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Numerous types of inhibitory neurons sculpt the performance of human neocortical circuits, with each type
exhibiting a constellation of subcellular phenotypic features in support of its specialized functions. Axonal
myelination has been absent among the characteristics used to distinguish inhibitory neuron types; in fact, very
little is known about myelinated inhibitory axons in human neocortex. Here, using array tomography to analyze
samples of neurosurgically excised human neocortex, we show that inhibitory myelinated axons originate
predominantly from parvalbumin-containing interneurons. Compared to myelinated excitatory axons, they have
higher neurofilament and lower microtubule content, shorter nodes of Ranvier, and more myelin basic protein
(MBP) in their myelin sheath. Furthermore, these inhibitory axons have more mitochondria, likely to sustain the
high energy demands of parvalbumin interneurons, as well as more 2’,3’-cyclic nucleotide 3’-phosphodiesterase
(CNP), a protein enriched in the myelin cytoplasmic channels that are thought to facilitate the delivery of nutrients
from ensheathing oligodendrocytes. Our results demonstrate that myelinated axons of parvalbumin inhibitory
interneurons exhibit distinctive features that may support the specialized functions of this neuron type in human
neocortical circuits.

Key words: array tomography; GABA; myelin

Introduction
Myelinated axons, which account for approximately half

the volume of the human brain (Filley and Fields, 2016;
Wandell, 2016), enable the dense, rapid, and efficient
signal transmission central to human cognitive capac-
ities. The insulating myelin sheath, created by a com-
plex interaction between neuronal and glial cells, keeps

axonal impulse propagation velocity high and energy
consumption low, while allowing very small overall fiber
diameters.

Myelinated axons convey information from a variety of
neuronal types, and are likely to exhibit specialized fea-
tures; yet, their properties have rarely been studied in
relation to cell type (Gärtner et al., 2001; Jinno et al., 2007;
Tomassy et al., 2014; Micheva et al., 2016; Stedehouder
et al., 2017). Thus, very little is known about the diversity
of CNS myelinated axons. Most of the available evidence
comes from studies in rodents. Recently, it was shown
that a large fraction of myelin in the mouse neocortex
ensheathes axons of inhibitory neurons, specifically of
parvalbumin-positive basket cells (Micheva et al., 2016).
These inhibitory myelinated axons differ significantly from
the excitatory axons in structural organization (e.g., length
of nodes of Ranvier and internodes), and in molecular
organization (e.g., cytoskeletal composition and protein
content of myelin). Parvalbumin-positive myelinated ax-
ons have also been observed in human neocortex (Chung
et al., 2013), and a recent study showed that the majority
of cortical fast-spiking basket cells form myelinated axons
(Stedehouder et al., 2017).

Do inhibitory myelinated axons in human cortex share
the distinctive features reported in mouse cortex? There
are no available data regarding their relative abundance,
laminar distribution, or possible differences from excit-
atory myelinated axons. In the present study, we address
these questions, using array tomography on surgically
excised human neocortical tissue.
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Significance Statement

Numerous myelinated axons traverse the human neocortex, enabling fast and efficient signal transmission.
Myelinated axons originate from both excitatory and inhibitory neurons, but their properties have rarely been
studied in relation to parent neuron type. Here, we show that axons of inhibitory neurons have distinctive
structural and molecular features that contrast with those of the majority of excitatory myelinated axons in
human neocortex. These differences are likely to have important implications for neurologic disorders that
involve pathologies of myelinated axons. For example, the distinct molecular and structural organization of
inhibitory and excitatory myelinated axons may underlie differences in their vulnerability in neurologic
disorders or to injuries, and may require different strategies for prevention and treatment.
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Materials and Methods
Human surgical specimens

Human neocortical tissue specimens were obtained
during neurosurgeries for epilepsy treatment or tumor
removal (Table 1). It was necessary to remove the over-
lying neocortical tissue to gain access to the diseased
tissue. Before surgery, informed consent was obtained for
the use of neurosurgical tissue for research purposes
under protocols approved by the institutional review
board of the University of California, San Francisco, and
Swedish Medical Center, Seattle.

Resected cortical samples from neurosurgeries for ep-
ilepsy treatment were rinsed in saline and placed in room
temperature fixative for 1 h. The tissue was further fixed
for 23 h at 4°C, for a total time of 24 h in fixative. The
average time between resection and placement in fixative
was 8 min, with a range of 4–18 min. The tissue was then
transferred to PBS with 0.01% sodium azide and stored at
4°C before further processing.

Array tomography
The tissue was dehydrated and embedded using stan-

dard array tomography protocols (Micheva et al., 2010).
Small tissue chunks from neocortex were dissected out
and rinsed in PBS with 50 mM glycine at 4°C (three
changes for up to 30 min total). The tissue was then
dehydrated in graded series of ethanol (50%, 70%, 95%,
100%, 100%), followed by a mixture of equal amounts of
LRWhite and 100% ethanol, and finally three changes in
100% LRWhite. Each step was done for 10 min at 4°C.
After that, the samples were left for 24 h at 4°C in LRWhite
for complete infiltration, then transferred to gelatin cap-
sules filled with LRWhite, and polymerized for 24 h in an
oven set at 55°C. The polymerized blocks with tissue were
stored at room temperature. Additionally, separate tissue
chunks from three of the samples (Q1010, Q1011, Q1014)
were prepared by freeze-substitution and embedding in
Lowicryl HM20, following the protocol reported in Mi-
cheva et al. (2016). This tissue was used for the experi-
ments with mitochondrial markers.

To prepare ribbons of serial sections, the blocks were
trimmed around the tissue to the shape of a trapezoid,
and glue (Weldwood Contact Cement diluted with xylene)
was applied with a thin paint brush to the leading and
trailing edges of the block pyramid. The embedded plastic
block was cut on an ultramicrotome (Leica Ultracut EM

UC6) into 70-nm-thick serial sections, which were
mounted on gelatin-coated coverslips.

Mouse tissue
Six adult mice (three to seven months old) were used.

All animal procedures were performed according to Na-
tional Institutes of Health and University of North Carolina
guidelines. Three of these mice were used for a previous
study (Micheva et al., 2016). The mice were perfusion-
fixed with 2% glutaraldehyde and 2% formaldehyde in
phosphate buffer, freeze substituted, and embedded in
Lowicryl HM20, as described in Micheva et al. (2016).
Array tomography was performed as described above for
the human tissue. Somatosensory cortex (the three mice
from Micheva et al., 2016) and visual cortex (the additional
three mice) were analyzed.

Immunofluorescence
Sections were processed for standard indirect immu-

nofluorescence, as described in Micheva et al. (2010).
Antibodies were obtained from commercial sources and
are listed in Table 2. Array tomography-specific controls
are presented in Extended Data Table 2-1, Figure 2-2. The
antibodies against GABA, parvalbumin, �-tubulin, and
neurofilament heavy chain have previously been charac-
terized for array tomography (Bennett and Brody, 2015;
Micheva et al., 2016) and gave the expected characteris-
tic tissue staining patterns; therefore, they are not in-
cluded in the analysis in Extended Data Table 2-1. The
sections were pretreated with sodium borohydride [1% in
Tris-buffered saline (TBS), pH 7.6 for 3 min] to reduce
non-specific staining and autofluorescence. After a 20-
min wash with TBS, the sections were incubated in 50
mM glycine in TBS for 5 min, followed by blocking solu-
tion (0.05% Tween 20 and 0.1% BSA in TBS) for 5 min.
The primary antibodies were diluted in blocking solution
as specified in Table 2 and were applied for 2 h at room
temperature or overnight at 4°C. After a 15-min wash in
TBS, the sections were incubated with Alexa Fluor dye-
conjugated secondary antibodies, highly cross-adsorbed
(Life Technologies), diluted 1:150 in blocking solution for
30 min at room temperature. Finally, sections were washed
with TBS for 15 min, rinsed with distilled water, and
mounted on glass slides using SlowFade Gold Antifade
Mountant with DAPI (Invitrogen). After the sections were
imaged, the antibodies were eluted using a solution of 0.2
M NaOH and 0.02% SDS, and new antibodies were re-

Table 1. Human samples

Patient Gender Age Clinical diagnosis Region Fixative
Q1010 Male 30 Epilepsy Anterior lateral temporal cortex 2% PFA, 2% GA in PB
Q1011 Male 44 Epilepsy Anterior medial temporal cortex 4% PFA, 1% GA, 2.5% DMSO in PB
Q1014 Female 48 Epilepsy Anterior lateral temporal cortex 2% PFA, 4% GA, 2.5% DMSO in CB
Q1015 Female 66 Epilepsy Anterior lateral temporal cortex 2% PFA, 4% GA, 2.5% DMSO in CB
Q1016 Male 49 Epilepsy Lateral temporal cortex 2% PFA, 4% GA, 2.5% DMSO in CB
Q1017 Male 46 Epilepsy Lateral temporal cortex 2% PFA, 4% GA, 2.5% DMSO in CB
Q1018 Female 20 Epilepsy Lateral temporal cortex 2% PFA, 4% GA, 2.5% DMSO in CB
Q1019 Female 51 Epilepsy Lateral temporal cortex 2% PFA, 4% GA, 2.5% DMSO in CB
10/16/14 Female 30 Nonspecific inflammation

of the white matter
Frontal cortex 4% PFA in PB

CB, cacodylate buffer; DMSO, dimethyl sulfoxide; GA, glutaraldehyde; PB, phosphate buffer; PFA, paraformaldehyde.
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applied. Several rounds of elution and restaining were
applied to create a high-dimensional immunofluorescent
image.

The immunostained ribbons of sections were imaged
on an automated epifluorescence microscope (Zeiss Ax-
ioImager Z1) using a 63� Plan-Apochromat 1.4 NA oil
objective. To define the position list for the automated
imaging, a custom Python-based graphical user interface,
MosaicPlanner (obtained from https://code.google.com/
archive/p/smithlabsoftware/), was used to automatically
find corresponding locations across the serial sections.
Images from different imaging sessions were registered
using a DAPI stain present in the mounting medium. The
images from the serial sections were also aligned using
the DAPI signal. Both image registration and alignment
were performed with the MultiStackReg plugin in FIJI
(Schindelin et al., 2012).

Immunofluorescent image analysis and statistics
For each sample, we used volumes spanning at least

four cortical layers. In five of the samples, all layers were
included. For each layer, a field of view of �135 � 100 �m
was imaged and analyzed. The volumes comprised of 33
serial sections on average (range of 12–67 sections).
Immunofluorescence measurements were performed on
raw images using FIJI. Myelin basic protein (MBP) or
proteolipid protein (PLP) immunofluorescence were used
to define regions of interest (ROIs), which were either the
myelin sheath for measurements of MBP, PLP, and 2’,3’-
cyclic nucleotide 3’-phosphodiesterase (CNP) signals, or
the axon under the myelin sheath for measurement of
axonal immunofluorescence for GABA, parvalbumin (PV),
cytoskeletal and mitochondrial proteins. The mean gray
value of immunolabels was compared between GABA
and nonGABA, or PV and nonPV axons from the same
coverslip, using the nonparametric Mann–Whitney U test,
with statistical significance set to p � 0.01. To prepare the
boxplots, the web application BoxPlotR was used (http://
boxplot.tyerslab.com; Spitzer et al., 2014).

Results
The presence and distribution of myelinated axons was

quantified in samples from human temporal neocortex,
using array tomography. The tissue samples were ob-
tained from surgical resections for epilepsy, immersion

fixed with a mixture of paraformaldehyde and glutaralde-
hyde, and embedded in resin (Table 1). Serial ultrathin (70
nm) sections were cut from the tissue blocks, immuno-
stained for the inhibitory neurotransmitter GABA, MBP,
and other relevant markers (Table 2), and imaged with a
fluorescence microscope.

MBP immunofluorescence clearly outlines myelinated
axons, some of which contain the inhibitory neurotrans-
mitter GABA (Fig. 1). Myelinated GABA axonal profiles are
observed in all human cortical layers at a density of
0.001–0.002 per �m2, with the exception of layer 2, where
they are significantly sparser (p � 0.01 compared to
layers 1, 3b, 4, and 5, and p � 0.05 compared to layers 3a
and 6). Myelinated GABA axons are rarely encountered in
subcortical white matter. The proportion of myelinated
axons that contain GABA decreases in cortical layers 4, 5,
and 6, as the density of nonGABA myelinated axons
substantially increases with cortical depth. Overall, the
proportion of myelinated axons that contain GABA is
significantly lower in the human temporal cortex com-
pared to mouse somatosensory and visual cortex (Fig.
1E,F). For example, the highest percentage of GABA my-
elinated axons in human cortex is in layer 3a, 10 � 2%,
whereas GABA myelinated axons constitute 48 � 3% of
axons in mouse cortical layer 2/3 (Micheva et al., 2016).
This is mostly due to the lower density of GABA myelin-
ated axons in human cortex, while the density of
nonGABA myelinated axons in not significantly different
between human and mouse cortex in all layers, except
layer 1 (p � 0.01). Layer 1 is also the only cortical layer,
where the density of GABA myelinated axons is higher in
human cortex compared to mouse (p � 0.012).

A previous study of mouse cortex reported a number of
differences between myelinated inhibitory and excitatory
axons, which were also seen in human cortex (Fig. 2).
Myelinated GABA axons in human cortex have signifi-
cantly higher neurofilament content (average immunoflu-
orescence of 810 � 49 average units (a.u.) vs 248 � 9 a.u.
for nonGABA myelinated axons, p � 0.00001) and lower
tubulin content compared to myelinated nonGABA axons
(immunofluorescence of 222 � 17 vs 413 � 17 a.u., p �
0.00001; n � 164 GABA and n � 216 nonGABA myelin-
ated axons from layers 3a through 5 from three different
samples; Fig. 2A–D). The nodes of Ranvier (Rasband and

Table 2 Antibodies used in the study

Antigen Host Antibody source Dilution RRID
MBP Chicken AVES MBP 1:200 RRID:AB_2313550
GABA Guinea pig Millipore AB175 1:5000 RRID:AB_91011
Parvalbumin Rabbit SWANT PV28 1:300 RRID:AB_2315235
Neurofilament heavy Chicken AVES NFH 1:100 RRID:AB_2313552
�-Tubulin Rabbit Abcam ab18251 1:100 RRID:AB_2210057
PLP Chicken AVES PLP 1:100 RRID:AB_2313560
CNPase Chicken AVES CNP 1:100 RRID:AB_2313538
MDH2 Rabbit Origene TA308153 1:200 RRID:AB_2722674
TOMM20 Rabbit Abcam ab78547 1:100 RRID:AB_2043078
VDAC1 Rabbit ProteinTech 10866-1-AP 1:50 RRID:AB_2257153

Antibody controls are presented in Extended Data Table 2-1, Figure 2-2. RRID, Research Resource Identifier; MBP, myelin basic protein; PLP, proteolipid
protein; CNPase, 2’,3’-cyclic nucleotide 3’-phosphodiesterase; MDH2, malate dehydrogenase 2; TOMM20, translocase of outer mitochondrial membrane 20;
VDAC1, voltage dependent anion channel 1.
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Peles, 2015), which appear as short gaps in the MBP and
PLP staining along myelinated axons, are significantly
shorter for myelinated GABA axons compared to unla-
beled, presumably excitatory, axons (1.28 � 0.10 vs 1.79

� 0.07 �m, p � 0.0001; n � 39 GABA and n � 100
nonGABA nodes from eight different samples, all cortical
layers; Fig. 2F). Finally, GABA axons have more MBP in
their myelin than do neighboring nonGABA axons (immu-

Figure 1. Distribution of inhibitory GABA myelinated axons in human temporal cortex. A, A 70-nm-thick section through human cortex
immunostained with MBP (white) and GABA (red). Nuclei are labeled with DAPI (blue). B, Volume reconstruction of a subregion from layer
3a (35 serial sections, 70 nm each). Several GABA myelinated axons are marked with yellow asterisks. C, Proportion of myelinated axons
that contain GABA in human temporal cortex. Means and SEs from eight human patients are shown. D, Density of nonGABA and GABA
myelinated axonal profiles. Means and SEs from eight human patients are shown. E, A 70-nm-thick section through mouse cortex (MBP,
white; GABA, red; and DAPI, blue) shown at the same scale as the human cortical section in panel A. Note the difference in cortical
thickness between the two species. F, Comparison of the proportion of GABA myelinated axons and the density of myelinated axons
throughout the layers of human and mouse cortex (means and SEs from eight human patients and six mice are shown). For this comparison,
human results for layers 2, 3a, and 3b were pooled together to compare with mouse cortical layer 2/3. �p � 0.05, ��p � 0.01.
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nofluorescence of 1026 � 41 vs 884 � 29 a.u., p � 0.007;
n � 164 GABA and n � 216 nonGABA myelinated axons
from layers 3a through 5 from three different samples),
although their PLP content is essentially the same (1708
� 62 vs 1643 � 48 a.u., p � 0.68). Thus, the distinctive
characteristics of myelinated inhibitory axons seen in
mouse are also present in human cortex.

In mouse, the overwhelming majority of myelinated
GABA axons come from parvalbumin-containing basket

cells (Micheva et al., 2016). To determine the source of
myelinated GABA axons in human cortex, we immuno-
stained the samples with an antibody against parvalbu-
min. More than half of the myelinated GABA axons are
clearly immunoreactive for parvalbumin, with PV-
immunofluorescent signal present on consecutive sec-
tions (Fig. 3). On average, the PV immunofluorescence
within GABA axons is significantly higher than within
nonGABA axons (68 � 2 vs 42 � 1 a.u., p � 0.0001, n �

Figure 2. Myelinated GABA axons have distinct cytoskeletal composition and shorter nodes of Ranvier, compared to nonGABA
myelinated axons. A, Volume reconstruction of 35 serial sections (70 nm each) from layer 3a of human cortex immunolabeled with
GABA (red), MBP (white), neurofilament heavy chain (green), and �-tubulin (cyan). A single section from the boxed region is shown
in C. B, Analysis of the cytoskeletal content of myelinated GABA versus nonGABA axons from layers 3a, 3b, 4, and 5 from three
human samples (216 nonGABA and 164 GABA myelinated axons). C, A single section from the boxed region in A, showing different
combinations of immunostains. Note that myelinated GABA axons are brightly labeled with the neurofilament antibody but have weak
tubulin immunoreactivity. D, Maximum projection from three serial sections showing a node of Ranvier (yellow arrowheads) from a
nonGABA axon. At the node, which is devoid of MBP immunofluorescence, the axon can be followed using the tubulin immunoflu-
orescence (cyan). E, Node of Ranvier (yellow arrowheads) from a GABA axon. F, Comparison of the lengths of the nodes of Ranvier
from GABA and nonGABA cortical axons (39 GABA and 100 nonGABA nodes, eight samples).
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Figure 3. The majority of GABA myelinated axons are parvalbumin-immunopositive. A, Two consecutive sections from layer 3b of
human cortex, immunolabeled for GABA (red), parvalbumin (green), and MBP (white). Cell nuclei are stained with DAPI (blue). Four
myelinated GABA axonal profiles are marked with numbers; three of them (1, 2, and 4) are immunoreactive for parvalbumin. B, Pie
charts showing the distribution of GABA and nonGABA myelinated profiles according to their parvalbumin immunoreactivity.
Parvalbumin immunofluorescence was normalized for each sample (186 GABA and 172 nonGABA axonal profiles from two different
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186 GABA and n � 172 nonGABA myelinated axons from
two different samples). However, PV immunoreactivity in
these samples is generally weak and displays a low
signal-to-noise ratio, making it difficult to determine the
total number of PV-positive myelinated GABA axons. Low
and variable levels of parvalbumin have been previously
described in cortex of patients with epilepsy (Marco and
DeFelipe, 1997).

To confirm our findings, we also used cortical tissue
from a non-epileptic patient who had overlying cortical
tissue removed during a biopsy to diagnose an inflamma-
tory lesion. In this cortical specimen, we observe numer-
ous myelinated axons immmunoreactive for parvalbumin
(Fig. 3C). The proportion of the myelinated PV axons is
very similar to the GABA axons in the tissue from epilepsy
surgeries. For example, in layer 3a, 15% of the myelinated
axonal profiles are PV-immunopositive, and in layer 3b,
14% are PV-immunopositive (693 myelinated axons from
layer 3a and 2019 from layer 3b). This is within the range
observed for GABA myelinated axons from epilepsy sur-
geries (3–21% in layer 3a, and 3–15% in layer 3b). The
biopsy tissue, however, was fixed only with paraformal-
dehyde, which prevented simultaneous labeling with an
anti-GABA antibody, since glutaraldehyde is required for
satisfactory preservation of GABA (Somogyi et al., 1985;
Schiffmann et al., 1988). However, other characteristics of
the PV-immunopositive myelinated axons from the non-
epilepsy biopsy tissue, such as their cytoskeletal content
and length of nodes of Ranvier (Fig. 3D,E), are also very
similar to the GABA axons in the epilepsy surgery tissue,
suggesting that these axon populations are comparable.
Thus, parvalbumin interneurons appear to be a major source
of inhibitory myelinated axons in human neocortex.

Parvalbumin-positive basket cells are fast-spiking in-
terneurons capable of generating long trains of action
potentials at very high frequency (Kawaguchi et al., 1987;
Kawaguchi and Kubota, 1997), which requires a constant
supply of ATP. Thus, the high energy demands of parval-
bumin interneurons may be reflected in a higher content
of mitochondria within their myelinated axons to ensure
the local production of ATP. Their cell bodies (Gulyás
et al., 2006; in rodent cortex), as well as presynaptic
boutons (Cserép et al., 2018; in rodent and human cortex),
are known to have abundant mitochondria, but the mito-
chondrial content of their axons has not been assessed.
We used antibodies against three mitochondrial proteins:
MDH2, which is present in the mitochondrial matrix, and

TOMM20 and VDAC1, which are proteins of the outer
mitochondrial membrane (Fig. 4). Accordingly, immunola-
bels for TOMM20 and VDAC1 were seen surrounding
the MDH2 label (Fig. 4B). We quantified the distribution
of these three mitochondrial markers in GABA and
nonGABA myelinated axons in the human epilepsy sur-
gery samples. The immunofluorescence for all three mi-
tochondrial markers was significantly higher in myelinated
GABA compared to nonGABA myelinated axons (MDH2,
p � 0.00001; TOMM20, p � 0.001; VDAC1, p � 0.0002),
indicating that myelinated GABA axons in human cortex
are indeed enriched in mitochondria (Fig. 4).

How do these axons receive the nutrients necessary for
the mitochondrial production of ATP? Trophic support to
myelinated axons in the CNS is likely provided through a
system of cytoplasmic channels within myelin (for review,
see Simons and Nave, 2015), whose maintenance re-
quires the myelin protein CNP (Snaidero et al., 2017). Our
experiments reveal that GABA myelinated axons have a
significantly higher CNP content compared to nonGABA
axons (321 � 17 vs 271 � 7 a.u.; p � 0.002, n � 133
GABA and n � 489 nonGABA myelinated axons) suggest-
ing the existence of more cytoplasmic channels within
their myelin, consistent with a higher need for trophic
support. Interestingly, this difference in CNP content be-
tween GABA and nonGABA axons is most pronounced
among myelinated axons with a diameter larger than 0.6
�m (Fig. 5).

Discussion
Using samples of surgically excised brain tissue, we

show here that many of the characteristic features of
myelinated axons in cortical gray matter previously de-
scribed in the mouse (Micheva et al., 2016) are also
present in human, despite 100 million years of divergence.
As in mouse, many human myelinated inhibitory axons
originate from PV-positive interneurons and have distinc-
tive features, including high neurofilament and low micro-
tubule content, short nodes of Ranvier, and high content
of MBP in their myelin sheath. The implications of these
differences will require further study, but we speculate
that they have direct functional significance. For example,
the cytoskeleton is directly involved in axonal transport
(Conde and Cáceres, 2009: Hirokawa et al., 2010); it also
determines the mechanical properties of axons and there-
fore their susceptibility to mechanical injury (Ratzliff and
Soltesz, 2000; Grevesse et al., 2015). The length of the

continued
samples). C, PV neuron and processes in layer 3b of human cortex from a biopsy; volume reconstruction from 49 serial sections.
Yellow arrowheads point to PV-positive myelinated axons. D, Cytoskeletal composition and node length of myelinated axons in
biopsy tissue. Left, Comparison of the immunofluorescence intensity (mean � SE) for neurofilament heavy chain and �–tubulin within
myelin profiles of nonPV (blue) and PV axons (green) from the biopsy sample. The differences are statistically significant (p � 0.001
for NFH and p � 0.0001 for �-tubulin; 48 nonPV and 26 PV axons from layers 3a, 3b, and 4 from one sample). Right, Nodes of PV
axons are shorter than nonPV axons in the biopsy sample (p � 0.01; 34 nonPV and 24 PV nodes). E, Cytoskeletal composition and
node length of myelinated axons in epilepsy surgery tissue. Left, Comparison of the immunofluorescence intensity for neurofilament
heavy chain and �–tubulin within myelin profiles of nonGABA (blue) and GABA axons (red) from epilepsy surgery samples. The
differences are statistically significant (p � 0.0001, 196 nonGABA and 177 GABA axons from layers 3a, 3b, and 4 from three different
samples). Right, Nodes of GABA axons are shorter than nonGABA axons in epilepsy surgery samples (p � 0.0001; 100 nonGABA and
39 GABA nodes from eight different samples). ��p �0.01.
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Figure 4. GABA myelinated axons have more mitochondria. A, A single 70-nm section from layer 4 of human cortex
immunolabeled with GABA (red), PLP (white), MDH2 (magenta), TOMM20 (green), and VDAC1 (cyan). B, The boxed area in A is
enlarged to show two immunolabeled mitochondria, with the MDH2 mitochondrial matrix protein surrounded by the outer
mitochondrial membrane proteins TOMM20 and VDAC1. C, Five serial sections through axons 1 and 2, marked on A, top
section. Axon 1 is nonGABA and axon 2 is GABA. Adjacent to axon 2, there is also a nonGABA axon. D, Boxplots of the
immunofluorescence for MDH2, TOMM20, and VDAC1 within nonGABA and GABA myelinated axons. Center lines show the
medians, box limits indicate the 25th and 75th percentiles as determined by R software; whiskers extend 1.5 times the
interquartile range from the 25th to the 75th percentiles, outliers are represented by dots, n � 88 and n � 41 axons for MDH2,
n � 95 and n � 43 axons for TOMM 20, and n � 97 and n � 47 axons for VDAC1, from layers 3a through 5 from three different
samples.
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nodes of Ranvier affects the speed and timing of action-
potential propagation (Arancibia-Cárcamo et al., 2017).
MBP is a target in multiple sclerosis (Allegretta et al.,
1990) and differences in its content may influence the fate
of axons in brain pathologies. We further show that the
inhibitory myelinated axons have more mitochondria, as
well as more CNP, a protein enriched in the myelin cyto-
plasmic channels that is thought to provide access for

trophic support from ensheathing oligodendrocytes. This
is consistent with the high energy demands of fast-spiking
PV interneurons and suggests that, in addition to influenc-
ing conduction velocity, the myelination of inhibitory axons
is likely beneficial for managing their energy consumption by
increasing the efficiency of action potential propagation
(Hartline and Colman, 2007) and providing trophic support
(Fünfschilling et al., 2012; Lee et al., 2012).

Figure 5. GABA myelinated axons have more CNP in their myelin. A, Volume reconstruction of 21 serial sections from human cortical
layer 5, immunostained with CNP (magenta) and MBP. B, Three consecutive sections through a GABA myelinated axon immunola-
beled for CNP (magenta) and MBP (white). The first section is also shown immunolabeled for GABA. C, Thicker GABA axons (0.6–1.2
�m in diameter) have significantly more CNP in their myelin sheath compared to nonGABA axons of similar thickness. Center lines
in boxplots show the medians, box limits indicate the 25th and 75th percentiles as determined by R software; whiskers extend 1.5
times the interquartile range from the 25th to the 75th percentiles, outliers are represented by dots. For the boxplot on the left (axon
diameter 0.1–0.6 �m), n � 341 nonGABA and n � 98 GABA myelinated axons from two samples), and for the boxplot on the right
(axon diameter 0.6–1.2 �m), n � 142 nonGABA and n � 34 GABA axons from two samples).
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There are also important differences between human
and mouse neocortical myelinated axons. The density of
GABA myelinated axons in human cortex is substantially
less than in mouse cortex, while the density of nonGABA
myelinated axons is rather similar, with the exception of
layers 1 and 2. This may appear puzzling at first glance,
because of the association of interneurons with high-level
cortical functions (for review, see Tremblay et al., 2016).
However, this is consistent with the lower densities of
other neuronal structures in human cortex. For example,
synapse density is �2.5–3 times less in human cortex
compared to mouse, and neuron density is five times less
(DeFelipe et al., 2002). This is likely due, at least in part, to
the increased proportion and size of nonneuronal cells in
human cortex (for review, see Herculano-Houzel, 2014). If
the same scaling down of density applies to myelinated
axons, then it would appear that GABA myelinated axons
are following the general trend, while nonGABA myelin-
ated axons have a disproportionately high density, pos-
sibly because of the much longer distances many of these
axons have to cover in the human brain and therefore the
advantages offered by myelination to speed up action
potential propagation. One notable exception to the lower
density of GABA myelinated axons in human cortex is
layer 1, which has more GABA myelinated axons com-
pared to mouse layer 1. Layer 1 is the site where input
from a variety of cortical and subcortical neurons is inte-
grated (Douglas and Martin, 2004; Harris and Shepherd,
2015) and which appears to have undergone large evolu-
tionary changes. For example, recent studies revealed
two new interneuron types in human cortex that are not
present in mouse cortex, and both of these interneurons
are enriched in layer 1 (Boldog et al., 2018; Hodge et al.,
2018). The source of the GABA myelinated axons in hu-
man layer 1 remains to be determined and will provide
further insight into the functional significance of this evo-
lutionary change.

The characteristic features of myelinated inhibitory ax-
ons in human cortical gray matter are likely to have im-
portant implications for neurologic disorders that involve
pathologies of myelinated axons. The distinct molecular
and structural organization of inhibitory and excitatory
myelinated axons may underlie differences in their vulner-
ability in neurologic disorders or to injuries. Furthermore,
disturbances of myelin around inhibitory axons are ex-
pected to have very different functional implications com-
pared to disturbances of myelin on excitatory axons and
may require different strategies for prevention and treat-
ment.
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