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Abstract

Global greenhouse gas (GHG) emissions models generally project a 

downward trend in CO2 emissions from land use change, assuming 

significant crop yield improvements. For some crops, however, 

significant yield gaps persist whilst demand continues to rise. Here 

we examine the land use change and GHG implications of meeting 

growing demand for maize. Integrating economic and biophysical 

models at an unprecedented spatial resolution, we show that CO2 

emissions from land conversion may rise sharply if future yield 

growth follows historical trends. Our results show that ~4.0 Gt of 

additional CO2 would be emitted from ~23 Mha agricultural 

expansion from 2015 to 2026, under historical yield improvement 

trends. If yield gaps are closed expeditiously, however, GHG 

emissions can be reduced to ~1.1 Gt CO2 during the period. Our 

results highlight the urgent need to close global yield gaps to 

minimize agricultural expansion and for continued efforts to 

constrain agricultural expansion in carbon-rich lands and forests.  

1. Introduction

Agriculture already occupies about 40% of global land and yet global 

food demand is expected to increase by 60-110% by 20501,2. Natural land 

conversion to cropland has been the largest source of land-based CO2 

emissions in the last century3. However, CO2 emissions from land conversion 
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have been slowing down from the turn of this century following the trends in 

yield increase and the declining rate of deforestation in recent decades4. 

Reflecting these trends, the baseline scenarios of the Fifth Assessment 

Report by the Intergovernmental Panel for Climate Change (IPCC) project CO2

emissions from agricultural expansion approaching zero by around 20704. 

Similarly, an ensemble of 18 Integrated Assessment Models (IAMs) also 

project a declining trend in CO2 emissions from land use change, the range of

which will eventually reach near or below zero annual emissions by 2100 for 

all three scenarios evaluated including baseline, 550ppm, and 450ppm 

scenarios5. While the Shared Socio-economic Pathways (SSPs) on land-use 

futures present a wide range of possible emission scenarios from ~750 Gt 

CO2 yr-1 reduction (SSP1, RCP 2.6) to 400 Gt CO2 yr-1 increase (SSP3, 

baseline) from agricultural land use change by 21006, the baseline scenario 

generally projects declining CO2 emissions from land use change and 

continued yield improvement around the globe for the second half of the 

century6.1

While CO2 emissions from land conversion are widely expected to 

diminish, greenhouse gas (GHG) emissions from land use management, 

mainly CH4 and N2O, are expected to increase throughout this century4,5,7,8. 

1 Notable exceptions are SSP3 (A rocky road) and SSP4 (A road divided). SSP3 is 

characterized by limited regulation, continued deforestation, low technological 

development and resource-intensive consumption. SSP4 is characterized by a 

division between high to medium income countries (and consumers) and low-

income countries (and consumers), where only high to medium income countries 

(and consumers) are exposed to tougher regulations and efficient technologies.
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These projections typically assume that global crop yield will continue to 

improve. However, some studies have observed a stagnation in yield 

improvement trends; large yield gap persists in some regions, which call the 

prevailing projections of declining land use change and associated emissions 

into question9,10.

In this study, we develop a high-resolution spatial model with multiple 

yield improvement scenarios to examine the implications of global yield 

improvement trajectories on GHG emissions from future maize production. 

More than half of current agricultural land is used for cereal production2,11, 

and maize is the largest agricultural crop in terms of production volume, 

fulfilling about 40% of global grain needs12. Global maize consumption has 

more than doubled since 1990, at an annual growth rate of ~3%; biofuel and

feed were the main drivers of this growth in recent years13. However, the 

total cultivated land area for maize has remained stable due to the 

remarkable increase in global average yield; between 1980 and 2010, global 

average maize yield increased by ~50% from 3.4 t ha-1 to 5.1 t ha-1 (5 year 

moving average)2. Average maize yield in Asia has doubled during the 30 

year period, whereas that in Africa increased only 28%2. Technological 

changes including the use of irrigation, introduction of new crop varieties, 

fertilizer and agrochemical use, improved management techniques and 

mechanical equipment have been widely recognized as the drivers of the 

yield improvements14–16. In addition, non-technical factors such as changes in

precipitation, temperature and the length of growing seasons have also been
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identified as contributors to increasing yield trends15,17. Nevertheless, future 

trajectories of global yield improvement are inherently uncertain. 

In this study, we employ three maize yield improvement scenarios. 

Under each scenario, we model the spatial patterns of potential 

intensification and expansion for the period 2015 – 2026 at 5 by 5 arc-minute

resolution covering the globe. We then estimate GHG emissions from land 

use change and the use of nitrogen fertilizers under each scenario.  

2. Methods

2. 1 Scenarios for global yield gap closure

According to OECD-FAO projections and historical data18, global maize 

demand amounted to about 1,010 Mt as of 2015; this is expected to grow to 

1,186 Mt by 2026. We employ three yield improvement scenarios to describe

the potential land use change outcomes to meet 176 Mt additional maize 

demand between 2015 and 2026. 

 Scenario 1 (baseline): historical yield trend scenario, which follows 

the global yield trends at 5 by 5 arc-minute resolution between 1961 

and 20089,10 or the average yield improvement between 2000 and 

2010, whichever is higher. Yield increases linearly without 

compounding and stops when it reaches maximum potential yield of 

the grid-cell. This scenario includes yield stagnation in some regions 

based on historical data. 
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 Scenario 2 (moderate acceleration in yield gap closure):  yield 

increases in such a way that up to 5% of the previous year’s yield gap 

is closed per year (depending on the input levels selected). Yield gap is

estimated as the difference between the baseline yield (2010) and the 

maximum potential yield of the grid-cell, using FAOSTAT2 and Earthstat

database19 (see SI section 1.1.1 for details). 

 Scenario 3 (aggressive acceleration in yield gap closure): yield 

increases in such a way that up to 10% of the previous year’s yield gap

is closed per year (depending on the input levels selected). 

Within the yield gap closure conditions for Scenarios 2 and 3, actual 

yield (up to the 5 or 10% per year limit) is determined among four yield 

levels corresponding to no, low, medium, and high input levels. These levels 

are selected based on whichever one offers the lowest marginal cost of 

production (Fig. 1). As the remaining yield gap is calculated each year, the 

same percent of yield gap progressively leads to diminishing yield increases 

as the yield of a grid-cell improves (see also SI section 1.1 for details). 
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Fig. 1. Yield choices for each grid-cell in year t = 1. Under Scenario 

1, the yield of a grid-cell is determined following the historical yield 

trend of the grid-cell. Under Scenarios 2 and 3, the most economic 

input level determines the yield within the limit set by each scenario

(5% and 10% of the remaining yield gap of the previous year for 

Scenario 2 and Scenario 3, respectively).  

2.2 Spatial patterns of agricultural expansion

Spatial patterns of agricultural expansion are known to be critical in 

determining carbon emissions20; however, understanding spatial distribution 

of future crop production is hampered by the complexity of global land use 

change dynamics that involve social, climatic, economic, and logistic 

constraints. Various models have been utilized in the literature to address 

these challenges including LUCI-LCA21, GLOBIOM22,23, GCAM24, and MAgPIE25,26.

Assumptions, geographical coverage, spatial resolution, and underlying data 

and mechanisms employed vary significantly among these models. LUCI-

LCA, for example, uses a logistic regression assuming agricultural expansion 

would take place in areas that resemble the conditions of existing cropland21.

GLOBIOM and GCAM employ spatially-explicit partial equilibrium models 

distinguishing 14 – 18 global regions at 30 by 30 arc minute resolution for 

simulation22–24, and MAgPIE uses a dynamic vegetation model with a cost 

minimization function at 30 by 30 arc minute resolution25,26. These models 

either ignore potential spillover effects or use coarse spatial resolutions for 
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yield and carbon stock estimations though they are known to vary widely 

within hundreds of meters 27,28. Furthermore, yield responses to inputs are 

often assumed to be unconstrained, which may result in unrealistically 

optimistic yield improvements23.  

Our approach is designed to enhance the spatial resolution of land use 

change projections and to tie future yield improvements to historical data. It 

accounts for the constraints and decision-making processes operating at 

these different scales whilst minimizing conceptual and computational 

challenges such as aggregation and run times. We accomplish this by 

combining three modeling steps designed to utilize economic, production, 

infrastructure and biophysical data available at different spatial scales. (1) 

Global Land Use Change (GLUC) modeling is a spatial extension of the 

Technology Choice Model (TCM)29–31 and captures crop production through 

intensification and expansion based on marginal supply cost curves at a 5 by

5 arc minute—about 10 by 10 km at the equator—resolution. (2) The Spatial 

Economic Allocation Landscape Simulator (SEALS) refines the GLUC results 

into 10 by 10 arc second—about 300 by 300 m at the equator—resolution 

based on adjacency and configuration of different land-use, land-cover 

(LULC) types and physical suitability using a digital elevation model (DEM) 

and soil organic carbon (SOC) data. And finally (3) calculation of GHG 

emissions is performed using a combination of spatially explicit data and 

models to estimate above ground biomass loss from agricultural expansion 
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for maize, combined with estimates of N2O emissions from fertilizer use in 

production intensification. 

2.3 Modeling strategy

Our goal is not to predict accurately where agricultural expansion for 

future marginal maize production will occur, but rather to understand how 

different future scenarios might affect the landscape. Thus, the maps 

produced here should not be taken as predictions but rather as useful and 

detailed hypotheticals that let us assess landscape-level ecosystem service 

impacts of projected future demand, such as changes in carbon storage.

2.3.1 GLUC model

GLUC is a spatial extension of the Technology Choice Model (TCM) 31 

that finds the optimal spatial distribution of crop production at a 5 by 5 arc-

minute resolution (2,160×4,320 grid-cells) covering the globe. It is a 

constrained optimization model that minimizes the global marginal cost of 

production and transportation needed to meet a given demand. 

For each grid-cell that participates in maize production in t - 1, the 

most economical input level at year t is chosen among the four options 

shown in Fig. 1. The corresponding yield is used to calculate the marginal 

cost of intensification for grid-cells under Scenarios 2 and 3, considering the 

costs of fertilizer, irrigation, pesticides, and labor (see SI sections 1.1.3 – 

1.1.6). For agricultural expansion, initial yield is determined by the yield of 

the nearest maize producing grid-cell, after applying a 35.5% yield penalty 
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for newly converted lands (see SI section 1.2.1 for details). The marginal cost

of expansion for newly converted grid-cells accounts for yield, corresponding 

input levels, fixed capital cost, land and land conversion costs. (see SI 

section 1.2 for details). Finally, the cost of transportation from each grid-cell 

to the nearest city with at least 50,000 inhabitants is added to the grid-cell 

level marginal costs of intensification and expansion, providing the total 

marginal cost matrix at 5 by 5 arc-minute resolution (cik in equation 1).

GLUC assumes that marginal increases in demand for a crop are 

fulfilled progressively by the least marginal cost producers, which are 

represented by the grid-cells, within their capacity limits until they 

collectively satisfy the total marginal demand for the crop in question31. The 

model was run annually from 2010 to 2015, and the resulting production 

values by country were compared with the historical production data. Based 

on the comparison, the model is calibrated so that the discrepancy between 

the model output and FAO production data are minimized. The calibration 

step is designed to account for intangible costs (and incentives) that are not 

reflected in the costs of inputs modeled in our study. For example, limited 

quota for agricultural land use, transaction costs, moratorium or restrictions 

in land use change, humanitarian aid, and subsidies may not show up in a 

balance sheet, while imposing practical barriers to production. In order to 

account for intangible costs, year-over-year production results based only on

tangible costs are aggregated per country and compared with FAO’s 

production data2. By setting the amount of intangible cost (or incentive) per 
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tonne of maize production as a variable for each country, we calibrated the 

model so that GLUC production results per country match FAO data for the 

years 2010 to 2015. The intangible cost (or incentive) by country for the last 

calibration year (2014 – 2015) is then used for projection years (2015 – 

2026).

For the current study, GLUC is configured to estimate annual changes 

in intensification and expansion production from 2015 to 2026 in response to

an increase in demand by solving the following:

min z=∑
i ,k

cik x ik

s.t .∑
i , k

xik ≤d

0≤ xik ≤mik,

(1)

where z is the total marginal cost for additional crop production and 
transportation ($), 

d is the total marginal demand for the crop in question (t), 

k indicates the method of marginal production (intensification = 1, 
expansion = 2),

cik is the marginal cost of producing and transporting 1 tonne of the 
crop in the grid-cell i ($/t),

xik is the marginal production of the crop in the grid-cell i (t), and

mik is the economical maximum marginal production for the grid-cell i 
(t).

The solution of this optimization problem shows the marginal 

production through intensification and expansion, and associated costs at 5 

by 5 arc-minute resolution (see SI section 1). 

The marginal cost cik is calculated as the sum of all marginal costs such that:
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c ik=∑
j

c ijk=∑
j

pij aijk (2)

where j is the marginal factor for inputs such as water, fertilizer, land, 
labor, and transportation, 

cijk is the marginal cost of factor input j under the method of marginal 
production method k in the grid-cell i needed for 1 tonne of crop ($/t),

pij is the price of input j in the grid-cell i, and

aijk is the amount of marginal input j in grid-cell i under the production 
method k.

For the further details on method and the data used, see SI section 1.

2.3.2 SEALS model

The SEALS model spatially allocates the amount of maize expansion 

given by GLUC to specific grid-cells at the higher resolution (see SI section 2 

for details). SEALS uses a land-use, land-cover (LULC) map, that defines the 

starting condition of the high-resolution landscape, from the European Space

Agency’s Climate Change Initiative (ESA-CCI) for the year 201532. The 

suitability of each fine-resolution grid-cell for agricultural expansion for 

maize is defined based on nearby LULC types (described below as adjacency 

relationships), physical suitability and constraints on cultivation in order to 

allocate the change from the coarse projections to the most suitable cells. 

In this application, we pare down the 37 ESA-CCI classes to 8 functional

types, namely Cropland, Mosaic cropland, Forest, Shrubland, Grassland, 

Urban, Bare and Water. Then, we create a set of maps that describe the 
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strength of the spatial adjacency effect for each functional type on 

agricultural expansion for maize (see SI section 2). 

To account for physical suitability, we combine information from a 

digital elevation model (DEM) and soil organic carbon (SOC) data from Hengl 

et al (2017)33. We then apply constraints on cultivation so that no expansion 

can occur if > 95% of the grid-cell is existing agriculture or if the grid-cell is 

water or developed land. Finally, we combine adjacency effect, physical 

suitability and conversion eligibility maps into overall suitability. We then 

rank this map and iteratively assign expansion to the highest valued grid-cell

until each GLUC-resolution grid-cell has all expansion allocated. The output 

of the SEALS model is used to calculate GHG emissions from agricultural 

expansion.

2.3.3 GHG emissions

We find globally explicit aboveground carbon loss by calculating the 

difference between the carbon stock of the baseline LULC map of year 2015, 

and the map of the predicted scenario. We focus on above ground carbon, as

we do not have spatially explicit data available for belowground carbon.

The carbon stocks are computed by identifying an aboveground 

biomass value based on the land cover class for each of the grid cells within 

the baseline ESA LULC map34 and the future LULC map created by SEALS 

(see SSI section 3).
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For the aboveground biomass stock, we use a combination of data 

sources: 1) For tropical forest, we use the InVEST (v. 3.4) carbon edge effect 

model28, which enables consideration of the biomass impact on converted 

and nearby grid-cells. 2) For non-tropical forest we use the global forest 

aboveground biomass map developed by Santoro et al. 201835, as this 

provides spatially explicit biomass stock values for the most recent time 

period of 2010. 3) Finally, for all other natural land cover types we use the 

IPCC Tier 1 approach36 as implemented by Ruesch and Gibbs37; this provides 

a globally consistent approach for the remaining land cover types (e.g. 

shrubs or grassland). 

Nitrous oxide (N2O) emissions from nitrogen fertilizer application are 

calculated at a 5 by 5 arc minute resolution using the IPCC guidelines38 (see 

SI section 3). 

3. Results

3. 1 Carbon emissions from agricultural expansion

Our results show that the 176 Mt increase in maize demand predicted 

between 2015 and 2026 would require ~23 Mha of agricultural expansion 

and would result in ~4.0 Gt of additional CO2 assuming historical yield 

improvement trends at 5 by 5 arc minute resolution. Including N2O emissions

for intensification, the total GHG emissions become ~4.2 Gt CO2e. Under an 

aggressive yield improvement scenario, however, agricultural expansion for 

maize and corresponding CO2 emissions can be contained within ~5.1 Mha 

13

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283



and ~1.1 Gt CO2, respectively, or ~1.7 Gt CO2e when accounting for N2O 

emissions from fertilizer use. 

Under the historical yield trend case (Scenario 1), as much as 45% of 

marginal maize demand between 2015 and 2026 was met by agricultural 

expansion (Fig. 2a). Under the moderate yield improvement case (Scenario 

2), however, only 25% of the total marginal demand during the period 

required agricultural expansion (Fig. 2b), which is further reduced to 10% 

under the aggressive yield improvement case (Scenario 3) (Fig. 2c). 
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Fig. 2. Simulated marginal production of maize through 

intensification and expansion between 2015 and 2026 under three 

yield improvement scenarios (cumulative). (a) Scenario 1: yield 

improvement following historical trends; (b) Scenario 2: up to 5% 

additional yield improvement; (c) Scenario 3: up to 10% additional 

yield improvement

Although it is generally cheaper, intensification alone could not fulfill 

the marginal demand due to the yield improvement capacity constraints, 

requiring the system to move on to the more expensive option of agricultural

expansion (Fig. 3). Africa, for example, did not contribute signficantly to 

marginal production via intensification under the historical yield trend 

scenario despite the presence of large yield gaps (Scenario 1; Fig. 3a). As our

model is calibrated using historical production data, on the one hand, the 

contributions through intensification from the regions with large yield gaps 

but with limited actual yield improvements, such as Africa and South 

America, are limited in our model outputs. On the other hand, North 

America’s marginal production through intensification is estimated to be 

significant despite the already high yields, given the sustained increase in 

historical maize production in the region that is reflected in the calibration 

step (see Section 2.1). Asia and Europe were estimated to absorb a 

substantial volume of maize demand through expansion. Progress toward 

closing these yield gaps under Scenarios 2 and 3, however, would allow 
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Africa and Asia to substantially increase their production through 

intensification, shrinking agricultural expansion (Fig. 3b and 3c).

Fig. 3. Marginal supply cost curve of maize through intensification 

and expansion aggregated at continental level. (a) Scenario 1: yield 

improvement following historical trends; (b) Scenario 2: up to 5% 

additional yield improvement; (c) Scenario 3: up to 10% additional 
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yield improvement. Each block represents production-weighted 

average marginal supply cost of each region. The marginal costs at 

5 by 5 arc-minute resolution within each continent may be 

significantly higher or lower.

3.2 Regional spatial patterns of expansion

The results of our spatial allocation of agricultural expansion for maize 

are demonstrated in Fig. 4 for Minnesota, USA. The expansion for maize 

predicted by GLUC is shown in Fig. 4c and Fig. 4d (in orange). The SEALS 

model estimates the most likely locations of agricultural expansion within the

orange pixels (Fig. 4d; in purple) based on expansion suitability (Fig. 4a) as a

function of climate, soil, and slope. The spatial resolution of the remotely-

sensed aboveground biomass data shown in Fig. 4b and 4d (in green) 

matches well with that of the SEALS results (Fig. 4d). Large spatial variance 

of the aboveground biomass stock of the natural land exists within each 

GLUC cell (Fig. 4b). We find the average carbon stock globally across all 

GLUC cells where expansion happens to be 31.3 tC ha-1 with an average 

minimum and an average maximum carbon stock of 0.5 and 208.5 tC ha-1 

respectively. In addition, if no spatially explicit data were used and only the 

IPCC’s tier 1 approach was used at the resolution of GLUC, the CO2 emissions

from agricultural expansion under historical yield trends would be 

overestimated by 0.3, 0.1 and 0.2 Mt CO2 in Africa, Asia and South America 

respectively, and underestimated by 0.7 Mt CO2 in Europe.
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These results illustrate the importance of explictly modeling different 

phenomena operating at different scales, facilitated here by our multi-step 

approach. For example, as shown in Fig. 4a, the land in northern Minnesota 

is highly suitable for maize expansion; this suitability is captured in our finer 

scale SEALS model. However, economic factors such as infrastructure, 

capital investment or market access, which operate at regional or national 

scales and are captured by our coarser-scale GLUC model, are relatively 

unfavourable for this region (Fig. 4c). 
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Fig. 4. (a) Suitability for agricultural expansion for maize 

including adjacency, physical suitability and constraints on 

cultivation in Minnesota, USA, (b) Mg carbon stock per ha and (c) 

spatial mapping of GLUC expansion area and (d) SEALS results 

overlaid on GLUC and carbon results.

3.3 Global spatial patterns

The global spatial patterns of GHG emissions from agricultural 

expansion for maize are shown in Fig. 5. Expansion may take place across 

the globe within the known range of maize between 50°N and 45°S39. Under 

the historical yield trend (Scenario 1), expansion encroaches onto some of 

the tropical climate zones in Central America, Western Africa, and Southern 

Asia (Fig. 5a). Within the temperate climate zones, maize production under 

the historical yield trend scenario stretches further to northern and southern 

boundaries, where crop suitability and yields are lower. Some of the global 

regions with high carbon stock, including those in Africa, Southern Asia, 

South America, Eastern Europe, and Central Asia are exposed to maize 

expansion. Africa, Asia, and Europe (mainly Eastern) combined, contribute 

3.4 Gt CO2e (expansion and intensification) or 81% of the GHG emissions 

under this scenario. However, under the aggressive yield improvement 

scenario (Scenario 3), emissions are reduced by 44% in Africa, 60% in Asia, 

and 76% in Europe (Fig. 5b). Eastern Europe, in particular, shows much 

higher intensity carbon emissions from agricultural expansion under 
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historical yield trends (Scenario 1, Fig. 5c1) than moderate (Scenario 2, Fig. 

5c2) or aggressive yield improvement (Scenario 3, Fig. 5c3) respectively. 
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Fig. 5. Aggregate CO2 emissions from expansion to meet 176 Mt 

marginal maize demand between 2015 and 2026. (a) Global map of 

CO2 emissions from agricultural expansion under Scenario 1; (b) CO2 

emissions at continental level (c) CO2 emissions in Europe under 

Scenario 1 (c1): yield improvement following historical trends; 

Scenario 2 (c2): up to 5% additional yield improvement and Scenario

3 (c3); up to 10% additional yield improvement.

4. Discussion & conclusions

4.1. Implications for GHG emissions modeling

Previous projections and integrated assessment models (IAMs) are 
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generally in good agreement that GHG emissions from global land use 

change are declining and will diminish to nil in the second half of this 

century.4–8 In contrast, our model shows that, for the case of maize, GHG 

emissions from cropland expansion may rise sharply (contributing ~4.0 Gt 

CO2 emissions to global GHG emissions by 2026) to meet the growing maize 

demand under the current yield improvement trajectory. Furthermore, our 

findings may underestimate potential GHG emissions since carbon loss from 

belowground and soil carbon stocks and potential forest edge effects outside

of the tropics are excluded.

In addition to the finer spatial resolution employed in our model, two 

fundamental differences in our modeling approach may explain the 

contradictory findings. First, Scenario 1 is designed to follow historical yield 

trends until the maximum potential yield of a given grid-cell (5 by 5 arc-

minute resolution) is reached. Historically, improvements in maize yield have

been remarkable; globally, a ~50% average yield improvement is observed 

for maize over the three-decade period between 1980 and 20102. However, 

there are significant differences among global regions; while average maize 

yield has doubled in Asia, an increase of only 28% occurred in Africa over the

three-decade period2. Some regions, like Eastern Europe and West Africa, 

continue to experience stagnation in yield improvement so that wide yield 

gaps remain.9 It is therefore unrealistic to assume a closing of yield gaps 

across all regions, applying the global average yield improvement trend. 

Instead, we have used grid-cell by grid-cell yield improvement trends in 
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Scenario 1. 

Second, additional production through intensification becomes 

increasingly costly as yields approach the maximum potential. As such, a 

slowing growth in production is expected in regions where near maximum  

yields are observed. In other words, it is unrealistic to assume that the 

regions with historically large year-over-year yield improvements will 

continue the trend indefinitely. In our model, we progressively re-adjust the 

maximum possible annual yield improvement through intensification based 

on the previous year’s yield gap to simulate the effect of diminishing returns 

(Section 2.1). 

4.2. Agricultural expansion vs. land management emissions

Our results also suggest that additional GHG emissions from 

intensification in scenarios 2 & 3 are unlikely to negate the avoided CO2 

emissions from agricultural expansion that would otherwise take place. We 

estimate that in our baseline scenario, marginal N2O emissions amount to 0.2

Gt CO2e, accounting for 4.5% of total marginal GHG emissions. Closing the 

yield gap more expeditiously will increase this contribution to 0.6 - 0.7 Gt 

CO2e (Scenarios 3 and 2 respectively) increasing the share of N2O emissions 

to 23% - 35% of total marginal GHG emissions. While this offsets some of the

GHG reduction obtained from reduced expansion, the total GHG emissions of

1.7 – 3.0 Gt CO2e for Scenarios 3 and 2 remain significantly lower than the 

total GHG emissions of the baseline (Scenario 1) of 4.2 Gt CO2e. 
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It is notable that Scenario 3 (up to 10% yr-1 yield gap closure) leads to 

somewhat lower N2O emissions compared to Scenario 2 (up to 5% yr-1 yield 

gap closure), which is counterintuitive. Upon closer inspection, it appears 

that allowing up to 10% yr-1 yield gap closure encourages production from 

regions with very large yield gaps, whilst using low initial fertilizer inputs, as 

these areas tend to exhibit higher production per unit nitrogen fertilizer 

input. As more demand is met by regions with higher N fertilizer efficiency, 

existing high yield regions with lower N fertilizer efficiency were not selected 

by the algorithm for production under Scenario 3, leading to a small 

reduction in global N2O emissions. 

This result confirms that boosting yields is key to reducing future GHG 

emissions11, and that accelerating global yield improvement does not 

necessarily mean higher N2O emissions if future intensification efforts target 

the regions with large yield gap and high N fertilizer efficiency.

4.3. Challenges and opportunities in global yield improvement

Our results show that expediting global yield improvement by closing 

up to 5 – 10% of remaining yield gap per year can substantially reduce the 

global CO2 emissions from potential agricultural expansion to 1.1 – 2.3 Gt 

CO2 over the 2015 – 2026 period. Understanding the drivers and barriers of 

yield improvement is therefore crucial for global climate change mitigation. 

Closing up to 5 – 10% of the yield gap per year, however, is an ambitious 

goal in many parts of the world. Even though all continents have witnessed 

significant yield increases over the last decades18, it is evident that yield 
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change has not been uniform at a finer spatial scale. While yields increased 

for >70% of harvested areas for maize, 26% and 3% of harvested areas 

experienced yield stagnation and yield collapse, respectively9. Furthermore, 

significant disparity in yields persists among different regions of the globe: in

2015, the average maize yield was over 10 t ha-1 in North America, but it was

only ~2 t ha-1 in Africa18, despite estimations that Africa can potentially 

produce ~4 t of maize per ha40,41. Similarly, significant yield gaps persist in 

Eastern Europe, Central America, and South Eastern Asia. 

Various intangible barriers to yield improvement have been reported 

including the lack of access to information and capital, limitations in human 

resources, and inadequate incentive structures associated with farmland 

tenure arrangements42,43. In many cases, the barriers to yield gap closure 

need to be understood from a local context. For example, where fragile soils 

are prevalent, implementation of specific soil conservation strategies and 

improved management of water (as opposed to higher fertilizer inputs) are 

likely needed to realize yield improvements44. Local knowledge or incentives 

for such strategies may be varied or lacking. Other barriers include the 

limited access to high yielding varieties which can deliver yield expectations 

even under marginal conditions44. 

Sustainable intensification11 would need a combination of 

complementary strategies45, including regulatory interventions46,47, market 

instruments48, and producer behavioral changes49,50.

4.4. Needs for multi-layered, GHG mitigation efforts 
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Limiting global mean temperature rise from pre-industrial levels to well

below 2°C requires achieving net zero GHG emissions by the second half of 

the century51–53. Our study indicates that crop land expansion, demonstrated 

here focusing on maize demand projections in the coming decade, may pose 

a challenge to achieving this goal. There is an urgent need to close the 

global yield gap, through locally relevant interventions targeted for regions 

with high yield gaps and fertilizer deficit, to prevent large-scale GHG 

emissions from maize expansion. Given the potential local challenges 

associated with accelerating yield gap closure, however, other 

complementary strategies should be pursued in parallel to reduce demand or

redirect expansion away from high carbon stock areas. Literature suggests 

dietary changes and demand management49,54, market instruments55,56, 

regulatory interventions46,47, voluntary pledges and agreements, and various 

combinations thereof45 as potential strategies. However, many of these 

strategies are likely to generate consequences which reach far beyond the 

production of a single crop. Although not demonstrated here, our modeling 

approach could be further developed to accommodate simultaneous 

modeling of multiple crops, thereby facilitating consideration of these 

broader supply and demand changes and land use competition between 

crops.

4.5. Future research

Future research should explore uncertainties and stochastic modeling 

approaches as well as the effect of climate change on yield at fine spatial 

26

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513



resolution. Alternative strategies to fertilizer use for yield improvement 

including irrigation, improved crop management, mechanization, and the use

of better cultivar and agrochemicals could be more explicitly incorporated 

into yield projection models. Examining the potential of these land 

management approaches individually and in combination at a regional level 

would help understand the regional differences in yield improvement trends 

and inform strategies to overcome yield stagnation. Finally, in this paper, we 

have examined maize supply and demand until 2026; future research could 

extend modeling for simultaneous consideration of multiple crops over 

extended time periods.

Data availability

All data generated or analyzed during this study are freely available at 

https://github.com/VitalMetrics-IERS/GLUC-Model. 

Code availability

The GLUC and SEALS model codes are freely available at https://github.com/

VitalMetrics-IERS/GLUC-Model. 
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