Rev. KL Reg Number of gradient steps 100K

Table 3.8: Hyperparameters for our methods in Table 3.1 and Table 3.4.

For the IMG results on the D4RL Mujoco dataset, we sample 10 τ from a range of
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[0.5, 1.0] or [0, 0.1]. We found that our method worked robustly for these ranges. For the

ISG, we also sample 10 τ just from a range of [0.5, 1.0]. We use a target quantile of 0.7,

and scale all τ accordingly to 3.6. For behavior cloning, we use

MG-BC. We parameterize the policy as a 3-layer MLP, which outputs the tanh of a

Gaussian Mixture with N = 4 Gaussian components. For each Gaussian component, we

learn the state-dependent diagonal covariance matrix. While existing methods suggest

learning Gaussian Mixture via expectation maximization [80, 81, 82] or variational

Bayes [83], we empirically find that directly minimizing the negative log-likelihood of

actions sampled from the offline datasets achieves satisfactory performance, as is shown in

Table 3.1. We train the policy for 500K gradient steps. We emphasize that we do not aim

to propose a better algorithm for learning a Gaussian Mixture behavior policy. Instead,

future work may use a more advanced algorithm to capture the underlying behavior policy

better.

SG-BC. We parameterize the policy as a 3-layer MLP, which outputs the tanh of a

Single Gaussian with the state-dependent diagonal covariance matrix [45, 75]. We train

the policy for 500K gradient steps.

SARSA. We parameterize the value function with the IQN [58] architecture and

train it to model the distribution Zβ : S × A → Z of the behavior return via quantile

regression, where Z is the action-value distributional space [84] defined as

Z = {Z : S ×A →P(R) | E [|Z(s, a)|p] <∞, ∀(s, a), p ≥ 1} . (3.57)

We define the CDF function of Zβ as FZβ(z) = Pr(Zβ < z), leading to the quantile

function [85] F−1
Zβ (ρ) := inf{z ∈ R : ρ ≤ FZβ(z)} as the inverse CDF function, where ρ

denotes the quantile fraction. We further denote Zβ
ρ = F−1

Zβ (ρ) to ease the notation.

To obtain Zβ, we leverage the empirical distributional bellman operator T̂ β
D : Z → Z
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defined as

T̂ β
DZ(s, a) :

D
= r + γZ (s′, a′) | (s, a, r, s′, a′) ∼ D, (3.58)

where A :
D
= B implies the random variables A and B are governed by the same distribution.

We note that T̂ β
D helps to construct a Huber quantile regression loss [58, 84, 86], and

we can finally learn Zβ by minimizing the quantile regression loss following a similar

procedures as in [84].

To achieve the goal, we approximate Zβ by Nq quantile fractions {ρi ∈ [0, 1] | i =

0 . . . Nq} with ρ0 = 0, ρNq = 1 and ρi < ρj,∀i < j. We further denote ρ̂i = (ρi + ρi+1)/2,

and use random sampling [58] to generate the quantile fractions. By further parameterizing

Zβ
ρ (s, a) as Ẑ

β
ρ (s, a; θ) with parameter θ, we can derive the loss function JZ(θ) as

JZ(θ) = E(s,a,r,s′,a′)∼D

[
Nq−1∑
i=0

Nq−1∑
j=0

(ρi+1 − ρi) lρ̂j (δij)

]
,

where δij = δij (s, a, r, s
′, a′) = r + γZρ̂i

(
s′, a′; θ̄

)
− Zρ̂j (s, a; θ)

and lρ (δij) = |ρ− I {δij < 0}| L (δij) , with L (δij) =


1
2
δ2ij, if |δij| ≤ 1

|δij| − 1
2
, otherwise.

.

(3.59)

θ̄ is the parameter of the target network [76] given by the Polyak averaging of θ. We refer

interested readers to [58, 84] for further details.

The training procedures above returns Ẑβ
ρ ,∀ρ ∈ [0, 1]. With the learned Ẑβ

ρ , our one-

step methods presented in Table 3.1 and Table 3.4 extract the value function by setting

Q̂0 = Eρ[Ẑ
β
ρ ] = Q̂β as the expectation of Ẑβ

ρ , which is equivalent to the conventional

action-value function Q̂β. Specifically, we use N = 32 fixed quantile fractions with
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ρi = i/N, i = 0 . . . N . Given a state-action pair (s, a), we calculate Q̂0(s, a) = Q̂β(s, a) as

Q̂0(s, a) = Q̂β(s, a) =
1

N

N∑
i=1

Ẑβ
ρ̂i
(s, a), ρ̂i =

ρi + ρi−1

2
. (3.60)

Since our methods still need to query out-of-buffer action values during rollout, we

employed the conventional double Q-learning [77] technique to prevent potential overesti-

mation without clipping. Specifically, we initialize Q̂1
0 and Q̂2

0 differently and train them

to minimize (3.59). With the learned Q̂1
0 and Q̂2

0, we set the value of Q̂0(s, a) as

Q̂0(s, a) = min
k=1,2

Q̂k
0(s, a) (3.61)

for every (s, a) pair. Note that the double Q-learning technique is only used during policy

evaluation.

As for deciding the number of gradient steps, we detail our procedures in subsec-

tion 3.11.5. And the number of gradient steps for each dataset can be found in Table 3.16.

Our IMG (Table 3.1). Recall that our CFPI operator IMG(π̂β, Q̂0; τ) requires to

learn a Gaussian Mixture behavior policy π̂β and a value function Q̂0. We train π̂β

and Q̂0 according to the procedures listed in MG-BC and SARSA, respectively. By

following the practice of [12, 45], we perform a grid search on log τ ∈ {0, 0.5, 1.0, 1.5, 2.0}

using 3 seeds. We note that we manually reduce IMG to MG-MS when log τ = 0 by only

considering the mean of each non-trivial Gaussian component. Our results show that

setting log τ = 0.5 achieves the best overall performance while Hopper-M-E requires an

extremely small log τ to perform well as is shown in subsection 3.11.2. Therefore, we

decide to set log τ = 0 for Hopper-M-E and log τ = 0.5 for the other 8 datasets. We then

obtain the results for the other 7 seeds with these HP settings and report the results on

the 10 seeds in total.
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Table 3.9: HP search for MG-EBCQ. We report the mean and std of 10 seeds, and
each seed evaluates for 100 episodes.

Dataset Nbcq = 2 Nbcq = 5 Nbcq = 10 Nbcq = 20 Nbcq = 50 Nbcq = 100

Cheetah-M-v2 47.2± 0.3 51.5± 0.2 53.3± 0.3 54.4± 0.3 55.3± 0.4 55.8± 0.4
Hopper-M-v2 63.3± 2.3 82.5± 1.9 88.3± 4.6 90.8± 6.9 92.1± 7.6 91.3± 9.4
Walker2d-M-v2 78.6± 1.4 85.2± 2.1 81.0± 6.3 73.4± 11.0 67.6± 14.8 62.7± 15.8

Cheetah-M-R-v2 38.8± 0.6 43.0± 0.3 44.2± 0.3 44.7± 0.5 44.8± 0.8 44.6± 0.8
Hopper-M-R-v2 58.4± 6.9 83.6± 10.3 82.8± 14.9 82.3± 15.9 77.5± 17.7 76.0± 16.7
Walker2d-M-R-v2 55.1± 3.4 73.1± 5.2 75.6± 5.3 77.6± 5.4 78.0± 5.6 78.5± 4.5

Cheetah-M-E-v2 75.2± 3.2 84.5± 4.6 82.7± 5.2 77.6± 7.3 73.4± 6.4 68.8± 5.9
Hopper-M-E-v2 73.6± 7.5 56.1± 6.2 44.9± 4.6 37.3± 3.6 29.8± 2.9 25.3± 3.3
Walker2d-M-E-v2 107.1± 1.8 111.1± 1.0 111.4± 1.5 111.4± 2.5 109.6± 4.0 107.2± 6.0
Total 597.2± 27.4 670.6± 31.9 664.1± 43.1 649.5± 53.5 628.0± 60.2 610.2± 62.9

IMG (Table 3.4) & ISG (Table 3.4). Different from the results in Table 3.1, we use

the same log τ = 0.5 for all datasets including Hopper-M-E to obtain the performance of

IMG in Table 3.4. In this way, we aim to understand the effectiveness of each component

of our methods better. To fairly compare IMG and ISG, we tune the τ for ISG in a similar

way by performing a grid search on log τ ∈ {0.5, 1.0, 1.5, 2.0} with 3 seeds and finally set

log τ = 0.5 for all datasets. We then obtain the results for the other 7 seeds and report

the results with 10 seeds in total.

MG-EBCQ & SG-EBCQ. We tune the number of candidate actions Nbcq from

the same range {2, 5, 10, 20, 50, 100} as is in [12]. For each Nbcq, we obtain its average

performance for all tasks across 10 seeds and select the best performing Nbcq for each

method. We separately tune the Nbcq for MG-EBCQ and SG-EBCQ. As a result, we set

Nbcq = 5 for MG-EBCQ and Nbcq = 10 for SG-EBCQ. Moreover, we highlight that

MG-EBCQ (SG-EBCQ) uses the same behavior policy and value function as

is in IMG (ISG). We include the full hyper-parameter search results in Table 3.9 and

Table 3.10.

MG-Rev. KL Reg & SG-Rev. KL Reg. We tune the regularization strength

α from the same range {0.03, 0.1, 0.3, 1.0, 3.0, 10.0} as is in [12]. For each α, we obtain
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Table 3.10: HP search for SG-EBCQ. We report the mean and std of 10 seeds, and
each seed evaluates for 100 episodes.

Dataset Nbcq = 2 Nbcq = 5 Nbcq = 10 Nbcq = 20 Nbcq = 50 Nbcq = 100

Cheetah-M-v2 47.1± 0.2 51.5± 0.1 53.3± 0.2 54.4± 0.3 55.3± 0.3 55.8± 0.4
Hopper-M-v2 60.7± 2.4 78.6± 4.0 86.8± 5.2 89.1± 7.7 89.8± 8.8 89.8± 9.8
Walker2d-M-v2 78.5± 2.8 86.9± 1.8 85.2± 5.1 81.5± 9.3 76.6± 11.8 72.4± 13.8

Cheetah-M-R-v2 37.8± 0.7 42.3± 0.6 43.5± 0.6 44.3± 0.7 44.1± 1.1 43.6± 0.9
Hopper-M-R-v2 58.7± 5.8 85.2± 9.0 88.5± 12.2 89.1± 11.7 83.9± 15.0 82.1± 16.1
Walker2d-M-R-v2 54.0± 7.2 72.2± 5.2 75.4± 4.6 77.7± 4.8 77.5± 5.8 74.9± 6.2

Cheetah-M-E-v2 71.8± 2.2 81.9± 4.8 81.8± 5.4 77.6± 6.9 71.5± 7.5 68.2± 6.5
Hopper-M-E-v2 66.4± 4.8 49.8± 6.2 40.0± 5.8 34.9± 6.2 29.0± 5.7 25.2± 4.8
Walker2d-M-E-v2 106.6± 1.6 111.0± 0.9 111.1± 1.8 110.0± 3.7 107.2± 7.8 106.0± 9.0
Total 581.6± 27.7 659.4± 32.7 665.5± 41.0 658.7± 51.3 634.7± 63.9 618.1± 67.5

Table 3.11: HP search for MG-Rev. KL Reg. We report the mean and std of 10 seeds,
and each seed evaluates for 100 episodes.

Dataset α = 0.03 α = 0.1 α = 0.3 α = 1.0 α = 3.0 α = 10.0

Cheetah-M-v2 58.3± 1.1 58.1± 1.2 55.6± 0.5 50.6± 0.3 47.0± 0.2 44.5± 0.2
Hopper-M-v2 14.4± 13.6 41.0± 31.0 89.4± 22.2 99.7± 1.1 76.3± 6.9 58.5± 4.0
Walker2d-M-v2 5.8± 4.8 18.4± 21.9 34.2± 27.3 82.2± 7.8 82.8± 1.8 76.9± 2.0

Cheetah-M-R-v2 46.7± 1.8 47.5± 1.6 48.1± 0.7 46.4± 0.6 44.4± 0.5 43.1± 0.4
Hopper-M-R-v2 70.9± 33.8 86.6± 26.3 103.1± 0.8 101.4± 1.1 99.4± 2.1 77.6± 17.2
Walker2d-M-R-v2 73.7± 28.8 65.4± 33.8 64.0± 39.9 65.4± 35.8 69.7± 30.9 57.7± 22.8

Cheetah-M-E-v2 0.4± 2.2 1.2± 1.9 4.0± 1.9 25.0± 6.3 65.0± 10.1 86.2± 7.1
Hopper-M-E-v2 2.6± 1.7 16.2± 7.9 22.5± 10.7 57.4± 23.6 79.4± 32.6 86.8± 15.7
Walker2d-M-E-v2 10.4± 15.3 25.5± 38.1 93.5± 34.5 109.8± 0.6 107.1± 4.0 97.4± 7.0
Total 283.2± 103.0 359.9± 163.5 514.3± 138.5 637.8± 77.2 671.2± 89.1 628.6± 76.4

its average performance for all tasks across 10 seeds and select the best performing α

for each method. We separately tune the α for MG-Rev. KL Reg & SG-Rev. KL Reg,

although α = 3.0 achieves the best overall performance in both methods. Moreover, we

highlight that MG-Rev. KL Reg (SG-Rev. KL Reg) uses the same behavior

policy and value function as is in IMG (ISG). We include the full hyper-parameter

search results in Table 3.11 and Table 3.12.
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Table 3.12: HP search for SG-Rev. KL Reg. We report the mean and std of 10 seeds,
and each seed evaluates for 100 episodes.

Dataset α = 0.03 α = 0.1 α = 0.3 α = 1.0 α = 3.0 α = 10.0

Cheetah-M-v2 58.6± 1.3 57.9± 0.8 55.2± 0.5 50.7± 0.5 47.1± 0.2 44.5± 0.3
Hopper-M-v2 18.7± 15.6 40.2± 24.7 83.2± 19.6 98.8± 2.0 70.3± 7.0 57.2± 4.6
Walker2d-M-v2 5.6± 3.5 26.2± 27.1 37.0± 27.6 83.3± 7.5 82.4± 1.0 77.1± 1.2

Cheetah-M-R-v2 46.1± 3.6 47.8± 1.3 47.8± 0.8 46.0± 0.5 44.3± 0.4 42.5± 0.6
Hopper-M-R-v2 77.4± 19.1 60.8± 27.7 92.0± 21.9 100.7± 1.0 99.7± 1.0 70.3± 19.2
Walker2d-M-R-v2 59.5± 31.3 72.7± 38.8 75.7± 30.4 75.1± 25.3 63.6± 28.5 59.7± 21.5

Cheetah-M-E-v2 1.1± 3.2 3.4± 3.4 7.1± 4.3 38.9± 18.4 78.9± 9.8 89.1± 4.0
Hopper-M-E-v2 5.5± 4.0 20.1± 8.6 24.8± 7.9 43.8± 23.6 76.6± 18.3 67.7± 30.6
Walker2d-M-E-v2 1.7± 3.7 13.4± 33.5 83.2± 37.5 109.9± 0.7 106.7± 4.1 96.8± 7.6
Total 274.0± 85.3 342.6± 165.9 505.9± 150.5 647.2± 79.5 669.7± 70.3 604.9± 89.5

3.10.2 HP and training details for methods in Table 3.3

Table 3.13 includes the HP for experiments in Sec. 3.4.2. The of IQL. We use the

same HP for the IQL training as is reported in the IQL paper. We obtain the IQL policy

πIQL and QIQL by training for 1M gradient steps using the PyTorch Implementation from

RLkit [62], a widely used RL library. We emphasize that we follow the authors’ exact

training and evaluation protocol. We include the training curves for all tasks from the

AntMaze domain in subsection 3.11.6.

Note that IQL [52] reported inconsistent offline experiment results on AntMaze in

its paper’s Table 1, Table 2, Table 5, and Table 6 2. We suspect that these results are

obtained from different sets of random seeds. In subsection 3.11.6, we present all these

results in Table 3.17.

To obtain the performance for ISG(πIQL, QIQL), we follow the practice of [12, 45] and

perform a grid search on log τ ∈ {0.1, 0.2, 2.0} using 3 seeds for each dataset. We then

evaluate the best choice for each dataset by obtaining corresponding results on the other

7 seeds. We finally report the results with 10 seeds in total.

2Link to the IQL paper. IQL’s Table 5 & 6 are presented in the supplementary material.
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Hyperparameter Value

Shared HP Normalize states False

Optimizer Adam [78]
Number of gradient steps 1M
Mini-batch size 256
Policy learning rate 3e-4
Policy hidden dim 256
Policy hidden layers 2

IQL HP Policy activation function ReLU
Critic architecture MLP
Critic learning rate 3e-4
Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Target update rate 5e-3
Target update period 1
quantile 0.9
temperature 10.0

ISG(πIQL, QIQL) log τ selected from {0.1, 0.2, 2.0}

Table 3.13: Hyperparameters for methods in Table 3.3

3.11 Additional Experiments

3.11.1 Complete experiment results for MG-MS

Table 3.14 provides the results of MG-MS on the 9 tasks from the MuJoCo Gym

domain in compensation for the results in Sec. 3.4.3.
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Table 3.14: Results of MG-MS on the MuJoCo Gym domain. We report the mean
and standard deviation across 10 seeds, and each seed evaluates for 100 episodes.

Dataset MG-MS (3.15)

Cheetah-M-v2 43.6± 0.2
Hopper-M-v2 55.3± 6.3
Walker2d-M-v2 73.6± 2.2

Cheetah-M-R-v2 42.4± 0.4
Hopper-M-R-v2 61.5± 15.1
Walker2d-M-R-v2 65.0± 10.4

Cheetah-M-E-v2 91.3± 2.1
Hopper-M-E-v2 104.2± 5.1
Walker2d-M-E-v2 104.1± 6.7

Total 641.1± 48.5

3.11.2 Complete experiment results on the effect of the HP τ

Fig. 3.5 presents additional results in compensation for the results in Sec. 3.4.3. We

note that Hopper-Medium-Expert-v2 requires a much smaller log τ than the other tasks

to perform well.
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Figure 3.5: Performance of IMG with varying log τ . The other HP can be found in
Table 3.8. Each variant averages returns over 10 seeds, and each seed contains 100
evaluation episodes. The shaded area denotes bootstrapped 95% CI.

3.11.3 Ablation study on the number Gaussian components

In this section, we explore whether increasing the number of Gaussian components

will result in a performance boost. We use the same settings as in Table 3.1 except

modeling π̂β with 8 Gaussian instead of 4. We hypothesize the performance gain should

most likely happen on the three Medium-Replay datasets, as these datasets are collected

by diverse policies. However, Table 3.15 shows that simply increasing the number of

Gaussian components from 4 to 8 hardly results in a performance boost, as increasing

the number of Gaussian components will induce extra optimization difficulties during
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behavior cloning [82].

Table 3.15: Comparison between setting the number of Gaussian components to 4
and 8 for our IMG on the three Medium-Replay datasets. We report the mean and
standard deviation across 10 seeds, and each seed evaluates for 100 episodes.

Dataset 4 components (Table 3.1) 8 components

Cheetah-M-R-v2 44.5± 0.4 44.3± 0.3
Hopper-M-R-v2 93.6± 7.9 90.6± 11.6
Walker2d-M-R-v2 78.2± 5.6 79.4± 4.5
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3.11.4 Modeling the value network with conventional MLP

Figure 3.6: Performance of IMG with varying ensemble sizes. Each variant averages
returns over 8 seeds, and each seed contains 100 evaluation episode. Each Q-value
network is modeled by a 3-layer MLP. The shaded area denotes bootstrapped 95% CI.

Our experiments in Sec. 3.4.1 rely on learning a Q value function with the IQN [58]

architecture. In this section, we examine the effectiveness of our CFPI operator IMG when

working with an ensemble of conventional MLP Q-value networks with varying ensemble

sizes M .

Each Q-value network Q̂MLP
θk

uses ReLU activation and is parameterized with θk,

including 3 hidden layers of width 256. We train each Q̂MLP
θk

by minimizing the bellman

error below

L(θk) = E(s,a,r,s′,a′)∼D

[
r + γQ̂MLP(s′, a′; θ̄k)− Q̂MLP(s, a; θk)

]
, (3.62)

where θ̄k is the parameter of a target network given by the Polyak averaging of θ. We set

Q̂MLP(s, a; θk) = Q̂MLP
θk

(s, a). We further note that Equation 3.61 can be reformulated as

Q̂0(s, a) = min
k=1,2

Q̂k
0(s, a) =

1

2
|Q̂1

0(s, a) + Q̂2
0(s, a)| −

1

2
|Q̂1

0(s, a)− Q̂2
0(s, a)|

= µ̂Q(s, a)− σ̂Q(s, a),
(3.63)

where µ̂Q and σ̂Q calculate the mean and standard deviation of Q value [51]. In the case
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Figure 3.7: Performance of IMG with varying ensemble sizes on
Walker2d-Medium-Replay-v2. Each variant aggregates returns over 8 seeds,
and each seed evaluates for 100 episodes. Each Q-value network is modeled by a
3-layer MLP. With lower ensemble size, the performance exhibits large variance across
different episodes.

with an ensemble of Q, we obtain Q̂0(s, a) by generalizing (3.63) as below

Q̂0(s, a) = µ̂MLP
Q −

√√√√ 1

M

M∑
k=1

(
Q̂MLP(s, a; θk)− µ̂MLP

Q

)2
,

where µ̂MLP
Q =

1

M

M∑
k=1

Q̂MLP(s, a; θk).

(3.64)

Other than the Q-value network, we applied the same setting as IMG in Table 3.4. Fig. 3.6

presents the results with different ensemble sizes, showing that the performance generally

increases with the ensemble size. Such a phenomenon illustrates a limitation of our CFPI

operator IMG, as it heavily relies on accurate gradient information ∇a[Q̂0(s, a)]a=aβ .

A large ensemble of Q is more likely to provide accurate gradient information, thus
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leading to better performance. In contrast, a small ensemble size provides noisy gradient

information, resulting in high variance across different rollout, as is shown in Fig. 3.7.
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3.11.5 How to decide the number of gradient steps for SARSA

training?

Figure 3.8: Lval on each dataset from the Gym-MuJoCo domain. We can observe that
the model overfits to the training set when training for too may gradient steps. Each
figure averages the validation loss over 2 folds with the same training seed. The shaded
area denotes one standard deviation.

Deciding the number of gradient steps is a non-trivial problem in offline RL. While we

use a fixed number of gradient steps for behavior cloning, we design a rigorous procedure to

decide the gradient steps for SARSA training, inspired by the success of k-fold validation.

In our preliminary experiments, we first train a Q̂β
all using all data from each dataset

for 2M gradient steps. We model the Q̂β
all(s, a) as a 3-layer MLP and train following
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Table 3.16: Gradient steps for the SARSA training

Dataset Gradient steps (K)

HalfCheetah-Medium-v2 200
Hopper-Medium-v2 400
Walker2d-Medium-v2 700

HalfCheetah-Medium-Replay-v2 1500
Hopper-Medium-Replay-v2 300
Walker2d-Medium-Replay-v2 1100

HalfCheetah-Medium-Expert-v2 400
Hopper-Medium-Expert-v2 400
Walker2d-Medium-Expert-v2 400

subsection 3.11.4. By training in this way, we treat Q̂β
all(s, a) as the ground truth Qβ(s, a)

for all (s, a) sampled the dataset D. Next, we randomly split the dataset with the ratio

95/5 to create the trainining set Dtrain validation set Dval. We then train a new Q̂β the

SARSA training on Dtrain. Therefore, we can define the validation loss as

Lval = E(s,a)∼Dval
||Q̂β

all(s, a)− Q̂
β(s, a)||2 (3.65)

Fig. 3.8 presents the Lval on each dataset from the Gym-MuJoCo domain. We can clearly

observe that Q̂β generally overfits the Dtrain when training for too many gradient steps.

We evaluate over two folds with one seed. Therefore, we can decide the gradient steps

of each dataset for the SARSA training according to the results in Fig. 3.8 as listed in

Table 3.16.
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3.11.6 Our reproduced IQL training curves

We use the PyTorch [87] Implementation of IQL from RLkit [62] to obtain its policy

πIQL and value function QIQL. We do not use the official implementation3 open-sourced

by the authors because our CFPI operators are also based on PyTorch. Fig. 3.9 presents

our reproduced training curves of IQL on the 6 datasets from the AntMaze domain.

We note that the IQL paper4 does not report consistent results in their paper for the

offline experiment performance on the AntMaze, as is shown in Table 3.17. We suspect

that these results are obtained from different sets of random seeds. Therefore, we can

conclude that our reproduced results match the results reported in the IQL paper. We

believe our reproduction results of IQL are reasonable, even if we do not use the official

implementation open-sourced by the authors.

Figure 3.9: IQL offline training results on AntMaze. Shaded area denotes one standard
deviation.

3https://github.com/ikostrikov/implicit_q_learning
4Link to the IQL paper. IQL’s Table 5 & 6 are presented in the supplementary material.

75

https://github.com/ikostrikov/implicit_q_learning
https://openreview.net/pdf?id=68n2s9ZJWF8
http://www.overleaf.com


Closed-form Policy Improvement Chapter 3

Table 3.17: Offline experiment results on AntMaze reported in different tables from
the IQL paper

Dataset Table 1 & 6 Table 2 Table 5

antmaze-u-v0 87.5± 2.6 88.0 86.7
antmaze-u-d-v0 62.2± 13.8 67.0 75.0

antmaze-m-p-v0 71.2± 7.3 69.0 72.0
antmaze-m-d-v0 70.0± 10.9 71.8 68.3

antmaze-l-p-v0 39.6± 5.8 36.8 25.5
antmaze-l-d-v0 47.5± 9.5 42.2 42.6

Total 378.0± 49.9 374.8 370.1

3.11.7 Improve the policy learned by CQL

In this section, we show that our CFPI operators can also improve the policy learned

by CQL [37] on the MuJoCo Gym Domain. We first obtain the CQL policy πCQL and

QCQL by training for 1M gradient steps using the official CQL implementation5. We

obtain an improved policy ISG(πCQL, QCQL; τ) that slightly outperforms πCQL overall, as

shown in Table 3.18. For all 6 tasks, we set log τ = 0.1.

Table 3.18: Improving the policy learned by IQL with our CFPI operator ISG

Dataset πCQL (1M) ISG(πCQL, QCQL)

HalfCheetah-Medium-v2 45.5± 0.3 47.1± 1.5
Hopper-Medium-v2 65.4± 3.5 70.1± 4.9
Walker2d-Medium-v2 81.4± 0.6 81.6± 1.1

HalfCheetah-Medium-Replay-v2 44.6± 0.5 45.9± 1.7
Hopper-Medium-Replay-v2 95.2± 2.0 94.6± 1.6
Walker2d-Medium-Replay-v2 80.1± 2.6 78.8± 3.2

Total 412.2± 9.4 418.2± 13.9

5https://github.com/aviralkumar2907/CQL
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3.12 Conclusion and Limitations

Motivated by the behavior constraint in the BCPO paradigm, we propose CFPI

operators that perform policy improvement by solving an approximated BCPO in closed

form. As practical datasets are usually generated by heterogeneous policies, we use the

Gaussian Mixture to model the data-generating policies and overcome extra optimization

difficulties by leveraging the LogSumExp’s LB and Jensen’s Inequality. We instantiate

both one-step and iterative offline RL algorithms with our CFPI operator and show that

they can outperform SOTA algorithms on the D4RL benchmark.

Our CFPI operators avoid the training instability incurred by policy improvement

through SGD. However, our method still requires learning a good Q function. Specifically,

our operators rely on the gradient information provided by the Q, and its accuracy largely

impacts the effectiveness of our policy improvement. Therefore, one promising future

direction for this chapter is to investigate ways to robustify the policy improvement given

a noisy Q.
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Chapter 4

Scaling Diffusion for Offline RL

4.1 Introduction

Generalist agents are characterized by the ability to plan over long horizons, understand

and respond to human feedback, and generalize to new tasks based on that feedback.

Language conditioning is an intuitive way to specify tasks, with a built-in structure

enabling generalization to new tasks. There have been many recent developments to

leverage language for robotics and downstream decision-making and control [88, 20, 89,

90, 91, 92]. However, while language is useful for task specification and generalization, it

will not necessarily help with planning over long horizons.

Current methods have a few pitfalls. Many existing language-conditioned control

methods assume access to a high-level discrete action space (e.g. switch on the stove, walk

to the kitchen) provided by a lower level skill oracle [88, 94, 95, 20]. The generative large

language model (LLM) will typically decompose some high-level language instruction

into a set of predefined skills, which are then executed by a control policy or oracle.

However, a fixed set of predefined skills may preclude the ability to generalize to novel

environments and tasks. In addition, one of the most important design considerations for
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Figure 4.1: An overview of our high-level policy training pipeline. The frozen low-level
policy encoder is used to encode a subsampled sequence of RGB observations into
a lower dimensional latent space (1), which will be used later on as goals for the
goal-conditioned low-level policy. We then noise this latent plan according to a
uniformly sampled timestep from the diffusion process’ variance schedule (2), and
train a Temporal U-Net conditioned on natural language embeddings from a frozen
upstream large language model to reverse the noising process (3), effectively learning
how to conditionally denoise the latent plan. To train the U-Net, one can simply use
the p-norm between the predicted latent plan and the ground truth latent plan as the
loss (4). We use p = 1 in practice following [93].

these models is deciding what level of abstraction the communication protocol between

the LLM and the policy should take. A tradeoff arises from this question, where one must

decide between the amount of reasoning to distribute over the LM versus the underlying

policy. We can increase the burden on the LLM by having it output text at a low-level of

abstraction that is extremely simple to follow, or we can increase the burden on the policy

by having it execute text at a higher level of abstraction. Much prior work has been done

on increasing the reasoning load of the language encoder by leveraging the capabilities

of LLMs to generate planning code [96], calculate affordances of separate skills [88], or

perform chain of thought reasoning during rollout [97], but scaling the low-level policy for

interpreting higher level instruction has remained relatively underexplored, an essential

property necessary when the LLM fails to reason or gives overly broad instructions.

One promising candidate that has emerged for long horizon planning is denoising
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diffusion models. Text-to-image diffusion models [98, 7, 99, 100] have recently been able

to successfully take advantage of LLMs to generate incredibly detailed scenes. In addition,

diffusion models have recently been proposed and successfully applied for low-dimensional,

long-horizon planning and offline reinforcement learning (RL) [93, 101]. In particular,

Diffuser [93] has emerged as an especially promising planner with several properties suited

for language conditioned control: flexibility in task specification, temporal compositionality,

and ability to scale to long-horizon settings.

However, Diffuser [93] does not work directly out of the box when scaling to pixels.

This is perhaps unsurprising, as a high-dimensional Diffuser is effectively a text-to-video

diffusion model, and even internet-scale video diffusion models have demonstrated only

mediocre understanding of physics and temporal coherence over fine details [102, 103].

This is because the training objective for generative models has no notion of the underlying

task, meaning they must model the entire scene with equal weighting. This includes

potentially task-irrelevant details that may hinder or even prevent solving the actual

control problem [104, 105], which leads to catastrophic failure in control where fine details

and precision are essential. Additionally, training a video diffusion model is generally

computationally expensive and may take several days or weeks to train, which leaves

such an approach out of reach to most researchers [6]. This problem is exacerbated when

considering that at inference time multiple forward passes (often >20) are required for

generating even a single state and action, meaning full text to video diffusion models

are inefficient and likely impractical for the real-time sampling demands of robotics

and control. In summary, diffusion models are computationally prohibitive to run on

high-dimensional input spaces and also tend to be inaccurate at low-level control.

We address both of these issues by proposing the usage of a hierarchical diffusion policy.

By utilizing the representation of a goal-conditioned policy as a low-level policy (LLP),

we can effectively solve both the representation and efficiency issue by outputting states
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in a low-dimensional goal space directly into the LLP. This also allows us to arbitrarily

scale the difficulty of the low-level policy learning problem by controlling the horizon

length from which the goal state is set from the current state. This direction is promising,

as it avoids defining the communication layer altogether and enables generating actions

directly from high-level text without a human-defined communication protocol in between.

In consequence, this hierarchical approach allows us to scale the diffusion model along

three orthogonal axes: the Spatial dimension through a low-dimensional representation

that has been purposely optimized for control, the Time dimension through a temporal

abstraction enabled by utilizing a goal conditioned low-level policy (LLP), as the LLP can

use goal states several timesteps away from the current state, and the Task dimension

through language, as the diffusion model acts as a powerful interpreter for plugging any

large language model into control. In addition, the entire pipeline is extremely fast and

simple to train, as we utilize DDIM [106], a temporal abstraction on the horizon, as well

as a low-dimensional representation for generation. We are able to achieve an average of

88.7% success rate across all tasks on the challenging CALVIN benchmark. Additionally,

we elucidate where diffusion models for text-to-control work well and highlight their

limitations. Finally, we explore the grounding between language and state-actions via

evaluation of the task generalization capabilities of our hierarchical diffusion policy.

In summary, our core contributions are: 1) We propose an effective method for

improving diffusion policies’ scaling to high-dimensional state spaces, longer time horizons,

and more tasks by incorporating language and by scaling to pixel-based control. 2) We

significantly improve both the training and inference time of diffusion policies through

DDIM, temporal abstraction, and careful analysis and choice of image encoder. 3)

A successful instantiation of our language control diffusion model that substantially

outperforms the state of the art on the challenging CALVIN benchmark.
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4.2 The Language Control Diffusion (LCD) Frame-

work

In this section, we develop the Language Control Diffusion framework to enable

scaling to longer horizons, improve the generalization capabilities of current language

conditioned policies by avoiding the usage of a predefined low level skill oracle, and

sidestep the computational prohibitiveness of training diffusion models for control from

high-dimensional state spaces by proposing the usage of a vastly more efficient hierarchical

RL framework. We start by deriving the high-level diffusion policy training objective,

and go on to give a theoretical analysis on the suboptimality bounds of our approach

by making the mild assumption of Lipschitz transition dynamics. We then solidify this

theoretical framework into a practical algorithm by describing the implementation details

of both the high-level and low-level policy. Here we also detail the key components of our

method that most heavily affect training and inference efficiency, and the specific model

architectures used in our implementation for the CALVIN benchmark [107].

4.2.1 Diffusion Policies in Hierarchical RL

High-level Diffusion Policy Objective. We first describe our problem formulation

and framework in detail. Since we assume that our dataset is optimal, the policy objective

reduces to imitation learning:

min
π

Es,R∼D [DKL (πβ(· | s,R), π(· | s,R))] . (4.1)

As we tackle the problem from a planning perspective, we define a state trajectory generator

as P and switch the atomic object from actions to state trajectories τ = (s0, s1, ..., sT ).
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Thus we aim to minimize the following KL:

min
P
DKL (Pβ(τ | R),P(τ | R)) = min

P
Eτ ,R∼D [logPβ(τ | R)− logP(τ | R)] . (4.2)

This can be reformulated into the following diffusion training objective:

min
θ

Eτ0,ϵ[∥ϵt − ϵθ(
√
ᾱtτ 0 +

√
1− ᾱtϵt, t)∥2]. (4.3)

Here t refers to a uniformly sampled diffusion process timestep, ϵt refers to noise

sampled from N (0, I), τ 0 refers to the original denoised trajectory τ , αt denotes a

diffusion variance schedule and ᾱt :=
∏t

s=1 αs. We refer to section 4.6 for a more detailed

derivation of our objective.

Near Optimality Guarantees. In order to theoretically justify our approach and

show that we can safely do diffusion in the LLP encoder latent space without loss of

optimality up to some error ϵ, we prove that a near optimal policy is always recoverable

with the LLP policy encoder under some mild conditions: that our low-level policy has

closely imitated our expert dataset and that the transition dynamics are Lipschitz smooth.

Lipschitz transition dynamics is a fairly mild assumption to make [108, 109]. Several

continuous control environments will exhibit a Lipschitz transition function, as well as

many robotics domains. If an environment is not Lipschitz, it can be argued to be in

some sense unsafe [110]. Moreover, one could then impose additional action constraints

on such an environment to make it Lipschitz again.

In this chapter, we consider high dimensional control from pixels, and thus factorize

our low level policy formulation into πlo(a|st, gt) := ϕ(E(st), gt) where z := E(st) defines

an encoder function that maps s into a latent representation z and ϕ translates the

representation z into a distribution over actions a given a goal g. Note that ϕ is an
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arbitrary function, and can be made as simple as a matrix or as complex as another

hierarchical model. Let πlo(s) := ϕ ◦ E(s) be a deterministic low-level policy. Similar

to [111], we can then define the sub-optimality of the action and state space induced

by Ã = S̃ = E(s) to be the difference between the best possible high-level policy

π∗
hi = argmaxπ∈Π J(πhi) within this new abstract latent space and the best policy in

general:

SubOpt(E , ϕ) = sup
s∈S

V π∗
(s)− V π∗

hi(s). (4.4)

Intuitively, this captures how much potential performance we stand to lose by abstracting

our state and action space.

Proposition 4.2.1. If the transition function p(s′|s, a) is Lipschitz continuous with

constant Kf and sups∈S,a∈A |πlo(s)− a∗| ≤ ϵ, then

SubOpt(E , ϕ) ≤ 2γ

(1− γ)2
RmaxKfdom(P (s′|s, a))ϵ. (4.5)

Crucially, this shows that the suboptimality of our policy is bounded by ϵ, and that

our framework is able to recover a near-optimal policy with fairly mild assumptions on

the environment. We give a detailed proof in section 4.7. The beauty of this result

lies in the fact that due to the nature of the LLP’s training objective of minimizing

reconstruction error, we are directly optimizing for Proposition 4.2.1’s second assumption.

Moreover if this training objective converges, it achieves an appromixate π∗-irrelvance

abstraction [112]. Therefore, utilizing the LLP encoder space for diffusion is guaranteed

to be near-optimal as long as the LLP validation loss is successfully minimized.
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Algorithm 4 Hierarchical Diffusion Policy Training

Input: baseline goal-conditioned policy πlo := ϕ(E(st), gt), diffusion
variance schedule αt, temporal stride c, language model ρ
Output: trained hierarchical policy π(at|st) := πlo(at|st, πhi(gt|st)),
where gt is sampled every c time steps from πhi as the first state in τ c.

1: Collect dataset Donpolicy by rolling out trajectories τ ∼ πlo, ρ
2: Instantiate πhi as diffusion model ϵθ(τ noisy, t, ρ(L))
3: repeat
4: Sample mini-batch (τ , L) = B from Donpolicy.
5: Subsample τ c = (E(s0), E(sc), E(s2c), ..., E(sT )).
6: Sample diffusion step t ∼ Uniform({1, ..., T}), noise ϵ ∼ N (0, I)
7: Update high-level policy πhi with gradient

−∇θ∥ϵ− ϵθ(
√
ᾱtτ

c +
√
1− ᾱtϵ, t, ρ(L))∥2

8: until converged

4.2.2 Practical Instantiation of Language Control Diffusion

We now describe our practical implementation and algorithm instantiation in this

section. We first give an overview of our high-level policy instantiation before specifying

the implementation of our low-level policy. Finally, we describe our model architecture in

detail.

High-Level Policy. In Algorithm 4 we clarify the technical details of our high-level

diffusion policy training. Before this point, we assume that a low-level policy (LLP) has

been trained. Whilst our framework is flexible enough to use any LLP trained arbitrarily

as long as it belongs to the factorized encoder family described in Section 4.2.1, in our

practical implementation we first train our LLP through hindsight relabelling. After the

policy has been trained, we then take the trained encoder representation and use it to

compress the entire offline dataset of states. This is useful from a practical perspective as

it caches the computation of encoding the state, often allowing for 100-200x less memory

usage at train time. This enables significantly more gradient updates per second and
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batch sizes, and is largely why our method is drastically more efficient than prior work

utilizing diffusion for control. After caching the dataset with the pretrained encoder, we

then induce a temporal abstraction by subsampling trajectories from the dataset, taking

every cth state in line 5 of Algorithm 4, where c refers to the temporal stride. This further

increases efficiency and enables flexible restructuring of computational load between the

high-level and low-level policy, simply by changing c. These states can then be trained

with the typical diffusion training algorithm, detailed in lines 6-7.

Low-Level Policy. We adopt the HULC architecture [89] for our low-level policy. In

HULC, the authors propose an improved version of the hierarchical Multi-Context Imita-

tion Learning (MCIL). Note that this means that our method is a successful instantiation

of a three-level hierarchical model, as we generate the goal states with diffusion into their

high-level policy . HULC utilizes hierarchy by generating global discrete latent plans and

learning local policies that are conditioned on this global plan. Their method focuses

on several small components for increasing the effectiveness of text-to-control policies,

including the architectures used to encode sequences in relabeled imitation learning, the

alignment of language and visual representations, and data augmentation and optimization

techniques.

Model Architecture. We adopt T5-XXL [113] as our textual encoder, which contains

11B parameters and outputs 4096 dimensional embeddings. T5-XXL has similarly found

success in the text to image diffusion model Imagen [102]. We utilize a temporal U-Net [93],

which performs 1D convolutions across the time dimension of the latent plan rather than

the 2D convolution typical in text-to-image generation. This is motivated by our desire

to preserve equivariance along the time dimension but not the state-action dimension. In

addition, we modify the architecture in [93] by adding conditioning via cross attention in
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a fashion that resembles the latent diffusion model [6]. Finally, we use DDIM [106] during

inference for increased computational efficiency and faster planning. DDIM uses strided

sampling and is able to capture nearly the same level of fidelity as typical DDPM sampling

[99] with an order of magnitude speedup. For rolling out the latent plans generated by

the denoiser, we resample a new sequence of goals g with temporal stride or frequency c,

until either the task is completed successfully or the maximum horizon length is reached.

Our low-level policy takes over control between samples, with goals generated by the

high-level policy as input.

4.3 Experiments

In our experiments we aim to answer the following questions: 1) Does a diffusion-based

approach perform well for language-conditioned RL? 2) How much efficiency is gained

by planning in a latent space? Finally, 3) is a hierarchical instantiation of the diffusion

model really necessary, and what tradeoffs are there to consider?

Table 4.1: Our main result. We compare success rates between our diffusion model
and prior benchmarks on multitask long-horizon control (MT-LHC) for 34 disparate
tasks. We report the mean and standard deviation across 3 seeds for our method with
each seed evaluating for 1000 episodes. We bold the highest performing model in each
benchmark category.

Horizon GCBC MCIL HULC (LLP only) Diffuser-1D Diffuser-2D Ours

One 64.7± 4.0 76.4± 1.5 82.6± 2.6 47.3± 2.5 37.4± 3.2 88.7± 1.5
Two 28.4± 6.2 48.8± 4.1 64.6± 2.7 18.8± 1.8 9.3± 1.3 69.9± 2.8
Three 12.2± 4.1 30.1± 4.5 47.9± 3.2 5.9± 0.4 1.3± 0.2 54.5± 5.0
Four 4.9± 2.0 18.1± 3.0 36.4± 2.4 2.0± 0.5 0.2± 0.0 42.7± 5.2
Five 1.3± 0.9 9.3± 3.5 26.5± 1.9 0.5± 0.0 0.07± 0.09 32.2± 5.2

Avg horizon len 1.11± 0.3 1.82± 0.2 2.57± 0.12 0.74± 0.03 0.48± 0.09 2.88± 0.19
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4.3.1 Experimental Setup

Dataset and Metric. We evaluate on the CALVIN benchmark [107], a challenging

multi-task, long-horizon robotics benchmark. After pretraining our low-level policy on

all data, we freeze the policy encoder and train the diffusion temporal U-Net using the

frozen encoder. We roll out all of our evaluated policies for 1000 trajectories on all 34

tasks, and all comparisons are evaluated in their official repository1.

Baselines. As introduced in Section 4.2.2, we compare against the prior state of the art,

HULC and MCIL [89, 114]. HULC provides a strong baseline as it is also a hierarchical

method. MCIL (Multicontext Imitation Learning) uses a sequential CVAE to predict

next actions from image or language-based goals, by modelling reusable latent sequences

of states. GCBC (Goal-conditioned Behavior Cloning) simply performs behavior cloning

without explictly modeling any latent variables like MCIL, and represents the performance

of using the simplest low-level policy. Finally, Diffuser generates a trajectory through

reversing the diffusion process. Diffuser is most comparable to our method, however, it

utilizes no hierarchy. To ensure a fair comparison, we rigorously follow their evaluation

procedure and build directly from their codebase. MCIL and GCBC results are taken

from [89], whilst HULC results are reproduced from the original repository. Diffuser was

retrained by following the original author’s implementation.

4.3.2 Performance of LCD

We outperform prior methods on the challenging multi-task long-horizon control

(MT-LHC) benchmark, and improve on the strongest prior model’s average performance

on horizon length one tasks by 6.1% as shown in Table 4.1. In order to further elucidate

why our method works better than HULC, we do a deeper analysis on several failure

1https://github.com/lukashermann/hulc/tree/fb14d5461ae54f919d52c0c30131b38f806ef8db
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Table 4.2: Task generalization of LCD on a collection of five held out tasks. We test
with 3 seeds and report the mean and std, evaluating on 20 rollouts per task for a
total of 100 evaluations.

Task Diffuser-1D Ours

Lift Pink Block Table 31.67± 10.27 55.00± 16.33
Lift Red Block Slider 13.35± 10.25 88.33± 8.50
Push Red Block Left 1.64± 2.35 35.00± 7.07
Push Into Drawer 3.34± 4.71 90.00± 10.80
Rotate Blue Block Right 5.00± 4.10 36.67± 14.34

Avg SR 12.67± 3.56 61.00± 7.79

cases that we observed and show how LCD corrects them. In addition, in section 4.13 we

give a breakdown of individual task success rates, where we find that LCD significantly

outperforms HULC in 15 of the 34 tasks, outperforms HULC in 23 of the 34 tasks, and

improves on the average success rate of single tasks by 3.33%. Note that the average

success rate differs from Table 4.1, as the distribution of tasks for MT-LHC is not uniform

because the CALVIN benchmark filters out infeasible trajectories. A visualization of the

first task MT-LHC distribution is provided for future work in section 4.9.

4.3.3 Task Generalization and Efficiency

We test the task generalization of LCD on a collection of five held out tasks in Table 4.2.

This benchmark is extremely difficult as it requires zero-shot generalization to a new task,

which requires generalization across language, actions, and states. We find that LCD is

able to successfully generalize, and is able to compose several disparate concepts from the

training dataset together such as the color of the blocks, verbs such as lift and push, and

object positions and state.

Through the usage of DDIM, temporal abstraction, and low-dimensional generation,

we find in Table 4.3 that LCD is significantly faster during rollout and training than

Diffuser. In addition, our method is significantly faster to train than HULC, albeit slower
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Table 4.3: Wall clock times for training. Latent dims denotes the size of the latent
space that we perform the diffusion generation in. We compare against two variants
of Diffuser. Diffuser-1D is the same model as presented in Table 4.1 which utilizes a
VAE trained from scratch on the dataset, whilst Diffuser-2D utilizes a large pretrained
VAE from Stable Diffusion [6]. Inference time (sec) refers to the average amount of
time taken in seconds to produce an action. LCD is 3.3x-15x faster during inference
and 1.5x-3.7x faster during training compared to Diffuser-1D and Diffuser-2D.

HULC Diffuser-1D Diffuser-2D Ours (HLP only) Ours (full)

Training (hrs) 82 20.8 49.2 13.3 95.3
Inference time (sec) 0.005 1.11 5.02 0.333 0.336
Model size 47.1M 74.7M 125.5M 20.1M 67.8M
Latent dims N/A 256 1024 32 32
Avg ∇ updates/sec .5 4 2.1 6.25 6.25

during rollout. This is to be expected, as HULC is not a diffusion model and only requires

a single forward pass for generation. However, when comparing to other diffusion models

we find that our method is 3.3x-15x faster during inference and 1.5x-3.7x faster during

training. All numbers are taken from our own experiments and server for reproducibility

and fairness, including baselines.

(a) Diffusion Steps (b) Frame Offset (c) Model Dim

Figure 4.2: Single task success rates from MT-LHC across different epochs and
hyperparameters. Our diffusion model is robust to various hyperparameters such as
diffusion steps, frame offset, hidden dimensions, and number of parameters.

4.3.4 Robustness to Hyperparameters

In Figure 4.2 we show that our diffusion method is robust to several hyperparameters

including the number of diffusion steps/number of function evaluations (NFE), a frame

offset o, and the hidden dimensions of the model. NFE is typically a key parameter
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Table 4.4: Ablation of our method by comparing against a simple four layer MLP with
1024 hidden dimensions (4.8M total parameters) as high level policy. We use the same
methodology as in Table 4.1, and report the mean and standard deviation across 3
seeds for our method with each seed evaluated for 1000 episodes.

Task MLP Ours

One 82.1± 4.0 88.7± 1.5
Two 61.0± 6.25 69.9± 2.8
Three 49.2± 4.15 54.5± 5.0
Four 32.1± 2.0 42.7± 5.2
Five 25.6± 0.9 32.2± 5.2

Avg SR 2.59± 0.01 2.88± 0.19

determining the quality of the representations. However, we found that the performance

of our method is relatively insensitive to NFE. Frame offset o controls the spacing between

goal state in the input data, which affects the temporal resolution of the representations.

We consider augmenting our dataset by adding o during the sampling of our goal state sc+o

for potentially improving generalization. However, we find that this effect is more or less

negligible. Finally, our method is also robust with respect to the number of parameters,

and instantiating a larger model by increasing the model dimensions does not induce

overfitting.

4.3.5 Is Diffusion Really Necessary?

In order to analyze whether diffusion actually improves HULC or if the gain comes

just from the usage of a high-level policy, we perform an ablation study in Table 4.4 by

using a simple MLP as a high-level policy, which receives the ground truth validation

language embeddings as well as the current state, and attempts to predict the next goal

state. An example of the ground truth language is ”go push the red block right”, which

is never explicitly encountered during training. Instead, similar prompts of the same task

are given, such as ”slide right the red block”. We find that even given the ground truth
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validation language embeddings (the MLP does not need to generalize across language),

this ablation significantly underperforms LCD, and slightly underperforms HULC. This

suggests that our gains in performance over HULC truly do come from a better modeling

of the goal space by diffusion.

4.3.6 Summary of Critical Findings

Diffuser fails to plan in original state space. After investigating the performance

of diffuser, our findings in Figure 4.3 indicate that Diffuser fails to successfully replan in

high dimensional state spaces when using a Variational Autoencoder (VAE). Based on

our observations, we hypothesize that the failure of Diffuser to replan successfully is due

to the diffusion objective enabling interpolation between low density regions in the VAE’s

latent space by the nature of the training objective smoothing the original probability

distribution of trajectories. In practice, this interpolation between low density regions

corresponds to physically infeasible trajectories. This suggests that interpolation between

low density regions in the VAE’s latent space is a significant factor in the failure of diffuser

to plan and replan successfully. Our results highlight the need for better representation,

and for further research of scaling diffusion models to high dimensional control.

Representation is essential for effective diffusion. We find that having a good

representation is essential for effective diffusion in general control settings, as evidenced

in Figure 4.3. A good representation greatly eases the learning difficulty on the diffusion

model by reducing the number of dimensions needed to model, which in turn increases the

information density and makes it easier for the model to learn the underlying dynamics

of the system. The good representation likely massages the regions of low density latent

space between feasible trajectories into areas that still correspond to physically feasible

regions when decoded by the low level policy. This enables the model to generalize well
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Figure 4.3: Denoised Latent Representations. Directly using latent diffusion models
fails. Hallucination occurs on a β-TC VAE trained from scratch on the CALVIN
dataset (Diffuser-1D), and loss of fine details occurs with SD v1.4’s [6] internet-scale
pretrained autoencoder (Diffuser-2D). For more and enlarged samples please refer to
section 4.10.

to unseen situations, improving its robustness and flexibility. Additionally, by having a

good representation, the diffusion model is able to successfully generalize to new scenarios,

which is crucial for the model’s effectiveness in a real-world application. Our results

highlight the importance of latent representation in the diffusion process.

The encoder representation of deep goal-conditioned RL models can be effec-

tively used for hierarchical RL. Our results imply that the encoder representation

of deep reinforcement learning models have the potential to be effectively utilized in

hierarchical reinforcement learning. In modern deep policy learning from pixels, we

propose an effective task-aware representation can be extracted by using the latent space

of an intermediate layer as an encoder. Although we have demonstrated the effectiveness

of this approach by instantiating it successfully in a hierarchical diffusion model, this

approach is general and can be applied to any generative model in hierarchical RL. Our

results suggest that using a shared policy encoder between the high and low level policies

93



Scaling Diffusion for Offline RL Chapter 4

can improve the effectiveness and efficiency of generative modelling in hierarchical RL.

4.4 Related Work

Text-to-Control Models. Text-to-control models or language-conditioned policies [90,

91, 92] have been explored in the RL community for improving generalization to novel

tasks and environments [115, 116, 117, 92, 118]. Although they are not the only way to

incorporate external knowledge in the form of text to decision making tasks [119, 120],

they remain one of the most popular [121, 122, 123]. However, language grounding in RL

remains notoriously difficult, as language vastly underspecifies all possible configurations

of a corresponding state [124]. Modern text to control models often still struggle with long-

horizon language commands and misinterpret the language instruction. [125] attempt

to solve a long-horizon Real-Time Strategy (RTS) game with a hierarchical method

utilizing language as the communication interface between the high level and low level

policy, whilst [23] consider training a language encoder-decoder for policy shaping, [126]

utilize an attention module conditioned on textual entities for strong generalization

and better language grounding. [127] propose a model-based objective to deal with

sparse reward settings with language descriptions and [128] also tackle the sparse reward

settings through the usage of intrinsic motivation with bonuses added on novel language

descriptions. However, only [125] consider the long-horizon setting, and they do not

consider a high-dimensional state space. [129] carefully examine the importance of diverse

and massive data collection in enabling task generalization through language and propose

a FiLM conditioned CNN-MLP model [130]. Much work has attempted the usage of more

data and compute for control [131, 132, 133]. However, none of these methods consider

the usage of diffusion models as the medium between language and RL.
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Diffusion Models. Diffusion models such as DALL-E 2 [7] and GLIDE [98] have recently

shown promise as generative models, with state-of-the-art text-to-image generation results

demonstrating a surprisingly deep understanding of semantic relationships between objects

and the high fidelity generation of novel scenes. Stable diffusion, an instantiation of latent

diffusion [6], has also achieved great success and is somewhat related to our method as

they also consider performing the denoising generation in a smaller latent space, albeit

with a variational autoencoder [79] rather than a low level policy encoder. Given the

success of denoising diffusion probabilistic models [99] in text-to-image synthesis [134], the

diffusion model has been further explored in both discrete and continuous data domains,

including image and video synthesis [135, 100], text generation [136], and time series [137].

Video generation models are especially relevant to this chapter, as they are a direct

analogue of diffusion planning model Diffuser [93] in pixel space without actions. Diffuser

first proposed to transform decision making into inpainting and utilize diffusion models

to solve this problem, which much work has followed up on [138, 139, 140]. Specifically,

they diffuse the state and actions jointly for imitation learning and goal-conditioned

reinforcement learning through constraints specified through classifier guidance, and

utilize Diffuser for solving long-horizon and task compositional problems in planning.

Instead of predicting the whole trajectory for each state, [101] apply the diffusion model

to sample a single action at a time conditioned by state. However, neither of these works

considers control from pixels, or utilizing language for generalization.

4.5 Hyper-parameter settings and training details

For all methods we proposed in Table 4.1, Table 4.2, Table 4.6, and Table 4.5, we

obtain the mean and standard deviation of each method across 3 seeds. Each seed contains

the individual training process and evaluates the policy for 1000 episodes.
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4.5.1 HP and training details for methods in Table 4.1 and

Table 4.6.

Model Module Hyperparameter Value

HULC Trainer Max Epochs 30
β for KL Loss 0.01
λ for Contrastive Loss 3
Optimizer Adam
Learning Rate 2e-4

Model Transformer Hidden Size 2048
Language Embedding Size 384

LCD Gaussian Diffusion Action Dimension 32
Action Weight 10
Loss Type L2
Observation Dimension 32
Diffusion Steps 20
Model Dimension 64

Trainer EMA Decay 0.995
Label Frequency 200000
Sample Frequency 1000
Batch Size 512
Learning Rate 2e-4
Train Steps 250k
Number of Steps Per Epoch 10000
Normalizer Gaussian Normalizer
Frame Offset 0

Table 4.5: Hyperparameters for our methods in Table 4.1 and Table 4.6.
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4.6 Training Objective Derivation

To model this, we turn to diffusion models [141], whom we borrow much of the

following derivation from. Inspired by non-equilibrium thermodynamics, the common

forms of diffusion models [142, 99, 106] propose modeling the data distribution p(τ ) as

a random process that steadily adds increasingly varied amounts of Gaussian noise to

samples from p(τ ) until the distribution converges to the standard normal. We denote

the forward process as f(τ t|τ t−1), with a sequence of variances (β0, β1...βT ). We define

αt := 1− βt and ᾱt :=
∏t

s=1 αs.

f(τ 1:T |τ 0) =
T∏
t=1

f(τ t|τ t−1), where f(τ t|τ t−1) = N (τ t;
√
1− βtτ t−1, βtI). (4.6)

One can tractably reverse this process when conditioned on τ0, which allows for the

construction of a sum of the typical variational lower bounds for learning the backward

process’ density function [142]. Since the backwards density also follows a Gaussian, it

suffices to predict µθ and Σθ which parameterize the backwards distribution:

pθ (τ t−1 | τ t) = N (τ t−1;µθ (τ t, t) ,Σθ (τ t, t)) . (4.7)

In practice, Σθ is often fixed to constants, but can also be learned through reparameter-

ization. Following [99] we consider learning only µθ, which can be computed just as a

function of τt and ϵθ(τt, t). One can derive that τ t =
√
ᾱtτ 0 +

√
1− ᾱtϵ for ϵ ∼ N (0, I),

through a successive reparameterization of (4.6) until arriving at f(τ t|τ 0). Therefore to

sample from p(τ ), we need only to learn ϵθ, which is done by regressing to the ground

truth ϵ given by the tractable backwards density. Assuming we have ϵθ, we can then follow

a Markov chain of updates that eventually converges to the original data distribution, in

a procedure reminiscent of Stochastic Gradient Langevin Dynamics [143]:
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τ t−1 =
1√

1− βt

(
τ t −

βt√
1− ᾱt

ϵθ (τ t, t)

)
+ σtz, where z ∼ N (0, I). (4.8)

To learn ϵθ, we can minimize the following variational lower bound on the negative

log-likelihood:

LCE = −Eq(τ0) log pθ(τ 0)

= −Eq(τ0) log
(∫

pθ(τ 0:T )dτ 1:T

)
= −Eq(τ0) log

(∫
q(τ 1:T |τ 0)

pθ(τ 0:T )

q(τ 1:T |τ 0)
dτ 1:T

)
= −Eq(τ0) log

(
Eq(τ1:T |τ0)

pθ(τ 0:T )

q(τ 1:T |τ 0)

)
≤ −Eq(τ0:T ) log

pθ(τ 0:T )

q(τ 1:T |τ 0)

= Eq(τ0:T )

[
log

q(τ 1:T |τ 0)

pθ(τ 0:T )

]
= LVLB.

LVLB = LT + LT−1 + · · ·+ L0

where LT = DKL(q(τ T |τ 0) ∥ pθ(τ T ))

Lt = DKL(q(τ t|τ t+1, τ 0) ∥ pθ(τ t|τ t+1))

for 1 ≤ t ≤ T − 1 and

L0 = − log pθ(τ 0|τ 1).

(4.9)

Which enables us to find a tractable parameterization for training, as the KL between

two Gaussians is analytically computable.
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Lt = Eτ0,ϵ

[ 1

2∥Σθ(τ t, t)∥22
∥µ̃t(τ t, τ 0)− µθ(τ t, t)∥2

]
= Eτ0,ϵ

[ 1

2∥Σθ∥22
∥ 1
√
αt

(
τ t −

1− αt√
1− ᾱt

ϵt

)
− 1
√
αt

(
τ t −

1− αt√
1− ᾱt

ϵθ(τ t, t)
)
∥2
]

= Eτ0,ϵ

[ (1− αt)
2

2αt(1− ᾱt)∥Σθ∥22
∥ϵt − ϵθ(τ t, t)∥2

]
= Eτ0,ϵ

[ (1− αt)
2

2αt(1− ᾱt)∥Σθ∥22
∥ϵt − ϵθ(

√
ᾱtτ 0 +

√
1− ᾱtϵt, t)∥2

]
.

(4.10)

After removing the coefficient at the beginning of this objective following [99], we arrive

at the objective used in the practical algorithm 1:

Eτ0,ϵ[∥ϵt − ϵθ(
√
ᾱtτ 0 +

√
1− ᾱtϵt, t)∥2]. (4.11)

Furthermore, thanks to the connection between noise conditioned score networks and

diffusion models [144, 99], we are able to state that ϵθ ∝ −∇ log p(τ ):

sθ(τ t, t) ≈ ∇τ t log p(τ t)

= Eq(τ0)[∇τ tp(τ t|τ 0)]

= Eq(τ0)

[
− ϵθ(τ t, t)√

1− ᾱt

]
= −ϵθ(τ t, t)√

1− ᾱt

.

(4.12)

Therefore, by using a variant of ϵθ conditioned on language to denoise our latent plans,

we can effectively model −∇τPβ(τ | R) with our diffusion model, iteratively guiding our

generated trajectory towards the optimal trajectories conditioned on language.
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4.7 Proof of 4.2.1

Proof. The proof is fairly straightforward, and can be shown by translating our definition

of suboptimality into the framework utilized by [111]. We are then able to leverage their

first theorem bounding suboptimality by the Total Variation (TV) between transition

distributions to show our result, as TV is bounded by the Lipschitz constant multiplied

by the domain of the function.

[111] first define a low level policy generator Ψ which maps from S × Ã to Π. Using

the high level policy to sample a goal gt ∼ πhi(g|st), they use Ψ to translate this to a

policy πt = Ψ(st, gt), which samples actions at+k ∼ πt(a|st+k, k) from k ∈ [0, c− 1]. The

process is repeated from st+c. Furthermore, they define an inverse goal generator φ(s, a),

which infers the goal g that would cause Ψ to yield an action ã = Ψ(s, g). The following

can then be shown:

Theorem 4.7.1. If there exists φ : S × A→ Ã such that,

sup
s∈S,a∈A

DTV(P (s
′|s, a)||P (s′|s,Ψ(s, φ(s, a)))) ≤ ϵ, (4.13)

then SubOpt′(Ψ) ≤ Cϵ, where C = 2γ
(1−γ)2

Rmax.

Note that their SubOpt′ is different from ours; whilst we defined in terms of the

encoder E and action generator ϕ, they define it in terms of Ψ. Note, however, that

the two are equivalent when the temporal stride c = 1, as Ψ becomes πlo = ϕ ◦ E . It is

essential to note that when using a goal conditioned imitation learning objective, as we do

in this chapter, πlo becomes equivalent to an inverse dynamics model IDM(s, E(s)) = a

and that φ(s, a) becomes equivalent to E(s′). This is the key to our proof, as the second

100



Scaling Diffusion for Offline RL Chapter 4

term in the total variation of 4.7.1 reduces to

P (s′|s,Ψ(s, φ(s, a))))

= P (s′|s,Ψ(s, E(s′)))

= P (s′|s, a+ ϵ)).

(4.14)

Since we have that the transition dynamics are Lipschitz:

∫
A,S
|P (s′|s, a)− P (s′|s, a+ ϵ))| dν

≤
∫
A,S

Kf |a− (a+ ϵ)| dν

= Kfϵ

∫
A,S

dν

= Kfϵ dom(P (s′|s, a))

(4.15)

Which we can then plug into 4.13 to obtain the desired C = 2γ
(1−γ)2

RmaxKfdom(P (s′|s, a)).
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4.8 Diffuser-2D

Here we give details for our strongest Diffusion-based ablation, which uses Stable

Diffusion’s VAE for generating latent plans, which outputs a latent 2D feature map, with

height and width 1/8 of the original image. Plans are sampled with a temporal stride of

7, such that each trajectory covers a total of 63 timesteps with t = 0, 7, 14...63. Overall,

generation quality tends to be higher and more temporally coherent than that of the 1D

model, but low level details still not precise enough for control from pixels. For examples

of model outputs, please refer to subsection 4.10.2.

Figure 4.4: An overview of our Denoising process. In Figure 4.4, we give an example
of the denoising process of one of our ablations, the Diffuser-2D model. This model
utilizes the 2D autoencoder of [6] with [93].
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4.9 Task Distribution

Figure 4.5: The Evaluation Task Distribution. We visualize the distribution of all the
tasks considered in our experiments in Figure 4.5. Note the long-tailedness of this
distribution, and how it skews evaluation scores upwards if one can solve the relatively
easier tasks that occur most frequently, such as Open Drawer, Move Slider Right, and
Move Slider Left. These tasks only deal with static objects, meaning there is very
little generalization that is needed in order to solve these tasks when compared to
other block tasks involving randomized block positions.
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4.10 Representation Failures

4.10.1 Diffuser-1D (β-TC VAE Latent Representation) Failures

We give a few failure cases of decoded latent plans, where the latent space is given by

a trained from scratch β-TC VAE on the CALVIN D-D dataset. The top row of each

plan comes from the static camera view, whilst the bottom one comes from the gripper

camera view (a camera located at the tool center point of the robot arm). The VAE

is trained by concatenating the images in the channel dimension, and compressing to

128 latent dimensions. Plans are sampled with a temporal stride of 9, such that each

trajectory covers a total of 63 timesteps with t = 0, 9, 18...63. Interestingly, we found that

replanning during rollout did not work, precluding the possibility of success on CALVIN

with our implementation of this method.

Figure 4.6: (a) An example of the Close Drawer Task. Notice the flickering block on
the top right of the table. Also note the entangled red and blue blocks at the top left
of the table. (b) An example of the Lift Blue Block Slider Task. The gripper view is
temporally incoherent, red and blue blocks in slider are entangled. (c) An example of
the Lift Red Block Drawer task. Two blocks begin to appear on the table at the end
of generation. The red block is also not clearly generated in the first frame. (d) An
example of the Push Blue Block Right task. The blue block on the table becomes red
by the end of the static view, whereas the opposite happens in the gripper view.
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4.10.2 Diffuser-2D Failures

We additionally give some failure cases for Diffuser-2D (Stable Diffusion Latent

Representation). For more information on the training of this model, please refer to

section 4.8. We also found that replanning during rollout did not work with this model.

Figure 4.7: (a) An example of the Lift Red Block Drawer Task. Note the pink block
that disappears. (b) An example of the Lift Blue Block Drawer Task. The gripper
arm is entangled with the block. (c) An example of the Lift Pink Block Slider Task.
Note the entangled red/blue blocks. (d) An example of the Close Drawer Task. Note
the entangled pink/blue blocks.
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4.11 TSNE Comparison between Groud Truth (GT)

trajectory and Diffuser-1D (DM) trajectory

In order to better understand whether the representation failures found in section 4.10

are a result of the underlying encoder or the diffusion model, we visualize the TSNE

embeddings of an encoded successful trajectory from the dataset, which we refer to as

a Ground Truth trajectory, and the TSNE embeddings of generated trajectories from

Diffuser-1D (DM) in Figure 4.8. If we observe that the DM’s embedddings are fairly close

to the GT-VAE’s, then we can reasonably presume that the VAE is the failure mode,

whereas if the trajectories are wildly different this would imply that the DM is failing to

model the VAE’s latent distribution properly. Here, all samples other than 6 appear to

fairly close, so we suspect that the failure case lies in the underlying latent distribution

and not the DM’s modeling capabilities. This is further backed by LCD, as we show that

by using the proper underlying latent space with a LLP leads to success.
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Sample 1 Sample 2 Sample 3

Sample 4 Sample 5 Sample 6

Sample 7 Sample 8 All

Figure 4.8: TSNE visualization of GT-VAE trajectory vs. Diffuser-1D trajectory,
where the purple and light blue color range is the ground truth VAE, and the copper
color range is Diffuser-1D. All states are normalized, and all trajectories are taken
from the task “lift pink block table”.
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4.12 HULC Latent Plan TSNE

We give TSNE embeddings of several Latent Plans generated during inference by

HULC below.

Figure 4.9: TSNE of Latent Plan. We give a TSNE embedding of the latent plan space
of HULC in Figure 4.9. The latent plan space is the communication layer between
the high level policy and low level policy of the HULC model, which corresponds to
the intermediate layer between the lower level and lowest level policy in our method.
We clarify that this is not the latent goal space that our model does generation in.
Our method performs latent generation in the earlier layer from the output of the goal
encoder, which corresponds to 32 latent dimensions.
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4.13 Comparison of success rates (SR) across single

tasks, evaluated with HULC and LCD

Table 4.6: Comparison of success rates (SR) across single tasks, evaluated with HULC
and LCD. We again report the performance for the mean and standard deviation across
3 seeds for all methods, with runs taken from the MT-LHC benchmark in Table 4.1.

Task HULC Ours

Close Drawer 99.50± 0.36 95.97± 3.46
Lift Blue Block Drawer 86.97± 13.01 90.83± 9.47
Lift Blue Block Slider 58.80± 6.99 78.77± 5.20
Lift Blue Block Table 72.73± 7.89 76.07± 2.03
Lift Pink Block Drawer 67.93± 9.39 76.27± 22.80
Lift Pink Block Slider 71.50± 4.54 79.30± 2.01
Lift Pink Block Table 68.00± 5.60 70.47± 3.07
Lift Red Block Drawer 91.67± 11.79 77.00± 4.71
Lift Red Block Slider 71.97± 2.57 79.70± 7.32
Lift Red Block Table 60.87± 5.84 69.43± 2.77
Move Slider Left 96.27± 1.14 96.27± 1.96
Move Slider Right 99.27± 0.24 97.67± 2.19
Open Drawer 97.83± 1.43 98.07± 0.50
Place In Drawer 95.93± 1.37 95.90± 1.79
Place In Slider 70.90± 5.44 81.10± 0.14
Push Blue Block Left 60.10± 9.69 71.93± 6.82
Push Blue Block Right 27.60± 9.10 33.10± 2.86
Push Into Drawer 72.13± 5.74 75.47± 5.29
Push Pink Block Left 66.73± 17.27 64.80± 11.98
Push Pink Block Right 57.67± 4.46 51.17± 6.04
Push Red Block Left 64.17± 4.71 55.30± 16.32
Push Red Block Right 28.73± 16.07 37.83± 3.27
Rotate Blue Block Left 59.63± 7.38 70.03± 2.56
Rotate Blue Block Right 62.57± 4.17 72.77± 6.76
Rotate Pink Block Left 71.53± 6.99 75.07± 9.15
Rotate Pink Block Right 55.93± 4.29 64.00± 4.84
Rotate Red Block Left 67.43± 5.15 81.23± 8.86
Rotate Red Block Right 69.53± 5.44 74.57± 2.11
Stack Block 36.83± 2.84 32.00± 3.56
Turn Off Led 98.30± 1.87 96.87± 1.80
Turn Off Lightbulb 98.33± 1.25 95.67± 3.78
Turn On Led 98.73± 0.93 97.63± 1.73
Turn On Lightbulb 98.97± 0.40 95.60± 1.58
Unstack Block 94.53± 4.53 90.80± 3.72
Unstack Block 94.53± 4.53 90.80± 3.72

Avg Success Rate 70.68± 2.65 74.01± 2.64
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4.14 Model Card for Language Control Diffusion

A hierarchical diffusion model for long horizon language conditioned planning.

4.14.1 Model Details

Model Description

A hierarchical diffusion model for long horizon language conditioned planning.

4.14.2 Uses

Direct Use

Creating real world robots, controlling agents in video games, solving extended

reasoning problems from camera input

Downstream Use

Could be deconstructed so as to extract the high level policy for usage, or built upon

further by instantiating a multi-level hierarchical policy

Out-of-Scope Use

Discrimination in real-world decision making, military usage

4.14.3 Bias, Risks, and Limitations

Significant research has explored bias and fairness issues with language models (see,

e.g., Sheng et al. (2021) and Bender et al. (2021)). Predictions generated by the model may

include disturbing and harmful stereotypes across protected classes; identity characteristics;

and sensitive, social, and occupational groups.
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4.14.4 Training Details

Training Data

http://calvin.cs.uni-freiburg.de/

4.14.5 Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator

presented in Lacoste et al. (2019). Baselines are run with either 8 Titan RTX or 8 A10

GPUs following the original author guidelines, whilst our experiments are run with a

single RTX or A10. In total this project used around 9000 hours of compute.

• Hardware Type: NVIDIA Titan RTX, NVIDIA A10

• Hours used: 9000

• Cloud Provider: AWS

• Compute Region: us-west-2

• Carbon Emitted: 1088.64 kg

4.14.6 Technical Specifications

Model Architecture and Objective

Temporal U-Net, Diffusion objective

Compute Infrastructure

Hardware Nvidia Titan RTX , Nvidia A10

Software Pytorch
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4.15 Conclusion and Limitations

Learning atomic sub-skills through language is critical to scaling to more complex and

open environments. We explore solving this problem through learned state and temporal

abstractions, and show that the strengths of diffusion models can be leveraged for long

horizon plans, and their weaknesses at low-level detail generation can be managed through

learning low-level, goal-conditioned policies with imitation learning. Experiments and

qualitative analysis demonstrate the simplicity and effectiveness of our model, showing

that LCD can achieve state-of-the-art performance on a competitive language-conditioned

control benchmark from rich observations, over long horizons, and generalize to new

scenarios. For future work, one could extend LCD to incorporate additional levels of

hierarchy and scale to even longer horizons. Additionally, a deeper analysis on the

interplay of different representations and the diffusion model could be performed. Finally,

one could further probe the task generalization, and potentially improve generalization on

the language side by leveraging better pre-trained models and incorporating that distilled

knowledge to improve reasoning and planning for control.

112



Chapter 5

Conclusion

5.1 Contribution

In conclusion, this thesis has introduced and explored the concept of “Closed-Form

Policy Improvement” and “Language Control Diffusion”, innovative methods that employ

the insights gleaned from Natural Language Processing (NLP). We’ve seen how harnessing

the lessons of scaling data, models, and transformer architectures from NLP can yield

significant empirical results in the realm of Reinforcement Learning, particularly Offline

RL.

5.2 Limitations

However, a critical inquiry must be made: Are we treading the right path? The

pursuit of AGI is fraught with several profound challenges and potential pitfalls that

must be carefully examined. Firstly, the approach of naive scaling may not necessarily

culminate in the creation of AGI. There may exist fundamental limitations - possibly

ones that we can’t even conceive of yet - which could impede our efforts, making AGI an
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unreachable dream.

Secondly, we face the issue of the ‘black box’ phenomenon. Our current approach, while

showing promising results, lacks transparency and explainability. As these models grow

increasingly complex, it becomes more challenging to understand how they make decisions.

This opacity can seriously impact their robustness, trustworthiness, and ultimately, their

acceptance and integration into society.

The environmental cost of our quest for AGI presents a third critical concern. For

instance, the carbon footprint of training a model like GPT-3 is equivalent to around 91

years of an average human’s life [145, 146] – an alarming statistic that calls for urgent

redressal. As we scale models, the environmental implications scale proportionately,

posing a serious threat to our planet.

Lastly, the societal impact of these models, while potentially transformative, is not

necessarily positive. They hold the potential to enable mass misinformation, leading to

socio-political unrest. In a military context, these models could be misused to create

weapons of mass destruction, threatening global peace. Economically, the benefits of AGI

might only further widen the existing wealth gap, as those with access to this technology

could amass disproportionate economic advantages.

Hence, as we tread the path to AGI, we must stay vigilant and considerate of these

potential hurdles. The pursuit of AGI is as much an ethical and societal endeavor as it is a

technological one. Therefore, the principles that guide our journey must be underpinned by

a deep commitment to sustainability, transparency, fairness, and above all, the betterment

of humanity. As we stride ahead in this quest, let’s ensure that we’re not just creating

intelligent machines, but we’re also creating a better world.
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Appendix

A.1 Table of Abbreviations

Full Name Abbreviation

Artificial General Intelligence AGI
Reinforcement Learning RL
Markov Decision Processes MDP
Natural Language Processing NLP
Quadratically Constrained Linear Program QCLP
Behavior Constrained Policy Optimization BCPO
Out-of-distribution OOD
Stochastic Gradient Descent SGD
Closed-Form Policy Improvement CFPI
State-of-the-art SOTA
Single Gaussian SG
Gaussian Mixture MG
Single Gaussian CFPI Operator ISG(πβ, Q; τ)
Gaussian Mixture CFPI Operator IMG(πβ, Q; τ)
Function Divergence Measure D(·, ·)
Kullback-Leibler Divergence DKL(·, ·)
Action a
Behavior Action aβ
Policy π(·|s)
Behavior Policy πβ(·|s)
Optimal Policy π⋆(·|s)
Distance Threshold τ
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Full Name Abbreviation

Language Control Diffusion LCD
Composing Actions from Language and Vision CALVIN
Low-Level Policy LLP
Denoising Diffusion Implicit Model DDIM
Hierarchical Universal Language Conditioned Policy HULC
Multi-context Imitation Learning MCIL
Goal-conditioned Behavior Cloning GCBC
Multitask Long Horizon Control MT-LHC
Multilayered Perceptron MLP
Variational Autoencoder VAE
β-Total Correlation β-TC
Hierarchical RL HRL
Error ϵ
Inverse Dynamics Model IDM
Ground Truth GT
Diffusion Model DM
Success Rate SR
t-distributed stochastic neighbor embedding TSNE
Error ϵ
State Space S
Action Space A
Reward Function R
Transition Function T
Discount Factor γ
Initial state distribution ρ0
Timestep t
Dataset D
Trajectory τ
Error ϵ
Diffusion Variance Schedule βi := 1− αi

Normal Distribution N (x;µ,Σ) .
Mean µ
Covariance Matrix Σ
State Trajectory Generator P
Encoder E
Latent State Representation z
Action Decoder ϕ(z, gt)
Temporal Stride c
Language Model ρ
Language-to-reward Operator ψ : L 7→ F
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A.2 List of Figures

3.1 Aggregate metrics [63] with 95% CIs based on results reported in Table 3.4.

The CIs are estimated using the percentile bootstrap with stratified sam-

pling. Higher median, IQM, and mean scores, and lower Optimality Gap

correspond to better performance. Our IMG outperforms baselines by a

significant margin based on all four metrics. section 3.9 includes additional

details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Iterative IMG training results on AntMaze. Shaded area denotes one

standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Comparison between our methods and baselines using reliable evaluation

methods proposed in [63]. We re-examine the results in Table 3.4 on the

9 tasks from the D4RL MuJoCo Gym domain. Each metric is calculated

with a 95% CI bootstrap based on 9 tasks and 10 seeds for each task. Each

seed further evaluates each method for 100 episodes. The interquartile

mean (IQM) discards the top and bottom 25% data points and calculates

the mean across the remaining 50% runs. The IQM is more robust as

an estimator to outliers than the mean while maintaining less variance

than the median. Higher median, IQM, mean scores, and lower Optimality

Gap correspond to better performance. Our IMG outperforms the baseline

methods by a significant margin based on all four metrics. . . . . . . . . 57
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3.4 Performance profiles (score distributions) for all methods on the 9 tasks

from the D4RL MuJoCo Gym domain. The average score is calculated

by averaging all runs within one task. Each task contains 10 seeds, and

each seed evaluates for 100 episodes. Shaded area denotes 95% confidence

bands based on percentile bootstrap and stratified sampling [63]. The η

value where the curves intersect with the dashed horizontal line y = 0.5

corresponds to the median, while the area under the performance curves

corresponds to the mean. . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Performance of IMG with varying log τ . The other HP can be found in

Table 3.8. Each variant averages returns over 10 seeds, and each seed

contains 100 evaluation episodes. The shaded area denotes bootstrapped

95% CI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6 Performance of IMG with varying ensemble sizes. Each variant averages

returns over 8 seeds, and each seed contains 100 evaluation episode. Each

Q-value network is modeled by a 3-layer MLP. The shaded area denotes

bootstrapped 95% CI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.7 Performance of IMG with varying ensemble sizes on Walker2d-Medium-

Replay-v2. Each variant aggregates returns over 8 seeds, and each seed

evaluates for 100 episodes. Each Q-value network is modeled by a 3-layer

MLP. With lower ensemble size, the performance exhibits large variance

across different episodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.8 Lval on each dataset from the Gym-MuJoCo domain. We can observe that

the model overfits to the training set when training for too may gradient

steps. Each figure averages the validation loss over 2 folds with the same

training seed. The shaded area denotes one standard deviation. . . . . . 73
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3.9 IQL offline training results on AntMaze. Shaded area denotes one standard

deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1 An overview of our high-level policy training pipeline. The frozen low-

level policy encoder is used to encode a subsampled sequence of RGB

observations into a lower dimensional latent space (1), which will be used

later on as goals for the goal-conditioned low-level policy. We then noise this

latent plan according to a uniformly sampled timestep from the diffusion

process’ variance schedule (2), and train a Temporal U-Net conditioned on

natural language embeddings from a frozen upstream large language model

to reverse the noising process (3), effectively learning how to conditionally

denoise the latent plan. To train the U-Net, one can simply use the p-norm

between the predicted latent plan and the ground truth latent plan as the

loss (4). We use p = 1 in practice following [93]. . . . . . . . . . . . . . 79

4.2 Single task success rates from MT-LHC across different epochs and hy-

perparameters. Our diffusion model is robust to various hyperparameters

such as diffusion steps, frame offset, hidden dimensions, and number of

parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Denoised Latent Representations. Directly using latent diffusion models

fails. Hallucination occurs on a β-TC VAE trained from scratch on the

CALVIN dataset (Diffuser-1D), and loss of fine details occurs with SD

v1.4’s [6] internet-scale pretrained autoencoder (Diffuser-2D). For more

and enlarged samples please refer to section 4.10. . . . . . . . . . . . . . 93

4.4 An overview of our Denoising process. In Figure 4.4, we give an example of

the denoising process of one of our ablations, the Diffuser-2D model. This

model utilizes the 2D autoencoder of [6] with [93]. . . . . . . . . . . . . 102
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4.5 The Evaluation Task Distribution. We visualize the distribution of all the

tasks considered in our experiments in Figure 4.5. Note the long-tailedness

of this distribution, and how it skews evaluation scores upwards if one

can solve the relatively easier tasks that occur most frequently, such as

Open Drawer, Move Slider Right, and Move Slider Left. These tasks only

deal with static objects, meaning there is very little generalization that is

needed in order to solve these tasks when compared to other block tasks

involving randomized block positions. . . . . . . . . . . . . . . . . . . . . 103

4.6 (a) An example of the Close Drawer Task. Notice the flickering block on

the top right of the table. Also note the entangled red and blue blocks at

the top left of the table. (b) An example of the Lift Blue Block Slider

Task. The gripper view is temporally incoherent, red and blue blocks in

slider are entangled. (c) An example of the Lift Red Block Drawer task.

Two blocks begin to appear on the table at the end of generation. The red

block is also not clearly generated in the first frame. (d) An example of

the Push Blue Block Right task. The blue block on the table becomes red

by the end of the static view, whereas the opposite happens in the gripper

view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.7 (a) An example of the Lift Red Block Drawer Task. Note the pink block

that disappears. (b) An example of the Lift Blue Block Drawer Task. The

gripper arm is entangled with the block. (c) An example of the Lift Pink

Block Slider Task. Note the entangled red/blue blocks. (d) An example of

the Close Drawer Task. Note the entangled pink/blue blocks. . . . . . . 105
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4.8 TSNE visualization of GT-VAE trajectory vs. Diffuser-1D trajectory,

where the purple and light blue color range is the ground truth VAE, and

the copper color range is Diffuser-1D. All states are normalized, and all

trajectories are taken from the task “lift pink block table”. . . . . . . . . 107

4.9 TSNE of Latent Plan. We give a TSNE embedding of the latent plan space

of HULC in Figure 4.9. The latent plan space is the communication layer

between the high level policy and low level policy of the HULC model,

which corresponds to the intermediate layer between the lower level and

lowest level policy in our method. We clarify that this is not the latent

goal space that our model does generation in. Our method performs latent

generation in the earlier layer from the output of the goal encoder, which

corresponds to 32 latent dimensions. . . . . . . . . . . . . . . . . . . . . 108
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A.3 List of Tables

3.1 Comparison between our one-step policy and SOTA methods on the Gym-

MuJoCo domain of D4RL. Our method uses the same τ for all datasets

except Hopper-M-E (detailed in subsection 3.10.1). We report the mean

and standard deviation of our method’s performance across 10 seeds. Each

seed contains an individual training process and evaluates the policy for 100

episodes. We use Cheetah for HalfCheetah, M for Medium, E for Expert,

and R for Replay. We bold the best results for each task. . . . . . . . . . 27

3.2 Comparison between our Iterative IMG and SOTA methods on the AntMaze

domain. We report the mean and standard deviation across 5 seeds for our

method with each seed evaluating for 100 episodes. The performance for

all baselines is directly reported from the IQL paper. Our Iterative IMG

outperforms all baselines on 5 out of 6 tasks and obtains the best overall

performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Our ISG(πIQL, QIQL) improves the IQL policy πIQL on AntMaze. We report

the mean and standard deviation of 10 seeds. Each seed evaluates for 100

episodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Ablation studies of our Method on the Gym-MuJoCo domain. Again

we report the mean and standard deviation of 10 seeds, and each seed

evaluates for 100 episodes. Our IMG outperforms baselines by a significant

margin. At the same time, the SGD-based method Rev. KL Reg exhibits

substantial performance variations, demonstrating the importance of a

stable policy improvement operator. . . . . . . . . . . . . . . . . . . . . . 30
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3.5 Comparison between our iterative algorithm and SOTA methods on the

AntMaze domain of D4RL. We report the mean and standard deviation

across 5 seeds for our methods. Our Iterative IMG outperforms all baselines

on 5 out of 6 tasks and obtaining the best overall performance, demonstrat-

ing the effectiveness of our CFPI operator when instantiating an iterative

algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Hyperparameters for our Iterative IMG. . . . . . . . . . . . . . . . . . . . 55

3.7 IDET results on the Gym-MuJoCo domain. We report the mean and

standard deviation 5 seeds and each seed evaluates for 100 episodes. . . . 56

3.8 Hyperparameters for our methods in Table 3.1 and Table 3.4. . . . . . . 59

3.9 HP search for MG-EBCQ. We report the mean and std of 10 seeds, and

each seed evaluates for 100 episodes. . . . . . . . . . . . . . . . . . . . . 63

3.10 HP search for SG-EBCQ. We report the mean and std of 10 seeds, and

each seed evaluates for 100 episodes. . . . . . . . . . . . . . . . . . . . . 64

3.11 HP search for MG-Rev. KL Reg. We report the mean and std of 10 seeds,

and each seed evaluates for 100 episodes. . . . . . . . . . . . . . . . . . . 64

3.12 HP search for SG-Rev. KL Reg. We report the mean and std of 10 seeds,

and each seed evaluates for 100 episodes. . . . . . . . . . . . . . . . . . . 65

3.13 Hyperparameters for methods in Table 3.3 . . . . . . . . . . . . . . . . . 66

3.14 Results of MG-MS on the MuJoCo Gym domain. We report the mean and

standard deviation across 10 seeds, and each seed evaluates for 100 episodes. 67

3.15 Comparison between setting the number of Gaussian components to 4 and

8 for our IMG on the three Medium-Replay datasets. We report the mean

and standard deviation across 10 seeds, and each seed evaluates for 100

episodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.16 Gradient steps for the SARSA training . . . . . . . . . . . . . . . . . . . 74
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3.17 Offline experiment results on AntMaze reported in different tables from

the IQL paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.18 Improving the policy learned by IQL with our CFPI operator ISG . . . . 76

4.1 Our main result. We compare success rates between our diffusion model

and prior benchmarks on multitask long-horizon control (MT-LHC) for 34

disparate tasks. We report the mean and standard deviation across 3 seeds

for our method with each seed evaluating for 1000 episodes. We bold the

highest performing model in each benchmark category. . . . . . . . . . . 87

4.2 Task generalization of LCD on a collection of five held out tasks. We test

with 3 seeds and report the mean and std, evaluating on 20 rollouts per

task for a total of 100 evaluations. . . . . . . . . . . . . . . . . . . . . . 89

4.3 Wall clock times for training. Latent dims denotes the size of the latent

space that we perform the diffusion generation in. We compare against two

variants of Diffuser. Diffuser-1D is the same model as presented in Table 4.1

which utilizes a VAE trained from scratch on the dataset, whilst Diffuser-2D

utilizes a large pretrained VAE from Stable Diffusion [6]. Inference time

(sec) refers to the average amount of time taken in seconds to produce an

action. LCD is 3.3x-15x faster during inference and 1.5x-3.7x faster during

training compared to Diffuser-1D and Diffuser-2D. . . . . . . . . . . . . 90

4.4 Ablation of our method by comparing against a simple four layer MLP

with 1024 hidden dimensions (4.8M total parameters) as high level policy.

We use the same methodology as in Table 4.1, and report the mean and

standard deviation across 3 seeds for our method with each seed evaluated

for 1000 episodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5 Hyperparameters for our methods in Table 4.1 and Table 4.6. . . . . . . 96
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4.6 Comparison of success rates (SR) across single tasks, evaluated with HULC

and LCD. We again report the performance for the mean and standard

deviation across 3 seeds for all methods, with runs taken from the MT-LHC

benchmark in Table 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
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