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State of the Biomarker Science in Ovarian
Cancer: A National Cancer Institute Clinical
Trials Planning Meeting Report
Josee-Lyne Ethier, MD, MSc1; Katherine C. Fuh, MD, PhD2; Rebecca Arend, MD3; Gottfried E. Konecny, MD4;
Panagiotis A. Konstantinopoulos, MD, PhD5; Kunle Odunsi, MD, PhD6; Elizabeth M. Swisher, MD7; Elise C. Kohn, MD8; and
Dmitriy Zamarin, MD, PhD9

abstract

PURPOSE Despite therapeutic advances in the treatment of ovarian cancer (OC), 5-year survival remains low,
and patients eventually die from recurrent, chemotherapy-resistant disease. The National Cancer Gynecologic
Cancer Steering Committee identified the integration of scientifically defined subgroups as a top strategic priority
in clinical trial planning.

METHODS A group of experts was convened to review the scientific literature in OC to identify validated predictive
biomarkers that could inform patient selection and treatment stratification. Here, we report on these findings and
their potential for use in future clinical trial design on the basis of hierarchal evidence grading.

RESULTS The biomarkers were classified on the basis of mechanistic targeting, including DNA repair and
replication stress, immunotherapy and tumor microenvironment, oncogenic signaling, and angiogenesis.
Currently, BRCAmutations and homologous recombination deficiency to predict poly (ADP-ribose) polymerase
inhibitor response are supported in OC by the highest level of evidence. Additional biomarkers of response to
agents targeting the pathways above have been identified but require prospective validation.

CONCLUSION Although a number of biomarkers of response to various agents in OC have been described in the
literature, high-level evidence for the majority is lacking. This report highlights the unmet need for identification
and validation of predictive biomarkers to guide therapy and future trial design in OC.

JCO Precis Oncol 6:e2200355. © 2022 by American Society of Clinical Oncology

INTRODUCTION

Ovarian cancer (OC) is the eighth most commonly oc-
curring cancer in women and the 18th most commonly
occurring cancer worldwide.1 In the United States, there
were an estimated 21,410 new cases diagnosed and
13,770 deaths from OC in 2021. Initial treatment re-
quires expert multidisciplinary care, which typically in-
volves primary debulking surgery or neoadjuvant
chemotherapy (NACT).2 Despite therapeutic advances,
the 5-year relative survival in the United States remains
low (49.1%), and patients eventually die from recurrent,
chemotherapy-resistant disease.3

The US National Cancer Institute (NCI) Gynecologic
Cancer Steering Committee (GCSC) identified target-
ing scientifically defined OC subgroups to advance
precision therapy as a top strategic priority in clinical
trial planning. On the basis of this input, the NCI
convened an OC Clinical Trials Planning Meeting
(OCCTPM) in February 2021. The objectives of the
OCCTPM were to review the molecular and immu-
nologic landscape in OC, to develop trials on the basis
of validated biomarkers, and to design novel combi-
nation therapies to overcome drug resistance. Before

the meeting, a group of experts were assembled to cull
the scientific literature for data on validated discrimi-
nants to inform treatment-focused groups and to
identify validated markers for patient selection and
treatment stratification. Reports were generated on
several key areas including antiangiogenic therapy,
DNA damage repair, hormone-related pathways, im-
munotherapy, gene signatures, epigenetics, and on-
cogenic signaling. We summarize the key findings
from these individual reports below and identify po-
tential candidate approaches for clinical trial planning
and design on the basis of hierarchal evidence
grading.

METHODS

Predictive biomarkers differentially segregate expected
benefit from a defined therapy and measure the
likelihood of better or worse outcomes in response to a
specific biomarker-targeted intervention. Predictive
biomarkers are differentiated from prognostic bio-
markers by the requirement for a statistically significant
treatment outcome by biomarker interaction.4,5 This
difference can be shown using ERBB2/HER2 ampli-
fication as an example of both a prognostic and
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predictive biomarker.HER2-amplified cancers have a worse
overall prognosis compared with nonamplified cancers.6

Additionally, HER2-amplified cancers show increased re-
sponsiveness to HER2-targeted agents.7 Validated tests
allowing the selection of patients with predictive biomarkers
are known as companion diagnostics. These are defined by
the US Food and Drug Administration (FDA) as medical
devices that provide essential information for the safe and
effective use of a corresponding drug or biological product.8

Biomarkers are further categorized depending on their use
in clinical trial design and hypothesis testing. Integral bio-
markers are inherent to study design and are used to de-
termine trial eligibility or stratification or can be used as
primary end points. Integrated biomarkers are incorporated
prospectively into trials for hypothesis testing, often for
prospective validation of their treatment interactive effect to
allow promotion to use as integral biomarkers. Finally, ex-
ploratory biomarker testing can be planned for hypothesis
generation leading eventually to implementation as inte-
grated elements and then for integral use. Considerations
for appropriate use of biomarkers in clinical trial design
include a number of variables including assay performance
characteristics, ease of implementation, costs, and strength
of available evidence to support their use.

Several standardized guidelines for reporting the strength of
evidence supporting the use of a given biomarker have
been proposed. ASCO Tumor Markers Guidelines Com-
mittee recommended five Levels of Evidence (LOEs) to
determine the clinical utility of a tumor marker.9 Initially
published in 1996, this LOE scale has been widely used
and includes domains involving patients, specimens, as-
says, and statistical analyses. More recently, the LOE scale
was revised by Simon and al. to provide more precise
definitions for the types of studies that might be used to
analyze the clinical utility of a given prognostic or predictive

biomarker.10 Level I evidence consists of a prospective trial
designed to address the tumor marker in question or a
prospective trial not designed to address the tumor marker
but accompanied by one or more validation studies with
consistent results. The consistent results from these vali-
dation studies must be equally compelling and performed
using the same assay or similar assays that clearly identified
the same marker.7 Use of the estrogen receptor (ER) to
predict endocrine therapy benefit in breast cancer is an
example of a biomarker with supported by level 1 evidence,
including both prospectively designed trials and multiple
validation studies.11 Level II evidence includes prospective
trials not designed to address the tumor marker without
confirmatory validation studies or with supportive evidence
from two or more prospective observational studies. Level
III/IV evidence includes singular prospective observational
and retrospective studies correlating the biomarker with an
outcome. It is important to note that the LOE for a particular
biomarker is specific to the tumor type, drug, and clinical
setting in which it has been validated. These criteria,
qualified by correlation to treatment outcome, have been
used for the grading of LOE in this summary report.

RESULTS

Data supporting biomarkers with level I and II evidence
(Table 1) and select biomarkers of unclear predictive value
(level III/IV; Table 2) and those not found to be predictive of
clinical benefit (Table 3) are discussed below. The bio-
markers have been categorized on the basis of cancer-
associated pathways targeted by specific drugs.

DNA REPAIR AND REPLICATION STRESS

Homologous recombination repair (HRR) is a pathway
responsible for repair of double-stranded DNA breaks.
High-grade serous OC (HGSOC) is characterized by
chromosomal instability due to impaired HRR pathways,

CONTEXT

Key Objective
To evaluate the predictive value of existing and emerging biomarkers in ovarian cancer (OC) for use in future clinical trial

design on the basis of hierarchical evidence grading.
Knowledge Generated
Multiple potential biomarkers have been identified, but few have been found to be predictive on the basis of high-level

evidence showing treatment/outcome interaction. Currently,BRCAmutations and homologous recombination deficiency to
predict poly (ADP-ribose) polymerase inhibitor response are supported in OC by the highest level of evidence. Mismatch
repair deficiency and high tumor mutation burden are predictive of response to pembrolizumab irrespective of cancer type
and may be relevant to rare OCs exhibiting these alterations. Additional biomarkers of response to agents targeting DNA
repair and replication stress, immune response, oncogenic signaling, and angiogenesis have been identified but require
prospective validation.

Relevance
This report highlights the unmet need for identification and validation of predictive biomarkers to guide therapy and future trial

design in OC.
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TABLE 1. Predictive Biomarkers With Supporting Level 1-2 Evidence for Use in Selection or Stratification in Clinical Trials for Epithelial Ovarian Cancer

Biomarker Response to
Assigned

Level of Evidence Setting/Comments References

DNA damage repair

Germline/somatic
BRCA1/2 mutations

PARPi I Maintenance in primary and recurrent setting
and monotherapy in recurrent setting

12-19

HRD PARPi in combination with
bevacizumab

I Frontline maintenance setting 14

Tumor BRCA1/2 reversion
mutations

PARPI in combination with
cediranib

II Post-PARPi progression, associated with
nonresponse

20

RAD51C/D mutations PARPi II Monotherapy in recurrent setting 18,21

BRCA1 methylation PARPi monotherapy Monotherapy in recurrent setting 22

CCNE1 amplification Adavosertib plus carboplatin or
adavosertib plus carbo/taxol

Adavosertib plus gemcitabine
Praxaserib

II Platinum-sensitive recurrent setting
Platinum-resistant or refractory setting
Recurrrent, BRCA wild-type

23-26

Immunotherapy

Mismatch repair deficiency PD-1/PD-L1 inhibitors I Positive association with response
across cancer types

27

TMB PD-1/PD-L1 inhibitors I Positive association with response
across cancer types

28

Oncogenic signaling

KRAS/NRAS/HRAS
mutations (LGSOC)

Binimetinib (MEKi) and
binimetinib plus paclitaxel

II Platinum-resistant setting 29,30

Abbreviations: HRD, homologous recombination deficiency; LGSOC, low grade serous ovarian cancer; PARP, poly (ADP-ribose) polymerase; PARPi, poly
(ADP-ribose) polymerase inhibitor; PD-1, programmed death receptor 1; PD-L1, program death receptor ligand-1; TMB, tumor mutational burden.

TABLE 2. Promising Biomarkers With Unclear Predictive Value (level of evidence 3-4) in Epithelial Ovarian Cancer
Biomarker Response to Setting/Comments References

Clinical evidence

IFNγ signature PD-1/PD-L1 inhibitors combined
with PARP inhibitors

Positive association with response but used archived samples in a post
hoc study not designed to address tumor marker. No validation studies

31,32

Mesenchymal and
proliferative gene
signature

Bevacizumab Positive association with response but used archived samples in a post
hoc study not designed to address tumor marker. No validation studies

33

ER and PrR receptors Letrozole; anastrazole; fulvestrant;
anastrazole combinations;
letrozole combinations

Studies using ER as integral marker or positive association with
response but used archived samples in a post hoc study not
designed to address tumor marker

34-41

PI3K/AKT/PTEN pathway Pictilisib; alpilisib; buparlisib Early-phase, exploratory studies 42-45

IL-6 Bevacizumab Positive association with response but used archived samples in a post
hoc study not designed to address tumor marker. No validation studies

46

OPN Bevacizumab Positive association with response but used archived samples in a post
hoc study not designed to address tumor marker. No validation studies

46

KELIM Veliparib Positive association with response but a post hoc study not designed
to address biomarker. No validation studies

47

Preclinical evidence only

MYC amplification THZ1 (CDK7 inhibitor) Preclinical data 48

GLS GLS inhibitor Preclinical data 49

SWI/SNF
(ARID1A/SMARCA4)

ATR inhibitors; HMT or
HDAC inhibitors

Preclinical data 50-55

Abbreviations: ER, estrogen receptor; GLS, glutaminase; HDAC, histone deacetylase; IFN, interferon; IL-6, interleukin-6; KELIM, elimination rate constant
K; OPN, osteopontin; PARP, poly (ADP-ribose) polymerase; PD-1, programmed death receptor 1; PD-L1, program death receptor ligand-1; PrR, progesterone
receptor; PTEN, phosphatase and tensin homolog; SWI/SNF, SWItch/sucrose non-fermentable.
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known as HR deficiency (HRD). This results in the inability
of a cell to perform HRR, thus requiring the use of al-
ternative, less reliable repair pathways.62 These generate
patterns of chromosomal alterations referred to as ge-
nomic scars, which are permanent even in the event of
HRR restoration.63-65 HRD in cancer cells has many
underlying causes, of which the most prevalent in OC are
somatic and germline mutations in BRCA1 or BRCA2
(BRCAm).66

BRCA Mutations

The presence of germline or somatic BRCAm has con-
sistently correlated with benefit from poly (ADP-ribose)
polymerase (PARP) inhibitors (PARPi) in multiple studies,
including maintenance after platinum response in both the
primary12-14 and recurrent15-17 settings, and for treatment of
recurrent disease.18,19 Many randomized clinical trials used
BRCAm as criteria for eligibility or prospective stratification,
including SOLO1 and SOLO2 (olaparib maintenance for
frontline [ClinicalTrials.gov identifier: NCT01844986] and
platinum-senstive [ClinicalTrials.gov identifier:
NCT01874353] BRCAm OC), PRIMA (frontline niraparib
maintenance; ClinicalTrials.gov identifier: NCT02655016),
PAOLA-1 (frontline olaparib maintenance alone or with
bevacizumab; ClinicalTrials.gov identifier: NCT02477644)
NOVA (platinum-sensitive recurrent niraparib mainte-
nance; ClinicalTrials.gov identifier: NCT01847274), and
ARIEL4 (recurrent, platinum-resistant or partially platinum-
sensitive; ClinicalTrials.gov identifier: NCT02855944).
Trials including non-BRCAm cancers prospectively strati-
fied on the basis of BRCAm status and preplanned a hi-
erarchical statistical design to evaluate benefit across
stratifications although they did not examine a treatment
outcome by biomarker interaction. All demonstrated the
greatest magnitude of benefit in patients with BRCAm
cancers.

HRD Clinical Assays

Current HRD assays measure mutational profiles or ge-
nomic scars, which are a historical mark of previous HRD

and do not provide dynamic measurements of real-time
HRR function. Use of HRD as a predictive biomarker is
complicated by this caveat. Multiple prospective random-
ized clinical trials have demonstrated statistically significant
differential benefit of PARPi in patients with HRD cancers
compared with those without HRD, athough none have
formally tested the biomarker interaction.12,15,16 However,
there is heterogeneity in the assays used to define HRD
across clinical trials.

The Myriad Genetics myChoice CDx incorporates BRCA
mutation sequencing with a genomic instability score that is
a composite of three different measures of genomic in-
stability: loss of heterozygosity (LOH), telomeric allelic im-
balance and large-scale state transitions which have been
shown to be associated with HRD and response to platinum
agents.63,65,67,68 HRD is defined by this assay as BRCAm or
BRCA wildtype with genomic instability score cutoff ≥ 42.
The PRIMA and NOVA studies used the Myriad Genetics
myChoice Cdx HRD for stratification of patients. Both
BRCAm and the larger HRD population, which included
BRCAm, had greater benefit than biomarker-negative
cases.12,15 The Myriad Genetics myChoice HRD Plus as-
say was used in the PAOLA-1 trial to stratify between HRD
and non-HRD or HR-proficient cancers (≥ 42 = HRD).14

Analysis of the PAOLA-1 results again showed greater
benefit to olaparib for patients with BRCAm and HRD
biomarker-positive cancers compared with biomarker-
negative cancers when given in combination with bev-
acizumab compared with bevacizumab alone. Greater
magnitude of benefit from treatment with niraparib in
platinum-sensitive recurrent HRD OC was also shown in the
Quadra study using the MyChoice assay.19 On the basis of
these studies, Myriad Genetics myChoice CDx assay has
been approved by the FDA as a companion diagnostic for
therapy with olaparib in combination with bevacizumab in
frontline maintenance and for single-agent niraparib ther-
apy in the recurrent settting.

TABLE 3. Biomarkers Not Ready for Use in Epithelial Ovarian Cancer
Biomarker Response to Comments References

Not found to be useful

PD-L1 expression PD-1i/PD-L1i and PD-1i plus CTLA-4i Not predictive of outcomes in most studies 42,56,57

ATM loss Berzosertib (ATRi) monotherapy;
BAY1895344 monotherapy

One CR with berzosertib
All objective responses to BAY1895344 monotherapy observed

in patients with tumors with ATM loss and/or ATM mutation

58,59

HER2 IHC Seribantumab (ERBB inhibitor) Increased treatment benefit with bivariable biomarker of
detectable HRG mRNA and HER2 low

60

CHEK2 mutation PARPi Not associated with clinical benefit 18,61

TP53 mutation Adavosertib plus carboplatin/taxol Not associated with clinical benefit 23

CDK12 mutation PARPi Not associated with clinical benefit 18

Abbreviations: CR, complete response; HER2, human epidermal growth factor receptor 2; HRG, heregulin; IHC, immunohistochemistry; PARP, poly (ADP-
ribose) polymerase; PARPi, poly (ADP-ribose) polymerase inhibitor; PD-1, programmed death receptor 1; PD-L1, program death receptor ligand-1.
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The Foundation Medicine NGS LOH assay (≥ 16% = LOH-
high = HRD) was used for prospective patient stratification
in ARIEL-3 (ClinicalTrials.gov identifier: NCT01968213).
This assay measures the percentage of genomic LOH.
Patients who had LOH high tumors had a greater magni-
tude of clinical benefit from rucaparib than those who
did not.16 In ARIEL-2 (ClinicalTrials.gov identifier:
NCT01891344), a higher magnitude of benefit was ob-
served in patients with HRD tumors (≥ 14% = LOH-high)
compared with the LOH low subgroup (0.62, P = .011).18

BRCA Reversion Mutations

Secondary somatic reversion mutations in BRCA1/2 re-
store an open reading frame and create a functional
protein and, by restoring HRR, generate resistance to
PARPi and platinum.69-73 The impact of reversion mu-
tations on rucaparib response/resistance was examined
in ARIEL2, a prospective phase II trial of rucaparib in
recurrent HGSOC.18,74 In a retrospective analysis, cell-
free DNA was sequenced from serial plasma samples
collected from patients with BRCAm carcinomas re-
ceiving rucaparib in ARIEL2. BRCA reversion mutations
were identified in 18% (2 of 11) of platinum-refractory
and 13% (5 of 38) of platinum-resistant patients in
pretreatment blood collected, compared with 2% (1 of 48)
of patients with platinum-sensitive cancers (P = .049).
Patients without BRCA reversion mutations detected in
pretreatment cell-free DNA had significantly longer
rucaparib progression-free survival (PFS) than those with
reversion mutations (median, 9.0 v 1.8 months; hazard
ratio, 0.12; P , .0001).

RAD51C and RAD51D Mutations and RAD51C
Promoter Methylation

Additional genes and proteins are involved in the HRR
pathway, including the RAD51 family. The impact of
RAD51C and RAD51Dmutations on response to rucaparib
was also assessed in ARIEL2.18,75 Rucaparib was shown to
be active in ovarian carcinoma with RAD51C or RAD51D
mutations, with five partial responses (PsR) among seven
evaluable patients with RAD51C/D mutations treated with
rucaparib. The results from multivariable analysis also
identified RAD51C/D mutation as a significant prognosti-
cator of objective response rate (odds ratio [OR], 20.658;
95% CI, 1.865 to 228.889; P = .0136).75 However, be-
cause this was a single-arm trial, prognostic versus pre-
dictive characteristics of biomarkers cannot be separated.
The role of RAD51C/D in PARPi sensitivity/resistance is
also supported by the finding of RAD51C/D secondary
somatic mutations that restore the open reading frame (ie,
reversion mutations) in some OCs with acquired PARPi
resistance.21 In a study of 12 patients with RAD51C
promoter-methylated HGSOC supplemented with patient-
derived xenograft models, methylation of RAD51C pro-
moter has been also demonstrated to be associated with
sensitivity to platinum and PARPi while loss of methylation

even in a single gene copy was sufficient to confer PARP
inhibitor resistance.76 Given the lack of prospective testing
and validation studies, evidence for RAD51Cmutation and
promoter methylation status as biomarkers is considered
level 3, but the data nevertheless highlight a strong ra-
tionale for inclusion of these biomarkers into prospective
studies.

Homozygous BRCA1 Methylation

Methylation of the BRCA1 promoter can lead to functional
BRCA1 loss if present in both alleles or there is methylation
of one allele combined with a LOH event resulting in loss of
the other allele. A correlation of loss of BRCA1 function due
to homozygous BRCA1 promoter methylation with re-
sponse to rucaparib was demonstrated in ARIEL2.18,22,75

Testing was retrospectively performed on the pretreatment
biopsy and was adjusted for BRCA1 copy number and LOH
to determine zygosity. The homozygous BRCA1 methyla-
tion cancer subgroup had a median PFS of 14.5 months
(95% CI, 4.8 to 18.3, n = 6) which was comparable with the
BRCAm subgroup (12.8 months; 95% CI, 9.0 to 14.7, n =
40) and longer than BRCAwt, non–BRCA1-methylated
cases (5.5 months, 95% CI, 5.0 to 6.2; P = .062, log-
rank test, n = 143). Objective response rate was signifi-
cantly better in the methylated subgroup compared with
BRCAwt patients with non–BRCA1-methylated tumors
(P = .0014, Fisher exact test), with five of six patients with
homozygous BRCA1 methylation achieving a partial re-
sponse. A sixth patient had a 33% reduction in target le-
sions not confirmed by subsequent imaging. In paired
samples and in patient derived xenograft models, meth-
ylation was frequently lost in pretreatment biopsies com-
pared with earlier samples and appears to be another
mechanism of acquired PARPi resistance.22

CCNE1 Amplification

CCNE1 amplification is identified as a dynamic event
enriched in patients with platinum-resistant OC.77 Tumors
with CCNE1 amplification were found to have a prolonged
response to the WEE1 inhibitor adavosertib in combination
with chemotherapy (carboplatin alone or with paclitaxel) in
platinum-sensitive TP53-mutant OC.23 CCNE1 amplification
in platinum-resistant or -refractory OC was correlated with
better response rate in the combination arm in a study of
gemcitabine with adavosertib or placebo (Fisher exact test
P = .013); this did not translate to improved PFS or overall
survival (OS; P . .10).24 Twelve of 19 (63%) patients with
recurrent BRCAwt disease and high CCNE1 copy number
and/or mRNA expression measured on pretreatment core
biopsy samples had PFS ≥ 6 months when treated with
single-agent CHK1/2 inhibitor prexasertib.25 Additionally,
when Cyclin E1 and E2 are bound, this activates CDK2
(cyclin-dependent kinase 2) and drives G1/S progression of
the cell cycle. Overexpression of CDK2 is associated with
abnormal regulation of the cell cycle. Tumors with CCNE1
amplification have been associated with preclinical response
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to CDK2 inhibitors which are currently under
development.78,79 In summary, CCNE1 amplification is
emerging as a potential biomarker of response to adavosertib,
prexasertib, and CDK2 inhibitors, and prospective vadlidation
trials are needed to further support these findings.

IMMUNOTHERAPY AND TUMOR MICROENVIRONMENT

The majority of clinical trials using immune checkpoint
blockade in OC have been disappointing to date. Mismatch
repair (MMR) deficiency and/or high tumor mutational
burden (TMB) are the only level 1 evidence biomarkers
with a strong correlation to response to anti–programmed
death receptor 1 (PD-1) inhibition in solid tumors.27,28

However, MMR is a rare event in OC, occurring in , 5%
overall and most common in low-grade endometrioid or
clear cell type OC.80TMB over 10 mutations/megabase
DNA is considered TMB high,81 and this is a rare event
in OC.31,32,82 The median TMB in high-grade serous OC is
3.6mutations/Mb, and themean TMB is 5.3mutations/Mb.

Expression of program death receptor ligand-1 (PD-L1) has
been demonstrated to enrich for responders to immune
checkpoint blockade across a number of cancer types. PD-
L1 expression in OC at any cutoff has not shown response to
anti–PD-1/PD-L1 inhibition; the lack of activity of this in-
tervention makesmeasure of value of PD-L1 as a biomarker
fraught.42,56,57 Similar to PD-L1 expression, studies of ge-
nomic biomarkers to date have failed to identify predictors
of response to immunotherapy in OC.

A study by Färkkilä et al identified potential predictors of
response to niraparib and pembrolizumab that may be
worthy of further prospective exploration. In this study,
which retrospectively analyzed specimens from 62 women
enrolled in the TOPACIO trial for platinum-resistant OC
(ClinicalTrials.gov identifier: NCT02657889), mutational
signature 3, reflecting defective homologous recombination
DNA repair, and positive interferon gamma gene expres-
sion signature, as a surrogate of exhausted CD8+ T cells in
the tumor microenvironment, were found to be associated
with an improved outcome31 (Table 2). However, this was
not a randomized trial, so these findings could be due to a
lack of a comparator arm.

ONCOGENIC SIGNALING

Several oncogenic pathways have been explored for
therapeutic targeting across a number of OC histologic
subtypes. Post hoc analysis of the negative trial MILO/
ENGOT-ov11 (ClinicalTrials.gov identifier: NCT01849874)
tested binimetinib versus physician’s choice chemotherapy
(PCC) in recurrent or persistent low-grade serous carci-
noma. This trial found that patients with low-grade serous
OCs bearing KRAS mutations had better response to
binimetinib, a small-molecule inhibitor of MEK1/2.29 This
study included 303 patients of whom 215 had tumor testing
data available. The frequency of KRASmutation was evenly
distributed between the two groups, 32%-34%, and was
significantly associated with objective response to

treatment with binimetinib (OR, 3.4; 95% CI, 1.53 to 7.66;
unadjusted P = .003) but not with PCC (OR, 2.13; 95% CI,
0.67 to 6.81; P = .2). The positive GOG-0281 trial of tra-
metinib versus PCC (which included hormonal therapy
options) had molecular data for 134 of 260 randomly
assigned patients for a preplanned analysis.83 A treatment
by KRAS/NRAS/BRAF mutation interaction analysis ad-
justed for multiple comparisons trended to predictive sig-
nificance for response rate (P = .11) and was negative
for PFS.

There are additional biomarkers that are promising but
unclear in terms of predicting response to treatment of
specific agents. Mutations in phosphatidylinositol-3-kinase
(PI3K) pathway have been evaluated in the setting of PI3K
inhibitor therapy and have not been identified as critical
factors for predicting response. Mutations in PIK3CA and
phosphatase and tensin homolog (PTEN) were found to be
associated with response in patients with advanced stage
solid tumors in a phase I trial of pictilisib/GDC-0941(Clin-
icalTrials.gov identifier: NCT00876122). Three of 60 par-
ticipants had OC, one of whom had stable disease for 4
months.43 Combination studies of olaparib with PI3K in-
hibitors such as alpelisib or buparlisib have also been
explored. There was no relationship between presence of
alteration and response to treatment combinations al-
though PI3K alterations were detected in 33%-44% of
tumors.43-45,84 Additional oncogenic signaling pathways
may be of future clinical significance for treatment re-
sponse, but currently, these are only based on preclinical
models. For example, in preclinical studies, c-MYC am-
plification has shown to be a potential predictor of response
to bromodomain and extraterminal inhibitors85 or to ola-
parib and palbociclib.86 Emerging evidence also indicates
that mutations in members of SWI/SNF chromatin
remodeling complex such as ARID1A and SMARCA4 may
sensitize the tumors to epigenetic therapies such as histone
deacetylase inhibitors and EZH2 inhibitors.50-55 A trial of
EZH2 inhibitor tazemetostat in ARID1A-mutated ovarian
clear cell carcinoma (NRG-GY014) has recently completed
accrual (ClinicalTrials.gov identifier: NCT03348631).

ER and progesterone receptors (PrRs) have been studied
in the context of response to aromatase inhibitors and
ER antagonists such as letrozole, anastrozole, and
fulvestrant.34-41 Several studies in heavily pretreated
women with elevated ER-alpha tumor expression dem-
onstrated evidence of disease stabilization compared
with patients with tumors with lower ER-alpha expression.
Most patients progressed within 6 months. There is
limited evidence to date that ER and PrR are functionally
active on different OC types, which may explain in part the
limited benefit observed for these agents.

ANGIOGENESIS

Several analytes have been examined for relationship to
outcome with antiangiogenic agents. To date, none of

6 © 2022 by American Society of Clinical Oncology

Ethier et al

https://www.clinicaltrials.gov/ct2/show/NCT02657889
https://www.clinicaltrials.gov/ct2/show/NCT01849874
https://www.clinicaltrials.gov/ct2/show/NCT00876122
https://www.clinicaltrials.gov/ct2/show/NCT03348631


these have had locked down values validated to show a
treatment-by-biomarker effect. Examples include the
mesenchymal and proliferative gene expression signature,
and plasma interleukin-6 (IL-6), and osteopontin. The
mesenchymal and proliferative gene signatures in high-
grade serous OC have been shown to be associated with
inferior survival. Evaluation of these signatures within the
context of phase III ICON7 clinical trial (ClinicalTrials.gov
identifier: NCT00483782) evaluating a combination of
bevacizumab and carboplatin/paclitaxel chemotherapy
in newly diagnosed OCs demonstrated improved out-
comes with bevacizumab in the mesenchymal and
proliferative signature subgroup.33 However, these data
were derived from a post hoc analysis of ICON7 data and
have not been prospectively validated in other studies.
Circulating IL-6 concentration is an additional promising
biomarker, identified as part of the angiome analysis of
seven putative biomarkers (IL-6, Ang-2, osteopontin,
stromal cell-derived factor-1, VEGF-D, IL-6 receptor [IL-
6R], and GP130). This cassette was analyzed retro-
spectively in plasma of patients enrolled in GOG 218,
double-blind, placebo-controlled, phase III trial in newly
diagnosed stage III or stage IV epithelial OC comparing
chemotherapy with/without bevacizumab incorporated
with/without bevacizumab maintenance.46,87 The data
were dichotomized at the median. Patients with high IL-6
levels had a longer PFS and OS when treated with bev-
acizumab compared with placebo. Osteopontin was
found to be a negative prognostic marker for both PFS
and OS in this angiome analysis. Validation requires,
ideally, a prospective analysis using a locked down cutoff
for IL-6.

CANCER ANTIGEN-125 ELIMINATION RATE CONSTANT K

The modeled cancer antigen-125 (CA-125) Elimination rate
constant K (KELIM), determined on the basis of CA-125
clearance during the first 100 days of chemotherapy initia-
tion, is a validated early marker of tumor chemosensitivity and
prognosis.88,89 Evaluation of KELIM as a predictor of response
to maintenance PARP inhibitor response was also performed
in an exploratory analysis of the phase III VELIA/GOG-3005
study, which evaluated veliparib vs. placebo administered
concurrently with chemotherapy followed by veliparib vs.
placebo maintenance (ClinicalTrials.gov identifier:
NCT02470585).47 Overall, high KELIM values appeared to
enrich for patients with improved benefit from veliparib.
However, it remains difficult to separate the predictive from
prognostic value of KELIM, particularly since PARPi are only
approved in the maintenance setting. Evaluation of KELIM as
a predictive factor of future benefit from PARPi maintenance
in other completed trials could be of value.

DISCUSSION

Although multiple biomarkers have been evaluated in the
OC therapeutic landscape, few have been shown to be
predictive on the basis of high-level evidence showing

treatment/outcome interaction. Currently, use of BRCA
mutations and HRD to predict for response to PARPi is
supported by the highest LOE in OC. MMR deficiency and
TMB have been shown to be predictors of response to
pembrolizumab across several tumor types thus demon-
strating Level 1 evidence. These biomarkers have limited
applicability to OC, as very few OCs exhibit MMR deficiency
or high TMB. Additional biomarkers involved in DNA
damage repair (BRCA1/2 reversion mutations, RAD51C/D
mutations, biallelic BRCA 1 methylation, CCNE1 amplifi-
cation) and oncogenic signaling (KRAS, NRAS, and HRAS
mutations) are supported by Level 2 evidence and require
validation testing. Although additional biomarkers such as
interferon gamma signature and mesenchymal or prolif-
erative gene signatures, PI3K/AKT/PTEN pathway muta-
tions, and IL-6 are promising as predictors of response to
some agents, further supporting evidence is needed to
establish their predictive ability in OC.

Given the increasing recognition that incorporation of inte-
grated and exploratory biomarkers into trials is essential to
understand the predictors and mechanisms of response, the
majority of NRG-sponsored trials now include collection of
archival tissue and pretreatment and on-treatment blood. In
addition, incorporation of novel agents into the neoadjuvant
setting provides an opportunity to sample both pretreatment
and on-treatment tissue which will enable better under-
standing on the impact of novel agents on cancer cells and the
tumor microenvironment. A recently completed trial, NRG-
GY007 (ClinicalTrials.gov identifier: NCT02713386), collected
tumors and blood at baseline and post-NACT with paclitaxel
and carboplatin with/without ruxolitinib. These tumors and
blood specimens are currently undergoing analysis. A recently
activated trial, NRG-GY027 (ClinicalTrials.gov identifier:
NCT05276973), incorporates ipatasertib (AKT-inhibitor) with
NACT. In an effort to identify biomarkers for response, tumors
collected at baseline/pre-NACT will undergo whole-exome
sequencing to evaluate for PTEN, PIK3CA, PIK3R1, AKT1,
TP53, KRAS, NF1, TSC1/TSC2, and tumors collected post-
NACT will be evaluated for changes in downstream pathway
expression for pGSK3β, p-PRAS40, p4EB1, pERK, and
p-AKT. Additional exploratory biomarkers such as immune cell
population differences in blood usingmass cytometry between
responders and nonresponders have also been proposed.

The LOE scale used here also has limitations. Mainly, it is
unclear how to grade LOE for biomarkers without sup-
porting evidence in OC but with established and consistent
predictive value or validation studies performed in multiple
tumor types. One such example is TMB, which consistently
predicts response to PD-1 inhibitors; the poor outcome to
PD-1 and PD-L1 inhibitors is as anticipated given the low
TMB of OC. Available LOE scales do not address whether
biomarker data are reliable if dependent solely on evidence
from other disease types to inform use as an integral
biomarker in OC. It is also questionable whether validation
studies performed in other tumor types can be considered
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as a LOE for OC. For the purpose of this review, we have
considered these where multiple, consistent studies are
available to supplement evidence in OC.

This review highlights the need for correlative science as a
key component of every clinical trial in OC. Furthermore,

biomarker discovery and validation are imperative not only
in OC but within specific histologic subtypes. Future trial
design should allow for biomarker discovery through
correlative studies and validation through prospective use
of integrated biomarkers.
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