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REVIEW Open Access

How a diverse research ecosystem has
generated new rehabilitation technologies:
Review of NIDILRR’s Rehabilitation
Engineering Research Centers
David J. Reinkensmeyer1* , Sarah Blackstone2, Cathy Bodine3, John Brabyn4, David Brienza5, Kevin Caves6,
Frank DeRuyter6, Edmund Durfee7, Stefania Fatone8, Geoff Fernie9, Steven Gard8, Patricia Karg5, Todd A. Kuiken10,
Gerald F. Harris11, Mike Jones12, Yue Li9, Jordana Maisel13, Michael McCue5, Michelle A. Meade7, Helena Mitchell14,
Tracy L. Mitzner14, James L. Patton15, Philip S. Requejo16, James H. Rimmer17, Wendy A. Rogers14, W. Zev Rymer18,
Jon A. Sanford14, Lawrence Schneider7, Levin Sliker3, Stephen Sprigle14, Aaron Steinfeld19, Edward Steinfeld13,
Gregg Vanderheiden20, Carolee Winstein21, Li-Qun Zhang10 and Thomas Corfman22

Abstract: Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or
degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation
technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly
challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation
technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on
Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the
National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”,
combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability.
Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or
recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical
advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the
RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of
research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields;
significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program
has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more
technologies, and, in particular, often now focusing on information technologies. RERC work also now often views
users as integrated into an interdependent society through technologies that both people with and without disabilities
co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view
users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be
optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate
this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and
possible future directions of the RERC program.
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Background
Disabilities cause complex problems in society often
unique to each person. A physical disability can limit a
person’s ability to access buildings and other facilities,
drive, use public transportation, or obtain the health
benefits of regular exercise. Blindness can limit a per-
son’s ability to interpret images or navigate the environ-
ment. Disabilities in speaking or writing ability may limit
the effectiveness of communication. Cognitive disabil-
ities can alter a person’s employment opportunities. In
total, a substantial fraction of the world’s population – at
least 1 in 6 people – face these individualized problems
that combine to create major societal impacts, including
limited participation. Further, the average person in the
United States can expect to live 20% of his or her life
with disability, with the rate of disability increasing
seven-fold by age 65 [1].
In light of these complex, pervasive issues, the field of

rehabilitation engineering asks, “How can technology
help?” Answering this question is also complex, as it
often requires the convergence of multiple engineering
and design fields (mechanical, electrical, materials, and
civil engineering, architecture and industrial design,
information and computer science) with clinical fields
(rehabilitation medicine, orthopedic surgery, neurology,
prosthetics and orthotics, physical, occupational, and
speech therapy, rehabilitation psychology) and scientific
fields (neuroscience, neuropsychology, biomechanics,
motor control, physiology, biology). Shaping of policy,
generation of new standards, and education of con-
sumers play important roles as well.
In the US, a unique research center structure was de-

veloped to try to facilitate this convergence of fields. In
the 1970’s the conceptual model of a Rehabilitation En-
gineering Center (REC), focusing engineering and clin-
ical expertise on particular problems associated with
disability, was first tested. The first objective of the nas-
cent REC’s, defined at a meeting held by the Committee
on Prosthetic Research and Development of the National
Academy of Sciences, was “to improve the quality of life
of the physically handicapped through a total approach
to rehabilitation, combining medicine, engineering, and
related science” [2]. This objective became a working
definition of Rehabilitation Engineering [2].
The first five centers focused on topics including func-

tional electrical stimulation, powered orthoses, neuromus-
cular control, the effects of pressure on tissue, prosthetics,
sensory feedback, quantification of human performance,
total joint replacement, and control systems for powered
wheelchairs and the environment [2]. The first two RECs
were funded by the Department of Health, Education, and
Welfare in 1971 at Rancho Los Amigos Medical Center in
Downey, CA, and Moss Rehabilitation Hospital in Phila-
delphia. Three more were added the following year at the

Texas Institute for Rehabilitation and Research in Hous-
ton, Northwestern University/the Rehabilitation Institute
of Chicago, and the Children’s Hospital Center in Boston,
involving researchers from Harvard and the Massachu-
setts Institute of Technology [3]. The Rehabilitation Act
of 1973 formally defined REC’s and mandated that 25 per-
cent of research funding under the Act go to them [2].
The establishment of these centers was stimulated by “the
polio epidemic, thalidomide tragedy and the Vietnam
War, as well as the disability movement of the early 70s
with its demands for independence, integration and em-
ployment opportunities” [3].
After the initial establishment of these RECs, the gov-

ernmental funding agency evolved into the National Insti-
tute on Disability and Rehabilitation Research (NIDRR, a
part of the U.S. Department of Education), and now is the
National Institute on Disability, Independent Living, and
Rehabilitation Research (NIDILRR, a part of the U.S.
Department of Health and Human Services. Today, as we
describe below, the RERC’s study a diverse set of tech-
nologies and their use by people with a disability, includ-
ing human-computer interaction, mobile computing,
wearable sensors and actuators, robotics, computer gam-
ing, motion capture, wheeled mobility, exoskeletons, light-
weight materials, building and transportation technology,
biomechanical modeling, and implantable technologies.
For this review, we invited all RERCs that were actively
reporting to NIDILRR at the onset of this review project
in 2015, and had not begun in the last two years, to
participate. These were centers that were funded (new or
renewal) in the period 2008-2013, except the RERC
Wheelchair Transportation Safety, which was funded
from 2001-2011. Two of the RERCs did not respond
(see Table 1). For each center, we asked it to describe the
user needs it targets, summarize key advances that it had
made, and identify emerging innovations and opportun-
ities. By reviewing the scope of rehabilitation engineering
research through the lens of the RERCs, our goal was to
better understand the evolving nature and demands of re-
habilitation technology development, as well as the influ-
ence of a multidisciplinary structure, like the RERCs, in
shaping the producing of such technology. We also per-
formed an analysis of how multidisciplinary the current
RERCs actually are (see Table 3), and asked the directors
to critique and suggest future directions for the RERC
program.
NIDILRR provides funding for each RERC for 5 years.

At the end of the five year period, if NIDILRR chooses
to advertise the specific Center opportunity topic again,
then there is an open competition to win the new center.
NIDILRR also sometimes announce open calls for new
center ideas. Since 1984, 129 RERC’s have been funded,
some through multiple grant cycles, with many others
starting new by winning a priority renewal competition

Reinkensmeyer et al. Journal of NeuroEngineering and Rehabilitation  (2017) 14:109 Page 2 of 53



or by addressing new priorities. Table 1 provides the
start date for each active/recently closed center reviewed
here. The summaries of the newer centers necessarily
focus on their emerging contributions. Others have
existed for decades and their summaries include some of
their historically important achievements. We also pro-
vide an example of a center that transitioned between
institutions (the center focused on aging with a disabil-
ity). It is also important to note that RERCs are focused
not only on research and development of technologies
and policies, but also on dissemination of knowledge
and training of new researchers. We limit this review to
research and development activities, although these
other activities are important as well.
To organize this review, one could attempt to group

the RERCs (Table 1) by the type of impairment on which
they focus (e.g., motor, sensory, cognitive, etc.), by the
age of the users they serve (children, adolescents, adults,
aging adults), or by their technological focus (e.g. wire-
less communication, robotics, prosthetics). Ultimately,
we chose to group them by the functional need they tar-
get, defining three broad categories – mobility, commu-
nication and cognition, and rehabilitation therapy and
exercise. Most of the RERCs cut across the three cat-
egories, but this grouping serves to frame this review
into tractable themes.
As a way to gain an overview of the extensive body of

work described here, Table 2 provides a timeline of sam-
ple product and policy innovations resulting from RERC
work. These are products that have come to be used by
many people outside of the original RERC research
scope. Note that the RERCs have also contributed a large
amount of knowledge to rehabilitation besides these
practical products and policies. This knowledge is ar-
chived in peer-reviewed publications, a sampling of the
most important of which are cited in the text of this re-
view. Further, emerging projects continue to aim to gen-
erate new products, as described below.
Table 3 shows an analysis of the distribution of disci-

plines represented in each RERC, in order to allow the
reader to assess the combination of expertise that con-
tributed to the technological advances we describe. Note
that 70% of the research and development staff of the
RERC are engineers, with 23% being researchers in clin-
ical fields, and only 7% being from basic science fields.
Thus, while the RERCs certainly are multidisciplinary (a
total of 36 fields are represented), they primarily involve
engineers. Significantly, about 11% of RERC staff have a
disability that gives them personal experience with the
problem on which they are working, an ideal that
NIDILRR advocates and rewards in its grant review
evaluation criteria. Note also that 13 of the 19 RERCs re-
ported interactions with another RERC, consistent in
part with a multidisciplinary, collaborative approach.

Table 1 Rehabilitation Engineering Research Centers described in
this review. Shown are the dates each center was funded (possibly
including a no-cost extension period), and the lead institution for
the center. All RERCs that were actively reporting to NIDILRR at the
onset of this project in 2015, and had not begun in the last two
years, were invited to participate in this review. These were centers
that were funded (new or renewal) in the period 2008-2013, except
the RERC Wheelchair Transportation Safety, which was funded from
2001-2011. Two of the RERCs meeting these criteria did not re-
spond to the invitation (RERC on Telecommunications Access at
Univ. Wisconsin – Madison and RERC on Hearing Enhancement at
Gallaudet University). Note that some of the RERCs have a history of
renewal, and thus drew on a longer time period to provide an
overview of their accomplishments in the main text

Mobility

1. Accessible public transportation
(2008-2018, Carnegie Mellon University)

2. Manipulation and mobility
(2013-2017, Rehabilitation Institute of Chicago)

3. Prosthetics and orthotics (1983-2014, Northwestern University)

4. Technology for children with orthopedic disabilities
(2010-2016, Marquette University)

5. Universal design and the built environment
(1999-2019, The State University of New York at Buffalo)

6. Wheeled mobility and seating
(2003-2015, Georgia Institute of Technology)

7. Wheelchair transportation safety
(2001-2011, University of Pittsburgh then University of Michigan)

Communication and cognition

1. Augmentative and alternative communication
(2008-2014, Duke University)

2. Cognitive technologies (2004-2019, University of Colorado)

3. Low vision, blindness and multisensory loss
(2006-2020, The Smith-Kettlewell Eye Research Institute)

4. Mobile technology to support health self-management in adoles-
cents with disabilities (2013-2017, University of Michigan)

5. Technology for successful aging with a disability
(2013-2017, Georgia Tech Research Corporation)

6. Universal interface and information technology access (2003-2017,
University of Maryland- College Park – moved from University of
Wisconsin-Madison in 2016)

7. Wireless technologies (2001-2020, Georgia Institute of Technology)

Rehabilitation Therapy and Exercise

1. Interactive exercise technologies and exercise physiology for people
with disabilities (2002- 2016, University of Alabama at Birmingham –
moved from University of Illinois at Chicago in 2011)

2. Rehabilitation robotics
(2002-2016, Rehabilitation Institute of Chicago)

3. Optimizing participation through technology
(2008-2013, University of Southern California)

4. Telerehabilitation (2004-2014, University of Pittsburgh)

5. Timing investigation dosage implementation
(2013-2017, Rehabilitation Institute of Chicago)
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Table 2 A sampling of product and policy innovations resulting
from the 19 currently active/recently ended RERCs surveyed in
this study

1970s

Tactile Vision Substitution Systems for displaying tactile images on the skin
[346–348], ultimately leading to devices such as the BrainPort [349, 350].

Sip and puff controls for electric wheelchairs [521]

KEI (Keyboard Emulating Interface) Standard and then commercial KEI’s
that enabled assistive technology users to control Apple, IBM, and Linux
computers [522]

A three-dimensional database on the anthropometry of wheeled mobil-
ity users [200, 523]

“Talking Signs” navigation system for blind pedestrians [358, 359] which
spread to many locations around the world and inspired a legion of
other related systems

“Sweep VEP” (Visual Evoked Potential) to enable assessment of vision
impairments in infants and pre-verbal children [360]

1980s

Some of the first popular devices to help blind people with specific
tasks such as liquid level indicators, auditory light probes, an Auditory
Oscilloscope, techniques and training materials for electronic circuit
design and soldering, Matlab, Computer Numerical Control machines
[351–353, 368]

Microprocessor-based talking tactile-haptic educational games for blind
children [351]

First set of hardware/software accessibility guidelines for computers
were developed by an RERC for the White House Committee on
Computer Access in 1985 [522]

Photorefraction methods were perfected for visual screening of young
children by merely taking a photograph and having it analyzed [361]

First internal accessibility guidelines used by IBM (1986), the Information
Technology Foundation of ADAPSO (ITF) and Microsoft Corporation
(who distributed them to all of its developers; used as the starting point
for creating their Windows-specific accessibility guidelines) [522]

Three of the first five access features in Apple’s operating system
(StickyKeys, MouseKeys, and SlowKeys) were first developed at the
Universal interface and information technology access RERC and
represented the first access features built into any standard commercial
computer operating system. Later, these 3 and 6 additional access
features developed at the RERC were licensed (royalty free) by IBM and
Microsoft for inclusion in their products. Nine of the first ten access
features Microsoft built into Windows 95 (and every version of Windows
since) were licensed from the RERC [522]

A robotic fingerspelling hand for deaf-blind communication [357]

1990s

GIDEI (General Input Device Emulating Interface) standard that covered
both keyboards and mice [399] and implemented in a commercially
adopted hardware device, the Trace Transparent Access Module (TTAM)
[400] and a software version built into Microsoft Windows 95 and
beyond [401].

The first braille Telecommunications devices for the deaf (TDDs) for
deaf-blind users [355]

The first touch-tablet based computer access system for blind users
[356]

RERC guidelines were used in creating the first Section 508 guidelines,
which contain technical criteria and performance requirements for
accessible information technology used by federal agencies [402, 403]

Squirt shape socket fabrication system [44–50]

Table 2 A sampling of product and policy innovations resulting
from the 19 currently active/recently ended RERCs surveyed in
this study (Continued)

The Multi-Focal Electroencephalogram system [366] was developed to
provide objective assessment of vision function at hundreds of locations
on the retina simultaneously. The underlying technology was applied to
develop the first brain communication interface for severely disabled in-
dividuals with locked-in syndrome [367]

The first web access guidelines were developed by an RERC in 1995
[522]

Chart-based tests (the SKILL card [362], Colenbrander Low Vision Acuity
Chart [363], SKRead Test [364], Colenbrander Mixed Contrast Test [365],
etc) developed as fast and clinically practical ways of better measuring
visual impairment and function

A RERC united 35 different guidelines, to create the Unified Web
Accessibility Guidelines, Version 8.0 of which was used as the starting
point of the W3C’s Web Content Accessibility Guidelines [408]. The RERC
co-chaired and supported both WCAG 1.0 and 2.0 and developed many
of the quantification of measures, open-source test tools, and test data-
base for WCAG. Used in US, Canada, Europe, Australia and most other
countries

EZ Access keypad and software interface extensions provide access to
people with limitations due to vision, hearing, reach, touchscreen use,
reading, or cognition [406]. The EZ Access techniques are now
implemented in over 50,000 cross-disability accessible kiosks in post of-
fices, airports, museums, memorials etc.

2000-2010

Shape&Roll prosthetic foot [51–64]

Orthotic and Prosthetic Users Survey [88–94]

The training video Keys to Success in SCI Training: Balance and Stability
in a Wheelchair [524]

Patient-cooperative training regimes for the Lokomat gait training robot
[525]

TMAP, a system to allow blind users to obtain custom tactile maps of
any desired area in the US, and a crowd-sourced solution for providing
video description [373]

Adaptable prosthetic foot-ankle mechanism [69–73, 141, 172, 526–528]

Development and validation of Impact Damping, Hysteresis, and Loaded
Contour Depth test methods for inclusion in the ISO standard of
Wheelchair Seating (ISO 16840) [529]

National (RESNA) and International (ISO) standards for design,
performance, and labeling of wheelchair transportation safety (WTS)
technologies, including WC19 crash-tested wheelchairs for use as seats
in motor vehicles [280–286]

Contributed to KineAssist MX, commercialized by HDT Robotics, which
uses a force-sensing, pelvic support mechanism to sense the user’s
intended walking speed and direction to drive a moving surface, thus
allowing a person to move at their own intended speed and pace [454].

Web-based training course, Evidence-Based Manual Wheelchair
Prescription and Practice, is launched and offered for 6 years [530]

Augmentative and Alternative Communication design features (visual
scenes; navigation/ organization/color features) suitable for children and
adults, including downloadable web templates [531–535]

A post occupancy building evaluation method for evaluating the
achievement of universal design goals [212, 213]

A wireless system which interfaced with public captioning systems to
provide captions for recorded and live events on a user’s mobile device.
The system was piloted in Redskins stadium in 2009 and used in the
Super Bowl at Cowboys Stadium in 2010. The captioning system was
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Review
Centers with a mobility focus
Most of the work at the original Rehabilitation Engineer-
ing Centers funded in the 1970’s focused on technologies
for individual mobility, including prosthetics, functional
electrical stimulation, and control systems for powered
wheelchairs. While this line of work continues to advance,
producing increasingly better technology, the scope of
mobility research has expanded to include technologies
and policies that address mobility needs at a societal level,
such as mobile applications and universal design, which
refers to the process of creating products usable by people
with the widest possible range of abilities [4].

Accessible public transportation

Need and rationale Many of the known problems with
under-employment and social isolation of people with dis-
abilities can be linked to poor transportation within the
local community [5, 6]. In most cases, public transit serves
as the only reliable option for spontaneous, low-cost, inde-
pendent travel. Many people with disabilities lack the re-
sources or ability to own and operate their own vehicle
and taxi service is frequently unavailable or too expensive.
Paratransit serves people who cannot access their main-
line service but has problems, like long advance reserva-
tions, cost, and poor on time performance. Mainline
transit not only supports more independence, but it also
acts as an effective vehicle for mainstreaming people with
disabilities into the rest of society.
While public transit can provide strong transportation

services for many people with disabilities, there are still
barriers in most systems. Riders with disabilities fre-
quently encounter challenges in access to information,
limitations in boarding and disembarking vehicles, safety
risks, and usability problems in the built environment.
Best practices are often not followed and there are com-
mon problems with regulation compliance.

Table 2 A sampling of product and policy innovations resulting
from the 19 currently active/recently ended RERCs surveyed in
this study (Continued)

licensed to the Monterey Bay Aquarium, University of West Georgia, and
Dallas Cowboys [418]

An external alerting interface device enabled people with sensory
disabilities to be aware of incoming wireless emergency alert messages.
The disability community and Federal government agencies such as
DHS, FEMA, FCC, and state emergency management entities
[536]endorsements have led to the development of a portable,
traveler’sversion.

An arm exoskeleton for upper extremity rehabilitation training after
stroke, the ArmeoSpring, sold by Hocoma, now in use in over 700
hospitals and clinics, with subsequent application for rehabilitation for
people with spinal cord injury, multiple sclerosis, cerebral palsy, and
should injury [450]

Changes to the ICC/ANSI A117 standard, referenced by building codes
and used as a source of technical criteria by the ADA Standards,
including visitable home design standards and updated standards for
wheeled mobility clearances [537]

2010-present

Tiramisu Transit app, a crowd-powered transit information system for
smartphones [7, 8]

Created the concept of the Global Public Inclusive Infrastructure (GPII)
[416]. Over 50 companies and organizations, and over 100,000
individuals have now joined in the effort. The focus is now on secure
necessary funding and moving the GPII from research to real-world im-
plementation and international availability [417].

The App “Factory” concept of rapid development of discrete technology
applications that work on contemporary smart devices. Apps for blind/
low vision users included Braille readers, currency identifier, and apps for
those with cognitive or communication issues including talking photo
diaries. Since 2011, eleven mobile apps have been released and have
accumulated over 500,000 installations [419]

An open-source middleware framework (called FAAST) to allow interface
between markerless tracking technology and freely available games and
Internet applications [490]

AIMFREE teleassessment tool (i.e., phone, iPAD, laptop) measures the
accessibility of health clubs and fitness facilities (AIMFREE) in real time
and is available free of charge to professionals or consumers with
disabilities anywhere in the US [538]

The RAPUUD Scale - a product usability evaluation method for assessing
universal access [210]

Universal design homes constructed and open to the public in three
cities including the LIFEHouse™, two as part of the Wounded Warrior
Project, and two in the Horizons Home Show in Buffalo, NY [216]

DOR (Drive-in Occupant Restraint) that improves independent and safe
positioning of motor vehicle safety belts [277]

Quantum Securement System, the first fully automatic rear-facing wheel-
chair securement station [276]

Computer vision technology for solving problems faced by blind people
such as reading displays and signs or orienting to a crosswalk [369–372]

ASTM Approved Standards for Universal Design of Fitness Equipment
[539]

SCI HARD mobile game to enhance self-management skills, health be-
haviors, and participation among adolescents and young adults with
spinal cord injury [384]

Multisensory interactive touch models and maps provide information
and orientation assistance to all building users – four installations in
educational and rehabilitation settings and 20 in the offices of a major
technology company [215].

Table 2 A sampling of product and policy innovations resulting
from the 19 currently active/recently ended RERCs surveyed in
this study (Continued)

A wheelchair cushion with adjustable fluid volume is patented and
licensed to Ki Mobility [540]

A wheelchair seating system designed for persons who propel with one
or both feet is patented and licensed to The Posture Works [541]

Universal Criteria for Reporting the Cognitive Accessibility of Products
and Technologies ANSI/RESNA CA-1 [542]

innovative solutions for Universal Design (isUD™) provides an interactive
platform for browsing innovate solutions for UD, reference designs for
designers and design resources that summarize the state of knowledge
on a variety of topics related to UD [543]

Note that while some of these RERCs have been funded through multiple
cycles stemming back to the 1970s, this table provides only a sampling of the
overall RERC output, since 129 RERCs have been funded since 1984
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Information access is a major barrier to using mainline
transit systems. For example, early investigation by this
RERC team identified only one out of eleven sampled
US transit websites that passed accessibility checks with
flying colors. The complexity of transit service also puts
a premium on time and location dependent, real-time
information. Knowing a bus is arriving is of little value if
there is no room on the bus to board.
The widespread deployment of low floor vehicles has

improved physical access, particularly in buses. Low
floors are an excellent example of universal design as the
lack of steps also reduces dwell times at stops by speed-
ing up boarding by all riders. However, boarding times
by people who use wheelchairs in buses are still slow
due to challenges in positioning and securement and the
design of fare payment systems.
Even when information and physical barriers are not

present, transportation providers are often unaware of
best practices in policies and operations. In some cases,
individual employees will knowingly violate accessibility
policies when other policies have a stronger influence on
their performance measurements (e.g., saying “the lift is
broken” to stay on schedule).
The scale and complexity of public transit creates sig-

nificant challenges in detecting problems and, when ne-
cessary, funding remedies. Some barriers are caused by

poor coordination between agencies, especially where
service connects with infrastructure maintained by local
municipalities. Difficulties overcoming the last mile, or
trips between local transit stops and origins or destina-
tions, contributes to dependence on expensive paratran-
sit services.

Advances Since 2008, the RERC on Accessible Public
Transportation (RERC-APT) has focused on many of
the challenges described above, specifically improving
information and physical access through universal design
approaches.
The core manifestation of the information work is the

Tiramisu Transit app [7, 8], which is a crowd-powered
transit information system for Android and iPhone (Fig. 1).
Tiramisu provides easy access to schedule and arrival times
and availability of seats, and allows users to share informa-
tion about problems. This system has been very successful
and now acts as a living test bed for a variety of research
topics. Tiramisu has received accessibility and industry
innovation awards, has almost reached one million user-
days, and has collected well over 200,000 crowdsource
contributions about real-time transit service. Our universal
design approach is also successful; the vast majority of the
thousands of users are unaware that their crowdsource

Table 3 Five most common professional fields of the research and development staff of the NIDILRR RERCs analyzed in this paper,
shown in engineering/technical, clinical, and basic science categories. Percentage shown is the percent of the 595 total staff
reported. Graduate students were included but not undergraduate students. Average number of staff reported per RERC = 35 +/- 13
SD. Also shown are the percentage of these staff who have a disability that gives first-hand experience with the problem on which
that staff is working. Other fields besides the top five in each category are also listed; a total of 36 fields are involved in RERC work.

Engineering and Technical Fields 70% Clinical Fields 23% Basic Science Fields 7%

Biomed Engineering 19% Physical Therapy 6% Social Science 2%

Computer Science 14% Occupational Therapy 5% Ecology 0.8%

Mechanical Engineering 9% Speech/Lang Therapy 4% Neuroscience 0.6%

Electrical Engineering 7% Psychology 4% Exercise Science 0.5%

Industrial/Human Factors Eng 6% Prosthetics and Orthotics 2% Health Sciences 0.3%

OTHER: 15% OTHER: 2% OTHER: 2.8%

Civil Engineering MD – PM&R Biomechanics

Materials Engineering MD – Orthoped Surg Biology

Information Science MD – Neurology Gerontology

Biostatistics MD – Other Cognitive Science

Urban Planning Nursing

Architecture Pharmacy

Design Public Health

Accident Investigation

Robotics

Rehabilitation Engineering

Has a disability that gives first-hand
experience with the problem on
which they are working?

5% 3% 3%
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contributions are specifically designed to help riders with
disabilities.
Tiramisu was developed through a human-centered

approach. Early studies by the team revealed key insights
on how people want to interact with their transit agen-
cies and fellow riders [9–11], the manner in which
people want to report barriers while mobile [7, 12], and
how to encourage greater crowdsource contribution
from the general public [13]. The team is now measur-
ing the daily, real-world impact of time and location
dependent, real-time information on people with
disabilities.
For physical barriers, we have focused on issues sur-

rounding rapid boarding and egress from transit vehi-
cles, vehicle ramp slope, and understanding of how local
infrastructure impacts the ability to reach transit stops
and stations [14–18]. Research has centered on full-scale
simulation of transit buses to identify important design
elements and new design concepts. These have been in-
corporated into operational transit buses that were eval-
uated in the field and proven successful.
Full-scale simulation has also been used to generate

critical findings relevant to US Access Board rule-
making on vehicle ramp slope. We have also been pro-
viding input to regulatory activities related to rail trans-
portation. These activities, combined with close industry
collaboration, extend the impact of our findings beyond
the academic domain.
Our research on the last mile is utilizing a multi-

method approach to identifying barriers and strategies
that could enable more people with disabilities to
utilize mainline systems. This includes an investigation
on how sidewalk quality impacts access to bus stops
and stations.

Finally, we are collaborating with the US Department
of Transportation to characterize how technology can
address barriers and meet the needs of people with
disabilities.

Future directions Access to transportation information,
especially in real-time, will continue to be an important
challenge. Accessible information supports better trans-
portation options awareness, disruption management,
spontaneity, and social inclusion. Universal design ap-
proaches, like Tiramisu, will create value to all riders
and increase support for these information services.
Identification of physical barriers and strategies to

avoid them can lead to improvements in efficiency,
mostly through faster boarding and egress times. Re-
duced dwell times will help counteract the perception
that people with disabilities slow down bus service. Uni-
versal design strategies to simplify securement and fare
payment are also needed. Advances in designs for
smaller buses will serve users in low-density residential
areas in suburban and rural locations. Finally, accessibil-
ity in the last mile will continue to impact the utilization
of public transit and can reduce dependency on para-
transit services.
Unfortunately, service providers and decision makers

will continue to make decisions without fully weighing
their impact on people with disabilities. Likewise, fellow
users of public transportation are often unaware of the
needs of people with disabilities. Social computing can
create and maintain dialog between all riders and service
providers, thereby strengthening the voices of people
with disabilities and lead to greater empowerment in
transit policy practices at the local level. This should also

Fig. 1 Left: Live screenshot of the Tiramisu app showing real-time crowdsourced arrival and fullness information. Right: The full-scale, reconfigurable
simulated bus and the apparatus for testing various ramp slopes
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reinforce the importance of following best practices and
help eliminate service-oriented barriers.

Manipulation and mobility
Need and rationale Impairments in manipulation and
mobility result from a wide range of diseases, injuries,
and conditions that cause loss of controlled movement
of the arms and/or legs. Interventions may involve de-
vices to replace or augment the function of the impaired
limb(s), or therapeutic strategies to improve residual
function. The Technologies to Advance Manipulation
and Mobility (TEAMM-RERC), established in 2013,
comprises six projects that target technological and
knowledge gaps within this broad research area (Fig. 2).
Strategies to improve manipulation and mobility were

historically built around human-powered devices, such
as body-powered upper limb prostheses [19]. With some
modifications, these devices are still used today, despite
limited function, because they are simple, light, robust,
and provide inherent proprioceptive and force feedback
[20]. Passive lower limb prostheses provide basic mobil-
ity, but, unlike an intact limb, do not provide power dur-
ing ambulation. Although new materials, such as plastics
and carbon fiber have made these devices lighter and
able to store energy, walking with a passive prosthesis is
still slower, more asymmetric, less stable, and expends
more energy than able-bodied walking [21, 22]. This is
particularly a problem for the increasing number of
older persons with amputations. These smaller, weaker
individuals need power for the simple tasks that en-
able independent living. Despite remarkable achieve-
ments—the world record for a 100m sprint for a
bilateral lower limb amputee is only one second be-
hind that of an able-bodied runner—passive devices
are not suitable for all individuals.
The use of motors to assist human movement began

many years ago, but motorized devices still tend to be
heavy and costly. Despite the rapid evolution of upper
limb myoelectric prostheses since the 1970s, less than
40% of prosthesis users chose them [23] and these costly
devices are frequently abandoned—due to weight, lim-
ited function, discomfort, and inadequate control sys-
tems [24, 25]. Powered, motorized lower limb prostheses
offer great promise; however, although computers, con-
trollers, and batteries have become much smaller and
more powerful in the last few years, these devices are
still too heavy for older individuals. Challenges also re-
main in providing intuitive control and in ensuring safe,
robust performance. The potential of new robotic exo-
skeletons to improve mobility is huge, but has not yet
been clinically realized.
Almost two million Americans use wheelchairs or

scooters for mobility; most (90%) use manual wheel-
chairs rather than the relatively expensive, heavy

powered devices [26]. Manual wheelchairs have evolved
from heavy, clumsy devices pushed by an attendant to
more robust devices powered by the user. New mate-
rials, e.g., titanium, have reduced wheelchair weight and
enabled design refinement, and we have learned much
about improving device deficiencies and wheelchair bio-
mechanics. However, a core problem remains: sitting
down for long time periods has physical side-effects—on
the digestive, cardiovascular, and renal systems and
skin—not to mention the psychological toll of always
having to look up at everyone.

Advances This is an exciting time in rehabilitation re-
search, in part because of the ready availability of smart
devices with advanced electronics and ever smaller and
more accurate sensors that enable more intuitive device
control and open up new directions for therapeutic
interventions.
The amazing sensor capability built into smartphones

is being leveraged within TEAMM to create an innova-
tive new outcome tool that will enable real time, unob-
trusive measurement of mobility in homes and
community [27]. Latest generation electronics and ad-
vanced mathematical algorithms are being used to im-
prove control of motorized multi-function prosthetic
fingers—so that people with partial hand amputations
can control these advanced devices while independently
moving their wrist [28]. Our NIDRR-funded body-
powered prehensor—allows both voluntary open or vol-
untary close capability with the turn of a switch [29]. It
is being evaluated in a clinical trial (using onboard sen-
sors) to determine whether people use this functionality
in their daily lives.
The first powered leg prosthesis is now commercially

available; however, this device is big and heavy. Reducing
the size and weight of motors and transmissions remains
a significant challenge. Within TEAMM, we are design-
ing a lightweight powered leg that only provides power
when really needed – i.e., for activities that are difficult
for individuals with transfemoral amputations, such as
getting up from a chair or going up stairs and ramps.
This focused approach allows us to use much smaller,
lighter batteries, motors, and transmission systems.
Exoskeleton systems are being developed as thera-

peutic tools for various populations with limited mobil-
ity. However, the benefits of these complicated,
expensive devices for rehabilitation have yet to be deter-
mined. TEAMM is evaluating use of an exoskeleton
after severe stroke, where severe hemiplegia and other
medical issues frequently prevent functional walking. Fi-
nally, TEAMM is developing a manually operated wheel-
chair with a unique ergonomic drive system (similar to a
conveyor belt design) that enables the user to be mobile
when sitting, standing or anywhere in-between. The
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chair pulls the user up within the frame using a 4 bar
linkage system. Propulsion is done by using a linear
track that is connected to the drive wheel with segments
of chain. Thus the hand drive has a 1 to 1 movement
like using a normal wheelchair wheel, but allows the ver-
tical mobility (and keeps the users hands cleaner).

Future directions Within the next 5 years and beyond
we will see both an impressive maturation of some of
our current technologies and evolution of new ideas.
Powered lower limb prostheses are here to stay and
others, including our lightweight design, will become
commercially available. Similarly, exoskeletons will be
evolved to enhance mobility in specific populations, and
will be commercially deployed. Motorized orthotics ded-
icated to single joint movement, e.g., powered elbow or-
thotics (like Myomo’s MyPro), powered knee braces, and
powered hand assist devices will continue to advance.

Control systems will incorporate improved algorithms
and electronics. Surgical techniques—such as Targeted
Muscle Reinnervation [30]; direct skeletal attachment of
prostheses; limb contouring to enhance the human inter-
face with prostheses and orthoses; and implantable elec-
tronic devices to enhance bidirectional communication
between brain, spinal cord, nerve and muscle—will en-
hance users’ ability to benefit from improved control tech-
nology. Wheeled mobility will evolve to allow users to
negotiate stairs and curbs, or stand while moving: future
devices may not look at all like current wheelchairs.
New technologies and materials will continually enhance

existing devices. However, a deep clinical understanding of
user needs is essential to advance technologies for people
with disabilities. As in all rehabilitation research, under-
standing the marketplace and obtaining input from end
users and clinicians during early development is essential to
ensure clinically and commercially viable interventions.

Fig. 2 (a) Body-powered prehensor in (left) voluntary close and (right) voluntary open mode; (b) Stroke survivor walking with the Ekso (Ekso Bionics).;
(c) Robust, configurable smartphone interface for monitoring real-life community mobility and social interactions and data analysis; (d) Test apparatus
for powered ilimb digits (Touch Bionics)—to enable evaluation of control using novel pattern recognition algorithms; (e) Small, lightweight cycloid
drive transmission (left) and exterior rotor motor (right) developed for lightweight RIC arm can be leveraged to create a lightweight powered
prosthetic leg
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Prosthetics and orthotics
Need and Rationale The field of prosthetics and or-
thotics (P&O) deals with the provision of assistive de-
vices to persons with physical disabilities, often
movement disabilities. As a profession it exists at the
intersection between engineering and health care,
dealing intricately with the interface between the per-
son and technology. Since 1972 when Department of
Education funding for the P&O RERC began, inter-
ventions based solely on passive mechanical devices
have been replaced by microprocessor controlled de-
vices, some with implanted control systems. Research
is needed to effectively and economically translate this
level of functional restoration to the broader popula-
tion of P&O users and provide evidence to support
intervention effectiveness.

Advances Since the inception of the RERC program in
1972, the integrated education and research missions of
the P&O program at Northwestern University (NU) have
provided a unique environment for the NU-RERC. In
this setting, engineering graduate students have inter-
acted directly with clinical faculty and students being
clinically trained to provide P&O services to individuals
with disability. The proximity of the NU-RERC to the Re-
habilitation Institute of Chicago (RIC) and Northwestern
Medical Campus has also meant that device users can
interact with researchers. Synthesis of interactions among
stakeholders facilitated by this environment and funding
from NIDRR is what has allowed the Northwestern Uni-
versity Prosthetics-Orthotics Center (NUPOC) to remain
a leader in P&O research and education.
Dudley Childress, Ph.D., began work at Northwestern

in 1966, leading development of myoelectric control sys-
tems for the DC motors needed to drive artificial hands
and arms and new self-contained and self-suspending
socket designs [31–41]. This early prosthetics research
was soon noticed by the newly formed National Institute
on Handicapped Research (NIHR) under the Depart-
ment of Health, Education and Welfare, which selected
Northwestern to become one of five new RERCs. Led by
Dr. Childress, the initial NU-RERC had two focus areas:
(1) assistive equipment for persons with disability, and
(2) total knee joint replacements. The most recent NU-
RERC cycle (2008-2014) led by Stefania Fatone, Ph.D.,
and Steven Gard, Ph.D., comprised 12 projects focused
on clinically-relevant problems in P&O intended to sup-
port evidence-based practice, a need clearly articulated
in the NU-RERC for P&O State of the Science Meetings
in 2006 [42] and 2012 [43].
During the three decades of NIDRR funding many

special tools and devices, now routinely and widely used,
were developed by the NU-RERC’s engineering staff and
students for persons with disabilities (e.g., sip & puff

controls for electric wheelchairs, accessible comm-
unication systems, environmental controls, squirt shape
socket fabrication system [44–50], Shape&Roll foot [51–
64], adaptable prosthetic foot-ankle mechanism [65–73],
direct ultrasonic ranging system [74–87], the Orthotic
and Prosthetic Users Survey [88–94], etc.) as well as im-
portant concepts (e.g., extended physiological proprio-
ception [95–102], early exploration of socket interfaces
[103–128], inverted rocker based pendulum model for
bipedal walking [129–132], challenging the six determi-
nants of gait [133–136], roll-over shape [61, 63, 67, 137–
184], etc.) (Fig. 3).

Future directions The field of P&O abounds with well-
respected clinical expertise, but is severely lacking in ob-
jective scientific evidence to support clinical decision-
making. Much of the evidence that practitioners rely on
for making decisions about component selection, fitting
and fabrication of prostheses and orthoses is anecdotal
and undocumented. There has been widespread and
growing recognition by the P&O profession of the tre-
mendous need for more research in the field due to the
paucity of data regarding patient outcomes that are in-
creasingly being scrutinized. More than ever, clinicians
are expected to support their decisions regarding P&O
interventions utilizing evidence-based practice. Studies
of current P&O interventions that evaluate the effective-
ness, elucidate the mechanism of action, and determine
the impact on users lives are desperately needed to cre-
ate the evidence to support practice. The NIDRR-RERC
for P&O provided an ideal mechanism for facilitating
communication and collaboration between prosthetists,
orthotists and engineering researchers with the ultimate
goal of addressing clinically-relevant research and devel-
opment problems and providing improved quality of life
to prosthesis and orthosis users.

Technologies for children with orthopedic disabilities
Needs and rationale The four focus areas of this RERC
are tissue mechanics, imaging, pediatric robotics, and mo-
bility and manipulation (Fig. 4). In the area of tissue me-
chanics, very little was understood about the mechanical
properties of bone in children with Osteogenesis Imper-
fecta, an inherited disorder of collagen synthesis resulting
in a lifelong risk of increased fractures. With regard to
clubfoot, a congenital deformity affecting children and
presenting with bone and soft tissue malformation, little
was known about the mechanical performance of casting
materials used to treat clubfoot, or about the underlying
medial fibrotic mass tissues associated with the orthopedic
deformity. In the imaging area, virtually no information
was available regarding neural tractography or the po-
tential relationship between structural connectivity and
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functional impairment in the brains of children with cere-
bral palsy. Motion analysis of the pediatric foot, while pos-
sible through optical tracking and traditional marker-
based gait analysis, was prone to error due to limited ac-
curacy of marker placement and skin motion artifact. Data
on in vivo bony motion of the hind foot during gait were
simply not available. In the area of pediatric robotics,
conventional approaches to spasticity reduction sought
either to block abnormal neural activity through botu-
linum toxin or baclofen injections or to adjust muscle
fiber length through stretching, orthoses and serial cast-
ing. There was no effective and convenient robotic ap-
proach to incorporate combined voluntary movement and
passive stretching to reduce impairment and improve
function. Another robotic challenge was the lack of an ef-
fective approach to treat lower limb deformity in the axial
and frontal planes and the resulting loss of axial/lateral
control and stability. Available locomotor training systems
were also limited. Few degrees of freedom were available
for treatment; little capability existed for passive training;
and little was available to motivate participation. Finally,
in the mobility and manipulation area, there were few

multi-segmental studies of planovalgus foot deformity in
children with cerebral palsy In addition, the motion
models necessary to address important upper extremity
challenges in children with orthopedic disabilities had not
been developed. Evidence supporting the long-term effi-
cacy of technologies to improve manipulation in children
were sparse and essentially limited to the adult stroke
population.

Advances Work to date on Osteogenesis Imperfecta
bone through microstructural analysis has revealed ab-
normally elevated vascular porosity in these children
within regions normally occupied by dense cortical bone.
Novel mechanical testing has provided measurements of
bone material properties at the macroscopic level includ-
ing modulus, strength and findings of anisotropy. Re-
duced bone strength in these children is largely
attributed to elevated cortical porosity [185]. Kinematic
analysis of cast materials during simulated clubfoot
treatment shows minimal creep for plaster of Paris and
two synthetic cast materials. The synthetic materials are
more rigid during the early stages of casting, resulting in

Fig. 3 In relatively recent years, NU-RERC for P&O projects have involved the development of: a) a rocker-based inverted pendulum model for
increasing understanding about human gait; b) the Direct Ultrasonic Ranging System (DURS) for acquiring simple gait measures; c) a prosthetic
foot-ankle mechanism that would adapt to slopes; and d) the Shape&Roll Foot, a low-cost easy-to-manufacture foot for use in
developing countries.
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reduced overall creep [186]. Mechanical analysis of
MFMT tissues indicate unique specimen characteristics
which may be related to the tissue ultrastructure. Fur-
ther histological analysis has been effective in identifying
specific tissue fiber characteristics and the distribution
of tissue constituents within each clubfoot specimen.
Brain structural imaging now provides high angular

resolution diffusion imaging (HARDI) in which data are
used to construct higher order models of diffusivity.
These models are used for diffusion and probabilistic
tractography, in which tracts are modeled based on like-
lihood of structural connectivity in three dimensional
space. The RERC has helped to develop voxel-based ap-
proaches with metrics of overall brain connectivity to
predict functional impairments [187]. A biplane fluoros-
copy system has been developed for noninvasive, 3-D
foot and ankle motion analysis. The system supports bi-
plane (3-D) fluoroscopy and ground reaction force mea-
surements for kinematic and kinetic analysis. Validation
of the imaging system combined with markerless track-
ing software has been done with the system being
employed for several clinical applications in children and
young adults [188].
A combined robotic strategy has been implemented

that provides voluntary movement training and pas-
sive stretching of the lower extremities in children
with CP during both lab-based and in-home training
[189]. The therapy utilizes a portable ankle rehabilita-
tion robot. Significant improvements are being seen
most notably in the home-based group and include
dorsi- and plantar-flexor strength, passive and active

ranges of motion. To treat lower limb deformity in the
axial and frontal planes in children with CP, a novel
off-axis elliptical trainer has been developed [190].
Children with CP are showing significant improve-
ments with reduced pivoting instability, improved
isometric strength, increased balance, and decreased
toe-in angle during gait. Subjects with patellofemoral
pain are showing improved knee function, propriocep-
tive acuity, and neuromuscular control. Work in ro-
botic locomotor training has resulted in a cable-driven
system that increases active involvement [191]. The
new device is more effective than standard assistance
training in improving locomotor function and offering
pelvic assistance to improve over ground walking in
children with cerebral palsy.
A multi-segmental foot model with radiographic

indexing was applied to evaluate kinematics in children
with cerebral palsy who presented with rigid planovalgus
foot deformity [192]. Results show decreased forefoot
plantar flexion and increased abduction, and decreased
ranges of motion during push-off. Advanced computa-
tional models of the UE have been developed that com-
pute 3-D motions and forces at the shoulder, elbow and
wrist during movement with wheelchairs and assistive
devices (walkers, and crutches). Interestingly, we have
found that complaints of pain are minimal in children,
despite the orthopedic disability. We believe this may be
related to another finding that children employ a variety
of mobility and loading patterns including ‘unclassified’
patterns, which are very different than those used by
adults. Clinical intervention has been recommended as

Fig. 4 Left: Depiction of cortical porosity in Osteogenesis Imperfecta bone using synchrotron micro-computed tomography. ALS, Lawrence
Berkeley National Laboratory. Right: Midstance hindfoot image during normal ambulation from a fluoroscopy gantry (90-110 kVp, 0.5-1.7 mA, 120
sps). Anatomic landmarks on the talus and calcaneus are denoted F1 – F4.
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well as modifications of existing guidelines to better ac-
commodate growing, skeletally immature children [193].

Future directions A key question for Osteogenesis
Imperfecta bone tissue characterization is how to accur-
ately assess bone fragility in vivo? What are the relation-
ships between genotype and bone properties? How do
mechanical properties correlate to image metrics. There
are several questions regarding clubfoot tissue that will
be key to future progress. What are the relationships be-
tween genotype and MFMT properties in those with re-
sistant and recurrent clubfoot? How do we assess
MFMT mechanics in vivo? What are the direct implica-
tions of MFMT mechanics to conservative treatment
duration and recurrence of the deformity? How do
MFMT mechanics affect the longer term stages of treat-
ment (bracing)?
Future work in imaging will continue to address the

question of how to integrate functional connectivity and
structural information with a focus on voxel-based ap-
proaches. The goal is to provide objective measures of
connectivity that can predict functional outcomes, spe-
cifically in children with cerebral palsy. In fluoroscopy
the question now is how to best deploy the technology.
What is the optimal dynamic correction of the pediatric
foot with fixed planovalgus deformity? What orthotics
and footwear are most appropriate for dynamic hindfoot
correction and balance?
In pediatric robotics, there are opportunities for im-

provement of pediatric ankle therapy through the use
of portable in-home approaches. There is a need to
adjust treatment parameters dynamically to ensure
the effectiveness of home-based therapy. There are
opportunities in elliptical training to improve treat-
ment of lower limb deformity in the axial and frontal
planes of children with cerebral palsy. With regard to
cable-driven locomotor training there is an opportunity to
develop intention-driven robotic gait training. Transcranial
direct current stimulation is a promising noninvasive tech-
nique for modulating cortical excitability which may be
more effective in improving locomotor function in children
with cerebral palsy. Development of robotic systems includ-
ing hippotherapy for improving dynamic balance in chil-
dren with cerebral palsy represents yet another future
opportunity.
Finally, in the mobility and manipulation area, analysis

of triaxial, multi-segmental foot data during gait and
other activities provides an opportunity to improve pre-
treatment planning and post-treatment follow up.
Quantitative upper extremity modeling will continue to
increase our understanding of the linkages among
pediatric wheelchair propulsion patterns, joint biomech-
anics, pain, and quality of life.

Universal design and the built environment
Need and rationale Over the last 40+ years, a great deal
of effort has been devoted to making the built environ-
ment accessible. Accessibility laws like the Architec-
tural Barriers Act (1968), Section 504 of The
Rehabilitation Act of 1973, the Fair Housing Act
Amendments (1988), and the Americans with Disabil-
ities Act (1990) specify minimum requirements to en-
sure that the built environment does not discriminate
against people with disabilities. Experience with acces-
sibility laws led experts to recognize the need for a
different approach to design of the built environment,
which Ron Mace and Ruth Lusher termed “universal
design” [194–196]. The premise for this new approach
was that the environment can be much more access-
ible than laws can realistically mandate on the basis
of non-discrimination. If more attention were given to
improving function for a broad range of people, they
argued, a usable world for people with disabilities
would become the norm.
When the RERC on Universal Design and the Built

Environment (RERC-UD) was first awarded in 1999,
many barriers to universal design’s full integration and
implementation existed. First, there was a need to clarify
and improve the definition of universal design (UD) and
the well-known Principles of Universal Design. Second,
there was a need to address critical gaps in the know-
ledge base. Third, there was a need to demonstrate how
to implement UD. Fourth, there was a need to develop
mechanisms through which UD could be implemented
in practical forms. Fifth, there was a need to address
new target populations to expand the community of
practice in UD and, in particular, support key change
agents to diffuse the concept within their stakeholder
groups.

Advances The mission of the RERC on Universal Design
and the Built Environment (RERC-UD) has been, and
continues to be focused on the advancement of universal
design. Over three cycles of NIDRR funding, the RERC-
UD has evolved from focusing on justifying the need for
UD, to providing evidence to support UD, to evaluating
the implementation of UD. Thus, the RERC-UD has
made significant progress addressing the existing needs.
To help clarify the concept of universal design, the
RERC-UD created a new definition of UD that addressed
problems identified by critics: “Universal design is a
process that enables and empowers a diverse population
by improving human performance, health and wellness,
and social participation” [197]. The revised definition
was then supported by the eight Goals of Universal De-
sign: Body Fit; Comfort; Awareness; Understanding;
Wellness; Social Integration; Personalization; Cultural
Appropriateness [197]. These goals recognize disability
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prevention and social participation as important out-
comes and also address criticism that universal design is
only applicable to a high income context.
Research achievements addressed critical gaps in the

knowledge base and provided evidence to support the
need for universal design. In its first cycle of funding,
the RERC-UD developed the only three-dimensional
database on the anthropometry of wheeled mobility
users and demonstrated that accessibility standards
needed to be revised to reflect contemporary wheeled
mobility realities (see, for example [198–201]).
Additional funding led to collaborations with an ad-

vanced simulation laboratory Challenging Environment
Assessment Lab (CEAL, Fig. 5a-c), and human factors
research on stairways and sidewalks in cold weather cli-
mates, to demonstrate the value of using simulated envi-
ronments in UD research [202], (see, for example [203,
204]). CEAL is the world’s first hydraulic motion simula-
tor that can mimic everyday environmental challenges
faced by older people and those with disabling injury or
illness. Using a multitude of customizable testing envi-
ronments, CEAL is able to recreate conditions such as
ice and snow, different terrains and slopes. Winter pre-
sents many challenges to the safety and mobility of vul-
nerable older people and people with disabilities. The
number of falls in winter conditions has been increasing
[205, 206]. This has created a sense of fear and discom-
fort for people to leave their homes [207], and limited
their independence by socially isolating themselves in-
doors. Research [208] demonstrated that ice covered
slopes with a grade of 1:12 were not acceptable for long
ramps (>=4 m) even among able-bodied older adults.
This implies that any exposed sloped surface like a
building entry ramp should be cleared diligently, heated
or under cover. Findings helped develop a new footwear
test method for the ASTM footwear committee and
plans are underway to develop a meaningful and easy to
understand labeling system for winter footwear [209], as
well as new technologies to increase the slip-resistance
of footwear. These research findings also support the
adoption of universal design strategies like covered or
heated ramps and approaches to buildings.
Subsequent cycles of funding have also supported re-

search initiatives on home modifications and rights-of-
way. Research activities also led to the development of a
suite of tools for evaluating UD products and environ-
ments: 1) a usability testing method that introduces UD
as an outcome; 2) a method for assessing priorities of
end users of products and environments [210, 211]; and
3) a post occupancy building evaluation method for
evaluating the achievement of UD goals [212, 213].
To demonstrate how to implement UD, the RERC-UD

developed an industry partnership program to advance
the adoption of universal design by providing technical

assistance in the product development process. Over 20
products and buildings have been completed or are in
construction to date including the highly successful and
replicated multisensory wayfinding model [214, 215]
(Fig. 5d). The RERC-UD has designed and, with builders,
built eight UD homes in three cities including the LIFE-
House™, two as part of the Wounded Warrior Project,
and two in the Horizons Home Show in Buffalo, NY.
The LIFEHouse™ has won several awards for its design,
including a national award from the National Associ-
ation of Home Builders [216].
In an effort to engage in mechanisms through which

UD could be implemented in practical forms, the RERC-
UD regularly participates in standards development ac-
tivities. During a previous funding cycle, the RERC-UD
advanced the expansion of the U.S. visitability movement
by writing a comprehensive policy brief for the AARP
Public Policy Institute, initiating and helping the ICC/
ANSI A117 standards committee adopt a consensus
standard on visitable housing, and providing technical
assistance that resulted in the construction of thousands
of visitable homes. The RERC-UD also translated the
findings of its anthropometry project to implement key
changes to the ICC/ANSI A117 standard, referenced by
building codes and used as a source of technical criteria
by the ADA Standards. The changes will provide larger
clearances to accommodate contemporary wheeled mo-
bility users. Most recently, the RERC-UD co-founded
the Global Universal Design Commission and developed
the first consensus standards on UD. To further
formalize and document the implementation of UD, the
RERC-UD designed and then obtained approval from
the U.S. Office of Patents and Trademarks for a UD cer-
tification mark that can now be used in certification
efforts.
Key books include the second edition of the Universal

Design Handbook, 2E [217], the first comprehensive
textbook on Universal Design, Universal Design: Creat-
ing Inclusive Environments [197], and a tool for housing
designers, Inclusive Housing: A Pattern Book [218].

Future directions Despite numerous successes, add-
itional efforts are needed to further advance universal de-
sign and make it a mainstream practice. Over the next five
to ten years, the key rehabilitation engineering questions
include the following. How can knowledge translation
from rehabilitation science be applied to advance stan-
dards in both UD and accessibility regulations? What kind
of evidence can be gathered to demonstrate the business
case for adoption of UD in the private sector and the pub-
lic sector? How can we provide potential adopters with a
concrete means to demonstrate achievement of UD out-
comes that has value to them? How can collaborations
with related movements advance the adoption of UD, e.g.
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age friendly communities, housing for aging in place,
complete streets, design for healthy living, sustainable
design, etc.? How can a critical mass of advanced stu-
dents be recruited to expand research and practice cap-
acity in the field of UD?

Wheeled mobility and seating
Needs and rationale In the US, over 3.3 million persons
over 15 years of age use a wheelchair [219]. This is a
widely disparate group that varies across many medical
conditions and functional presentations. The rehabilita-
tion engineering program at NIDRR had a longstanding
focus on wheeled mobility and seating, supporting dedi-
cated centers between 1976 and 2013. Wheeled mobility

changed drastically over those three decades. There are
now a wide range of commercially-available wheeled mo-
bility and seating devices ranging from fairly simple to
highly complex. However, the existence of a range of tech-
nologies has not yet translated to improving the health,
activity and participation of wheelchair users. Over one-
half of users pay for their own devices, greatly limiting ac-
cess to needed technology [26]. Moreover, less than 25%
of wheelchair users are employed, clearly an unacceptable
outcome. These statistics reflect an opportunity for re-
search to impact public policy and clinical practice.
The challenge lies in applying science and engineering

to answer complex questions and tackle complex needs
that are clinically-relevant. This challenge is complicated
by the fact that wheelchairs and seating systems are not

Fig. 5 Using simulated environments and interactive technologies in Universal Design research (a) WinterLab (one of the Challenging
Environment Assessment Labs) on the motion base to create different terrains. (b) WinterLab on the Single Axis Base to create slopes. (c) A
participant walking inside WinterLab. Based on our survey study [544], we found that the key elements decreasing winter accessibility were icy
sidewalks and puddles at street crossings and curb ramps. The Americans with Disabilities Act Accessibility Guidelines (ADAAG) allow a maximum
run of 9 m (30 ft) for slopes between 1:12 and 1:16. Our study [208] demonstrated that ice covered slopes with a grade of 1:12 were not
acceptable for long ramps (>=4 m) even among able-bodied older adults. (d) A multisensory interactive touch model installed at the Overbrook
School for the Blind that aids in wayfinding [215].
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purely medical devices. In fact, their role as functional
devices is probably paramount for wheelchair users.
Therefore, research and development activities must
generalize to real-world use in order to be clinically-
relevant.

Advances The most recent RERC on wheeled mobility
(mobilityRERC) operated out of the Georgia Institute of
Technology in collaboration with Duke University, Shep-
herd Center and Georgia State University. It was initially
awarded in 2003 and re-award in 2008. The overall focus
of the mobilityRERC concerned the use of wheeled mo-
bility and seating in everyday life.
This focus included multiple projects seeking to

understand how people obtain and use mobility devices
(Table 3). We developed the capacity to monitor the use
of equipment during everyday use. This line of research
studied the use of power wheelchairs [220], power tilt-
in-space seating [221–223], and manual wheelchairs
[224]. Consistent across all these technologies was the
finding that full-time wheelchair users spend about 12
hours per day in their wheelchairs. This clearly under-
scores that wheelchairs are used as more than a means
of conveyance, rather, wheelchairs are a functional ex-
tension of the users. Understanding wheelchair use also
focused on persons who sometimes ambulate and other
times require wheeled mobility [225–228]. This is an
under-studied group who, in fact, represent the largest
cohort of wheelchair users. Our recent studies provided
evidence that part-time users are uniquely positioned to
assess current and anticipated mobility needs [226] and
involvement of a trained clinician leads to better out-
comes [228].
NIDRR’s RERC program also has a long history of suc-

cessful design and development projects. Given the
changes in the industry, design, and development activ-
ities focus on two areas, orphan technologies, and stan-
dards development. Test methods and standards are
used by manufacturers, policy-makers, clinicians and
users to characterize device safety, performance and dur-
ability. RERCs have been long-standing members of both
national (ANSI-RESNA) and international (ISO) stan-
dards granting bodies and integral to wheelchair and
wheelchair cushion test development. The mobilityRERC
has recently focused on validating test methods on
wheelchair cushion impact dampening [229], and inter-
face pressure and has designed a new compliant instru-
mented buttock model to measure cushion performance
[230]. The mobilityRERC is also focusing on valid meas-
urement of wheelchair propulsion torque. We developed
a robotic system capable of measuring the forces re-
quired to propel manual wheelchairs during over ground
maneuvers that include starts, stops, and turns [231].
This novel approach informs both the design and clinical

prescription of wheelchairs. Nearly every configuration
decision impacts inertia and/or friction of the wheel-
chair- the two principals that govern propulsion effort.
Our approach represents the first opportunity to meas-
ure these influences on a systems level to assess how
frame type, weight distribution, caster size, drive wheel
design, and tire type influence propulsion torque. This
effort has already disseminated clinically-relevant infor-
mation to clinicians and users via non-research based
avenues [232, 233].
The seating and mobility industry has evolved to be

dominated by a few very large companies. Market forces
often prevent these large companies to develop orphan or
niche technologies that serve a limited number of people.
This development remains the focus of small companies
and inventors who identify needs and innovate solutions.
The mobilityRERC supported this community by assisting
47 small companies over a 5 year period in a variety of
manners. The process started with a presentation of the
device by its inventor which was attended by mobilityR-
ERC engineers, designers, and clinicians. This collection
of staff brought wide-ranging expertise to device evalu-
ation with respect to function, technical operation, usabil-
ity, and policy implications. Most inventors do not have
expertise in all these areas, so the RERC review was able
to fill a void in their knowledge base. After a report was
sent to the inventors, the RERC engaged them to deter-
mine if they had further needs requiring our assistance.
Some products that went through this process are now
under production or pre-production and include
Rowheels (Rowheels, Inc), Suspension Seat (The Posture
Works), Kinetic Innovative Seating System (Kinetic In-
novative Seating System, LLC ); Webseat (Tamarak Habili-
tation Technologies)., X-fer Rail (now sold by Maddak),
Sil-Air foam (now sold by Pride Mobility and The Posture
Works) and the Stand-up Walker (now with Edison
Nation Medical).

Future directions The mobilityRERC has led two State
of the Science conferences that gathered researchers, cli-
nicians, and users to discuss current knowledge, and
more importantly, the needs of the wheeled mobility and
seating community [234–245]. Not surprisingly, stake-
holders view technology as a means to access educa-
tional, vocational, and leisure activities in addition to
meeting medical needs. There is still a paucity of
clinically-relevant and valid information about wheel-
chair and seating system performance that can inform
clinicians and users, as well as payers. This lack of infor-
mation is resulting in restricted access to technology
and stifles technology innovation. Because of the overly-
ing functional nature of wheeled mobility and seating,
traditional medical research methodologies do not apply.
It is time to apply rigorous scientific and engineering
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approaches to 1) document the outcomes of wheeled
mobility and seating, and 2) characterize device perform-
ance in valid and clinically-relevant manners, and 3)
support innovation of new devices that can be made
available to users.

Wheelchair transportation safety
Need and rationale Following establishment of the Na-
tional Highway Traffic Safety Administration (NHTSA)
in the mid-1960s, major improvements have been made
in transportation safety for people who use seats and re-
straint systems provided by vehicle manufacturers that
are regulated by federal motor-vehicle safety standards.
During this same time, increasing numbers of people
with physical and/or cognitive disabilities have been
traveling in motor vehicles seated in wheelchairs due to
legislation that has made motor-vehicle transportation
more available and accessible to this population of trav-
elers but that has done very little to address the safety
and crash protection for these individuals [246–249].
Recognizing the lack of a reasonable level of transpor-

tation safety for travelers seated in wheelchairs due to
the use of aftermarket unregulated and often improperly
installed and/or used belt restraint systems, as well as
seats (i.e., wheelchairs) that were not designed for use in
motor vehicles, research and testing was conducted from
the late 1970s through 2000 as limited funding allowed.
Much of this work was performed at the University of
Michigan Transportation Research Institute (UMTRI),
and researchers from UMTRI and the Wheeled Mobility
RERC at the University of Pittsburgh simultaneously led
the development of national and international wheel-
chair transportation safety (WTS) standards to address
the design and performance of wheelchair tiedown and
occupant restraint systems (WTORS) and wheelchairs
used as seats in motor vehicles [250, 251].
In 2001, the NIDRR announced a priority for an RERC

on Wheelchair Transportation Safety (RERCWTS) and
two successive five-year grants were funded. The

justification was based upon several needs and rationale.
ADA regulations do not adequately address transporta-
tion safety and crash protection, especially with respect
to wheelchairs used as vehicle seats. The provisions of
the initial WTS standards and practices were based on
very fundamental principles of occupant protection in
frontal motor-vehicle crashes for able-bodied passengers
and did not address the nature and specific causes of in-
juries to occupants seated in wheelchairs. The original
standards also established performance requirements
based on nominal “worst-case” frontal crashes of private
vehicles, and did not provide for different approaches to
wheelchair securement and occupant restraint that are
more compatible with lower crash environments of pub-
lic transportation systems. Significant usability and ac-
cessibility issues also existed with ingress/egress of
occupants in wheelchairs, as well as with wheelchair
securement and occupant restraint. In addition, the
original WTS standards did not address the common
practice of adding aftermarket and customized seating
systems and peripheral equipment to wheelchairs.

Advances Since 2001, significant and important pro-
gress was made on providing the appropriate balance of
transportation safety, usability, and independence for
travelers seated in wheelchairs in all types of motor vehi-
cles and modes of transportation, including private vehi-
cles, school buses, and paratransit/public transit vehicles
(Fig. 6). The primary RERCWTS goals to achieve this
were: to (1) understand and describe the issues and in-
jury risks associated with WTS; (2) increase key stake-
holder knowledge and change stakeholder attitudes,
policies, and procedures; and (3) increase availability and
use of WTS technologies. Key stakeholders include indi-
viduals who use wheelchairs and their caregivers, transit
providers, vehicle modifiers, product developers/manu-
facturers, policy makers, third-party payers, clinicians,
and rehabilitation suppliers.
The first goal was targeted at obtaining a complete

and objective understanding of the issues and factors

Fig. 6 Left: Peak-of-action photo during WC19 frontal-impact sled test of wheelchair with four-point, strap-type securement points. Right: WC19-
compliant wheelchair with RESNA Volume-4 logo on permanent label indicated by green arrow
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involved in providing safe, accessible, and usable trans-
portation for wheelchair-seated travelers. Advances were
made in documenting the incidence, extent, and nature
of injuries to wheelchair riders due to motor vehicle
crashes and moving-vehicle incidents, and in identifying
factors that contribute to their injury risk during access
and travel on private, school, and public-transportation
vehicles [252–263].
The second goal was targeted to increasing under-

standing and knowledge by key stakeholders of the basic
principles of WTS, increasing awareness of industry
standards and products that comply with these stan-
dards, and changing stakeholder attitudes and policies in
ways that improve wheelchair transportation safety. Pro-
gress was made in closing the gap in knowledge and
awareness of WTS by providing educational chapters,
websites, and tools for safe transportation [264, 265].
Changing attitudes, policies, and procedures of key
stakeholders included providing actionable recommen-
dations for changes to policies and procedures that en-
hance the availability and use of WTS technologies and
"best-practice" in transporting people seated in all types
of wheelchairs. Advances were made in publishing
guidelines and position papers to guide changes in prac-
tice [266–270]. This included a RESNA position paper
on WTS [271], and comments and public-hearing testi-
monies to the U.S. Access Board regarding the Notice of
Proposed Rulemaking (NPRM) on changes to ADA Ac-
cessibility Guidelines for Transportation Vehicles. The
RERCWTS also determined and reported on the state-
of-science and future needs for improving WTS [272–
275].
The third goal targeted increasing the availability and

use of products that comply with WTS standards, in-
cluding: a) innovative WTORS that offer the appropriate
balance of safety, usability, and independence for differ-
ent transportation environments, and b) wheelchairs and
wheelchair seating systems with innovative improve-
ments for use as seats in motor vehicles. Advances were
made in product development [276–279] and related
performance standards for wheelchairs, wheelchair seat-
ing, and wheelchair containment systems for use on
large transit vehicles, as well as passive occupant re-
straint systems for people who drive while seated in a
wheelchair [280–286].

Future directions The RERCWTS made significant pro-
gress and had many important achievements toward im-
proving wheelchair transportation safety. However, more
work is needed to increase the safety, usability, and inde-
pendence for travelers seated in wheelchairs to accept-
able levels in all modes of ground transportation. Some
of the most important needs for future research and de-
velopment include investigating vehicle-related safety

issues for drivers and front-row passengers seated in
wheelchairs (e.g., hand controls, airbags, accessory stor-
age). It is also necessary to translate safety, accessibility,
and usability issues during ingress/egress of travelers
seated in wheelchairs using both ramps and lifts into
technology that will improve safety and accessibility.
Further, there is a need to continue in-depth investiga-
tions of real-world crashes and non-crash events involv-
ing passengers and drivers seated in wheelchairs to
increase the power for analyzing relationships between
crash direction and other factors related to the risk of
injury to occupants in wheelchairs.
Future work will also continue to update, develop, and

implement WTS standards, with a particular emphasis
on drivers seated in wheelchairs. An important goal is to
develop performance tests and criteria for improved
safety of forward-facing wheelchair occupants in low-g
non-crash environments, especially related to seat-belt
retractor technologies and their effectiveness in non-
crash (i.e., below-1 g) vehicle decelerations. Further, it is
necessary to address safety and usability issues related to
the use of scooter-type wheelchairs in fixed-route and
paratransit vehicles. Finally, there is a need to continue
to advocate and provide support for updated ADA Ac-
cessibility Guidelines for Transportation Vehicles. The
RERC on Accessible Public Transportation is providing
that support in current rule making activities of the Fed-
eral government related to vehicles.

Centers with a communication and/or cognition focus
When first established, the RERC’s primarily focused on
technologies for personal mobility. Yet many issues of
disability are related to sensory function, including vi-
sion and hearing, as well as cognition. In this section, we
review the current RERC’s focused on rehabilitation
technologies that address needs related to communica-
tion and cognition.

Augmentative and alternative communication
Need and rationale “There is no typical person who
uses AAC. They come from all age groups, socioeco-
nomic groups, and ethnic, religious, and racial back-
grounds. Their only unifying characteristic is the fact
that they require adaptive assistance for speaking and/or
writing because their gestural, spoken, and/or written
communication is temporarily or permanently inad-
equate to meet all of their communication needs” [287].
In the United States, there are more than 4 million in-

dividuals (over 6% of the U.S. population) with complex
communication needs who could benefit from augmen-
tative and alternative communication (AAC) [288]. The
population spans the age spectrum, disability categories
(developmental, acquired, and degenerative), cultural/
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ethnic backgrounds, and socioeconomic classes. The
AAC-RERC was formed to provide a national center
with a focus on advanced engineering research and de-
velopment of innovative technologies and strategies ad-
dressing those with complex communication needs.
In the early 1980s, microprocessor-based AAC devices

began to appear spawning a new industry. By the mid-
1990s, these dedicated AAC devices started employing
mainstream computer operating systems thereby joining
the digital revolution. At this time, communication was
mostly about face-to-face interactions, talking on the
phone, gestures, and “typing” using text or graphic symbols.
AAC technologies produced synthesized/digitized speech
that was not very intelligible and AAC devices were clunky,
difficult to use, and challenging to learn [288].
There were some user populations that were well

served by the AAC technology of the day, while others,
such as young children, individuals with significant cog-
nitive and linguistic challenges such as aphasia, autism,
traumatic brain injury, and individuals with severe motor
impairments, such as amyotrophic lateral sclerosis, were
not [289–292]. AAC stakeholders expressed frustration
and concern about the extensive learning and cognitive
demands AAC technologies placed on people with dis-
abilities and their families, as well as on the educators
and healthcare providers who were trying to help them.
Most AAC technologies at the time were not research
based and, thus, they were not maximally effective for
many individuals with complex communication needs.
In 1998, the newly formed AAC-RERC partners chose

to focus on key functionality and usability features that
were missing from AAC technologies, which resulted in
many population groups unable to use them.

Advances In advancing AAC technologies, the AAC-
RERC follows two principles. The first principle is that
individuals with complex communication needs who rely
on AAC technologies and their family members are in-
cluded in all aspects of AAC-RERC activities [293, 294].
Second, the AAC-RERC undertakes projects that are of
crucial importance to the AAC field but were not being
addressed by other entities. For example, the AAC-
RERC activities do not focus on work in speech syn-
thesis/recognition, eye gaze technologies, battery life,
mobile technology platforms, and cellular technology,
because large corporate and research entities are already
working on these areas.
The AAC-RERC instead has focused on: (1) increasing

the learnability and usability of AAC technologies for
young children with complex communication needs and
for people with cognitive and linguistic challenges (apha-
sia, traumatic brain injury, autism) [292, 295, 296]; (2)
developing new AAC interfaces that are easy to learn
and use and address the needs of people with limited

movement and cognitive challenges [289–291, 297–301];
(3) improving literacy skills development, employment
outcomes, and the ability of individuals to take on pre-
ferred social roles in their communities [302, 303]; and,
(4) improving access to the world [304–307].
Over time, the AAC-RERC has produced a multitude

of technologies and knowledge that have contributed to
the growth of the next generation of AAC devices and
stakeholders [288, 307]. Highlights of some of those con-
tributions are (see also Table 2): widespread adoption of
AAC design features (visual scenes; navigation/
organization/color features) suitable for children and
adults (Dynavox, Prentke Romich Company, ABlenet,
AMDi, IGEL, Kompaniet); free downloadable templates
at aac.unl.edu; and increased availability of access tech-
nologies for people with limited movement (e.g., SafeLa-
ser: Zygo, InvoTek).

Future directions Although AAC interventions and
technologies have a positive impact on the communica-
tion and participation of individuals with complex com-
munication needs across all age groups, disability areas,
and environments and are no risk to speech develop-
ment or recovery; the benefits have not yet been maxi-
mized. Many individuals with complex communication
needs continue to struggle to attain communicative
competence to actively participate in their families,
schools, worksites and communities. And, there are still
groups of people (severe aphasia, dementia, and develop-
mental disabilities) whom AAC technologies do not sup-
port well.
While face-to-face interactions are essential to life ac-

tivities, technological developments such as social media,
distance communication, and virtual access create new
opportunities and challenges. It is essential these new
technologies be accessible to people with disabilities and
do not exacerbate disabilities.
Research and development efforts are needed that

focus on people with complex communication needs
and their use of newer technologies. The field would
benefit from inter-professional collaborations in areas
such as natural language processing, cognitive science,
usability and computer science to (1) help support quali-
tative and quantitative changes in language skills over
time, (2) improve working memory, dual task capabil-
ities, and visual cognitive processing, (3) address adap-
tive access for people with language, physical, and
cognitive disabilities more creatively, (4) evaluate con-
sumer performance and needs across multiple social and
technical contexts, and (5) develop and evaluate multi-
modal access strategies. Other areas need to address ac-
cess to mainstream/ universal technologies using AAC
devices for people across the life span, including virtual
social networking resources, and mobile devices.
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Despite progress in AAC, at the 2012 State of the Sci-
ence Conference, Michael B. Williams, an early adopter
of AAC technologies in the 1970s and an AAC-RERC
partner, warned: “Computer technology used to be
thought of as the great “equalizer”; now I feel people
with disabilities are in danger of being shut out by these
added ‘features’ that can be utilized by the public at
large, but are frustratingly useless to people with si-
gnificant disabilities.” Michael went on to express con-
cerns about gesture-based technologies and the use of
voice recognition in everything, including television sets,
warning the field to remain “ever vigilant”. New
technologies can have both positive and negative impli-
cations for people with complex communication needs
and other disabilities…and we must be wary of the
digital divide.

Cognitive technologies
Need and rationale Individuals with cognitive disabil-
ities have been marginalized for many years by society’s
unwillingness to include them – within local communi-
ties, educational systems and workplaces – in short, into
the very fabric of society. While technology undoubtedly
can play a vital role in decreasing this marginalization,
there have been few attempts over the years to produce
a coherent and sustained approach to identifying and
ameliorating barriers for persons with cognitive disabil-
ities through the use of technology [308]. Until recently,
when the term “technology” was used in conjunction
with “cognitive disability,” it most likely referred to an
assistive technology device. Use of assistive, or even
mainstream commercial technologies, by persons with
cognitive disabilities has lagged substantially behind all
other disability groups for many years [309–312].
NIDRR awarded its first RERC focused on advancing

cognitive technologies (RERC-ACT) in 2004. At that
time, data recorded of assistive technology utilization by
persons with disabilities did not even include the then
21.3 million persons with cognitive disabilities as a re-
portable category. In fact, few studies at that time ad-
dressed the extent of technology utilization or potential
barriers to access to technology for persons with cogni-
tive disabilities [311–315].
Ten years ago, commercially available cognitive tech-

nologies, with just a few exceptions, tended to focus on
lower-tech solutions with minimal emphasis paid to the
use of high-tech technologies to facilitate full inclusion
at home, school, work or play [309, 316–318]. There was
also a somewhat pervasive attitude that persons with
cognitive disabilities would benefit much less than per-
sons with other disability types in the use or implemen-
tation of technology [310, 312, 316]. Research studies
available tended to be single-case design or studies with

extremely small populations [319–322]. Accessibility to
Information Communication Technologies by persons
with cognitive disabilities and standards were mostly ig-
nored and/or determined to be “too hard” to address
[323–326]. In short, few agencies, research labs, or orga-
nizations expressed more than a passing interest in
researching and developing cognitive technologies. In
terms of commercial mainstream and assistive technol-
ogy, smart phones were just being considered; context
aware sensors were in the very early stages, download-
able disability-related apps, the cloud, and, the “Internet
of things” were not available [326–330].

Advances Awareness of the benefits of technologies for
persons with cognitive disabilities has changed dramatic-
ally in the intervening years. In large part, this is due to
the graying of the world’s population and the increasing
numbers of persons living and working much longer
than ever before, many with acquired or organic cogni-
tive and other functional impairments. IBM, Blackberry,
Anthem Memory Care, ATIA, AbleNet Technologies,
and other commercial partners and organizations have
engaged with our RERC-ACT, expanding their and the
RERC-ACT research and development activities.
The RERC-ACT has helped dispel the notion that per-

sons with cognitive disabilities cannot benefit from tech-
nology through worldwide dissemination of information
and aggressive work with emerging sensor technologies
and platforms focused solely on the needs of this popu-
lation [331], particularly in the area of Social Assistive
Robotics for children and workplace accommodations
for adults with cognitive impairments (Fig. 7). A social
assistive robot was developed as a research tool with the
goal of engaging children with cerebral palsy. Interaction
with the robot was observed and compared to the child’s
engagement with a traditional switch activated toy. A
nonlinear and contextually aware prompting system was
developed to assist workers with intellectual and devel-
opmental disabilities perform factory assembly tasks
[332, 333]. In this system prompts were delivered by an
animated agent. A mobile-based vocational skill building
coaching technology for people with cognitive disabil-
ities was also developed, evaluated and found to be a
useful tool [334]. These results have paved the way for
the development projects of the current RERC-ACT;
development of a nonlinear and context aware auto-
mated job coach for warehouse order fillers with intel-
lectual and developmental disabilities. The RERC-ACT
is pioneering more complex and rigorous methodolo-
gies with significantly larger subject populations. The
Product Testing Lab has embraced testing of emerging
and new technologies such as smartphones, tablets, and
wearables.

Reinkensmeyer et al. Journal of NeuroEngineering and Rehabilitation  (2017) 14:109 Page 20 of 53



Future directions This is an exciting and highly dy-
namic time to engage in work with cognitive technolo-
gies; in large part because we are becoming a nation
heavily populated by older adults [335–337] By 2030,
19% of the US population will be aging [338] with an es-
timated prevalence of dementia among individuals aged
71 and older at 13.9% [339].
More infants with cognitive disabilities are surviving

and living a full life span. From 1990 to 2012, the world’s
neonatal mortality rate fell from 33 deaths to 21 deaths
per 1,000 live births [340]. Medicine is also helping
trauma victims, many with cognitive insults, survive. An
estimated 19% of veterans return home with a traumatic
brain injury (TBI) [341]. In the U.S., 1.7 million civilians
experience a TBI annually with a significant number
retaining permanent disability. Costs for TBI are an esti-
mated $60 billion per year [342, 343].
The number of adults with intellectual and develop-

mental disabilities age 60 and older (currently >$56
billion annually) is projected to double by 2030. Re-
search indicates if appropriate personalized supports
are provided, almost all individuals with intellectual
and developmental disabilities have improved life out-
comes. Many adults can live independent, productive
lives with support from family, friends, environmental
adaptations, and access to appropriate technology so-
lutions [344].
Future directions must encompass development of

cognitively accessible medical and commercial main-
stream technologies. Researchers and developers should
focus on emerging technologies such as context-aware
sensors, apps, social assistive robotics, and standards de-
velopment to expand the continuum of independence
currently visualized for others. We must develop
evidence-based research tools and methodologies taking
advantage of the expanding knowledge-base created by
scientists around the world.

Despite the potential of emerging technologies to
assist persons with cognitive disabilities, there are sig-
nificant practical challenges in the commercialization
process, including adoption of industry standards, re-
duction of consumer abandonment rates, and design
and development of useful products [345]. Innovative
engineering approaches, effective needs analysis, user-
centered design, and rapid evolutionary development
are essential to ensure that technically feasible prod-
ucts meet the real world needs of persons with cogni-
tive disabilities.

Low vision, blindness and multisensory loss
Need and rationale The blindness RERC has been re-
sponsible for many developments that are now taken for
granted. This includes the first development of Tactile
Vision Substitution Systems for displaying tactile images
on the skin [346–348], leading to vastly increased know-
ledge of how to take advantage of the tactile sense and
ultimately leading to devices such as the BrainPort of
today [349, 350]. Other early contributions included
some of the first popular devices to help blind people
with specific tasks such as liquid level indicators, audi-
tory light probes, and an array of audio-tactile output
solutions to make jobsite tools and instruments access-
ible for blind employees in industry [351, 352]. These
even included an Auditory Oscilloscope to enable a
blind technician to observe and measure electrical wave-
forms. Techniques and training materials were devel-
oped for blind technicians, enabling them to do their
own electronic circuit design and soldering [353]. The
Smith-Kettlewell Technical File [354] emerged as the
only technical publication by and for blind technicians
and hobbyists.
With the advent of digital technology and the first per-

sonal computers, this RERC developed the first speech

Fig. 7 Example of a cognitive technology: an animated agent providing non-linear, context-aware job coaching. Right: A boy with cerebral palsy
interacting with a social assistive robot
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modules used in elevators, microprocessor-based talking
tactile-haptic educational games for blind children [351],
the first braille TDDs (Telecommunications Device for
the Deaf) for deaf-blind users [355], the first touch-
tablet based computer access system for blind users
[356], and a robotic fingerspelling hand for deaf-blind
communication [357]. Digital speech and infrared tech-
nologies were combined to develop and refine the pio-
neering “Talking Signs” navigation system for blind
pedestrians [358, 359] which spread to many locations
around the world and inspired a legion of other related
systems.

Advances The presence of the RERC within the Smith-
Kettlewell Institute over a long period led to a steady ac-
cumulation of clinicians, scientists and engineers (blind
and sighted) in related areas of research and with sup-
plemental funding from other sources. These synergies
eventually produced the largest non-profit center of re-
search expertise on blindness and low vision in the
world. Research into partial vision loss, including screen-
ing and assessment of function, was greatly expanded
during this time, building on the pioneering develop-
ment of the rapid “Sweep VEP” (Visual Evoked Poten-
tial) to enable assessment of vision impairments in
infants and pre-verbal children [360]. Photorefraction
methods were perfected for visual screening of young
children by merely taking a photograph and having it
analyzed [361]. For adults, numerous chart-based tests
(the SKILL card [362], Colenbrander Low Vision Acuity
Chart [363], SKRead Test [364], Colenbrander Mixed
Contrast Test [365], etc) were developed as fast and
clinically practical ways of better measuring visual im-
pairment and function. The Multi-Focal EEG system
[366] was developed to provide objective assessment
of vision function at hundreds of locations on the ret-
ina simultaneously. The underlying technology was
applied to develop the first brain communication
interface for severely disabled individuals with locked-
in syndrome [367].
Steadily improving digital technologies enabled the

RERC to develop, or facilitate development of, the first
accessible mass transit fare machines, the first accessible
building entry system, and talking interfaces for com-
puter numerical control (CNC) machines (Fig. 8). Soft-
ware tools were developed and made available to enable
a blind person to access Matlab [368]. Increased com-
puting power in portable devices enabled us to pioneer
the application of computer vision technology to solving
problems faced by blind people such as reading displays
and signs or orienting to a crosswalk [369–372].
During the rise of the Internet the RERC was at the

forefront of efforts to ensure accessibility for blind users,
with staff members serving prominently on several

working groups within the W3C Web Access Initiative.
Meanwhile we have harnessed Internet technology for
numerous projects such as Tactile Map Automated Pro-
duction (TMAP, [373]), a system to allow blind users to
obtain custom tactile maps of any desired area in the
US, and a crowd-sourced solution for providing video
description [374]. Other recent projects include the
adaptation of “Smart Pen” technology to provide audio-
tactile access to graphics [375], investigations of the im-
pact of and interventions for dual sensory loss in specific
tasks [376], development of computerized low vision
tests, and applications of visual evoked potentials for
assessment of infants with common eye diseases such as
Retinopathy of Prematurity and Cortical Visual Im-
pairment [377, 378] to better inform rehabilitation
interventions.
The presence of noted experts in many blindness-

related fields within the RERC has facilitated our service
in numerous government and industry standard-setting
activities, including ANSI infrared signage standards, the
Daisy Consortium for electronic book standards, the So-
cial Security Administration, American Medical Associ-
ation and United Nations standards for disability [379],
and the redesign of US paper currency to facilitate use
by visually impaired consumers, to name a few.

Future directions During the coming years, the envir-
onment in which blind and visually impaired people live
will change in ways that as yet we cannot predict, but
we know the continuing advances in mainstream
technology will introduce new challenges in accessing
the information so conveniently available to the sighted

Fig. 8 Right: Tom Fowle, Smith-Kettlewell RERC engineer who is
blind, building and testing an accessible CNC milling machine
interface for a blind machinist
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mainstream. At the same time, the changing population
in terms of types, degrees and combinations of sensory
impairments will complicate the interaction between the
person and the environment. Changes in the nature and
informational demands of both the workplace and the
community in which we live will present us with new
questions to be answered about the optimal strategies
for matching abilities to the requirements of education,
work and community living.

Mobile technology to support health self-management in
adolescents with disabilities
Needs and rationale When transitioning from childhood
to adulthood, adolescents and young adults face many
challenges that are magnified by having a disability, im-
pairment, or chronic medical condition. With regard to
health management, adolescents are attempting to transi-
tion from parental management to self-management and
independence [380]. This can be challenging both because
they lack knowledge and skills to anticipate and avoid sec-
ondary health complications, and because they may have
impairments in cognition, including executive dysfunc-
tion, that make it difficult to complete necessary tasks
[381]. Few healthcare systems assess the ability of adoles-
cents (or any patient) to accomplish key activities so that
information and training can be tailored to that patient’s
particular level of education, awareness, or functioning. In
addition, while evidence-based, self-management ap-
proaches have existed for decades, they are most often the
subject of research or public health interventions rather
than integrated into interactions with healthcare pro-
viders. Technology offers new opportunities to develop
and implement strategies to address these challenges by
supporting and reinforcing healthful behaviors.

Advances The Technology Increasing Knowledge: Tech-
nology Optimizing Choice (TIKTOC) Rehabilitation Engin-
eering Research Center (TIKTOC RERC) began funding
in 2013 as an interdisciplinary collaboration of clinicians
and researchers focused on using networked, mobile sys-
tems to create tools for teaching, assisting, and motivating
adolescents and young adults with disabilities to take in-
creasing responsibility for independently managing their
health within community environments.
Through our recently published Model of Healthcare

Disparities and Disabilities [382], we have conceptual-
ized the issues that individuals with disabilities experi-
ence as the interaction of impairment with the context
in which impairment occurs – including both the envir-
onmental and personal factors that affect the severity of
the manifest disability. This model, then, allows us
understand mobile technology as a modifiable factor that
can be tailored to enhance health and participation

outcomes. This approach should also lead to increased
transfer of knowledge and/or technological development
beyond that used by individuals with a single diagnostic
group, to applications and utilization by individuals with
multiple relevant impairments.
TIKTOC RERC investigators are working to identify

cognitive and motivational factors that have an impact
on the ability of adolescents and young adults with neu-
rodevelopmental conditions (NDCs) to self-manage their
health. Findings from this study will be incorporated
into the design of an interactive mobile application that
learns to select messages and prompts to support medi-
cation management among young adults with NDCs and
used to produce Guidelines and Recommendations for
targeting and tailoring health self-management interven-
tions and mobile apps in ways that compensate for ex-
ecutive dysfunction and address motivational factors.
While this project has not yet been completed, initial re-
sults reflect significant differences between the perceived
and actual abilities of adolescents and young adults with
executive dysfunction to perform complex health man-
agement activities [383] and speaks to the importance of
assessing and addressing these factors to create realistic
health management plans.
The RERC is also supporting the final development,

evaluation, and transfer of the mobile game SCI HARD
(Fig. 9). SCI HARD was created to enhance self-
management skills, health behaviors, and participation
among adolescents and young adults with spinal cord
injury through an approach that is scalable as well as ac-
cessible and engaging to this target population. Current
research efforts will generate important data to deter-
mine if the serious game represents a beneficial and
cost-effective complement to existing rehabilitation
approaches. Already our development and dissemination
efforts have increased awareness of potential ways to
tailor educational and self-management training to
better match the needs and strengths of various popula-
tions [384].
TIKTOC RERC investigators have developed under-

pinning technologies for augmenting cognition and
memory to improve self-management decisions and ad-
herence to health needs. This decision-support technol-
ogy will be used in programs that help inexperienced
adolescents avoid overestimating or underestimating risk
so as to maximize safe, positive participation in mean-
ingful activities and life experiences.
Finally, TIKTOC RERC investigators are working to-

ward the development of cloud-based assessment and
coaching tools to provide support for adolescents and
young adults with disabilities in setting goals, measuring
progress, sharing knowledge and best practices, and de-
veloping personalized training and self-management
plans for themselves and family or care attendants.
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Future directions In the next 5 to 10 years, we believe
that the key questions and challenges will be associated
with how to use technology to optimize communication
and linkages both between individuals and health care
systems as well as between systems such as healthcare
and education. As such, it will be critical to design
technological interventions that support a continuum
between training and cognitive orthotics. During the
transition to adulthood, adolescents will incrementally
take on more self-management responsibility; a funda-
mental opportunity that software-enabled technologies
provide is adaptation to the needs and abilities of the
user, where a system can challenge an adolescent to
learn to be less reliant on the technology, and at the
same time serve as a backstop to prevent (or contain the
consequences of ) self-management mistakes.
It will also be important to design or improve technol-

ogy to support continuous, direct behavior measurement

and to create better associated logical and interventional
frames of reference for personalized behavioral interven-
tions, as opposed to current "one-size-fits-all" treatment
concepts. Similarly, treatments are now adjusted by clin-
ical experience as opposed to data-based decisions, and
both hardware and software development is needed to
improve personalization.
Finally, any enhancements in technology must be

matched with improvements in dissemination, adoption,
and financing of innovations for routine clinical use
everywhere in the US, so that even smaller agencies rap-
idly adopt the advances developed at engineering centers
and RERCs, and the gap between research and wide-
spread adoption is reduced.

Technology for successful aging with a disability
Need and rationale Historically, research in disability
and aging has emphasized the impact of either increas-
ing levels of chronic illness and functional losses in late
life (aging into disability) or aging and congenital or ac-
quired impairments from early to middle life (aging with
a disability). The former has been primarily the purview
of geriatrics/gerontology, and has an aging research
approach (i.e., understand and control factors that affect
aging) more than a disability research approach (i.e.,
understand and compensate for factors that affect dis-
ability). In contrast, the latter, which has been the inter-
est and focus of rehabilitation engineering and RERCs
under NIDRR’s priorities, has focused primarily on un-
derstanding the consequences of life-long impairments
in old age and early-onset of aging due to disability.
Although both approaches are important, each only

addresses half of the aging problem in that they both
overlook the 29.5 million Americans aged 21-64 who are
now growing older with a long-term impairment or dis-
ability [385] and who will likely experience newly ac-
quired and pervasive age-related functional losses,
comorbidities and secondary conditions [386–391]. For
these individuals, the additive effects of age-related con-
ditions may mean the difference between their current
impairment or disability and aging into disability or mul-
tiple disabilities, respectively.
There are few published studies about the effects of re-

habilitation interventions for people with age-related defi-
cits in function among the population of people aging
with impairment or disability. Evaluation of existing re-
habilitation engineering interventions, usability testing,
and research devoted to increasing the availability of tech-
nologies for this population is lacking; therefore little
scientific evidence exists with which to inform rehabilita-
tion engineering practice. Thus, despite comprising the
majority of the population of seniors with disabilities, indi-
viduals who are experiencing age-related limitations

Fig. 9 Screenshots from the Serious Gaming App SCI Hard illustrate
within-game methods for bowel and bladder management, including
monitoring (upper picture) and emptying (lower figure) as well as the
possible consequences of failing to engage in appropriate self-
management techniques (i.e. formation of stink cloud in middle picture).
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beyond their primary impairment/disability are also the
most underserved and understudied target population.
Our goal is to influence rehabilitation engineering practice
by assessing the impact of age-related changes on the ac-
tivity and participation needs and outcomes of people
growing older with impairments and/or disabilities.

Advances Working within a universal design paradigm
that drives all RERC activities, RERC TechSAge serves
as a catalyst for a major shift in the understanding and
design of home and community technologies for people
aging with impairment and disability. Our mission is to
conduct advanced rehabilitation engineering research
and development to prevent, minimize or reverse the
disabling effects of age-related losses and contextual fac-
tors on the independence, health and participation of
people who are aging with chronic conditions or long-
term impairment. Currently in year 2 of the grant at
Georgia Tech, RERC has already made important strides
in setting the foundation for strategic R&D projects to
understand and support the experience of individuals
aging with disability.
Research activities are underway to provide converging

evidence necessary to design integrated technology sup-
ports for seniors aging with disability. Specifically, RERC
TechSAge is developing an evidence-based taxonomy of
user needs, stratified by functional loss; identifying needs
and predictors of interventions for home-based tasks;
and demonstrating feasibility of using functional per-
formance data to predict task performance within and
across activities. The RERC has developed a participant
registry of people aging with disability to provide effi-
cient study-specific recruitment for projects as well as a
Minimum Assessment Battery, to standardize measures
across all TechSAge participants. A large-scale database

has been developed to integrate both assessment and
project-specific data to identify patterns of ability, per-
formance, and technology needs.
Development activities have short-term and longer-

term outputs and outcomes. Our app development to
promote successful aging with disability will advance the
rapid and cost-effective deployment of technologies
through software development and evaluation [392].
First versions of the route planning and cognitive gam-
ing apps have been developed. In addition, the cognitive
gaming project has developed cloud-based solution for
high-precision player data logging, a web service for
streaming to a database, and hundreds of new levels in-
formed by our research. The SmartBathroom project is
currently in the construction phase of a state-of-the-art,
context-aware, fully automated bathroom with continu-
ous monitoring of a user’s functional status (e.g., gait,
balance, posture) and task performance (e.g., toilet and
tub transfers) to eventually develop algorithms that will
synchronously adjust environmental features (e.g., grab
bars, fixtures) based on user needs [393]. Finally, work-
ing with an individual with ALS, the mobile manipulator
robot project has developed and installed a robotic bed
in the participant’s home designed to assist with body
positioning for various reach tasks; and has refined the
web-based interface to facilitate the participant’s control
of the robot [394, 395] (Fig. 10).

Future directions The RERC’s approach to aging with
disability is only beginning to scratch the surface of
understanding the problems and developing solutions
for our target populations. In fact, the premise of
much of the basic research undertaken by the RERC
is to identify the set of questions to be addressed by
future RERC efforts.

Fig. 10 RERC TechSAge Projects. Left: The Mobile Manipulator Robot demonstrates how a robotic assistive system is helping Henry Evans, a
stroke survivor with limited mobility, with routine shaving tasks; Middle: The ALIGN app enables seniors with mobility disability to select routes
based on environmental preferences and characteristics and accessibility needs; Right: The SmartBathroom laboratory in GA Tech’s AwareHome
will permit rigorous testing through mechanized fixtures and grab bars that are adjustable in multiple planes
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The current RERC development projects have been
designed to test usability and utility with pilot data on
effectiveness. Longer term there is a need for transla-
tional research of these evidence-based interventions to
identify intervention efficacy on health, activity and par-
ticipation of people aging with disability. In research
there is the need to examine the use of technology sup-
ports and changes in adoption strategies over time as
older adults with impairments and some disability age
into either disability or greater disability. Because much
of the RERC’s target audience has historically been
underserved by traditional assistive technology and re-
habilitation engineering interventions, it is important to
examine indigenous, individualized solutions that will
scale up to customizable universal design solutions. Fi-
nally, there is need to understand and develop universal
design smart interventions that not only compensate for
disability, but are capable of effecting behavior change
that enhances the acceptance and effectiveness of the in-
terventions.

Universal interface and information technology access
Needs and rationale The UIITA-RERC began in the
1980s as the RERC on “Functional Information Access
& Transfer.” The focus then was on providing access in
a way that was transparent to the computer, such that
the computer could not tell that the users with disabil-
ities (using special input devices) were not using the
computer’s standard input devices. From his work the
RERC expanded over time to include access to public
access terminals (kiosks, ATMs, POS devices, voting,
etc.), the Web, smartphones, and finally, any device with
a digital interface.
In all of its work the RERC focused on moving beyond

research to commercial transfer and system change. The
RERC sought and seeks to answer questions, define
needs, create solutions, lower the cost to make things
accessible – and to support all others (researchers and
developers to clinicians and consumers) who are trying
to advance accessibility. To accomplish this the RERC
has worked with over 50 companies, and numerous con-
sumer and government organizations. The work of the
RERC over the years can be broadly divided into 4 areas.
Area 1 – Transparent Computer Access (1980s on-

ward): Disability-oriented software in 1980 focused on
special programs specially designed or adapted for
people with disabilities. Because of the lack of any I/O
handling in the operating system, (software directly read
the I/O interfaces), providing access to mainstream
software would require special hardware that directly
replaced the mainstream interface device. A dual-
computer approach was proposed to provide “transpar-
ent access” to all of the software (mainstream and

special software) on the computer allowing the full re-
sources of the computer(s) to be used both for the spe-
cial software and for the mainstream software, and it
provided full access to any mainstream software installed
on the mainstream computer [396]. Both internal and
external “dual computer” approaches were highlighted in
Byte Magazine in 1982 [397, 398]. The RERC then
moved these concepts to the market first with the KEI
(Keyboard Emulating Interface) Standard and then com-
mercial KEI’s that enabled AT users to control Apple,
IBM, and Linux computers. When mice came into the
picture the RERC revised the standard to cover both
keyboards and mice [399] and then developed a hard-
ware device that implemented the standard, the Trace
Transparent Access Module (TTAM) [400]. It also de-
veloped a software version as an extension to Microsoft
Windows [401]. Both were successfully transferred to in-
dustry, the hardware module the AT industry, and the
Windows extension was transferred to Microsoft, who
built it directly into Windows 95 and subsequent ver-
sions of Windows.
The RERC also worked with Apple, Microsoft, and

IBM to build other access features directly into their sys-
tems. Starting in 1986the RERC worked with Apple to
built access into their Apple IIe, Apple GS, and Macin-
tosh computers. Three of the first five access features in
Apple’s operating system were first developed at the
RERC and then transferred; StickyKeys, MouseKeys, and
SlowKeys. These were the first access features built into
any standard commercial computer operating system.
Simultaneously, the RERC worked with Microsoft, IBM.
The RERC developed access features that were distrib-
uted by Microsoft on their driver disks starting with
Windows 2.0. The RERC also created AccessDOS for
IBM, which contained ten access features written by the
RERC, licensed (royalty free) and distributed as a (free-
of-charge) IBM product. In 1995 Microsoft first included
access features as part of the standard Windows operat-
ing system. Nine of the ten access features Microsoft
built into Windows 95 were features that were licensed
(royalty free) from the RERC.
In parallel with this work, the RERC worked on cross-

disability consumer-industry accessibility standards. The
RERC developed the first set of hardware/software ac-
cessibility guidelines for computers for the White House
Committee on Computer Access in 1985. These guide-
lines were then extended and customized to serve as the
first accessibility guidelines used internally by IBM
(1986), and after additional work, the guidelines used by
the Information Technology Foundation of ADAPSO
(ITF) and Microsoft Corporation (who first distributed
the RERC developed accessibility guidelines to all of its
developers, and then used them as the starting point for
creating their Windows-specific accessibility guidelines).
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Later updated versions of these and other RERC guide-
lines [402, 403] were used in creating the first Section
508 guidelines.
Area 2 – Access to Public Access Terminals (1990s on-

ward): Starting in the early 1990s the RERC expanded
its focus to include public Information technologies.
Again, the focus was on enabling people with disabilities
to be able to use mainstream information, ticketing,
ATMs, vending, voting, and other public terminals.
However, in this case, they were not personal devices, so
nothing could be installed on them by a user. The strat-
egy adopted therefore was to create a package of inter-
face options that would enable public terminals to be
used by people with as wide a range of disabilities as
possible – without the user having to adapt the termi-
nals. Initial implementations, including the kiosks at the
Mall of America, were modal, requiring users to put
them into one or another mode of operation that
matched users’ abilities. This worked but not for less
digitally adept users. Over time a cross-disability access
package (dubbed EZ Access) was developed that was
non-modal and easy to use and understand (Fig. 11). It
provided users with the ability to operate the device and
receive its output in multiple ways – similar to being able
to use a keyboard or mouse to do the same thing on a
computer [404, 405]. The EZ Access keypad and software
interface extensions allow public terminals to be used by
people who are blind, who have low vision, who have lim-
ited reach, who can’t use a touch screen, who are deaf or
hard of hearing, who have cognitive disabilities, or who
cannot read for any reason, as well as by anyone who
would rather operate the machine from the keypad rather
than the touchscreen (long fingernails, mittens,etc) [406].
The EZ Access techniques are now implemented in over
50,000 cross-disability accessible USPS Automated Postal
Centers, Amtrak ticket machines, kiosks in memorials,
museums, and machines in airline terminals.
At the same time, the RERC provided technical assist-

ance to consumer groups and advocates working on

ATM access, resulting in 50,000-100,000 accessible
ATMs using cue and respond accessibility.
Area 3 – the Web (1995 onward): The Web was the

second focus of the RERC that began in the 1990s. In
1995 the RERC created the first Web Accessibility
Guidelines after WWW2 in Chicago [407]. In 1996 the
RERC united 35 efforts that had arisen, to create the
Unified Web Accessibility Guidelines, Version 8.0 of
which was used as the starting point of the W3C’s Web
Content Accessibility Guidelines [408]. The W3C-WAI
asked the RERC to co-chair and support the WCAG
working group, which it did through 2012, including de-
velopment of both WCAG 1.0 and 2.0. The RERC also
provided extensive research and technical support, in-
cluding quantification of measures, creation of open-
source test tools, and database development for the
working group. WCAG 2.0 is now the international
standard, not only for web content accessibility, but also
as the basis for most of the software and electronic
document accessibility requirements in the US, Canada,
Europe, Australia and other countries.
Area 4 – Assistive Technology (1980 onward):

Throughout its existence the Trace RERC has worked
closely with the assistive technology industry, carrying
out research for them, feeding R&D prototypes and pro-
duction designs to them [409–411] and developing mas-
ter listings, databases, and directories of assistive
technology that were used as central references for clini-
cians [412–414].

Advances Since the early 2000s, a perfect storm has
been brewing. Society as a whole is moving to technol-
ogy in all aspects of life, (education, employment, com-
munication, healthcare, civic participation, etc). People
who can’t use technology can no longer avoid it. Yet we
do not have assistive technologies or access strategies for
all, and the proliferation of platforms means that even
those that have AT, do not have it on all the devices they
encounter and have to use in daily life. And the funds to

Fig. 11 From left to right: EZ Access keypads and USPS, Amtrak, Smithsonian, US Customs, WWII memorial and Phoenix Airport use of EZ Access
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provide access are decreasing as the number needing ac-
cess increases.
To address these and other related issues the RERC

brought together an international coalition, the Raising
the Floor Consortium, to seek answers [415]. It found
early on that the problem could not be met with the
current accessibility ecosystem, which was only reaching
between 3 and 15% of those who needed special inter-
faces. The RERC proposed the development of a Global
Public Inclusive Infrastructure (GPII) that would 1)
make it much easier for people facing barriers to ICT
use due to disability, literacy, digital-literacy, and aging
to find what features or solutions they needed; 2) make
it possible for them to use that information to cause any
ICT they encountered (computer, phone, ticket machine,
TV) to instantly change its interface into one they could
understand and use; and 3) make it much easier for de-
velopers of all types (large, small, AT or mainstream) to
explore, create, test, and market new and better solu-
tions internationally, including for very-low-incidence
solutions.
The concept spread rapidly internationally, with pro-

jects now in process in the US, Canada, and Europe
[416]. Over 50 companies and organizations, and over
100,000 individuals have now joined in the effort. The
focus is now on secure necessary funding and moving
the GPII from research to real-world implementation
and international availability [417].

Future directions Going forward the RERC is focused
in three key areas. First, we will address the issues cre-
ated by the move by society to all digital technologies,
everywhere, in every activity. Second, and related, there
is a great need for everyone to be able to understand
and use the digital interfaces they are encountering,
across devices, operating systems, and environments.
Third, we will develop ways to reduce the cost and effort
needed to make things accessible so that mainstream
and assistive technology vendors will be able to address
everyone including the tails and tails of the tails.
The GPII is designed to create an infrastructure to

make this easier, but it is not the solution – just a neces-
sary substrate for it. Much more work is needed in cog-
nitive, multiple-disability, and non-technology adept
portions of all disabilities. Solutions that will work in
clouds, across platforms, and in homes are also chal-
lenges as are solutions that work across all of the digital
interfaces, devices, and platforms encountered are still
out of reach.

Wireless technologies
Needs and rationale The Wireless RERC launched in
2001, when wireless technology was on the cusp of a

revolution. WiFi was a novelty and the “cloud” was still
largely a dream. Rudimentary internet access was avail-
able on a limited number of “(not-so)-smart” phones.
Social media was limited to email and nascent SMS text
messaging. Bluetooth standards were in development;
commercially available, Bluetooth-enabled devices were
in the future. Hearing Aid Compatibility requirements
for mobile phones was a concern of the Federal Com-
munications Commission and industry. In 2002, Micro-
soft released its Windows Mobile operating system,
which supported third party screen readers and was the
leading solution for blind users for most of the decade.
By 2004, 68% of people with disabilities owned a wire-
less/mobile device.
According to 2007 Survey of User Needs data, 85% of

people with disabilities owned a wireless product. By
2013, wireless device ownership increased to 91%. Inclu-
sion of critical accessibility features led to product loy-
alty among disability groups. Some companies have
addressed accessibility concerns with their own solu-
tions. The Apple iPhone, with its icon-based touchsc-
reen interface and robust ecosystem of mobile wireless
“apps”, revolutionized the smartphone and its capabil-
ities. In the Deaf community, smartphones, tablets and
other wireless devices have quickly become necessary
technologies. AAC users use tablets at substantial rates,
due to barriers in communicating synthetic speech via
smartphones. Digital assistants, voice inputs and outputs
are major facilitators for people with vision loss and lim-
ited upper extremity function. With millions of free apps
consumers are increasingly turning to recommendation
engines, friends, social networking or advertising to dis-
cover mobile applications rather than sorting through
available apps. This presents a challenge for app devel-
opers, even when the app is truly unique and necessary
for people with disabilities. Regarding social media,
trustworthiness of an information source (especially in
emergencies) is a critical barrier/facilitator to use.
Among individuals with disabilities, they are more apt to
follow “trustworthy, credible” organizations online and
believe the information they receive. Hurricanes Katrina,
Rita and Sandy, highlighted the vulnerability of mobile
wireless communications. As a result, effective and in-
clusive wireless emergency communications became a
top priority for the FCC and DHS.

Advances During its first grant cycle (2001-2006), the
Wireless RERC made several important advances (Fig.
12). It pioneered a Consumer Advisory Network (CAN)
and Survey of User Needs (SUN) to promote accessible
products and devices and ensure that the Center’s work
addressed user needs. The CAN grew to over 1,400 con-
sumers with disabilities throughout the US. It also pio-
neered the use of the Blackberry platform as a data
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compiler (e.g. remote monitoring of weight shifts in
manual wheelchair users) and providing email access to
users of AAC devices. This project prompted industry-
leaders to add a cell phone port to some of their AAC
devices. The Mobile Accessibility Guide (MAG) proto-
type included a personal digital assistant to identify and
record accessible and non-accessible locations. The
MAG provided the proof-of-concept for today’s crowd-
sourced information sites and apps for accessible public
places. It also was a pioneer in “wearable” computing,
using a heads up display, one-handed “twiddler” keypad,
and gesture recognition inputs. This work was one basis
for the development of Google Glass. The team also pio-
neered early, wireless remote monitoring, and received a
patent for a miniature wireless accelerometer.
During its second and third funding cycles (2006 to

present), the Wireless RERC made several important ad-
vances. It received supplemental funding from NIDRR in
2008 to test the FCC wireless alerting system parame-
ters, resulting in establishment of accessible emergency
alerts delivered in multiple modalities to mobile devices.
Filings in 2008 contributed to new changes in regula-
tions “we amend the FCC rules to ensure that persons
with disabilities have access to public warnings.” It de-
veloped a wireless system which interfaced with public
captioning systems to provide captions for recorded and
live events on a user’s mobile device. The system was
piloted in Redskins stadium in 2009 and used in the
Super Bowl at Cowboys Stadium in 2010 [418]. The cap-
tioning system was licensed to the Monterey Bay Aquar-
ium, University of West Georgia, and Dallas Cowboys. It
pioneered the App “Factory” concept of rapid develop-
ment of discrete technology applications that work on
contemporary smart devices [419]. Apps for blind/low

vision users included Braille readers, currency identifier
(received NIDRR supplemental funding), and apps for
those with cognitive or communication issues including
talking photo diaries. Since 2011, eleven mobile apps
have been released and have accumulated over 500,000
installations. The external alerting interface device
enabled people with sensory disabilities to be aware of
incoming wireless emergency alert messages. The dis-
ability community and Federal government agencies
such as DHS, FEMA, FCC, and state emergency man-
agement entities’ endorsements have led to the develop-
ment of a portable, traveler’s version.

Future directions Mobile, wireless, cloud-based and
wearable technologies are converging into an Internet of
Everything, allowing for innovative solutions for accessi-
bility. How can engineers and clinical technician’s part-
ner in this environment to ensure the creation of
accessible solutions? What are the consequences of the
migration to mobile broadband and next generation
technologies on legacy accessibility services (e.g.TTY/
TDD)? Wearable technologies can be developed to support
wellness, safety and independent living. How can they also
support education and employment of individuals with dis-
abilities? Can ubiquitous sensing and cloud-based data ana-
lytics provide meaningful support to research and
development efforts in next generation wireless technolo-
gies? As innovative wireless technology increases, will the
personalization of technology reduce the distinction be-
tween mainstream and assistive technologies? That is, will
mainstream technologies effectively address personalization
options to include people with disabilities and reduce the
need for specialized assistive technologies? What technol-
ogy/engineering components can be maximized to realize

Fig. 12 Left: BrailleTouch smartphone app developed with support from the Wireless RERC's App Factory development project. The app allows
the user to type braille directly on their iPhone or iPad, and send text messages, tweets, and emails from the touchscreen braille keyboard. You
can also copy text that you enter using braille and paste it into any other app on your iPhone. Upper right: Helping consumer with cerebral palsy
choose new smartphone. Lower right: Wireless RERC team conducting hands-on training session on built-in accessibility features in contemporary
smartphones and tablets
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low-cost “smart” environments (public and private) to en-
hance independent living? Will advances in display, control
technology and miniaturization lead to more robust access-
ible wireless solutions, for example, enable instantaneous
translation of spoken word to sign language or text? How
can location-aware technologies and Geographical Informa-
tion Systems (GIS) be leveraged to increase the safety of in-
dividuals with disabilities during emergencies?

Centers with a focus on rehabilitation therapy and
exercise
As well as the expansion of the original RERC research
portfolio from personalized to societal mobility issues and
to communication and cognition, a third trend has been
to expand RERC research into issues of rehabilitation
therapy and exercise. Exercise is one of the most powerful
modulators of human health and wellness, and yet many
people with a disability have difficulty accessing exercise
opportunities. Further, starting in the 1980’s, the substan-
tial capacity that people with even severe impairments
have for neural plasticity began to be scientifically discov-
ered and studied, raising the question of how technology
could promote optimal recovery of function.

Interactive exercise technologies and exercise physiology for
people with disabilities
Need and rationale Despite what we know about the
positive effects of physical activity in improving health
and function in the general adult population [420],
people with disabilities remain one of the least active
populations in society [421–427]. They often experience
a higher number of barriers in the home, neighborhood
and community when compared to the general popula-
tion, restricting their options in initiating and maintain-
ing an active lifestyle [428–435]. The multiple barriers to
physical activity experienced by people with disabilities
reduce their likelihood of acquiring and practicing regu-
lar physical activity routines [436]. This can lead to
health decline and a cycle of deconditioning in which
deteriorating physical function produces greater inactiv-
ity, further physical decline, and higher risk or severity
of chronic and secondary health conditions [437–440].
Physical inactivity, combined with the presence of sec-
ondary health conditions, use of medications that
cause weight gain as a side effect, and biological
changes associated with aging can lead to a substantial
loss of skeletal muscle mass and an increase in adipose
tissue (i.e., sarcopenic obesity) in people with disabil-
ities [426, 427, 437, 438].
The energy expenditure associated with participation

in various forms of physical activity including fitness,
sports and recreation can mitigate several of the health
risks associated with sedentary lifestyles and is an

important contributor to attaining and maintaining opti-
mal health status [441]. Due to burgeoning technological
advances and the ease at which they are becoming
readily available for widespread use, applying new and
emerging technologies may be an ideal method to sup-
port the health/wellness needs of people with disabilities.
The Rectech RERC’s mission is to promote the health,
function and participation of people with disabilities by
a) developing new technologies or adapting existing
technologies that prevent secondary conditions includ-
ing reduction in obesity and deconditioning; b) increas-
ing community participation in health/wellness activities
through the creation of inclusive recreation and fitness
communities; and c) reducing healthcare utilization in-
cluding costly hospitalizations by providing people with dis-
abilities appropriate, accessible and safe self-management
exercise tools that empower them to maintain and improve
their own health (Fig. 13).

Advances RecTech has made several advances in mov-
ing new technologies and standards into industry and
practice. Key products include the following.
RecTech published a set of universally designed fitness

equipment standards supported by ASTM. These stan-
dards have a direct and immediate impact in promoting
accessible lines of fitness equipment. Senator Harkin
proposed a Bill to promote the provision of exercise and
fitness equipment that is accessible to individuals with
disabilities (Exercise and Fitness Fitness For All Act).
This Bill references RecTech’s work with the ASTM
equipment standards (ASTM F3021-13). RecTech will
serve as the first National Standards Lab for Universal
Design of Fitness Equipment. Over the last decade we
have seen the number of equipment manufacturers that
are designing product lines that have accessible features
more than double (eg, swing-away seat, one-handed ac-
cess for changing weight stacks, lighter starting loads on
weight machines, better color contrast on display panels,
etc.). This includes some of the largest manufacturers –
Life Fitness, Cybex, Technogym, Hur and several other
companies. RecTech is also developing standards for spe-
cific equipment like cycle, treadmill, elliptical and strength
equipment.
RecTech also developed a Web-based intelligent

weight loss/weight management system designed to pro-
mote physical activity and improve diet for youth and
adults with physical disabilities and referred to as the
Personalized Online Weight and Exercise Response Sys-
tem (POWERS). The system is currently being tested in
two separate research studies. Non-disabled adults dem-
onstrate better weight loss and weight maintenance
when they use a pedometer or accelerometer to monitor
daily physical activity. A first generation energy expend-
iture estimator App has been developed that measures
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energy expenditure (calories expended) in manual
wheelchair users with the commercial activity monitor,
SenseWear armband (Bodymedia,Inc., Pittsburgh, PA).
Prior to this research, there was no way for manual
wheelchair users to determine how to balance the energy
equation (calories consumed vs. calories expended).
Another development is a crowd sourced online com-

munity resources mapping system called the Activity In-
clusion Mapping System (AIMS). This system is
designed to promote accessible physical activity by enab-
ling the public to search for inclusive fitness opportun-
ities through its online directory. This system, when
matched with other valuable web resources such as cen-
sus data, ride share services, etc. provides users and re-
searchers with significant community access points for
achieving physical activity. RecTech also developed a
first generation home-based remote exercise training
and monitoring system for people with disabilities (Tele-
health Exercise Training for Monitoring and Evaluation,

TExT-ME). In addition, a teleassessment tool (i.e.,
phone, iPAD, laptop) has been developed that measures
the accessibility of health clubs and fitness facilities
(AIMFREE) in real time and is available free of charge to
professionals or consumers with disabilities anywhere in
the U.S. or world. Once the audit is completed, the
AIMFREE links the person (professional or consumer)
to an online solutions database consisting of low and
moderate cost solutions.
RecTech has also developed accessible Active Video

Game Controllers for Wii Fit board and Wii gaming mat.
These adaptations will open up the opportunity for many
people with mobility disability to play these games equiva-
lent to their able bodied piers. Further, a universal Ad-
vanced Virtual Environment Exercise Device (AVE2 D)
prototype has been developed that enables both upper
and lower body exercise to function asymmetrically de-
pending on individual limb function. The device is being
used with our Virtual Exercise Environment (VEE) system,

Fig. 13 RecTech Exercise Technology Devices and Products. Top Left: Participant playing active video game on an adapted gaming controller.
Top Right: Screenshot of teleexercise dashboard showing live video feed from coach, text chat with coach, and sensor data. Bottom Left:
Participant exercising on a new universally designed Advanced Virtual Environment Exercise Device (AVE2D) prototype Bottom Right: Screen shot
of geocoded and crowdsourced community-based physical activity resource identification system
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which provides individuals with disabilities the opportun-
ity to exercise in various types of outdoor VEEs (e.g., trails,
parks, etc.).
Finally, a RecTech Wiki provides engineers, entrepre-

neurs, small startup companies, people with disabilities,
etc. with design ideas for manufacturing accessible exer-
cise/recreation products for people with mild to severe
disabilities. RecTech has helped numerous entrepreneurs
design accessible fitness products for people with dis-
abilities. RecTech was also involved in the development
of a training certificate approved and offered through
the American College of Sports Medicine called the
Certified Inclusive Fitness Trainer, which trains health/
fitness professionals on how to assess and design access-
ible fitness facilities and implement safe and effective ex-
ercise programs for people with disabilities.

Future directions People with disabilities continue to
face limited options for exercise and leisure physical ac-
tivity and experience barriers to taking advantage of
existing opportunities (e.g., transportation, extra time
needed to prepare, adapted equipment). The rapid ad-
vancement of technology requires a strategic framework
and coherent context for what and how technologies
can be used to promote higher levels of physical activity
among people with disabilities. The RecTech model uses
the metaphor of a ramp to symbolize the importance of
four critical Research and Development (R&D) domains
framed under the heading, Restoring Access, Mobility
and Performance. The model emphasizes the logical se-
quencing of the four domains: Access is necessary for in-
creasing Participation; [441] both Access and Participation
provide greater Mobility and higher levels of Adherence;
high Adherence to physical activity and exercise results in
improved Performance and increased Health and Function,
which ultimately leads to greater health protection, better
self-management of health and improved quality of life.
Technology provides multiple new approaches to ad-

dressing these issues. With the growing number of tech-
nologies becoming less expensive and more ubiquitous,
a unique opportunity exists for rehabilitation profes-
sionals, engineers, exercise physiologists, scientists, re-
searchers, practitioners, and manufacturers to optimize
the health and wellbeing of people with disabilities using
existing and new technologies. The research and devel-
opment efforts needed to break the cycle of decondition-
ing and promote greater health and function among
people with disabilities must be considered in a logical,
interdependent framework that recognizes the basic re-
quirements for promoting physical activity among all
populations, but with particular relevance to people with
disabilities: increasing access, encouraging regular
participation, fostering adherence, and improving health
and function. New and emerging technologies must

address these requirements across a range of settings
that includes the home, fitness facility, and outdoor
community. Whether seen as revolutionary or evolution-
ary, technology is certain to eliminate many of the bar-
riers that people with disabilities are exposed to when
trying to lead a physically active lifestyle. RecTech is fill-
ing the health/wellness gap that is currently not being
funded by any other federal agency and addresses this
important area of research and development.

Rehabilitation robotics
Need and rationale The concept of exploring robotic
devices for use by people with a disability was an early
part of the RERC program. Restoring individuals’ move-
ment ability could be accomplished either by assisting
activities, substituting function through prosthetics and
orthotics, or treating or providing therapy. The earliest
stages of the RERC robotics program involved chiefly
the first of these goals, and was centered at the DuPont
Children’s Hospital in Wilmington Delaware.
Beginning in 2002, the Machines Assisting Recovery

from Stroke (MARS) Rehabilitation Robotics Center has
focused on developing robotics devices for restoring
movement ability for people with disability through
physical rehabilitation. At the time there were few com-
mercial robotic devices designed to assist in providing
physical and occupational therapy, and optimal design
features were largely unexplored. Yet many people with
a disability receive physical and occupation therapy, in-
cluding individuals with a stroke (7M adults in the US
[442]) spinal cord injury (1.3M [443]), cerebral palsy (0.8
M individuals [444], traumatic brain injury (5.3M [445]),
and the elderly (projected to grow to 53M by 2020).
Hence, MARS began developing systems and gathering
new knowledge for manipulation and ambulation, in the
pursuit of more optimal and widely accessible rehabilita-
tion therapy tools.
Several principles drove and continue to drive the

MARS vision of robot-assisted therapy. First, basic and
clinical research have increasingly indicated that there is
substantial potential for experience-dependent neural
plasticity following neurologic injury, where change can
be induced by practice [446, 447]. Second, intensive task-
specific, challenge-based practice has been shown to pro-
mote the neural plasticity beneficial for recovery [448].
Yet, despite the critical need for repetitive skill practice,
healthcare expenditure cuts have increasingly limited ther-
apy time in the US and other countries. MARS has taken
a key role in showing that repetitive and skillful practice
can be delivered readily and effectively by appropriately
designed and well-programmed robots [449–451].
Forthcoming pharmacologic, cell-based, and neural

stimulation treatments have also been shown to increase
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plasticity and thus continue to elevate the importance of
developing robotics and information technology for ef-
fective, targeted, quantifiable rehabilitation therapy
[452]. Furthermore, with improvements in weight, wear-
ability, power, sensors, actuators, computers, and energy
sources, devices providing movement assistance are be-
coming increasingly feasible. MARS thus now seeks to
develop and test robotics technology that seamlessly
meets a continuum of needs, from complete movement
assistance, to enhanced mobility, to therapy, to challen-
ging exercise, to better participation in the workforce,
recreation and leisure activity.

Advances MARS research has led to commercially avail-
able products that are used worldwide by individuals
with disability, made discoveries that have strongly influ-
enced the design of other products, and is continuously
generating novel, promising prototypes (Fig. 14).
Development of the T-WREX arm exoskeleton [450]

led to the most widely used arm exoskeleton for upper
extremity rehabilitation training, the ArmeoSpring, sold
by Hocoma, now in use in over 700 hospitals and clinics.
This device was based partly on the WREX exoskeleton,
a commercially available assistive device for children
with arm weakness developed in an earlier RERC [453].
ArmeoSpring combines spring-based arm support,
sensitive grip force detection, and virtual reality (VR)
based games and was found to be more effective and
more motivating than conventional training in rehabili-
tation of the upper extremity for individuals with
chronic stroke.
Another recent commercial product strongly influ-

enced by MARS RERC research is the KineAssist MX,
commercialized by HDT Robotics, which uses a force-
sensing, pelvic support mechanism to sense the user’s
intended walking speed and direction to drive a moving
surface, thus allowing a person to move at their own
intended speed and pace [454]. The device is sensitive
enough to allow sudden starting and stopping move-
ments, so that dynamic balance tasks and responses to
sudden disturbances can be accommodated, allowing re-
habilitation therapists to safely enhance challenge in gait
and balance training. MARS research was influential in
improving the design of robotic gait training systems, in-
cluding the Lokomat system (sold by Hocoma A.G., Zur-
ich), by demonstrating the importance of effort and
variability during gait training [455, 456]. Hocoma also
licensed and commercialized patient-cooperative train-
ing regimes for the Lokomat that MARS developed.
MARS Research has also advanced the state of know-

ledge and changed clinical practice. MARS researchers
developed the family of approaches that augment error
to enhance the dynamics of learning [449, 457, 458].
MARS research produced some of the first wearable

exoskeletons for the hand [459, 460] and identified the
cardinal features of impaired hand control after stroke
[461]. Recently, extensive clinical testing with the Ekso®
and ReWalk® exoskeleton led to the development of
first-of-their kind clinical evaluation and training strat-
egies that enable individuals with paraplegia to ambulate
independently at home and in the community using exo-
skeletons. Additionally, MARS research is initiating col-
laborative work on a third EMG-driven exoskeleton
HAL® by Cyberdyne (Japan).
MARS clinical research continues to lead to first-of-

their-kind prototypes with commercial potential. MARS
research led to the first “body-machine interface”, which
effectively transforms the upper-body into an adaptable
joystick or keyboard controller, providing its users with
the ability to control assistive devices such as wheel-
chairs, computers and, more recently, robotic arms
[462]. Furthermore, this body-machine interface pro-
vides a means to combine in a single framework assistive
functions with physical activities aimed at supporting
health and promoting motor recovery. MARS re-
searchers recently demonstrated significant clinical ben-
efits from the first multi-user virtual environment for
rehabilitation of upper extremity motor control after
stroke [457]. Another project is developing a unique
wearable assistive device for fall prevention that can be
worn as a backpack, and that uses controlled moment
gyroscopes that apply balance-assisting moments [463].
Recently, a novel lever drive wheelchair developed by
MARS researchers allowed individuals with severe hemi-
paresis after stroke to propel the chair bimanually for
the first time [464]. This chair is intended to increase
arm activity after stroke, replacing the tens of thousands
of conventional wheelchairs in stroke rehabilitation units
that promote non-use of the affected arm.

Future directions High cost and technological complex-
ity make many existing upper and lower extremity robotic
therapy products inaccessible for most rehabilitation
clinics. The MARS team sees a strong need for devices ap-
propriate for smaller clinics, community centers, and the
home. As acceptance and price improve, we expect some
devices and ideas to become well accepted.
Growth of the field is also dependent upon determin-

ation of how best to employ the robots to facilitate re-
habilitation. While rigorous clinical tests, including ones
performed by our center, show that robotic therapy can
be measurably as effective or more effective than con-
ventional therapy or even an expert therapist working
closely with a patient [450, 457, 465], other influential
studies performed by the MARS RERC show that the
wrong type of robotic therapy systems, particularly in
gait training, will underperform [455]. Thus, there is a
clear need to develop and test algorithms, based on
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principles from the motor learning and neuroplasticity
literature, which utilize robots in a challenging manner
so as to optimize rehabilitation.
While recent emphasis has been placed upon the

use of robots to improve motor control through
training, the MARS group also realizes the great need
for technologies that can assist [466], as millions of
individuals still cannot pursue all of the activities as
fully as they wish. Consequently, the MARS family of
therapeutic devices are naturally gaining assistive cap-
abilities such as robustness, simplicity, wearability,
and intelligent, task-oriented assistance. An exciting
synergy is emerging between therapeutic and assistive
devices.

Optimizing Participation through Technology
Needs and rationale The overarching objective of this
RERC was to Optimize Participation through Technol-
ogy (OPTT). We sought to enhance the lives of individ-
uals aging with and into disability by advancing
knowledge regarding ways to maintain, restore, and en-
hance the sensorimotor processes that maximizes par-
ticipation and quality of life; by advancing knowledge
about optimal design and use of immersive technologies
such as VR and video game applications for rehabilita-
tion; by increasing capacity to conduct interdisciplinary
rehabilitation research in the nexus area of disability,

aging, and technology; and by improving clinical practice
through effective use of our technology in the clinic and
home environment.
It is well known that the probability for acquired dis-

ability increases with age [467]. Accordingly, the number
of middle aged and older adults living with disabilities
will grow significantly as the US population ages rapidly
[468]. For those middle-aged and older adults who are
living with life-long and long-term disabilities acquired
at birth (e.g. cerebral palsy) or at an early age (e.g. spinal
cord injury) and those who acquire their disabilities for
the first time later in life (e.g. stroke, osteoarthritis), pre-
serving health and meaningful activities throughout the
lifespan is critical for living independently in the com-
munity [390, 469, 470]. Technological developments in
interactive immersive technologies provide the oppor-
tunity for new strategies and interventions to enhance
quality of life for people aging with disabilities and
chronic conditions that affect function and mobility
[471–473].
At the onset, the technologies we considered were de-

signed to be integrated with specific programs of sen-
sorimotor training and exercise for improving functional
independence in the home and community. This ap-
proach is unique, and stands in sharp contrast to the
more conventional use of technologies such as a device
that can be used as a stand-alone assist for a specific

Fig. 14 Some MARS RERC projects. a) The KineAssist MX® Gait and Balance Device b) The Armeo Spring® reaching assistance device c) The March
Hare virtual reality therapy game d) The Lokomat® gait assistance robot e) Robotic Error Augmentation between the therapist and patient f) lever
drive wheelchair g) Ekso® exoskeleton h) Body-machine interface for device control
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task such as walking (e.g., a cane or walker). We saw the
promises of leveraging innovative and integrated VR
programs that combined the technology with evidence-
based behavioral approaches such as muscle-specific
exercises (e.g. shoulder strengthening [474, 475]) or so-
phisticated task-specific training protocols (e.g. hand
function [476], gait and balance [476]) which harness
the benefits of meaningful task practice [477] for sus-
tained improvements in function and thereby foster par-
ticipation in home, work and community life. Previous
efforts in both the clinic-based and telerehabilitation do-
mains used expensive robotic force feedback systems
and/or advanced, high cost magnetic or optical sensing
systems to track and capture motion data accurately at a
high sampling rate, for use in the process of rehabilita-
tion [478–481]. Such systems are typically employed in
research centers and clinical settings that have sufficient
economic resources. However, these high-end systems
did not meet cost and deployability requirements for
widespread access and adoption of home-based systems.
During this time, off the shelf game consoles, such as
the Sony PlayStation® 2 EyeToyTM [482, 483] and Nin-
tendo® WiiTM [484] became available. However, these ap-
plications were either too difficult for people with
disabilities to use as a therapy tool or could not be
accessed or altered to improve usability. In addition to
the limited options for the systematic control of stimulus
parameters needed to customize interaction challenges
to the needs of the user, they provided limited capacity
for the recording of meaningful performance data for re-
search purposes.

Advances Interactive video games, home entertainment
and mobile technologies, and movement tracking sen-
sors have become much more accessible and widespread,
thereby providing an opportunity to advance the medical
and rehabilitation health field through physical activity
and participation in more engaging and enjoyable activ-
ities [485]. This was made possible through the availabil-
ity and accessibility of off-the-shelf sensing technologies
(i.e. Microsoft Kinect), web-enabled tools and mobile de-
vices along with low-cost game development software
applications. Our team was the vanguard in the applica-
tion of such wireless body tracking for VR-based exer-
cise and rehabilitation [486–489] (Fig. 15). We
developed an open-source middleware framework (called
FAAST) to allow interface between markerless tracking
technology and freely available games and Internet appli-
cations (Fig. 15a) [490]. We developed a suite of VR-
based rehabilitation games, including games for balance
training (Fig. 15b) [491] and shoulder exercises (Fig.
15c) [492] and the infrastructure to allow quantification
and examination of the biomechanical variables during
VR-based exercise game play (Fig. 15d) [493, 494]. Using

low-cost sensor systems, our research on shoulder pain
prevention in aging wheelchair users impacted practice
and policy [495]. Using real-time monitoring of muscle
activity, kinetics and kinematics of car transfers in those
with spinal cord injury, we identified that placing the
right hand on the steering wheel during the body lift
portion of the transfer was associated with greater risk
of developing shoulder pain than placing the hand on
the driver’s seat (Fig. 15e). We also identified that
routine placement of the wheelchair in the back seat was
associated with reduced strength in the internal rotators
of the right arm suggesting a stretch-induced injury (Fig.
15f ). This information has been included in our educa-
tional materials on car transfer [496]. We were asked by
a Clinician Task Force to write a letter of testimony
based on our research to the U.S. Department of Health
& Human Services Centers for Medicare Services (CMS)
in support of maintaining coding and funding for wheel-
chairs with custom-measured features [495].

Future directions To strengthen the foundations of
rehabilitation interventions and the interface of re-
habilitation and technology, the effort must be fo-
cused toward both theoretically and empirically based
principles to inform and enhance integrated inter-
active technologies and clinician-delivered rehabilita-
tion solutions in collaboration with diverse end-users
and professionals who have scientific, clinical, and engineer-
ing expertise [471–473]. Only through these principle
driven and interdisciplinary approaches can we advance
and strengthen the foundations of rehabilitation interven-
tions and the seamless interface of rehabilitation and tech-
nology [473].

Telerehabilitation
Needs and rationale The telerehabilitation engineering
challenge concerns the application of information and
communication technology to the provision of rehabili-
tation services to people with disabilities. It was an idea
born at NIDRR in the late 1990’s. The first RERC on tel-
erehabilitation was awarded to Catholic University and
the National Rehabilitation Hospital in 1999 then to the
University of Pittsburgh in 2004 and 2009. From its in-
ception through the present day, the goals of developing
telerehabilitation technology are increased access to ser-
vice, more efficient use of resources, and improved re-
habilitation services. In 1999 the fundamental barrier to
providing rehabilitation service to a distant client was ef-
fective communication across the geographical divide.
The leaders of the first RERC focused their development
efforts on adapting and demonstrating video conferen-
cing systems that used dedicated telephone lines. Their
vision was much larger and included use of the Internet,
telehomecare, telemonitoring and teletherapy [497]. But
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timing is everything and the application of many of these
visionary applications were hampered by slow computer
systems, slow and expensive dedicated communication
channels, low-resolution video images, and a lack of
availability of adequate communication channels.

Advances Beginning 2004 the RERC on telerehabilita-
tion at the University of Pittsburgh shifted efforts toward
harnessing the emerging power of the Internet and away
from dedicated communication lines. The promise of
the Internet was to break down the barrier of cost and
access to the critically needed communication channels
for telerehabilitation in a package that was easy to use
and implement but with high levels of security for priv-
acy. The RERC began developing what evolved into the
VISYTER (Versatile and Integrated System for Telereh-
abilitation) system [498] (Fig. 16). VISYTER is a software
platform for developing telerehabilitation applications. It
was designed for use in a range of environments,
bandwidths and situations. For example, it included
high-quality video conferencing with multiple remotely
controllable cameras per site capability, integration with
electronic health records, remote control of the display
screen, heads-up teleprompter and flexible hooks for re-
habilitation application specific needs such as stimuli

presentation. The RERC used VISYTER for several appli-
cations including remote wheelchair prescription [499], aut-
ism assessment [500, 501], and a self-management program
for persons with chronic lower limb swelling and mobility
limitations [502] among others. Presently, this system has
been adopted within the state vocational rehabilitation pro-
gram within Pennsylvania (Office of Vocational rehabilita-
tion) as a tool for extending the reach of vocational
rehabilitation counselors to rehabilitation customers within
their state-operated vocational rehabilitation facility (Hiram
G. Andrews Center in Johnstown, PA), for consultation
among rehabilitation professionals across the state, to
supervise staff and students, and to conduct remote psy-
chological and neuropsychological assessments.
As mobile devices with Internet capability became

available, the RERC on Telerehabilitation worked to
develop and evaluate a telerehabilitation platform and
applications that took advantage of their capabilities,
specifically, applications that benefited from persistent
long-term interaction between the client and the care
provider [503]. The platform development work resulted
in a system called iMHere, a mobile health platform fo-
cused on supporting self-care in the management of
chronic conditions [504]. As an example demonstrating
what rehabilitation needs can be satisfied with mobile

Fig. 15 The RERC to Optimize Participation through Technology developed a) the FAAST open-source middleware framework to allow interface
between markerless tracking technology and freely available games and Internet applications, b) a suite of VR-based rehabilitation games, including
games for balance training and, c) shoulder exercises and the infrastructure to allow quantification and examination of the biomechanical variables
during VR-based exercise game play. d) Using real-time monitoring of muscle activity, kinetics and kinematics of car transfers in those with spinal cord
injury, we identified that e) placing the right hand on the steering wheel during the body lift portion of the transfer was associated with greater risk of
developing shoulder pain than placing the hand on the driver’s seat. f) Routine placement of the wheelchair in the back seat was associated with
reduced strength in the internal rotators of the right arm suggesting a stretch-induced injury.
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technologies, the RERC developed and implemented a
wellness program for people with Spina Bifida [505].

Future directions Now that mobile devices with reliable
and continuous Internet connections are commonplace,
our community of rehabilitation scientists and engineers
has the opportunity to develop systems and applications
on top of these platforms that can have a potentially
large and profound impact on the effectiveness of re-
habilitation strategies. In many cases, the ever-present
mobile devices allow for interventions that were not pre-
viously possible. State of the art and best practice in re-
habilitation service delivery has decidedly acknowledged
the importance of the individual’s natural context into
its conceptualization of disability, but only limited efforts
have focused on systematically integrating the natural
context into assessment and intervention. Techniques
such as Ecological Momentary Assessment and Ecological
Momentary Intervention can provide contextually rele-
vant “rehabilitation in the real world” to persons with
greatest need, at the time and in the context where re-
habilitation is most likely to make an impact – the natural
or lived-in environment. To accomplish this vision, devel-
opment and evaluation of new ecological momentary re-
habilitation tools, techniques and innovations that can be
merged with evidence-based practices of clinical in re-
habilitation is needed. Recent telerehabilitation techno-
logical advances and mainstream information technology
may be enabler for implementation of this vision.

So the past, present and future of telerehabilitation
will likely continue to follow mainstream information
and communication technology evolution. The RERC on
telerehabilitation started in the 90’s when communica-
tion links between institutions allowed people with dis-
abilities at one clinic to communicate with and receive
service from a provider at another clinic. As the Internet
grew in the early 2000’s and higher capacity broadband
connections became available in peoples homes, schools
and workplaces, new possibilities for rehabilitation ser-
vices were developed and evaluated. Next, people began
carrying powerful mobile devices with fast processors
with them as they went about their daily lives and even
more possibilities for improved rehabilitation service
emerged. Now, mobile devices attached to our bodies in
the form of watches and wristbands may provide the
next level opportunity. This is the current technology
in need of RERC attention. What’s next? Will com-
munication devices inside of our bodies become com-
monplace? Time will tell. But whatever that next level
of communication may be, a rehabilitation engineer-
ing research center will be needed to explore its ap-
plication for improving the lives of people with
disabilities.

Timing investigation dosage implementation
Need and rationale The United States spends more on
healthcare than any other industrialized nation [506]. In
2013 healthcare expenditures, including federal and pri-
vate insurance, accounted for more than 17% of the
Gross National Product ($2.9 trillion) and are projected
to be close to 19% by 2023 ($5 trillion) [507]. Until
recently, healthcare reimbursement was based on a cost-
reimbursement, charge-basis system and billing was re-
lated directly to the number of days hospitalized and the
number of tests and services received. More was consid-
ered to be better. To slow the growth of healthcare ex-
penditures, the Centers for Medicare and Medicaid
Services and other health insurance providers have im-
posed increasingly restrictive reimbursement guidelines.
In 1982 a prospective payment system was instituted for
acute inpatient care based on diagnosis-related groups.
In 1997 Congress passed the Balanced Budget Amend-
ment which put all components of post-acute care, in-
cluding inpatient rehabilitation facilities and outpatient
therapy, under a prospective payment system. The end
result has been significantly decreased lengths of acute
and rehabilitation hospitalization and fewer sessions of
outpatient therapy available to patients.
These constraints in rehabilitation healthcare are play-

ing out at the same time when the demand for rehabili-
tation services is expected to increase. We are getting
older as a country with the number of people age 65 and
over expected to increase from 40.3 million in 2010 to

Fig. 16 Using telerehabilitation to evaluate input devices for
individuals with a disability. Remote team members interact with the
client and local team members through multiple cameras, focused
on the client, the client’s activation site(s) and input device(s)
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more than 80 million by 2050 [508]. The increasing inci-
dence of stroke, Parkinson’s, arthritis and other chronic
diseases associated with an aging population are ex-
pected place additional demands on the healthcare sys-
tem. Providing quality care while reducing per-patient
costs requires implementing innovative evidence-based
strategies.

Advances There is growing empirical evidence for the
effectiveness of repetitive “task-specific” training in re-
habilitation and for neural plastic changes following
task-oriented training[509–512]. A key factor in neural
recovery appears to be the availability of intensive, long
lasting, and repetitive practice [509, 513, 514]. Motivated
by these requirements, there is increasing interest in the
development of robotic devices for task-oriented therapy
of upper and lower extremities for patients with neuro-
logic injuries [515–518].
A critical aspect to the clinical success of any thera-

peutic device is determining how the device could po-
tentially be used to benefit both patients and therapists.
For those patients who can tolerate additional exercise, a
robotic therapy device could be used relatively unsuper-
vised as an adjunct to regular therapy. Another possibil-
ity is for therapists to integrate the device into their
regular therapy. This could improve the effectiveness of
therapists by providing them a tool that reduces the rou-
tine manual manipulation aspects of their treatment,
thereby allowing them to focus on other aspects of
therapy.
What has been largely ignored so far is the question of

therapy distribution in time. We usually deliver care on
a regular basis with sessions equally spaced in time, and

the total number of sessions is usually determined by in-
surance or other external factors, such as therapist
scheduling, family constraints, and other factors, but not
by the specific needs of the patient, or on a rational
evidence-based approach.
In October 2013 the Rehabilitation Engineering Re-

search Center on Timing Investigation Dosage Imple-
mentation (TIDI) was funded to develop a center
designed to establish a rational basis for choosing the
appropriate time distribution for use of robotic and
computer based interventions in rehabilitation therapy.
During the first two years of the project, investigators

will measure the response to single therapy episodes,
tracking the time-course of task acquisition (the learning
phase), and most importantly, the time course of decay
(forgetting). These data will then be used to model the
time courses of repeated therapy and to quantify the
learning/forgetting process. We can also determine
whether summation of learning is linear, amplified, or
reduced – all key factors in planning therapy schedules.
These models will then be tested during the later stages
of the program.
The areas of study for the RERC include an investiga-

tion of mixed-reality rehabilitation. This is a novel sys-
tem that allows people with stroke to perform
naturalistic, repetitive practice of everyday movements,
while receiving intuitive and useful visual, auditory, and
eventually haptic feedback related to key aspects of the
voluntary movement. We also are developing computer
based algorithms for restoration of language after stroke
using a computer-based treatment program, Aphasia-
Scripts [519] (Fig. 17). A third area of investigation in-
volves the optimal timing of lower extremity therapy
using a portable ankle rehabilitation robot that conducts

Fig. 17 Learning and forgetting during script training in aphasia. Script training is provided for one hour. Left: Screenshot of the computer-based
script training that is delivered by a virtual therapist. Right: Learning - Performance increased from a baseline mean rate of 24.3 words per minute
(WPM) to 52.3 WPM immediately post-treatment. Forgetting – Performance decreased to 35.3 WPM at 1 day and 30.65 WPM at 1 week
post treatment
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active and passive stretching. Lastly, we are examining
the timing of training for use of a walking exoskeleton in
spinal cord injured persons.

Future directions In the future we can expect that ag-
gressive steps by insurers and employers, new models of
healthcare delivery and the focus by the Affordable Care
Act on healthcare value and patient outcomes will con-
tinue to exert downward pressure on healthcare pro-
viders. Healthcare providers are seeking better evidence
on which to base decisions for healthcare delivery. For
example, a 2013 Medicare Payment Advisory Commis-
sion report to Congress noted [520] “The Medicare pro-
gram currently lacks clear clinical guidelines as to who
needs outpatient therapy, how much therapy they should
receive, and how long they need services.” Understanding
the time course of the effects of rehabilitation therapies
will care to be more individualized, more effective,
streamlined, and dynamic.

Conclusions
By reviewing rehabilitation engineering research pro-
gress through the lens of NIDILRRs’ RERCs, our goal
was to gain insight into the evolving nature and de-
mands of rehabilitation technology development, as well
as the role of a multidisciplinary structure, like the
RERCs, in shaping the production of this technology.
Our assessment is that the NIDILRR RERC program is
indeed highly multidisciplinary, and this approach
helped diversify the scope and alter the perspective of
rehabilitation engineering research in four key ways.
Theme 1: Diversification of disabilities addressed
Since the inception of the RERCs in the 1970’s, the

scope of rehabilitation research has expanded to address
different types of disabilities and the ever-increasing
complexity in the interaction between the person and
the environment. Most of the work at the original Re-
habilitation Engineering Centers funded in the 1970’s fo-
cused on technologies for individual mobility, such as
prosthetics, functional electrical stimulation, and control
systems for powered wheelchairs. While this line of work
is important and is advancing right now in exciting ways,
the scope of mobility research increased to include both
technologies and policies that address mobility and other
needs at a societal level. A prime example is the Tira-
misu mobile application that has been used by thou-
sands to access public transit information. RERC work
has also expanded to address issues related to vision and
hearing function, as well as the complex spectrum of
cognitive impairments. Another trend is that RERC re-
search has expanded into issues of rehabilitation therapy
and exercise, including learning and plasticity, which are
powerful modulators of health and impairment status

(as exemplified by the five RERCs focused on Rehabilita-
tion Therapy and Exercise – see Table 1).

Theme 2: From specialized to mainstreamed technologies
Another change of perspective has been to increasingly
understand that people with a disability are integrated with
people without a disability into an interdependent society
through mutually-usable technology, via, for example, the
internet, wireless technologies, and architecture. A growing
emphasis on universal design has brought a cross-disability
perspective to design of rehabilitation technology and a
concern for broader issues of usability, recognizing that
people with disabilities have similar concerns for durability,
reliability, and quality of the customer service as the
broader population.Increasingly, through universal design,
advancements in rehabilitation technology are becoming
mainstream and benefitting broader populations. Universal
design is now used in many of the RERCs to support not
only social participation of people with disabilities, but
others as well. For example, using the Tiramisu mobile ap-
plication as an example again, many users without a disabil-
ity are unaware that their crowdsource contributions are
specifically designed to help riders with disabilities. The
knowledge of the rehabilitation technology community has
been applied in mainstream design in many ways; examples
include curb ramps as a universal feature of sidewalks, cap-
tioning as a universal feature of television, the incorporation
of accessibility features in computer operating systems,
voice over for making gesture based computing accessible,
touch responsive models for wayfinding, and standards for
basic accessibility to all homes. RERCs have played a role in
facilitating the adoption of these innovations.

Theme 3: Expanding use of information technologies
A major evolution in terms of technology focus of the
RERC program since the 1970’s is the greatly increased use
and development of information technologies, including
the internet, miniaturized sensors, portable computing, mo-
bile apps, and virtual reality. Most of the RERCs currently
emphasize these sorts of technological approaches, and
there have been successes related to these technologies
(Table 2). One might say that information technologies are
the substrate on which rehabilitation innovation has
recently flourished. In a double-edged sword, however, the
move by society to digital technologies, everywhere, in
every activity not only enables innovative solutions, but
creates profound new issues, particularly with respect to
participation. Such complex, bidirectional effects demand
insight and creativity from rehabilitation engineering.

Theme 4: Multidisciplinarity as a contributor to
rehabilitation engineering
As stated in the Introduction, the first objective of the
nascent REC’s, defined at a meeting held by the National
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Academy of Sciences in 1970, was “to improve the qual-
ity of life of the physically handicapped through a total
approach to rehabilitation, combining medicine, engin-
eering, and related science.” The RERC’s have attempted
to meet this objective, and, in fact, the scope of “rehabili-
tation” covered by the RERC’s is even broader than at
first implementation, including more types of disabilities
(Theme 1 above). The knowledge of the rehabilitation
technology community has been applied in mainstream
design in several ways (Theme 2 above). Involvement of
“medicine” has expanded to include the fields of therapy,
exercise, prosthetics and orthotics, and psychology, and
“science” now includes, for example, computer and in-
formation science in ways not envisioned (Theme 3
above). Researchers in a broad range of fields (36 total
fields reported, see Table 3), including about 11% of the
staff who have a disability related to the project on
which they are working, have collaborated to produce
many impactful products (see Table 2). However, growth
possibilities still exist, as we describe next.

Growth Opportunities and Possible Future Directions
Currently, 70% of the research and development staff of
RERCs are in engineering fields, 23% in clinical fields,
and only 7% come from basic science fields (Table 3).
Does this distribution adequately implement the “total
approach” desired of the RERC structure in its original
charter? When asked to critique the RERC program as
we collaborated on writing this paper, some RERC direc-
tors advocated that science and scholarship increasingly
drive program activities. Therefore, strengthening the in-
volvement of scientists, and the use of science to drive
activities, is one potential growth opportunity for the
RERC program. Several directors thought that the re-
view process could be modified to increase scientific
rigor, in part by increasing the size of and expertise on
the review panels, and in part by revising the rubrics
used to evaluate applications. Other directors pointed
out, however, that while a good RERC will advance sci-
ence and use science, the primary goal is not science but
the creation of solutions using science, technology, and
engineering. Arguably, it this pragmatic emphasis that
makes the RERC program unique and important com-
pared to many other funding programs aimed at re-
habilitation research, and perhaps accounts for the high
involvement of engineers.
The future success of the RERC program will also likely

depend on incorporating new technological approaches. We
observed above that one of the major evolutions in the
scope of rehabilitation engineering research within the
RERC program was the increasing focus on information
technologies. In the near future, revolutions in additive
manufacturing (e.g., 3D printing), biomaterials, artificial
intelligence and robotics (e.g. deep learning and self-driving

cars), as well as neural interfaces (e.g. brain computer inter-
faces) and regenerative medicine (e.g. stem cell therapy
coupled with rehabilitation) have the potential to reshape
the portfolio of technologies used by rehabilitation engineer-
ing. How will the RERC program respond and lead as new
technologies come to bear on key, persistent needs of indi-
viduals with a disability? Some directors advocated for the
use of “open” rather than “targeted” RERC calls, because
they believe they allow for greater creativity and new ideas.
Encouragingly, about 11% of the research and develop-

ment staff of RERCs have a disability that informs their
work. However, the directors agreed that individuals with
a disability could be even more frequently and more in-
timately involved in the design process, both as consumers
and designers. In addition, they see a growth potential for
interaction between RERCs (recall only 13 of 19 RERCs
reported some level of interaction with each other), and
also with industry. Some directors noted that there is a
need to identify cross-cutting concepts (examples given
included fundamental psychological needs, the role of
self-management to promote core goals, consideration of
the timing of rehabilitation interventions, and the consist-
ent incorporation of universal design) to improve and
focus collaboration. The future success of rehabilitation
engineering will likely depend on the continued expansion
of multidisciplinary collaboration, inclusion of new expert-
ise and new users, increasing participation of individuals
with disabilities, and identification of innovative themes
that promote new ways of looking at key problems and
opportunities.
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