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ABSTRACT   
 
Self-selection based division of labor has gained visibility through its role in varied organizational contexts 
such as non-hierarchical firms, agile teams, and project-based organizations. Yet we know relatively little 
about the precise conditions under which it can outperform the traditional allocation of work to workers by 
managers. We develop a computational agent-based model that conceives of division of labor as a matching 
process between workers’ skills and tasks. This allows us to examine in detail when and why different 
approaches to division of labor may enjoy a relative advantage. We find a specific confluence of conditions 
under which self-selection has an advantage over traditional staffing practices arising from matching: when 
employees are very skilled but at only a narrow range of tasks, the task structure is decomposable and 
employee availability is unforeseeable. Absent these conditions, self-selection must rely on the benefits of 
enhanced motivation or better matching based on worker’s private information about skills, to dominate 
more traditional allocation processes. These boundary conditions are noteworthy both for those who study 
as well as those who wish to implement forms of organizing based on self-selection.   
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In formal organizations, the division of labor is a centralized process in which managers exercise the right 

to design tasks, as well as the right to assign tasks to workers (Simon, 1951).  The traditional version of this 

process is embodied in staffing practices which follow a typical sequence: analyze the task structure, design 

positions according to job analysis, make a job evaluation and assess the availability of current employees 

(or post a call to get external applicants); then select the most fit individual as soon as possible (Baron and 

Kreps, 1999, Chapter 14). In broad terms, this process is characterized by the attempt by managers to match 

the best available individual to vacant tasks as soon as possible.  

Yet, a notable trend in today’s business world is to allow individuals to self-select into their tasks. 

There are an increasing number of prominent instances in which the principle of self-selection by 

individuals has replaced traditional staffing processes as the basis for division of labor within a firm 

(Puranam, Alexy, and Reitzig, 2014). Self-organizing teams (Laloux, 2014), less-hierarchical firms (Lee 

and Edmondson, 2017), and holacracies (Bernstein, Bunch, Canner, and Lee, 2016; Robertson, 2015), all 

incorporate this element, in addition to well-known instances outside firms such as open source software 

development (Shah, 2006; von Hippel and von Krogh, 2003) and problem solving contests (Jeppesen and 

Lakhani, 2010).  

In principle, division of labor through self-selection depicts individuals who select tasks (based on 

their skills) that in their understanding contribute to the overall goals of the team or organization. The scope 

of application of self-selection based division of labor within firms can vary, ranging from the entire 

workforce (e.g., all teams at the Dutch nursing services provider Buurtzorg, or at the U.S. based video game 

developer Valve; Laloux, 2014; Puranam and Håkonsson, 2015) to organizing particular project teams (e.g., 

in global management consultancies such as McKinsey or BCG, or in “agile” software development teams). 

For example, in Buurtzorg’s nursing services organization, teams of 10-15 nurses self-select tasks within 

their district. The team manages and conducts all tasks, from providing at-home care to hiring, 

administration, scheduling, and training, and each nurse can choose which portfolio of activities to take on 

(Laloux, 2014). As a result, tasks are created and “crafted” (Wrzesniewski and Dutton, 2001) by the 

individual team members and task definition and scope can differ across teams in different locations. At 

Valve or the French auto-component maker FAVI, self-selection occurs at two levels – into particular 
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project teams as well as into particular tasks within a team (Bernstein et al., 2016; Laloux, 2014; Puranam 

and Håkonsson, 2015). Despite these variations, what is common across these instances is the existence of 

self-selection into tasks by employees based on their own perceptions of best fit (Lee and Edmondson, 

2017; also see Robertson, 2015 on holacracy).   

However, we believe it is hardly time to ring the curtain down on traditional staffing processes in 

organizational hierarchies, in which managers with the authority to do so decide how to allocate work 

among employees. Even scholars who are intrigued by self-organizing processes as alternatives to 

hierarchical structures are nonetheless careful to note that the latter are still the dominant form in the 

economy today and continue to flourish even in innovation intensive sectors (Freeland and Zuckerman 

2018; Lee and Edmondson, 2017; Puranam, Alexy and Reitzig, 2014). In this research, we theorize about 

the conditions under which self-selection would outperform traditional staffing processes as a basis for 

division of labor. 

When managers allocate work to workers, a degree of sacrifice by workers of discretion regarding 

task selection is presumed (Simon, 1951). This sacrifice is compensated through extrinsic motivators such 

as cash, status, power, and promotion opportunities. It follows that if individuals can gain intrinsic 

motivation, such as greater task enjoyment, fulfilling use needs, or achieving recognition and reputation 

through self-selection into tasks (Lee and Edmondson, 2017; von Krogh and von Hippel, 2003), then the 

need for these extrinsic motivators should decline. Thus, one benefit of self-selection could simply be 

greater motivation. Similarly, the observability of skills should surely matter, since in many situations the 

worker knows her own skills better than any manager can observe (e.g., Salop and Salop, 1976; Spence, 

1973). In such cases, self-selection should produce a better match between employees and the work they 

do, as long as employees are incentivized to select work they are competent at (Haas, Criscuolo, George, 

2015; Rullani and Haefliger, 2013). 

 Motivation and observability of skill are intuitive considerations at the individual level that help 

explain the advantages of self-selection. However, as we argue, division of labor is essentially a matching 

process between workers and the work they do. Which matches occur and their resulting value should 

therefore depend not only on these individual attributes, but also on the relational attributes of workers and 
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tasks with respect to each other. Factors such as the distribution of skills among workers (e.g., von Krogh, 

Spaeth, and Lakhani, 2003), the interdependence between the tasks they select (Baldwin and Clark, 2006), 

as well as the constraints on the matching process in terms of simultaneous or serial availability of workers 

and work to be matched (e.g., Cohen, March, and Olsen, 1972) should thus play a significant role in 

understanding the conditions under which self-selection is beneficial (Baldwin, 2015; Zenger, 2015).    

The complexity involved in how these factors interact to shape the allocation process is considerable, 

pointing to the limits of verbal theorizing. Thus, while it is obvious that autonomous individual choices of 

tasks may enhance motivation and exploit superior private information about own skills for employees, 

how (and when) these are offset by the advantages of decision makers who can take an organization level 

view of possible matches between available work and available workers, under varying conditions of 

decomposability, specialization regimes and availability of work and workers, is less obvious.  

We build a computational agent-based model, to examine under what conditions different approaches 

to division of labor may enjoy a relative advantage. We compare a procedure in which employees freely 

pick the tasks they are best skilled at (a stylized representation of self-selection) with one in which each 

vacant task is filled with the best-skilled available employee (a stylized representation of traditional staffing 

policies). Given the same set of employees and tasks, we compare how the two procedures differ in terms 

of aggregate task performance, task completion, and match quality. In our analysis, we hold observability 

and motivational effects constant by assuming that the productivity of an employee in a task is easily 

observable and does not depend on the allocation regime.  

We find that letting employees pick the tasks they are most skilled at is advantageous in regimes 

involving staffing for growth (i.e. all tasks are available but employees become available at unforeseen 

times - as is typical in project-based organizations), with strong specialization (i.e. where most employees 

are very skilled at a few tasks each) and low interdependence (i.e. where each task contributes independently 

to overall performance). If these conditions do not hold, self-selection can only be advantageous through 

motivational effects, by overcoming observability challenges, or both.  Note  that while staffing by vacancy 

filling and task self-selection are usually associated with different governance modes (such as authority vs. 

decentralized self-organization), in our model we are comparing paradigmatic task assignment procedures 
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and not governance modes (for example, one might find examples of self-selection within a hierarchical 

governance system, and centralized traditional allocation among non-hierarchical collectives).  

As we show by comparison to an ideal benchmark that features optimal allocation under complete 

information, both procedures noted above suffer from important coordination problems. Workers allowed 

to pick their own tasks may suffer from inter-personal coordination failure as each worker selects his most 

preferred task myopically; this leaves some tasks unallocated and others overstaffed. In contrast, the 

procedure that fills vacant tasks with the best available employee suffers from a form of inter-temporal 

coordination failure as it may end up blocking better future matches by irreversibly matching the available 

tasks and employees today. Surprisingly, these coordination problems result in different performance 

consequences across the two allocation procedures, creating conditions under which one can outperform 

the other. While our exercise is purely theoretical, we show that the baseline results appear to have face 

validity when considering some of the exemplar organizations that use self-selection as a basis for division 

of labor (e.g., Laloux, 2014; Lee and Edmondson, 2017).  

We also consider modifications to the procedures that mitigate their respective coordination failures. 

By allowing managers to defer allocation or to allocate employees to tasks where their added value is 

highest (including possibly to already staffed tasks), traditional staffing processes that follow the norm of 

only filling vacant tasks with best available employee could be improved upon. Conversely, developing 

norms that encourage employees to pick tasks where they can make the biggest difference or to avoid 

crowded tasks can improve on self-selection processes that simply let employees pick what they are most 

skilled at.  

We conclude that the enthusiasm for self-managed and non-hierarchical forms of organizing that 

emphasize self-selection must be tempered by a consideration of our results. Our results may also indicate 

areas that currently do not use self-selection but could gain from doing so. The contribution of our analysis 

is to offer a formal conceptualization of division of labor as a matching process, and to identify a trade-off 

between inter-personal vs. inter-temporal coordination failures.  The latter helps understand the conditions 

under which self-selection may prove superior to more traditional allocation processes and suggests ways 



6 
 

to improve both processes. We also suggest directions for future theoretical development as well as possible 

refinements to practice involving the trade-offs between different approaches to task allocation.  

The rest of this paper is organized as follows: we first review prior literature on self-selection and its 

individual-level and relational attributes and explain our view of the division of labor in terms of a matching 

problem with unique features. We then describe our model and report our key result about the tradeoff 

between inter-personal and inter-temporal coordination failures. We then examine modifications to the 

basic processes that may mitigate their respective coordination failures. Finally, we discuss three 

contingencies (skill observability, task interdependence, and the size of the talent pool) to study the impact 

of key contextual features that should affect division of labor. Our analyses give rise to a number of findings 

amenable to future empirical tests, possibly through (field and lab) experiments. We conclude with a 

discussion of our results and implications for future research.  

DIVISION OF LABOR THROUGH SELF SELECTION: PRIOR LITERATURE 

Self-selection is a central feature of various forms of non-hierarchical organizing both within firms 

(Bernstein et al., 2016; Laloux, 2014; Puranam and Håkonsson, 2015) and outside firms (Shah, 2006; von 

Hippel and von Krogh, 2003). Under self-selection, by definition, contributors select for themselves what 

tasks (or bundles of tasks constituting a “role” or a “job”) to perform, rather than being assigned to their 

tasks or job by hierarchical processes (Baldwin and Clark, 2006; Kogut and Metiu, 2001).  

Individual-Level Attributes: Motivation and observability of skills 

Researchers have noted that self-selection has the obvious benefit of enhanced motivation. For example, 

some of the reasons for contribution through self-selection in online communities include satisfying a quest 

for learning, gaining recognition and visibility, fulfilling use-needs, and personal enjoyment (Lakhani and 

Wolf, 2005; Lerner and Tirole, 2002). Contributors’ choices in a self-selection regime reflect their own 

needs, skills, and preferences in terms of where to contribute (Wasko and Faraj, 2000). Since an individual’s 

skills are not always easily observed by others (e.g., Salop and Salop, 1976; Spence, 1973), managerial 

allocation of workers to tasks may not produce an accurate match. This gives self-selection an advantage 
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when the worker presumably knows his or her own skill better than an external observer would (e.g., Haas 

et al., 2015; Rullani and Haefliger, 2013).1 

Higher job motivation and better match between individual skills and tasks have also been observed 

when self-selection occurs during the course of job crafting—the process through which individuals alter 

the task, relational, and cognitive boundaries of their jobs (Wrzesniewski and Dutton, 2001). Job crafters 

alter their tasks – whether formally or informally – thus incorporating an element of self-selection into their 

sphere of responsibilities (Berg, Wrzesniewski, and Dutton, 2010). Self-selecting into crafted tasks enables 

job crafters to contribute to their organization in ways that their formal job does not anticipate, and 

simultaneously enables job crafters themselves to learn new skills or apply skills they own but rarely get to 

exercise (e.g., Berg, Grant, and Johnson, 2010; Berg, Wrzesniewski, and Dutton, 2010). As a result, job 

crafting has been positively linked with increased job satisfaction (a sense of personal fulfillment derived 

from the job), job effectiveness (the person’s ability to fulfill the goals and expectations of her job), 

organizational commitment (the person’s psychological attachment to the organization), work engagement 

(a positive state of mind while performing the job), and an enhanced sense of self-worth (Ghitulescu, 2007; 

Bakker, Tims, and Derks, 2012; Wrzesniewski, LoBuglio, Dutton, and Berg, 2013).  

While the match of skill to tasks is also important in traditional staffing processes, the match 

between workers’ intrinsic enjoyment of a task and their allocated task may not be particularly high. The 

payment of salary is in part precisely a compensation for this (e.g., Simon, 1951).  Further, managers may 

not be able to observe worker skills as well as workers themselves do. As a consequence, two important 

benefits of self-selection that arise from individual level attributes are a higher level of motivation and 

greater alignment between skills and tasks than what would be obtained under authority based allocation 

(Lakhani and von Hippel, 2003; Laloux, 2014; Lee and Edmondson, 2017). 

 

 
1 If workers’ preferences for tasks and their skills at those tasks are not aligned, this advantage would of course 
diminish. For instance, a tendency towards “hobbyism” may cause individuals to take on tasks they enjoy, not 
necessarily the ones they are competent at, diminishing the ability of self-selection to produce effective matches 
between skill and tasks. We have explored these factors in additional analyses and the results are available from the 
authors upon request. Intuitively, a high divergence between preferences and skills hurts performance in self-
selection. 
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Relational Attributes: Specialization and Interdependence  

The benefits from enhanced motivation as well as superior self-assessment of skill (relative to a third-party 

allocator, such as a manager) are both instances of individual characteristics that give self-selection an 

advantage over traditional staffing processes. However, division of labor is a matching process, that 

matches individuals to tasks (or bundles of tasks combined into a role or a job). This suggests that the 

relational attributes of both workers and tasks (and not only their individual attributes) should also play an 

important role in determining when self-selection enjoys an advantage. However, while there are hints of 

what such factors might be in prior literature, particularly based in the open source software development 

context, we do not yet have a definitive analysis that is more generally applicable beyond this context.  

For instance, specialization is both an antecedent and a consequence of the division of labor (Smith, 

1776) and has both individual-level and relational aspects. As an individual-level attribute it refers to the 

attainment of higher skill on some tasks by some workers, mainly through focus and repetition (Becker, 

1962). If we consider an individual’s skills across multiple tasks, increasing specialization implies an 

increase in skill at a few tasks at the expense of most others. Thus, highly specialized individuals tend to 

be skilled at fewer tasks while generalists tend to have more moderate skills at a greater number of tasks 

(Teodoridis, 2018).  

Researchers studying open source communities have speculated that self-selection is aided by high 

levels of specialization in skills among workers. Specialization may enable entry into the community by 

letting individuals make specific focused contributions (e.g., von Krogh et al., 2003; Wasko and Faraj, 

2000). This assumes that workers are specialized before self-selecting into tasks. Alternatively, workers 

might start out with equal skills for all tasks but different preferences. Task-selection would, in this case, 

be driven by preferences, and specialization would develop endogenously via learning-by-doing.  

Further, specialization also has important relational attributes. Unless every individual is uniquely 

highly skilled at a distinct task, a consideration of the relative skills of individuals across a set of tasks 

should also play an important role in allocation of tasks to individuals. Such a consideration may not arise 

naturally in self-selection, because it typically ignores information about the suitability of other workers for 
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the task that a worker selects. When worker X selects task 1, it is because for X their own skills are best 

suited to task 1. Due to self-interest or myopia, X does not consider the possibility that another worker may 

in fact be better suited to undertake task 1 than X. This can occur because of non-simultaneous entry – as 

in project initiation at Valve which consciously mimics open source processes (Baldwin, 2015; Zenger, 

2015). However, even when all employees are simultaneously present (as when a team decided on how to 

self-allocate tasks among themselves e.g., Raveendran, Puranam, and Warglien, 2016), there is a significant 

collective action problem: optimal matching of tasks and employees requires coordination such that some 

employees end up with sub-optimal (for them) tasks in order to maximize overall skill values. This problem 

can be the result either of imperfect alignment of interests, of inability to communicate information about 

relative expertise, or both. The evidence on teams is quite conclusive that such problems are very common 

indeed (e.g., expertise recognition, Argote and Fahrenkopf, 2016; Argote and Ren, 2012; Littlepage, 

Robison, and Reddington, 1997; Littlepage and Silbiger, 1992). It may therefore be useful to understand 

the relational implications of specialization beyond the individual, specifically how the relative skill 

distributions of individuals may affect self-selection for a given regime of specialization.    

Second, the nature of linkages between tasks is potentially an important relational attribute that 

should shape the efficacy of matching. In the context of open-source software communities, relatively low 

levels of interdependence between tasks (i.e. task structure decomposability) has been argued to allow for 

parallel and distributed (i.e. non physically collocated) work (Kogut and Metiu, 2001: 258) as well as attract 

contributions because of the possibility of exchange and re-use of work among contributors (Baldwin and 

Clark, 2006: 1116). However, these effects may well be idiosyncratic to open-source software development, 

as more generally self-selection need not involve either distributed work or exchange/recombination of 

contributions; for example, Buurtzorg’s nursing delivery system relies on self-selection for team 

organization yet team members are collocated and the core tasks – in-home patient visits – cannot be 

recombined.  

Further, in the case of open source software development, the founders do not lay out a fully 

specified task structure as a menu from which subsequent entrants choose tasks. Instead, the very act of 

selecting what to do may specify the task division, just as the slices of a cake become defined as individuals 
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cut themselves portions. Thus, tasks can remain latent and undefined until they are instantiated through the 

interest of a contributor with the requisite skills and motives to contribute (Lakhani and Panetta, 2006). 

How individuals self-select some tasks therefore may also shape the interdependence between those and 

remaining clusters of tasks. However, the bundling of elementary tasks may be independent from the self-

selection of the job to execute: In a more general setting, we could imagine a separation between task 

division – which may be authority based, and task allocation – which can occur through self-selection.  

In sum, we know that division of labor through self-selection appears to differ from traditional 

allocation of workers to tasks in terms of the freedom to independently choose tasks that are deemed suitable 

for self (vs. having them allocated by another individual such as a manager), and the consequent benefits 

to motivation and observability of skills that arise. On the flipside, employees may be less coordinated in 

self-selection, compared to traditional staffing processes in which the authority to make decisions about 

allocating individuals to tasks based on organization level considerations is invested in managers. To 

understand the implications of these differences, we first develop the idea of division of labor as a matching 

process. This then sets the stage for the analysis of the conditions under which self-selection, despite being 

less coordinated, may nevertheless outperform traditional staffing processes.  

DIVISION OF LABOR AS A MATCHING PROCESS WITH UNIQUE ATTRIBUTES 

While it is intuitive to consider procedures for conducting division of labor as types of matching processes 

between tasks and workers, there are also significant differences between them as well as from matching 

problems in general. An extensive literature on matching exists in economics and operations research, 

starting from the seminal contribution of Gale and Shapley (1962). Algorithms have been developed in 

economics to solve matching problems, often grounded in rigorous mathematical analysis (for a review, 

see Niederle, Roth, and Sonmez, 2008). In operations research, there is also a tradition of analyzing 

sequential matching problems that began with Derman, Lieberman and Ross (1972) and Albright (1974) 

(also see Bearden et al., 2005; Chun and Sumichrast, 2006). There are three unique features of division of 

labor within organizations that make the insights of these prior matching models a useful reference point 
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rather than a complete solution: multi-dimensional skills, serial entry with limited information, and 

switching costs.2 

First, employee skills are multi-dimensional (Becker, 1962). Each employee can be skilled at multiple 

tasks, but to varying degrees (e.g., Teodoridis, 2018; Teodoridis, Bikard, and Vakili, 2018). The distribution 

of employee’s skills across tasks can vary across different regimes of specialization. For instance, individual 

workers will differ in their skills across tasks (intra-agent specialization), and workers will also differ in the 

tasks for which they are best-skilled (inter-agent specialization). In the limit, if each agent is maximally 

skilled at a single task that no other agent is maximally skilled at, then matching between tasks and agents 

would be trivial under almost any procedure. However, in the more general case of varying distributions of 

skills across tasks for agents (i.e. different regimes of specialization), the nature of these distributions is 

likely to be a critical parameter in the process of division of labor (Mintzberg, 1979; Smith, 1776). Prior 

matching models do not accommodate the comparative study of different allocation procedures under 

different regimes of specialization, conceptualized as varying skill distributions over multiple tasks.    

Second, the serial and unforeseeable entry of employees and tasks into the system makes the problem 

different from the matching processes typically modeled, where both sides of the matching process are 

simultaneously present, or if arriving sequentially, they do so with a known arrival distribution. In practice, 

it is often the case that either tasks become available for allocation in an unforeseeable sequence (e.g., a 

basic HR process in most large corporations involves staffing newly vacated or created positions), 

employees “come-off” other projects and become available to work on new projects in an unforeseeable 

sequence (e.g., in project-based software and R&D organizations), or both. As we will elaborate below, 

non-simultaneous and unforeseeable arrival of tasks and employees has different and surprising 

performance implications across different task allocation processes.  

 
2 An interesting parallel literature models division of labor in social insects (see Beshers and Fewell, 2001 for a review). 
Here, division of labor results from autonomous decisions made by each worker to perform a task. Workers are 
assumed to be adaptive rather than foresighted. Models try to accommodate for changing availability of tasks, 
heterogeneous predispositions to tasks (often represented by task-specific individual thresholds of activation), 
inhibition effects of others’ choices, and decentralized communication. 
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Third, in the case of division labor, switching costs are significant and matches cannot easily be 

unmade. In Adam Smith’s (1776) original discussion, three benefits of the division of labor in the pin 

factory were described: the improved productivity of the worker, the saving in time lost in switching tasks, 

and the development of new methods of working (including mechanization) arising from specialization. 

Mintzberg noted that at the root of all three benefits is repetition (1979: 70); in particular, repetition of a 

task cluster that requires similar inputs of skill and efforts, which consequently entails narrow cognitive 

scope, and allows rapid amortization of fixed costs. Put differently, switching can entail significant 

opportunity costs, lessening the advantages of division of labor, and may therefore not be feasible. In 

addition to these efficiency-based arguments, organizations likely take motivational consequences of task 

switching into account (e.g., the effect on employees of being replaced by better performing colleagues).   

In the next section, we describe an agent-based model of division of labor as a matching process that 

is sensitive to these issues.  

MODEL DESCRIPTION 

In our model, we compare two archetypical arrangements for division of labor: Process “A” is a stylized 

representation of what one may observe in a traditional staffing process. A structure of tasks (we use this 

synonymously with jobs or roles, for our purposes) exists and is typically the result of formal design efforts 

around task structure and role specification. The consequences of different ways of defining the structure 

of tasks is expressed indirectly in our model in terms of attributes such as interdependencies between tasks 

and the resulting distribution of skills for tasks across employees. As tasks become available, either through 

new job creation or turnover, the allocator (e.g., the HR department) assesses the available labor pool 

internally and externally (e.g., by posting advertisements and reviewing candidates). The allocator’s 

objective is to fill the vacancy as soon as possible picking the best available candidate (i.e. the candidate 

with the highest skill for the task) from among available workers (e.g., Chadwick and Dabu, 2009; Ethiraj 

and Garg, 2012). Process A can therefore be characterized as one in which the allocator is aiming to “fill 

every vacancy with the best available person.”  

Process “B” is a stylized representation of self-selection, in which employees are free to choose 

from the set of jobs or tasks based on personal preference. We assume that employees’ skills align with 
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their preferences, i.e. that employees prefer tasks for which their skill value is high (we also explore 

alternatives later). If the tasks have been predefined, employees select their preferred task among all the 

tasks (irrespective of others’ choices); if the task structure is ill-defined, employees create their own task 

and thus create the emergent task structure though their choices. The consequences of different ways of 

“carving up” the structure of tasks is expressed indirectly in our model in terms of attributes such as 

interdependencies between tasks, and the resulting distribution of skills for tasks across employees. The 

key feature of process B is that all employees pick their tasks independently, without consideration of 

organization level implications or the suitability of other employees for the task that they themselves select, 

each allocator (employee) is therefore free to “pick what they like.”  

In our baseline analysis, all other features are kept constant between process A and B (for a 

summary, please see Table 1): The costs of switching are assumed to be high enough to make allocations 

irreversible. Further, the individual-level attributes of motivation and observability of skills are held 

constant: we do not assume any information asymmetry between the allocator and employees in terms of 

assessing skill for a task; and worker productivity is assumed to be the same for a task in either allocation 

process. We assume that all allocators (whether employees or managers) are able to observe which tasks 

have already been staffed. 

INSERT TABLE 1 ABOUT HERE 

Task Environment 

In our model, the task environment is characterized by a set of ! tasks. These tasks can be interpreted as 

individual tasks or clusters of tasks bundled together into jobs or roles – we will refer to them as tasks for 

brevity but the conclusions apply equally to settings where these tasks capture jobs or roles. Tasks are 

chosen by or allocated to " employees. In the baseline setting we also assume that there is low 

interdependence between tasks. (Please refer to the Technical Appendix for information on technical details 

of the model). 

Timing of Task and Employee availability. An important source of variation in the task environment is 

the timing of the availability of tasks and employees. A possible situation is one where all tasks in a 

project, as well as all employees available to work on it, are visible and can be simultaneously compared 
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by an allocator in order to find matches. The initiation of a new project with a given set of employees is 

an instance of such a situation (it is equivalent to costless reshuffling of employees to tasks whenever a 

better match arises - something that is in practice ruled out by switching costs). The polar opposite case is 

the one where the tasks and employees arrive in random order (for simplicity, we assume one at a time). 

This is equivalent to a random pairing up of tasks with employees with no consideration of skills and 

specialization (Cohen et al., 1972; Lomi, Conaldi, and Tonellato, 2012). This garbage can situation 

provides another benchmark for comparison. Neither is likely to be very realistic, with more typical 

situations involving project growth as employees become available at different and unforeseeable 

moments to staff a known set of tasks, or replacement situations, where employees are selected from a 

known pool to staff tasks that fall vacant at unforeseeable points in time.3 These four cases are 

summarized in Table 2 and illustrated in Figure 1. 

INSERT FIGURE 1 & TABLE 2 ABOUT HERE 

Specialization regime 

We examine how performance in different allocation processes differs across specialization regimes. In 

high specialization regimes all employees tend to be highly skilled at relatively fewer tasks; which of the 

! tasks each employee is best at differs across employees and is determined randomly.  In low 

specialization regimes, employees are about equally skilled at all tasks, but the absolute level of skill at any 

task is lower, capturing the trade-off in skill between specialists and generalists (Becker, 1962). We model 

this through a skill distribution for every employee in which their skills across all tasks sum to 1, yet they 

have a non-zero skill value for each task. The overall shape of the distribution is the same for all employees 

within a regime, but across employees, the location of the peak skill differs randomly. By altering the shape 

of the distribution for all employees from flatter to more peaked we can model regimes of low or high 

specialization. By modelling specialization regimes in this way, we ensure that each employee has the same 

 
3 For an instance of process B, a pool of internally available talent (such as the “bench” in IT services companies) might 
allocate themselves to tasks as they become available (https://medium.com/some-personal-thoughts/the-bench-in-
it-companies-expense-or-investment-6f7511d28176 (accessed on 03/10/2020). 
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degree of specialization in a given regime (intra-agent specialization is the same for each agent) while 

allowing variation in inter-agent specialization (in which task each agent is best at). 

For instance, assume that skill values in a specialization regime are drawn from a Normal 

distribution, with mean = 0 and standard deviation # = 1. We can take advantage of the reshaping of the 

curve with changes in the standard deviation # ∈ (0,1): As # increases, the curve flattens which captures 

lower specialization (Figure 2, panel a); as # decreases, the curve steepens which captures higher 

specialization (Figure 2, panel b). To generate each employee’s skill values within a given specialization 

regime, we sample +-values from that reshaped normal distribution at a fixed interval from the mean and 

normalize the resulting values to sum to 1. This results in skill values denoted by , that are all quite close 

together for low specialization regimes (,1, ,2, ,3 in Figure 2a). In contrast, in high specialization regimes 

the difference between skill values across tasks for the same individual is initially large (,1, ,2, ,3 in Figure 

2b). Figure 2 only illustrates how three skill values are drawn – for the model we draw ! = 50 skill values 

and normalize all 50 skill values to sum to 1. Figure 2, panel (c) shows that the difference in skill values 

between each employee’s best and worst task is very high (close to 1) for high specialization regimes, and 

significantly lower (under 0.4) for low specialization regimes. 

INSERT FIGURE 2 ABOUT HERE 

The parameter # in the Normal distribution thus tunes the nature of a regime of specialization, 

rather than the skills of any particular employee: at high specialization, each employee is good at very few 

tasks, but not necessarily the same set of tasks; at low specialization, each employee is fairly good at a 

greater number of tasks. This captures the trade-off in terms of depth vs. breadth of skills within individuals, 

while also allowing for differences across individuals in the tasks they are best skilled at. Analogous to the 

Normal distribution, we can generate different specialization regimes using the Dirichlet distribution, using 

the parameter 0.4 

 
4 The Normal distribution provides an intuitive and familiar basis for the drawing of skill values in varying regimes. 
However, it does require a number of assumptions and steps (e.g., drawing probabilities for equidistant x-values, 
choosing the interval, normalizing) to derive the skill values for each individual. Equivalent results can be achieve 
through a single parameter in the Dirichlet distribution. Details on the latter can be found in the Technical Appendix. 
All our results hold using either distribution, the results in the paper show results from the Dirichlet distribution.    
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Choice process  

Choice by both the allocator and worker is assumed to involve the best match with certainty. We explore 

later the impact of other plausible assumptions (e.g., imperfect information about workers’ skills). Under 

process A, allocators aim to choose employees from the available pool with the highest skills for each 

available unoccupied task. Effectively, each individual is allocated to an unoccupied task in which their 

skill is highest (or randomly allocated among two tasks if her skills are identical). If all tasks and employees 

are simultaneously available, the optimal match can be obtained using the well-known “Hungarian” 

algorithm which forms the basis of a number of algorithms in network flows and matching theory (Frank, 

2005; Kuhn, 1955; 5 an appendix with technical details is included in the Online Supplement). However, in 

all other cases (i.e. replacement, growth and garbage can), the allocator in A must try to staff available tasks 

with best available employees, aiming to ensure no tasks are left unstaffed. In process B, each employee 

selects tasks based on their own skills alone. Thus, the availability of other employees is not relevant in B. 

What matters for the employees in B is whether all tasks are simultaneously available to select from or not. 

Figure 1 provides a simple example to highlight how the choice process and the availability of tasks and 

workers interact. 

Outcome Variables 

We compare the two systems of division of labor on three metrics: organization level performance (which 

is increasing in skill-match between employees and tasks), matching completeness (whether tasks or 

employees are left unmatched – unmatched tasks and employees are indicated in red in Figure 1), and 

matching quality (number of tasks staffed in a way that is non-optimal for the individual i.e. they do not get 

their first-preference match, and average skill of matched workers). To compute organization level 

performance, we take the sum of the skill values across tasks of the employees allocated to those tasks. If 

a task is left unstaffed, it contributes nothing to organization level performance (effectively imposing an 

opportunity cost of unstaffed tasks which increases with task interdependence; the latter is equivalent to 

 
5 The Hungarian algorithm was originally developed to solve the assignment problem of jobs to workers, and 
subsequently employed for cost minimization (Kuhn, 1955). We adapt this algorithm to our problem of division of 
labor (Kamrani, Ayani, and Karimson, 2010: 42). 
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imposing a penalty for each incomplete task). If more than one employee chose the same task (overstaffing), 

we assume some effort is wasted. Thus, even though multiple employees chose that same task, only one 

value is entered into organization level performance. We include only the maximum skill value (the “best 

shot”) among the employees who selected the same task in the sum of skills across all allocated tasks (Kogut 

and Metiu, 2001: 259).6  

RESULTS 

Baseline Comparison between Task Allocation Processes A and B 

For all results, we compute the model for 1,000 iterations and present average results to eliminate any 

artefacts of random sampling (of task and employee entry order). In the baseline analyses, we set the number 

of tasks equal to number of employees, ! = " = 50. Further, we assume independence between tasks. 

The baseline results thus look purely at task allocation differences in the two processes when the task 

division is identical, and the underlying task structure is fully decomposable. This analysis is useful to 

understand the key mechanism in the model, which we subsequently examine with more complex settings 

to understand the boundary conditions. In the analyses, we track changes in organization performance, 

matching completeness, and matching quality across all four cases of task and employee availability as we 

vary the specialization regime.  

To determine how A and B perform relative to each other, it is not necessary to compute the model 

for all situations of task and employee availability (see Table 3 for a summary). In the simultaneous 

allocation situation (Case I), it is obvious that A will outperform B: Employees in B disregard the skills and 

choices of other employees, whereas A aims for completeness of matching (i.e. avoids understaffing and 

aims to staff each available task with the best available employee). Since all employees and tasks are 

simultaneously available, we can assume that the allocator can apply the Hungarian algorithm (also denoted 

by “H”), which produces the optimal match. The computations required for this algorithm increase rapidly 

 
6 The “best shot” approach constitutes an unfavorable assumption for B, as the skills of others are simply ignored- one 
could make the case that a number of high skilled employees working on the same task will improve the output. 
Hence, by relaxing this assumption, B performance will increase relative to A. On the other hand if one assumes that 
overstaffing results in a reduction of skill for the task (such as taking the average of all allocated employees), 
performance for B will decrease. 
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(to the cubic power) with the number of parameters (number of tasks and employees), so this conclusion 

does depend on computability constraints. Nevertheless, we can say that complete staffing using the 

Hungarian algorithm in A will outperform simultaneous allocation via B in Case I.  

INSERT TABLE 3 ABOUT HERE 

To determine the relative performance of A and B in cases II and IV, computation is equally 

unnecessary. In Case IV (garbage can) both A and B are equivalent to a random pairing between tasks and 

employees as there is no information on either the entry of tasks or workers. Their performance must 

therefore be identical. In Case II (replacement) there is information about workers but not on the arrival of 

tasks, so A cannot invoke the Hungarian algorithm. Nonetheless, as tasks become available, A can pick the 

best available worker. In contast, the assumptions we make about B in the baseline analysis ensure that it 

will perform poorly relative to A because of a “pile-up” problem, as all employees will take on the first 

available task since they do not coordinate with each other. This is perhaps why, empirically, we do not 

seem to observe the use of pure self-selection (B) in situations involving staffing for replacement. This 

ability of the model to consider this unobserved counterfactual and reveal why we do not observe it is useful 

in its own right.      

The interesting and ambiguous case is that of staffing for growth (Case III), where projects grow as 

employees become available to staff them. Here information on all tasks is available, but employees enter 

in unforeseeable order, one at a time. This prevents A from applying the Hungarian algorithm but does 

allow matching of each arriving worker with the best available task given the worker’s skill values. On the 

other hand, B does not suffer a pile-up problem as all tasks are visible simultaneously for the sequentially 

arriving workers to pick from.  Here, it is hard to say whether A or B will dominate without actually 

computing the model, though it is noteworthy that almost every empirical instance of self-selection we 

observe lies in this quadrant.  

The results shown in Figure 3 offer some insight into why this might be the case. Panel (a) compares 

organization performance of B(growth) and A(growth) (taking the performance difference, 1 − 3) on the 

y-axis with increasing specialization on the x-axis. We find that A outperforms B for low and medium 

levels of specialization, while B outperforms A under regimes of high specialization. This is despite the 
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fact that A always outperforms B in terms of match completeness (see Figure 3b): no tasks are ever left 

undone in A (100% of tasks are single-matches, i.e. one-worker-one task), while in B about 36% of tasks 

are left unallocated across the range of specialization regimes. As a result, about one quarter of tasks is 

overstaffed, with an average of 2.4 employees per over-staffed task in B and a peak of 3.8 workers on the 

most overstaffed one, (vs. zero overstaffed tasks in A).  

On the other hand, B always outperforms A in terms of match quality: In B, each employee always 

performs his/her best task while only half the employees are allocated to their first-preference match in A, 

as shown in Figure 3c. We contrast these results with the organizationally optimal allocation (Hungarian 

algorithm) as a purely theoretical benchmark as it requires information conditions unavailable in the growth 

case (also shown in Figure 3c). It is interesting to note that maximum organizational performance requires 

personally sub-optimal allocation for a sizable number of employees. Finally, Figure 3d highlights the 

higher match quality in B over A by examining the average allocated worker skill across specialization 

regimes. Here, only workers that actually contribute to organization performance are counted in B (i.e. the 

maximum skill among the 2.4 workers for any overstaffed task). Across the entire range of specialization 

regimes, the average match quality in B is higher than in A – even though by construction there is no private 

information in the model as skills and allocations are freely observable by all in both processes.  

INSERT FIGURE 3 ABOUT HERE 

To summarize, we find that process A, which models traditional staffing, outperforms process B, 

modeling self-selection, in allocation situations where tasks and employees are available simultaneously 

(Case I), as well as in staffing for replacement (Case II). A and B perform equally poorly under random 

allocation (Case IV), while B outperforms A in situations of staffing for growth (Case III), in regimes of 

high specialization and low interdependence. We discuss below what gives process B, despite it producing 

poorly coordinated choices (because workers do not take any other workers’ choices into account) an 

advantage over the choices of A.   

Mechanism: Inter-temporal vs. inter-personal coordination failures 

The mechanism underlying the switch in performance in growth situations between A and B  as 

specialization increases from moderate to high rests on a tradeoff between (1) blocking – which is high in 
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A, and zero in B; and (2) over/under-staffing – which is high in B, and zero in A. Blocking, or the 

opportunity cost of finding a better match for a given task in the future, is high in A because of its imperative 

to match one worker to every task, and leave no task unoccupied. Since the growth case presumes that 

employees only become available with delay, the allocator may select a task for a certain employee now, 

even though a better-skilled employee for that task comes along later. Thus, he effectively faces an inter-

temporal coordination failure. B does not suffer from such an inter-temporal coordination failure, since 

every worker simply picks (once) the task at which they have the highest skills.  

However, the opportunity cost of over/under staffing is high in B because of the purely parochial way 

in which workers select tasks. Each worker simply picks her highest-skilled task, regardless of other 

workers’ selection of the same. If multiple workers pick the same task, a number of other tasks will turn 

out to be unstaffed. The strong organization performance under high specialization for B is therefore driven 

by the possibility of incomplete but superior matching between individual skill and task despite the fact 

that B therefore suffers from inter-personal coordination failure among workers. 

The relative performance advantage of A over B thus hinges on this balance between complete 

staffing and better skill matches. As long as the skill values for the forced matches are relatively high (as 

they are in low and medium levels of specialization), they add up to generate the performance advantage 

of A over B, even in the growth case. But when skill values of forced matches fall, which is the case in high 

specialization regimes, B dominates.  

These baseline results seem to mirror empirical observations. For example, reviews of Valve on the 

employment website www.glassdoor.com suggest that successful and/or safe projects end up being over-

staffed. Further, “because teams are intended to be self-forming, it's rare that enough people will want to 

assume risk to all collectively embark on a new project. It's too safe and too profitable to just contribute to 

something that's already successful”. In other words, some projects can also end up being under-staffed, 

leading possibly to many initiated but few completed projects, as public accounts suggest indeed has been 

the case at Valve (Keighley, 2020).7 Interestingly, at Buurtzorg, the Dutch nursing organization, procedures 

 
7 https://arstechnica.com/gaming/2020/07/valve-secrets-spill-over-including-half-life-3-in-new-steam-documentary-app/ 
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were explicitly designed to prevent any individual from being overburdened with too many undesirable 

(administrative) tasks, once it was realized that few nurses self-select into those tasks freely (Laloux, 2014). 

The problem of over- and under-staffing in self-selection is also well known in the open source 

communities. It is often the core developers who have to step in to pick up those tasks that nobody else self-

selected (von Krogh et al., 2003). The fact that the model produces empirically consistent patterns in the 

baseline settings gives this theoretical exercise a degree of external validity and raises the plausibility of 

the rest of the analysis.   

In sum, the differential performance between A and B in growth situations hinges on (1) the 

allocator’s inter-temporal coordination failure: the opportunity cost of finding a better match in the future - 

which is high in A, and zero in B; and (2) the workers’ inter-personal coordination failure: opportunity cost 

of over/under-staffing - which is high in B, and zero in A. Under a high specialization regime, the 

opportunity cost of foregone future matches in A is higher because the employees’ second-best skill value 

is very low. As a consequence, B has the advantage over A in high specialization regimes with staffing for 

growth. We now exploit our understanding of this mechanism to consider modifications of both processes 

to alleviate the inter-temporal and inter-personal coordination problems of A and B. This also serves as a 

form of “mechanism test” of the model.  

Mitigating the inter-temporal coordination failure in A 

In the baseline analyses, we operate under the constraint that no period can pass without a match: allocators 

cannot defer staffing a task. This leads to inter-temporal coordination problems for the allocators, 

effectively reducing A’s performance due to blocking. Next, we relax this assumption. In process A, we 

give the allocator a threshold value r for staffing: in the growth case, this would leave a given employee 

unallocated if her skill levels do not exceed r for any of the available tasks; and in the replacement case this 

would leave a given task unstaffed if none of the available employees’ skill levels exceed r. Such a threshold 

model effectively mitigates the blocking cost that A faces in the baseline setting. In process B, we allow 

employees to wait for a task that matches their optimal skill value in B.  

We find that allowing for deferred allocation in both A and B narrows the set of conditions under 

which B outperforms A in the growth case, as shown in Figure 4a. While the option to defer choices does 
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not reduce the number of unstaffed tasks previously prevalent in B, it does improve the skill-to-task 

matching for the allocator in A. B therefore outperforms A across a smaller range of specialization regimes. 

The allocator can now strive for better matches first, at the cost of understaffing certain tasks. However, the 

deferral requires the allocator to hold accurate information regarding the arrival distribution of skills to be 

effective: only with an adequate threshold value will A outperform B for a wider range of specialization 

regimes.  

INSERT FIGURE 4 ABOUT HERE 

In contrast, in the replacement situation (where all employees are present but tasks become 

available in random order, Figure 4b), it is process B that benefits more from deferring matches. Compared 

to the baseline, where A outperformed B under all specialization values, B now outperforms A for very 

high specialization regimes across all threshold values. In B, deferral effectively removes the pile-up 

problem (but not the inter-personal coordination failure), such that each employee now waits for and selects 

the task with their highest respective skill value. The baseline and deferral analyses together highlight 

sharply the differential vulnerability of A and B to the lack of information in division of labor; B is most 

vulnerable to not seeing all available tasks at the same time (i.e. replacement situations) as it suffers from 

the “pile-up” problem, but is indifferent to the lack of information on other workers (since choice is 

parochial anyway by the allocators, the employees). In contrast, A is most vulnerable to not seeing all 

employees at the same time (i.e. growth situations) because of the possibility of better-skilled employees 

becoming available in the future, as well as the possibility of better tasks appearing later (i.e. replacement).  

Allowing for deferred matches in growth situations does not reduce B’s performance per se. In contrast, 

allowing for deferred matches in growth and replacement situations can benefit A but this depends on 

accurate knowledge of an appropriate threshold for deferral. 8   

 
8 If delayed staffing is inconsequential, then the threshold can be set very high, the allocator can wait until all 
candidates and tasks arrive and then apply the Hungarian – this cannot be improved upon. If delay is consequential 
and the skill distribution is unknown to the allocator, then the threshold cannot be set very high. Thus, without 
accurate knowledge of an adequate threshold value, the simpler and less accurate B allocation process may still 
outperform A.  
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An alternative modification of the A process is to allow for overstaffing (which in the baseline is 

only allowed in B), and match employees to tasks based on their “highest added value”,  such that a highly-

skilled worker who arrives late could be allocated to an already staffed task, if the new arrivals’ contribution 

to the occupied task is higher than any contribution she could make to unoccupied tasks. This hybrid of A 

and B (because it combines allocation that is mindful of other’s choices with allowance for overstaffing) 

helps mitigate the inter-temporal coordination failure by overcoming blocking while minimizing the cost 

of overstaffing. Figure 4c shows that this “modified A” process outperforms both basic allocation processes 

A and B (performance is displayed in absolute terms in this figure). We show that it is indeed the reduction 

in blocking (modified A facilitates a greater number of first-preference matches which were blocked by 

early non-optimal matches in A, Figure 4d) and the resulting higher match quality (average skill-values of 

matched workers is above the baseline A, Figure 4e) that lead to the performance increase. Offsetting this 

is an increase in the number of unallocated tasks (across specialization regimes) from zero to a moderate 

12% and an average number of workers per task from 1 in A to 1.2 in modified A, with a maximum of 2.2 

workers on the most overstaffed task.  

We recognize that modifying traditional staffing processes from A to modified A may have to 

contend with  context specific constraints – such as the possibility that employees might react negatively to 

having a higher skilled colleague being added to their task, in effect setting the value of their own 

contribution to zero. It might therefore require careful piloting to assess whether the gain in allocation 

through such a modification sufficiently offsets any possible costs due to lowered morale.  

Mitigating the inter-personal coordination failure in B  

The baseline results assumed that under B employees took no account of the choices of other employees 

and were indifferent to working with others on the same task. Instead of myopically picking their best task, 

one might consider norms such that employees might be motivated to self-select the task that they would 

“make the biggest difference” at. Thus, if their best task was already occupied but they are relatively highly 

skilled at a second, unoccupied task, the employee would pick the latter. Figure 4c shows that this “modified 

B” process would outperform both basic allocation processes A and B (this modified B process is equivalent 

to the “modified A” process in its allocation and performance implications). Effectively, modified B would 
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result in a reduction of overstaffing from an average of 26% overstaffed tasks and 2.4 workers per 

overstaffed task in the baseline, to an average of 12% overstaffed tasks with 1.2 workers per overstaffed 

task in modified B. This reduction in overstaffing, however, would come at the cost of reduced match 

quality: the number of first-preference matches drops from 50 (out of 50) to a range between 30 to 38.5 

(from low to high specialization, Figure 4d) and the average skill of matched workers in modified B is 

slightly lower than in the baseline B (Figure 4e). 

Alternatively, employees may simply be motivated to pick tasks that are less crowded (without any 

consideration of where they can make the biggest difference). If we assume that employees prefer to pick 

tasks that have few or no occupants, then performance in this second modification of B matches or exceeds 

A’s performance across the entire range of specialization regimes (Figure 4f). While the positive effect of 

allowing employees to freely choose tasks based on their highest skill levels remains, the negative crowding 

preference introduces a disciplining mechanism that prevents extreme levels of crowding and reduces the 

number of unstaffed tasks. Effectively, employees are encouraged to look for their "second best" task-skill 

match if another employee already occupies their first task choice. The cost of over/under-staffing in these 

hybrid versions of B (which allow for overstaffing while adding a consideration of other’s choices) is lower 

compared to the baseline case. However, we also acknowledge that creating norms for such mindful-of-

others self-selection may not be easy in all contexts. Again, a careful piloting may be required to assess 

whether such modifications produces benefits to offset the somewhat diminished autonomy in choice 

relative to baseline B.   

In sum, both sets of modifications to A and B mitigate their respective weaknesses – inter-temporal 

and inter-personal coordination failures, and bring them both closer to the optimal Hungarian algorithm 

(and therefore each other; these modified processes can be seen as hybrids of A and B).  

Three Performance Contingencies: Observability, Interdependence, and Talent pool 

We conclude our analyses by examining three contingencies that influence the relative performance 

advantage of A and B allocation in growth situations: observability of skills, task interdependence, and 

depth of talent pool. The model implementation underlying these discussions as well as the figures are 

included in the Online Supplement.   
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Why accurate observability of skills is critical for A 

In the baseline model we assumed that employees’ skills could be visible equally well to themselves in B 

as well as a third party allocator like a manager in A. One departure from such a baseline would be to 

introduce noise in matching for A but not for B (on the plausible assumption that it is easier for employees 

to know their own skills than it is for a third-party allocator because of information asymmetry).  However, 

in such a case it is intuitive that we would create a strict disadvantage for A (we can show that B in this 

case outperforms A across all specialization regimes). One can also imagine scenarios in which allocators 

are better able to assess employee skills (through appropriate assessment and testing tools, for instance), in 

which case the advantage would tip towards A over B.  

We can make a more subtle comparison of the two allocation processes under the assumption that 

both face the same levels of noise. Specifically, we examine the case when both allocator and employees 

may suffer from imperfect ability to observe employee skills: we continue to let allocators observe 

employee skills as well as employees themselves can observe their own skills, but the observations of both 

parties are now noisy. When noise affects the matching process, choice is assumed to involve the best match 

with some probability rather than with certainty.  

Interestingly we find that moderate increases in noise diminish the performance of A more than that 

of B, particularly as specialization increases. The reason for this differential effect is that in B, even if one 

employee misses his best choice under noise, another employee may select that task, compensating for the 

initial miss. Overstaffing creates redundancy that compensates for noise. However, this option is not 

available in A. Since the allocator in A leaves no task unstaffed, a miss on a high-skilled task for one worker 

has two effects: First, the opportunity cost of a high task-to-skill-match; and second, an early mis-matched 

employee may now block a later high task-to-skill match. The negative externalities of these effects increase 

in strength with increasing specialization – higher specialization regimes have fewer high-skilled tasks per 

employees, which significantly increases the opportunity cost of mismatches. Thus, while overstaffing in 

B compensates for noise, noise in A exacerbates the blocking problem. 
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Why task decomposability is critical for B 

We confirm that task structure decomposability, i.e. task independence, produces a strong advantage for B. 

The baseline analysis assumes that the underlying task structure is highly decomposable so that task 

interdependence across employees is negligible. With greater task interdependence (more off-diagonal 

“1’s” in the task structure), the overall system becomes less decomposable. The possible interaction costs 

between tasks allocated to different employees is one obvious issue to consider as a direct cost of reduced 

task decomposability. However, even if we ignore interaction costs (assume it is the same for employees in 

A and B), we find that A already has an advantage at dealing with interdependence: lower decomposability 

serves to increase the opportunity costs of unallocated tasks. Given that the allocator in A leaves no tasks 

unallocated, A will outperform B for highly interdependent task structures, even without the advantage such 

a system could hold in terms of managing interaction costs.  

Why a shallow talent pool favors A and a deep one favors B  

The baseline model assumes that the number of tasks and employees is the same (! = "). Here, we explore 

how changes in the depth of the talent pool influence relative performance in A and B; we continue to focus 

on the growth case.  

We find that, overall, a shallower talent pool – where there are relatively fewer employees available 

for a given task (i.e. ! > ", labor shortage) – effectively increases the probability of a high skill-to-task 

match in A. Given that all tasks are simultaneously available and the manager in A allocates the highest 

skilled employee to each task, a wider selection of tasks for each employee will make a higher skill match 

more likely. As a result, performance in A is higher in a shallow talent pool compared to the ! = " setup. 

While a shallow talent pool in B has the same effect of making more tasks available across employees, in 

B in the ! = "	model each employee already selected her highest-skilled task, so that we see little impact 

of a shallow talent pool on organization performance. This differential effect of shallower talent pools (or 

labor shortage) on A and B effectively closes the performance gap between them at higher levels of 

specialization, such that B only outperforms A – under shallow talent pools – for the highest level of 

specialization.  
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A deeper talent pool (or ! < ", labor surplus), on the other hand, overcomes the under-staffing 

problem for B, increasing organization performance significantly above the initial results. Performance in 

A under a deeper talent pool remains unchanged compared to equal numbers of task and employees, since 

A does not suffer an understaffing problem to begin with. In contrast, while B always suffers from tasks 

left undone, the greater number of available employees increases the likelihood that each task is chosen by 

someone and reduces the percentage of tasks left unstaffed in B. 

As a corollary, the negative effects of interdependence in B described above can be dampened by 

increasing the number of available employees. This effect is driven by the reduction in unstaffed tasks 

with increased depth of the talent pool. 

CONCLUSION 

Self-selection based division of labor is a cornerstone of several systems of non-hierarchical organizing. 

The best-studied of such systems so far have been online communities. Researchers have pointed to several 

factors that seem to be important in these contexts. Decomposability of task structures, exploited through 

fine grained modular architectures for instance, may create independence of action, allowing for parallel 

contributions (Kogut and Metiu, 2001; Lakhani and Panetta, 2007), as well as opportunities for exchange 

of valuable work (Baldwin and Clark, 2006). By attracting a large and diverse body of contributors, modular 

architectures may also stimulate and exploit specialization in skills (von Krogh et al., 2003; Wasko and 

Faraj, 2000) and improve the possibility of creating a close match between contributor skills and task 

requirements (Rullani and Haefliger, 2013; also see Haas et al. , 2015).  

Self-selection has also gained popularity as a basis for division of labor within firms – with 

managerial application of the principle to holacracies, agile software development teams, and non-

hierarchical organizations (Laloux, 2014; Lee and Edmondson, 2017; Puranam and Håkonsson, 2015). 

However, unlike the open source software context, self-selection within the firm need not involve either 

distributed work or exchange/recombination of contributions, and implicitly always competes with the 

possibility of traditional staffing by managers. To understand the conditions under which self-selection may 

be advantageous, we developed a computational model of division of labor as an irreversible matching 
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process. The comparison between different matching processes reveals that the intuitions derived from the 

study of systems with self-selection alone may be incomplete.  

Our analyses help us understand why traditional staffing processes that embody the principle of 

“fill every vacancy with the best available person” can be superior to self-selection processes where every 

individual “picks what they like” across a wide range of conditions. Unlike self-selection, which fails to 

coordinate choices across workers, traditional staffing explicitly takes an organization level perspective, 

aiming to optimize organization performance rather than myopically looking for the best match possible 

for each worker. Nonetheless, we discovered that there are specific conditions under which self-selection 

has an advantage, even if we held individual level attributes (such as motivation and observability of skills) 

constant across the allocation procedures. 

 We find that the traditional process outperforms self-selection when it pays to leave no task 

unstaffed, possibly at the cost of poor-quality matches because of blocking (i.e. matches made today are 

worse than what could be made later).  Conversely, self-selection has an advantage when it pays to create 

better skill-to-task matches for individuals (i.e. every employee works on tasks they are most skilled at, 

their first-preference match), but at the expense of under- and over-staffed tasks. The diverse results 

summarized in Table 4 can all be understood with respect to this basic trade-off between inter-temporal 

coordination failure (leading to blocking) in traditional staffing and inter-personal coordination failure 

(leading to over/under staffing) in self-selection.   

INSERT TABLE 4 ABOUT HERE 

With increasing interdependence the costs of under-staffing of tasks can be dramatic, because any 

tasks left undone can harm the entire system. Interdependence thus creates a significant disadvantage for 

self-selection which is prone to leaving some tasks unstaffed.9 With increasing specialization, the cost of 

blocking increases – because the possibilities of far superior matching in the future increase – whereas those 

of over-staffing declines – because the best skilled individual has very high skills. This is why self-selection 

 
9 We have modeled a particularly strong form of interdependence (multiplicative such that any unstaffed task reduces 
its interdependent tasks’ values to zero), which effectively stacks the deck against self-selection because it is prone to 
under-staffing. Nonetheless, regimes emerge where it dominates.     
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gains an advantage under high specialization regimes. Deferred allocation reduces the cost of blocking in 

situations of growth tilting the scales towards traditional staffing, whereas it increases the benefit of self-

selection in staffing for replacement, by preventing pile-up of employees on the first available vacant task. 

Norms that avoid crowding benefit self-selection by reducing over/under staffing.  A shallower talent pool 

reduces the occurrence of blocking, because of greater task availability per employee; whereas a deeper 

talent pool reduces the occurrence of under-staffing because of more possible high-skill matches for the 

few available tasks. The former therefore benefits traditional allocation, the latter, self-selection. Noise in 

the task-to-employee matching process gives self-selection an advantage, because there are more 

opportunities for rectification through the choices of other employees – effectively an advantage of over-

staffing. If the allocator gets it wrong in traditional staffing because of noise, this blocking effect cannot be 

rectified. Notably, all these effects would all hold even if there were no motivational or informational 

advantages to self-selection (which we know would shift the balance further in favor of self-selection).  

These results also uncover some subtle aspects of both allocation procedures. Paradoxically, the 

effectiveness of “spontaneous coordination” seen in non-hierarchical organizations such as open source 

communities and self-managed teams, may actually depend on individuals’ preferences for working alone 

on tasks. Absent such preferences, over-staffing is exacerbated in self-selection, resulting in opportunity 

costs. We can also infer that a valuable role for managers in traditional staffing - even if they do not 

undertake any dispute resolution or direction of subordinates – may simply be to prevent over- and under-

staffing in a non-decomposable system to avoid the ripple effects of leaving tasks left undone.  

Understanding the nature of the coordination failures affecting our archetypical task assignment 

procedures allows to address some of their shortcomings. Allowing managers to defer filling vacancies or 

allocating multiple employees to the same task (when that represents the best improvement in organization 

performance) can improve traditional staffing. Creating norms where employees allocate themselves to 

tasks where they can make the biggest difference, or at least to avoid crowded tasks can improve self-

selection.  

Our results have face validity when we compare them to accounts of organizations that employ 

self-selection practices in their operations, in that we see anecdotal evidence of over- and under-staffing as 
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predicted (e.g., Buurtzorg, Valve). The contribution of this theoretical exercise lies in (1) uncovering 

important boundary conditions that would have not been easy to detect from empirical data (e.g., the 

availability of tasks before workers, specialization, and independence for conferring an advantage on self-

selection), as well as (2) providing a deeper understanding of the mechanism underlying the relative 

performance differences, that go well beyond the expected motivational and informational advantages that 

intuitively characterize self-selection.  

More generally, we think that our model may contribute to filling a relevant gap in the literature on 

skills and organizations. Most of the recent literature on matching in organizations has focused on firm-

specific skills, and the pairing of workers with firms (e.g., Lazear, 2009). However, as Gibbons and 

Waldman (2004) have forcibly argued, task-specific skills are potentially more relevant for understanding 

the internal working of organizations. Too little is known about how the distribution and dynamics of task-

specific skills affect the design and operation of organizations, and the process of division of labor – 

notwithstanding the original focus of Adam Smith (1776) – at this level of analysis. We provide new 

insights into how task-specific skill specialization affects the dynamics of matching workers to jobs, and 

its effect on performance under different organizational regimes. By doing so, our work brings new 

emphasis on a central – but under-investigated – level of analysis of organizations. 

The results of our analysis offer a first window into the conditions under which each form of intra-

organizational division of labor may have relative advantages. They may be seen as hypotheses to be 

confirmed in data. Since the counterfactual comparison between the two regimes of division of labor is 

unlikely to be naturally observable in the field, the need for (lab or field) experiments seems clear to 

progress on this agenda. Pending such exploration, we hope our results can be used to inform, if not guide 

managerial thinking on this matter.  
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TABLE 1. Baseline Assumptions about different archetypes of Division of Labor

 
 

TABLE 2. Variations in the Timing of the Availability of Tasks and Employees

 
 

TABLE 3. Relative Performance of Allocation Processes A and B
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TABLE 4. Summary of Model Results and Propositions 
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FIGURE 1. Task allocation across four cases of task and employee availability 

 

Figure 1 shows the intuition of how task and employee availability affect the different task allocation processes with 
five tasks and five workers. On the far left, we show what is available for each case at the start: how many workers 
(black circles) and how many tasks (green squares). For example, in replacement, we start with all workers and zero 
tasks; in garbage can, we start with no workers and no tasks. For each case, we then show period by period how task 
allocation or self-selection unfold. In our model, all four cases are based on the same underlying task structure; this 
means that the workers and the allocator make their decisions in each of these four cases based on the identical 
underlying skill distributions. At the end of some of these cases, some tasks are overstaffed (indicated by any red 
circles connected to one square) while some tasks are left unallocated (indicated by red squares). 

 
 

FIGURE 2. Modeling specialization using the Normal Distribution 
 
Panel (a) lower specialization Panel (b) higher specialization        Panel (c) Intra-person skill differences 
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FIGURE 3 - Performance comparison: Allocation processes A and B in the baseline growth model  

Panel (a) Performance difference (B-A)   

 
 
Panel (b) Match completeness 

 
Panel (c) First-preference matches  Panel (d) Average skill of matched worker 
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FIGURE 4 – Modified allocation processes 
 

Panel (a) Deferred Matches: Growth Panel (b) Deferred Matches: Replacement 

  
The heatmaps in panels (a) and (b) show the performance differential between B and A (" − $) across 
specialization regimes under deferred matching and various threshold values r. Dark (green) shading shows areas 
where B clearly outperforms A; (light) purple shading shows negative areas, where A clearly outperforms B. 
  
Panel (c) Absolute performance: modified A,B 

 

Panel (d) First-preference matches: modified A,B  

 
 

Panel (e) Average skill of matched worker: modified A,B  

 

Panel (f). Negative crowding preferences 

 
Panels (c), (d), and (e) show the effects across performance metrics in the growth case of modified-A (highest added 
value) and modified-B (make the biggest difference). Panel (f) shows the effect of negative crowding for B (compared 
to A) in the growth case in comparison to the baseline (B-A) result. 
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TECHNICAL APPENDIX 
Task Environment 

The task environment is characterized by a set of N tasks and " employees. The allocation of employees 
to tasks at any point in time t is captured by the " ×! asymmetric matrix 8!  . If employee 9 is assigned to 
task :, then 8"# = 1, else 8"# = 0. We assume that allocators are able to observe 8! (i.e. which tasks have 
been staffed at time ;). 
 
Interdependence. The set of tasks that collectively contribute to the organization’s performance is 
represented by a square matrix < of size ! × !. The matrix captures the patterns of interdependence 
between tasks: <"# = 1 implies that task i is dependent on task j and this dependence can be unilateral. This 
is referred to as the task structure and denoted by <. In the baseline setting, tasks are assumed to have low 
interdependence i.e. a staffed task can have non-zero value even if other tasks are left unstaffed.10  
 
Specialization regime 
 Employees have skills for every task. This is represented as the M × N matrix K, which gives measures of 
employee 9’s skill for task :. We explained the intuition behind the specialization regime with a Normal 
distribution in the main text. Here we explain how to draw the specialization regime using a symmetric 
Dirichlet distribution of dimension N, with the concentration parameter 0 ∈ (0, 1) tuning specialization. 
This distribution is a useful representation of probability over a set of discrete states (e.g., Haanigan et al., 
2019; Puranam, Narayan and Kadiyali, 2017). We adopt it to model the distribution of skills across tasks, 
subject to a constraint on total skill. We use the symmetric distribution as we do not mean to impose any 
particular prior for any of the workers to favor any of the N tasks. While α can take on any positive value 
in the Dirichlet distribution, the distribution behaves differently for different ranges of concentration 
parameters (i.e. the range of values generated by α between 0 and 1 behaves differently from the range of 
values generated by α > 1). We take advantage of the properties of the distribution for α ∈ (0,1): the values 
of the resulting distribution tend to be less evenly distributed compared to α > 1. This is precisely what 
mimics the workers’ tendency to be good at some, but not all, values: it is the variance of this property over 
the range of concentration parameter values strictly between 0 and 1 that allows us to mimic different 
degrees of specialization. 
 
A given employee’s skill values will always sum up to 1 across the range of N tasks. However, the 
specialization regime (tuned by 0) changes both how skilled that employee is at any one of those tasks as 
well as how many tasks the employee is relatively good at. Under a high specialization regime (a low value 
of 0) each employee has high skills for only one or two tasks and very low skills for all remaining tasks. 
For example, at 0 = 0.01  (highly specialized) in a task environment with 50 tasks, the maximum skill 
value (in the range (0,1)) is 0.78, the second highest skill value is 0.16, and the skill values for the remaining 
48 tasks range between 0.04 and almost zero. However, given the nature of the Dirichlet distribution, the 
skill values of all workers remain strictly in the open interval between zero and one, even for extreme 
specialization, and sum up to one.11 
 

 
10 Our baseline assumptions therefore stand in stark contrast to Adam Smith’s setting of functional division of labor 
(sequential steps in the production line) where any one unallocated task would bring overall performance to zero; 
they are more akin to an nk landscape with zero interdependence (k=0). In additional analysis we consider cases with 
interdependence. 
11 We also explored the limit case of “perfect” specialization where skill values took on strictly zero or one; in this 
scenario, performance in B equals performance of the optimal Hungarian algorithm, since avoiding overstaffing under 
the latter does not add any non-zero performance benefits to the B-allocation choices. Under these conditions, A will 
always underperform B, unless inter-personal specialization is perfect such that each employee is highly skilled at a 
different, unique task, in which case A=B=H performance. We thank an anonymous reviewer for highlighting this case. 
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Under a low specialization regime (a high value of 0) a given employee’s skill values are more similar to 
each other across the N tasks. Given that her skill values across a particular task sum up to one, however, 
these skill values are all relatively lower compared to the high specialization regime. For example, at  0 =
0.51 a low specialization regime, in a task environment with 50 tasks, the maximum skill value is 0.14, the 
second highest value is 0.10, and the remaining 48 skill values range between 0.08 and 0.00002.  
 
Outcome Variables 
To compute organization level performance, we take the sum of the skill values (across tasks) of the 
employees allocated to those tasks.  Thus: 

Organization Level Performance ? = ∑ max	{,"}$%&
&'(     (1) 

Where  !  is total number of tasks; 
F  is the number of unallocated tasks; 
{,"}  is the set of 9 employees’ skill values for each task. 
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ONLINE SUPPLEMENT 

Why accurate observability of skills is critical for A 

When there is noise in the matching process, choice is assumed to involve the best match with some 

probability rather than with certainty. This probabilistic selection is based on a behavioral rule that has 

robust psychological validation and is called “Luce’s choice rule” or the “softmax” action selection rule 

(Luce, 1959; Posen and Levinthal, 2012; Sutton and Barto, 1998; see Puranam, Stieglitz, Osman, and 

Pillutla, 2015 for a review of the psychological evidence). In this rule, the probability of a choice depends 

on the strength of the skill estimate for each task. 

Under B, the probability of an employee selecting a particular task 𝑖 with skill 𝑠 is therefore:     

𝑝(𝑖) = !!"/$

∑ !!"/$%
"&'

  

The parameter τ tunes the degree of noise in the choice process (the probability of the allocator 

choosing an alternative independent of its relative attractiveness). It can be interpreted as a slippage between 

intention and choice, or as a conscious decision to take actions inconsistent with current beliefs in order to 

explore. This formula applies equally to the growth and replacement cases.  

Under A, the probability of the allocator choosing the newly available employee for task j in the 

growth case can be written as:  

  𝑝(𝑗) = !!(/$

∑ !!(/$)
(&'

 

where 𝑠# is the skill of the available employee at task 𝑗. For the replacement case, the probability of 

the allocator choosing the newly available task for employee 𝑚 (based on her skill for that task) can 

similarly be written as: 

  𝑝(𝑚) = 	 !!*/$

∑ !!*/$%
*&'

 

where 𝑠$ is the skill of employee 𝑚 at the available task. We can now compare the baseline results (which 

involved deterministic choice) with probabilistic selection with increasing levels of noise (0 ≤ 𝜏 ≤ 0.5). 

When 𝜏 approaches zero, skills approach perfect observability, which declines as 𝜏 increases. The initial 

results hold in that B outperforms A under high specialization. Yet, with high levels of noise, the 
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performance of A and B converges to a low level across all specialization regimes (0.3 < 𝜏 < 0.5). Results 

are displayed in Figure 5a. 

INSERT FIGURE 5 ABOUT HERE 

Why task independence is critical for B 

To examine the impact of task interdependence on relative performance in the growth case, we model 

interdependence using an “O-ring” performance function. For every task 𝑖 in the task structure matrix 𝑇, 

we identify all other tasks 𝑗 that the focal task is interdependent with. We then multiply the skill value of 

employee 𝑚% that was allocated to task 𝑖 with the average of all the skill values of employees 𝑚# for the 

interdependent tasks 𝑗. If any of the interdependent tasks 𝑗 was left unallocated its value is zero; in this case, 

task 𝑖’s performance input is zero as well. Even if all tasks 𝑗 are allocated, other employees’ skill values 

will affect task 𝑖's performance contribution, so a high task-skill match for every task that task 𝑖 is 

interdependent with becomes even more important for organization performance with increasing 

interdependence. This O-ring performance function is a fairly “punishing” form of interdependence. In 

most real-world scenarios, the absence of a complement does not bring to zero the value of an activity 

(because activities are unlikely to be perfect complements). As such, the results on interdependence 

presented here provide the boundary condition of interdependence in A and B. 

Compared to the initial analyses (the case of no interdependence between tasks), even a moderate 

degree of interdependence effectively decreases total organization performance for both allocation 

processes, but especially for B – as shown in Figure 5b. This is because any unstaffed task 𝑗 in B that is 

interdependent with task 𝑖 effectively reduces the value of 𝑖 to zero. For example, at interdependence of 

0.01, an average of 25 cells in the task structure (besides the diagonal) take on the value of “1”. If any of 

the interdependent tasks happens to be dependent on an unstaffed task, its skill value effectively becomes 

zero.  

Given that an average of 18 tasks are left unstaffed in B, low degrees of interdependence are sufficient 

for the point at which performance of B exceeds performance of A across different specialization levels to 

shift upwards, so that B only outperforms A under more extreme cases of specialization. Despite the 

disadvantage of unstaffed tasks in B, it still outperforms A under the highest level of specialization for 
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moderate degrees of interdependence; specifically, B outperforms A as long as the benefit of using the best 

task-to-employee match every time in B outweighs the benefit of match completeness in A. However, with 

increasing interdependence, A soon outperforms B across all specialization regimes (see Figure 5b). These 

results establish the soundness of common intuition that high task structure decomposability is important 

for B to work; they also offer an additional reason beyond the need to minimize interactions: the greater 

system-wide adverse consequences of tasks left undone in B.  

Why a shallow talent pool favors A and a deep one favors B  

Results discussed in the paper are displayed in Figure 5c. 
 

FIGURE 5 – Three Contingencies for Performance 
 

Panel (a). Observability of Skills (Growth) Panel (b). Interdependence (Growth) 

  
 
Panel (c). Depth of Talent Pool 
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Details on the Hungarian Algorithm 
The Hungarian algorithm was originally developed to solve the assignment problem of workers to tasks, 
stated simply as “what is the largest number of jobs that can be assigned to qualified individuals (with no 
more than one job assigned to each individual)?” (Kuhn, 1955: p.84). Qualified individuals, in this 
context, were those that had the ability to perform a given job, where each individual may be qualified to 
only complete a few of the available jobs. This algorithm has become the prototype of a large number of 
algorithms in Combinatorial Optimization in areas such as network flows and matching theory (Frank, 
2005) and has also been adapted to the context of management science (e.g., Kamrani, Ayani, and 
Karimson, 2010). Here, we adapt this algorithm to our problem of division of labor. 
 
To facilitate the comparison with our model, we use the matrix interpretation of the Hungarian algorithm. 
Given a nonnegative 𝑛	𝑥	𝑛 matrix Α = 𝛼%#, the element 𝛼%# 	represents the allocation of task 𝑗 to agent 𝑖. 
This algorithm is commonly used for cost minimization problems where 𝛼%# represents the cost of 
assigning task 𝑗 to agent 𝑖. The algorithm consists of a simple sequence of steps that are applied 
iteratively to the matrix to identify a unique match of worker to task and task to worker, minimizing the 
cost for each task and each agent (Kuhn, 1955). We describe the steps of the algorithm below and provide 
a simple numerical example, given in Figure 6.  
 
Step 1.  Our objective here is to maximize (rather than minimize) the total “cost”, so we start by negating 

all elements of the matrix. 
 
Step 2. The Hungarian algorithm adds the value of the smallest negative element to all elements if any 

of the elements is negative. We therefore add 95 to all elements (in our example). 
 
Step 3. Subtract row minima: For each row 𝑟% , determine the minimum value and subtract it from each 

element of 𝑟%. 
 
Step 4.  Subtract column minima: For each column 𝑐%, determine the minimum value and subtract it from 

each element of 𝑐%. 
 
Step 5.  Lines: Cover all zeros by drawing a minimum number of lines across rows and columns. 
 
If the number of lines equals the size of the matrix 𝑛, the assignment problem is solved. If the number of 
lines is lower than 𝑛, iterate between steps 5 and 6 until the number of lines equals the size of the matrix. 
In our example, four lines cover rows and columns in a 𝑛 = 5 matrix, so we continue to step 6. 
 
Step 6.  Subtract and add the minimum value: Determine the minimum value across all uncovered 

elements and subtract that value from all uncovered elements; add this number to all elements 
that have been covered by two lines. In our example, we subtract 5 from all uncovered elements 
accordingly, and add it to those covered by two lines.  

 
Step 7. Repeat step 5. In our example, the number of lines now equals the size of the matrix. We have 

solved the assignment problem, maximizing the total value with a unique match between agents 
and tasks. 

 
Note that the final result is intuitive for tasks 1 and 2, while there are apparently “better” choices for 
tasks 3, 4, and 5. In order to see why the solution is optimal, attempt to improve the current selection for 
those three tasks. You will notice that an additional 4 or 7 points for those three tasks comes at a cost of -
20 or more on those tasks that you are switching out.  
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FIGURE 6 – Numerical Example for the Hungarian Algorithm 
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FIGURE 6 – Numerical Example for the Hungarian Algorithm (cont’d) 
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