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Abstract

Program Similarity Techniques and Applications

by

Lawton Higgins Nichols

The world is full of programs. More are written every day, and so the corpus of

written code is ever-increasing. The entropy of all this code, however, is not increasing

as fast as one might expect. Many programs are identical or very similar to others, and

this is due to many possible reasons: for example, software engineers reusing code or

students solving the same programming assignment. Similar code also occurs naturally

when programs are updated—there the old and new versions are close relatives of each

other, and this can be exploited. Discovering and exploiting similarity is useful in areas

as disparate as program analysis and automated student feedback.

Program similarity is not a solved problem, and my work advances the field of

program similarity research along two axes: methods and applications. This work has

involved the development of new similarity methods as well as the application of those

methods to solve problems in a new or more effective way.
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I am just a poor boy, though my story’s seldom told

I have squandered my resistance for a ballroom full of mumbles,

Such are conferences

Chapter 1

Introduction

The world is full of programs. More are written every day, and so the corpus of written

code is ever-increasing. The entropy of the code, however, is not increasing as fast as

one might expect. Many pieces of code are identical or very similar to others, and this

is due to reuse such as copy-and-paste or code plagiarism. In most cases similar code

should be brought to someone’s attention, and research on program similarity seeks to

help with these issues.

Similar code also occurs naturally when programs are updated—there the old and

new versions are close relatives of each other, and similarities like this can be exploited;

for example, incremental analysis allows for vast performance improvements on the

assumption that program versions are not vastly different.

Program similarity is not a solved problem, and my work advances the field of

program similarity research along two axes: methods and applications. My work has

involved making new similarity methods as well as applying those methods to solve

problems in a new or more effective way. The end goal of my work culminates in the
1



Introduction Chapter 1

following thesis statement:

1.1 Thesis Statement

Using insights from programming languages and program analysis research,

syntactic and semantic similarity methods can be enhanced and exploited in new

ways. These techniques can be applied to areas as disparate as abstract interpreta-

tion and computer science education.

In the remainder of this dissertation I argue this thesis with concrete work. The

remaining chapters are either techniques (Cross-Language Clone Detection, Seman-

tic Clone Detection) or applications (Plagiarism Detection, Fixpoint Reuse, Student

Feedback Using Invariant Inference) of program similarity.

1.2 Source Code

After the corresponding papers are published, the implementations of all tools and

methods mentioned in this thesis (with the exception of the Plagiarism Detection work)

will be located at http://www.cs.ucsb.edu/~pllab under the “Downloads” link.

For the Plagiarism Detection work, we have placed the implementation on GitHub at

https://github.com/lawtonnichols/plagiarism-detector.

1.3 Grant Support

The projects described in Chapter 2, Chapter 3, and Chapter 4 were supported by

NSF CCF-1319060.

2
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Chapter 2

Cross-Language Clone Detection

2.1 Introduction

The clone detection problem has long been recognized by the community, with

many existing papers exploring different techniques for finding clones amongst code

written in a single language [35, 121, 123, 75, 69]. However, in recent years an interesting

twist has arisen due to the rising popularity of cross-language libraries and applications:

cross-language clones. Consider the parser generator ANTLR [2], which has runtimes

that are written in C#, C++, Go, Java, JavaScript, Python (2 and 3), and Swift. Also

consider multi-platform mobile applications, which are often ported between Java and

Objective-C or Swift, the languages used by Android and iPhone applications. In these

kinds of settings, clones can actually cross language boundaries: a fragment of code

in one language can be copied and massaged to conform to the syntax and semantics

of another language. Existing single-language clone detection techniques are unable

to effectively detect these sorts of cross-language clones. In this chapter we propose a

method to detect cross-language clones and demonstrate that it (1) finds cross-language

clones that no existing method can detect; and (2) performs comparably to existing

single-language clone detectors for finding clones within a corpus of single-language
3
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Trees._findAllNodes = function(t, index, findTokens, nodes) {
// check this node (the root) first
if(findTokens && (t instanceof TerminalNode)) {

if(t.symbol.type===index) {
nodes.push(t);

}
} else if(!findTokens && (t instanceof ParserRuleContext)) {

if(t.ruleIndex===index) {
nodes.push(t);

}
}
// check children
for(var i=0;i<t.getChildCount();i++) {

Trees._findAllNodes(t.getChild(i), index, findTokens, nodes);
}

};

template<typename T>
static void _findAllNodes(ParseTree *t, size_t index, bool findTokens, std::vector<T> &nodes) {

// check this node (the root) first
if (findTokens && is<TerminalNode *>(t)) {

TerminalNode *tnode = dynamic_cast<TerminalNode *>(t);
if (tnode->getSymbol()->getType() == index) {
nodes.push_back(t);

}
} else if (!findTokens && is<ParserRuleContext *>(t)) {

ParserRuleContext *ctx = dynamic_cast<ParserRuleContext *>(t);
if (ctx->getRuleIndex() == index) {
nodes.push_back(t);

}
}
// check children
for (size_t i = 0; i < t->children.size(); i++) {

_findAllNodes(t->children[i], index, findTokens, nodes);
}

}

Figure 2.1: A JavaScript (top) and C++ (bottom) clone pair doing a pre-order search.

VerletParticle2D.prototype.setWeight = function(w){
this.weight = w;
this.invWeight =
(w !== 0) ? 1 / w : 0; //avoid divide by zero

};

public void setWeight(float w) {
weight = w;
invWeight = 1f / w;

}

Figure 2.2: A JavaScript (left) and Java (right) clone pair setting the weight and inverse
weight of a particle in a graphics application. A bug-fix has been applied to the
JavaScript clone but not the Java clone.

code sources. Therefore, our technique generalizes the current state of the art in clone

detection by extending it to allow for both single-language and cross-language clone

detection using a single technique.

To make this problem more concrete, consider Figure 2.1, which shows a real-life

case (found during our evaluation described in Section 2.6) of code clones involving

C++ and JavaScript source code from the ANTLR parser generator [2]. To demonstrate

the importance of finding cross-language clones, consider Figure 2.2, which shows

another real-life case (also found during our evaluation) of code clones involving

JavaScript and Java in which a bug-fix has been applied to one of the clones but not the

other. In addition, a quick search of the CVE (Common Vulnerabilities and Exposures)

database yields a vulnerability due to incorrect message authentication checking that

exists in multiple different language implementations of the relevant code [6].
4



Section 2.1 Introduction

There are only four existing papers that we are aware of that introduce new tech-

niques for cross-language clone detection (discussed in more detail in Section 2.2).

That initial work has either focused on clones across languages that share a common

intermediate representation such as .NET [86, 22] or has deviated from classical clone

detection and taken a more restricted, natural language-based approach, sometimes

relying on assumptions that may not be met in real code [42, 41]. None of that existing

work would detect the clone examples given in Figures 2.1 and 2.2 without extensive

modification.

The main reason for these restrictions in previous work is that the syntactic structure

(i.e., parse trees) of different languages can be extremely different even for code that,

at the source level, seems similar. We demonstrate this phenomenon later in this

chapter. In order to overcome this problem, previous work has either restricted itself to

languages with a common intermediate representation (thus enforcing that the syntactic

structure is similar for similar code) or abandoned structural matching entirely and

looked only at the names of variables and other user-defined abstractions (what we call

nominal clone detection). We observe that using purely structural or purely nominal

matching is sub-optimal in a cross-language setting, in that each can yield both false

positives and false negatives.

Our technique consists of (1) a method for enabling structural matching for cross-

language clones even in those cases where syntactic structure is different (Section 2.4);

and (2) a method for composing both structural and nominal matching into a singular

matcher, maintaining the strengths of each while mitigating their individual weak-

nesses (Section 2.5). We have implemented our technique in a tool called FETT. that

works at the granularity of function pairs; we use FETT to empirically compare our

proposed technique against existing techniques (Section 2.6). We begin by describ-

ing related work and background information in Section 2.2 and giving a high-level
5
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overview of our technique in Section 2.3.

2.2 Background and Related Work

The concept of clone detection is not new, and the different techniques involved have

been surveyed extensively [35, 121]. Most existing non-semantics-based techniques

can be categorized into the classes of “structural,” “nominal,” or “hybrid,” which we

define below.

Before we begin, there is a bit of misleading terminology in the literature: there

exist many clone detection tools that are considered language-generic or language-

agnostic (e.g., [123]), but can only be configured to work for programs written in a

single language at a time. CCFinder [75], for example, can detect clones for six different

programming languages; however, the user cannot (outside of naive text-only modes)

truly cross language boundaries during a “language-generic” clone detection phase.

2.2.1 What Exactly Is a Cross-Language Clone?

Intuitively, we consider a cross-language clone to be the same as any same-language

clone—two pieces of code that implement similar functionality—the only difference is

the setting. We highlight here what kinds of clones our tool is able to find, and what

kinds of clones we include in our evaluation based on their classification (i.e., Type I, II,

III or IV [125]).

The usual code clone hierarchy does not translate well to a cross-language setting:

type I and type II clones [125] may not exist across languages because of syntactic

differences between languages (e.g., switch statements exist in C but not in Python). In

this chapter, we present methods that discover syntactic clones modulo the differences
6



Section 2.2 Background and Related Work

in language syntax, and we do this by creating a correspondence between related but

different constructs. We do not consider semantic (type IV) clones that implement the

same functionality in a different way (e.g., quicksort vs. selection sort). Readers familiar

with the standard clone hierarchy can think of the clones that we find as type III clones

generalized across languages.

2.2.2 Structural Program Similarity

Intuitively, two programs (or subprograms) can be considered similar if they look

the same, disregarding identifier names—i.e., if their syntax trees have roughly the

same shape. We refer to structural clone detection as the process of taking advantage

of this similarity.

Same-language clone detection tools usually also consider identifier data, and we

are not aware of any purely structural cross-language clone detector. A notable same-

language tool that operates via structural similarity is Deckard, which converts syntax

trees into vectors for fast comparison [69].

Structural similarity is useful in all settings, but it is a hard problem in a multi-

language setting—all the hybrid structural/nominal methods we describe below make

some restriction on the languages involved. A major part of the novelty of our technique

is a method for purely structural matching across languages (though the final algorithm

then combines structural with nominal (i.e., identifier-based) techniques for greater

accuracy).

2.2.3 Nominal Program Similarity

Whereas structural similarity disregards identifiers and instead looks at code shape,

nominal similarity does the exact opposite. Nominal similarity relies on the insight
7
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that similar code, especially copied and pasted snippets, will have the same identifier

names throughout, regardless of code structure.

Notable same-language clone detection tools that operate via nominal similarity

are CCFinder and SourcererCC, which compare program tokens [75, 129].

Across Languages. Cheng et al. describe CLCMiner [42], the first cross-language clone

detection tool that does not require the languages involved to translate to the same inter-

mediate form. It compares revision histories (diffs) in repository logs for cross-platform

C# and Java programs; the tokens inside commits are used to compute similarity scores.

CLCMiner is the basis for the Nominal algorithm defined in Section 2.5.1.

Cheng et al. study a different notion of nominal similarity in [41], where they

measure the effectiveness of token distributions in finding clones among cross-platform

mobile applications; they obtain a negative result for identifier names alone. Flores et

al. [59] use natural language processing techniques to discover cross language clones

at the function level.

2.2.4 Hybrid Program Similarity

It is logical to combine structural and nominal similarity methods, as the results

they provide are complementary. A notable same-language, hybrid clone detection

tool is NiCad, which performs its comparisons at the parse tree level [126]. Syntax

tree-based comparison is quite common [34, 149].

Tree similarity is computationally expensive [36], and it is more efficient to linearize

programs in some way; sequence similarity algorithms can then do the comparison.

Existing same-language work compares the tokens in the order in which they appear

in the parse tree [65], and we also take advantage of linearization of full parse trees in

this work.
8



Section 2.2 Background and Related Work

Across Languages. Kraft et al. present C2D2[86], the first cross-language clone detection

tool, for C# and Visual Basic programs. This work requires that the languages involved

be compiled to the same intermediate representation (IR)—.NET IR in this case. From

a graph derived from that IR, they create sequences of tokens for subgraphs and use a

Levenshtein distance-based token similarity algorithm to compare them.

Al-Omari et al. build on Kraft et al.’s work and find clones by comparing CIL

intermediate code text [22]. Again, they are restricted to .NET languages.

This work. Our method is a hybrid method, works on any language with a grammar

definition, and relies on just the source code (in contrast to, e.g., CLCMiner which

requires the existence of revision history). We linearize preprocessed parse trees at the

function level and compare the linearized sequences in a novel way that generalizes

Kraft et al.’s work and incorporates features of Cheng et al.’s work.

2.2.5 CLCMiner

Our main comparison is with the only tool designed for cross-language clone

detection and capable of handling arbitrary languages: CLCMiner [42]. We provide

further background on it here. CLCMiner is based on having the source code in a

version control system, and requires a revision history by design. Section 2.5.1 gives a

detailed explanation of our adaptation of CLCMiner. The original CLCMiner algorithm

works on diffs and lexes them, whereas our version works on function parse trees.

We were not able to obtain access to the original CLCMiner source code from the

authors. In order to compare against this method, we implement our own version

which adapts CLCMiner to work with the entire text of a function and have it calculate

the distance metric above when given a function pair. Our new implementation may

perform better or worse than the original (which uses revision history rather than
9
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function pairs) in certain cases.

We incorporate CLCMiner’s distance metric in a novel way in FETT, and show that

our combination of structural and nominal information produces better results. As we

have adapted CLCMiner’s algorithm to work on functions instead of diffs, it relies on

having a parser to extract the functions and does not rely on a version control system.

We refer to our nominal-only adaptation of CLCMiner’s algorithm as “Nominal” for

the rest of the chapter.

2.3 Overview

In this section we provide a high-level overview of FETT and provide justification

for some of our steps. We give an end-to-end example of our clone detection process in

Section 2.8. FETT’s pipeline is:

1. Take as input a corpus of source code (which may exist in multiple languages);

2. Using existing ANTLR grammars, parse and create a separate parse tree for each

function (we currently handle C++, Java, and JavaScript);

3. Simplify parse trees that have an unnecessarily large depth;

4. Abstract the multilingual parse trees into a common representation to facilitate

comparison;

5. Linearize the resulting trees using a preorder traversal;

6. Compare all linearized function pairs using a Smith-Waterman local sequence

alignment algorithm; and finally

7. Present the pairwise similarity scores to the user.
10



Section 2.4 Structural Clone Detection

The following sections fill in the details of the structural and nominal aspects of

FETT’s cross-language clone detection process.

2.4 Structural Clone Detection

One key insight of our structural algorithm is that abstract syntax trees (ASTs),

which eliminate details in the concrete parse trees about how exactly the input was

parsed or what language it came from, tend to look more similar for similar code

even across languages. Unfortunately, ASTs are not part of a language’s specification,

and AST grammars and formats are implementation dependent. We are not aware of

any single compiler that has frontends for the variety of languages that we compare.

Our structural clone detection algorithm processes reduced parse trees (Section 2.4.1) to

eliminate nonessential details about parsing and obtain a structure similar to ASTs.

Another source of disparity between trees generated by two grammars is that the

nonterminals are different. The other key insight of our structural algorithm is that

abstracting reduced parse trees by putting nonterminals in equivalence classes (Sec-

tion 2.4.2) strikes a balance between preserving necessary information and smoothing

out differences across languages.

Our structural algorithm proceeds by extracting functions from an abstracted parse

tree and then computes similarity scores between functions using the Smith-Waterman

local sequence alignment algorithm.

Flattening a tree using a preorder traversal helps smooth out most remaining

inconsistencies between inter-language reduced parse trees. To demonstrate the dissim-

ilarities due to grammatical differences that preorder traversal removes, see Figure 2.3:

a grammar that uses nested if statements will have a parse tree like Figure 2.3b, while

a grammar that uses unnested if statements will look more like Figure 2.3c. As the
11
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if ( exp ) block [else block] (G1)
if exp : block [elif exp : block]* [else block] (G2)

(a) Two different kinds of grammars for if statements.

G1 B1

G2 B2 E

if

if

(b) An example parse tree using the nested
if grammar (G1).

G1 B1 G2 B2 E

if

(c) An example parse tree using the
unnested if grammar (G2).

Figure 2.3: Grammars and parse trees for nested vs. unnested if statements.

else if cases become more numerous in the first grammar the nesting becomes more

severe, emphasizing the differences in the resulting parse trees.

2.4.1 Precedence woes

Some grammar definitions encode operator precedence into the grammar1, whereas

others use facilities provided by the parser generators to encode the precedence. Direct

encoding of precedence causes spurious chains of nonterminals in the resulting parse

tree, which would be removed when the parse tree is converted to an AST. We collapse

the chains of nonterminals encountered in a parse tree for the direct encoding case

to remove the chains and mitigate this disparity between different styles of gram-

mars. Figure 2.4 demonstrates the kinds of issues that are apparent when a grammar

hard-codes precedence—because precedence in this case appears in the form of nested

productions, we always see “AdditiveExpression” even when there is only a multipli-

cation expression present; this will throw off any clone detector that is working directly

on plain parse trees.

If precedence is handled indirectly through the parser generator, then the resulting

1We encountered this only in the C++ grammar during our evaluation.
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· · ·

MultiplicativeExpression

MultiplicativeExpression
‘*’

PMExpression

CastExpression

UnaryExpression

PostfixExpression

PrimaryExpression

Literal

‘5’

AdditiveExpression

ConditionalExpression

AssignmentExpression

Expression

PMExpression

CastExpression

UnaryExpression

PostfixExpression

PrimaryExpression

Literal

‘7’

Figure 2.4: A subtree of the original C++ parse tree for the text “5*7”.
parse tree is much closer to an AST. This is an example of an issue that only arises in a

cross-language setting, and which makes cross-language clone detection strictly more

difficult than same-language clone detection. We condense any chains of nonterminals,

and we refer to the parse trees after this stage as reduced parse trees.

2.4.2 Abstracting Parse Tree Nonterminals

Consider the two reduced parse trees for the expression

binarySearch(array, mid+1, high, x) in Figures 2.5a and 2.5b. Although

they look similar to the naked eye, because the node names are different, even a tree

edit distance algorithm would say that the trees are not similar at all. We thus need to

abstract the nonterminal names while preserving essential information about the tree

structure. After performing this abstraction, we call the resulting parse trees abstracted

parse trees.

Our method instead groups node types with similar meanings across languages,

so that node types that “mean” similar things are in the same group. To do this, we
13
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Primary

Primary

Primary

PrimaryPrimary

Literal

AdditiveExpression

ExpressionList

FunctionCall

(a) Reduced parse tree
from a Java parser.

IdentifierExpression

IdentifierExpression AdditiveExpression

ArgumentList

IdentifierExpression

IdentifierExpressionIdentifierExpression

NumericLiteral

ArgumentsExpression

(b) Reduced parse tree from a
JavaScript parser.

c2

c2

c2 c4

c2 c2

c3

c5

c1

(c) Abstraction of the trees in
Figures 2.5a and 2.5b.

Figure 2.5: Reduced parse trees for expression binarySearch(array, mid+1,
high, x) in Java and JavaScript, and their abstraction. The terminals are omitted for
simplicity.

manually categorize node types into equivalence classes once per pair of languages. For

example, consider the equivalence classes c1 = {FunctionCall, ArgumentsExpression},

c2 = {Primary, IdentifierExpression}, c3 = {ArgumentList, ExpressionList}, c4 = {Numer-

icLiteral, Literal}, c5 = {AdditiveExpression} and the set C = {c1, c2, c3, c4, c5}. After

replacing each node in Figures 2.5a and 2.5b with its equivalence class in C, we end up

with trees that are exactly the same (Figure 2.5c). In this specific example the abstracted

trees are the same, though this is not always the case in practice.

We define the abstraction algorithm in two parts: EqClassMapOf(C) produces a map

from each node to a symbol corresponding to its equivalence class. Abstract(tree, map)

does the abstraction by traversing the given tree bottom up and applying the map.

It removes the nonterminals which do not belong to any equivalence class. When the

abstraction algorithm removes a node, it connects any children of the removed node to

the removed node’s parent.

2.4.3 Sequence Alignment for Clone Detection

Linearizing the trees via a preorder traversal of the nodes will remove most traces

of the structural differences demonstrated in Figure 2.3. Moreover, the state of the art

tree edit distance algorithms are not as scalable as sequence alignment algorithms2.

2APTED, the state of the art tree edit distance algorithm has a time complexity of O(n3) [113] whereas
the variant of Smith-Waterman algorithm we use is O(n2) [24].

14
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These observations led us to explore sequence alignment algorithms as an alternative

to tree-edit distance. Levenshtein distance is a popular choice in this category. Smith-

Waterman is strictly more general than Levenshtein distance, and it supports assigning

weights to different elements in the sequence. Hence, we use the Smith-Waterman

algorithm on preordered trees to compute similarity scores. We evaluate the precision

and recall of both Smith-Waterman and tree edit distance in Section 2.6 and observe

that sequence alignment performs better in terms of precision and scalability.

We convert function subtrees to sequences by computing the preorder traversal.

Finally, we execute Smith-Waterman using custom weights on each sequence pair

and normalize the resulting score using the normalization factor Z described below.

We chose the weights based on the hypothesis that certain nodes like conditionals

indicate important program structure, and should generally appear in the same order

in a cloned pair of functions; therefore, we assign higher weights to penalize the

function pairs in which this alignment does not occur. In the algorithm, the function

SmithWaterman(a, b, M, g) computes a similarity score between two sequences a and

b using the Smith-Waterman algorithm with substitution matrix M and linear gap

penalty coefficient g; a detailed explanation of these parameters can be found in [24].

Normalizing Smith-Waterman results. The result of the Smith-Waterman algorithm

depends on the size of the input, and longer sequence pairs have higher scores. In

order to find both short and long clones, we normalize the resulting similarity score

from the Smith-Waterman algorithm to neutralize the bias towards longer clones.

We define the self-similarity score of a sequence a as the score assigned to the pair

(a, a) by the unnormalized Smith-Waterman algorithm; denote this score S(a). We

normalize score assigned to a pair (a, b) by 1
Z where Z = max {S(a), S(b)}. Note that Z

is an upper bound for the score obtained by Smith-Waterman, and the score is equal to
15
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Z if and only if a = b. Thus, using the normalization factor 1
Z is useful if one is looking

for similar whole functions rather than looking for a small snippet in a larger piece of

code.

2.5 Hybrid Algorithm

Combining nominal and structural clone detection in a cross-language setting

provides the best of both worlds, and mitigates any issues that running just one

detection method might have.

Identifier names carry some meaning about the programmer intent and give a code

snippet context. On the other hand, structure of code (conditionals, loops, function

calls etc.) also carry information about programmer intent. Without this structural

information, we might misidentify two pieces of code as clones. Our hybrid algorithm

is guided by structural information while consulting the Nominal algorithm to use

local context within structurally similar pieces of code.

2.5.1 Our Nominal Algorithm

We have adapted CLCMiner’s algorithm to work on functions as our purely Nomi-

nal algorithm. For a given pair of functions ( f1, f2), our nominal matching algorithm

consists of two parts.

The first part takes a function f , removes the comments and splits the tokens on

each non-letter character (such as underscores or dashes). It then splits the camel

case tokens into words and converts them to lowercase—each function becomes a bag

of words that is represented by a characteristic vector, which holds the number of

occurrences of each word. We denote the resulting characteristic vector as v( f ).
16
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The second part of the algorithm computes a normalized distance between the two

characteristic vectors v1, v2 according to the formula d(v1, v2) =
‖v1−v2‖1
‖v1‖1+‖v2‖1

where ‖·‖1

is the `1 norm (i.e., the sum of the absolute values of every entry in the vector). This

algorithm computes a distance between two given functions; to make it comparable to

the other algorithms, we use 1− d(v1, v2) as a similarity score.

2.5.2 Full Algorithm

Our full algorithm is shown in Section 2.7. It is a combination of the structural

and nominal algorithms: we linearize the parse trees, and consecutive terminal nodes

become bags of words. Nonterminals are compared using our structural method, and

bags of words are compared using our nominal method.

2.6 Evaluation

In this section we compare our work against existing work on both cross-language

and same-language clone detection.

2.6.1 Implementation and Environment

We have implemented our tool FETT in Scala and used the ANTLR parser frame-

work as its front end, so that any language with an ANTLR grammar can be easily

connected.

To test whether FETT can handle same-language clone detection with similar accu-

racy as specialized, language-specific tools, we configured NiCad 4.0 [126] to work at

the function-level granularity and experimented with configurations until we found
17



Cross-Language Clone Detection Chapter 2

the best-performing one for our tests3.

Because we are comparing parse trees, we also want to determine how well we

compete against the state-of-the-art tree edit distance algorithms, thus we compare

one data set with APTED [112, 113]. We normalize the similarities using the method

described in [93], and, as this normalization method requires a metric distance, we

could not introduce weights for matches. We can still weight mismatches, though. We

found that the parameters mismatch = 1, deletion = insertion = 5, match = 0 gave us the

best results overall.

We chose the threshold for ignored functions (defined in Section 2.4.3) to be θ = 35

for every experiment, and the exact tolerance parameters are given below for each

case. We used the same set of equivalence classes with the same weights for all cases:

conditional, loop, return, and function call were all weighted 5; assignments were

weighted 2; and all other considered nodes were weighted 1.

Our experiments were run on a computer with an Intel i7 4790 3.6 GHz processor.

FETT, Structural, Tree Edit Distance, and Nominal were given 8 GB maximum heap

size and were set to use 4 threads.

2.6.2 Methodology

We used the standard statistical metrics of precision, recall, and F-measure to

quantitatively assess the effectiveness of our different techniques.

Due to the sheer amount of possible clone candidates in large projects, it is difficult

to manually obtain complete ground truth for clones in real-world programs. Hence,

we created two separate data sets for evaluation:

Manual programs set (handwritten set). We implemented a set of small programs

3NiCad: threshold=0.5, minsize=4, maxsize=2500, rename=blind, filter=none, abstract=none, normal-
ize=none
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in different languages to create a setting in which we have complete knowledge of

whether a pair of functions are clones. Statistics about the code are in Table 2.1.

Table 2.1: Statistics of handwritten clones.

Language Pair LoC #Functions #Pairs #Clones

Java 201 12 132 11JavaScript 177 11

Java 201 12 144 12C++ 195 12

JavaScript 177 11 132 11C++ 195 12

Randomly sampled program set (large set). We chose four libraries that have im-

plementations in different languages and set the tolerance parameters4 defined in

Algorithm 1 to give the best results on a per-language pair basis. We randomly sam-

pled functions from the files with the same names (ignoring extensions) and manually

checked the pairs to create a sample with ground truth—this is essentially the sampling

strategy used by Cheng et al. [42] applied to functions instead of diffs. We chose to

reuse this sampling strategy due to the manual nature of our evaluation, and because

we only possess finite human resources; it does not reflect the true distribution of

clones, as function clone pairs are unlikely to be chosen in a standard uniform random

sample—had we gone that route, our precision and recall scores would not have been

meaningful. We are not aware of a better solution to this problem.

The first three libraries considered for this set are: the ANTLR parser framework,

version 4 [2]; the toxiclibs computational design library [15]; and the ZXing barcode

4For FETT: µ = 6 (match coefficient) and g = −4 (gap penalty) for the case of comparing Java and
JavaScript, and (µ, g) = (9,−1) for Java/C++ and JavaScript/C++, and (8,−3) for Java/Java. The
nominal multiplier was set to 2 for all but the Java/C++ and JavaScript/C++ cases, where it was set to 3.
For the Structural algorithm: (7,−1) for JavaScript/Java, (8,−4) for Java/C++, (0.5,−2) for Java/Java,
and (9,−4) for JavaScript/C++.
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image processing library [18]. We also considered two ports of the LAME MP3 encoding

library in different languages that were ported by different developers to assess the

efficacy of clone detection tools in such a scenario: lamejs, a JavaScript port [12]; and

java-lame, a Java port [10]. Statistics about the libraries are in Table 2.2.

Table 2.2: Statistics of libraries considered for evaluation. LoC: non-blank non-comment
lines of code, Fun’s: # of functions found in each project, Nont’l (Nontrivial) Fun’s: # of
functions whose reduced parse trees are > θ (the chosen threshold), Pairs: the # of possible fun.
pairs, Same-File Pairs: # of pairs of functions coming from files with the same name (ignoring
extensions), Sel’d: # of selected pairs, Runtime: total time (H:M:S) to run our method.

Data set Library Lang. Pair LoC Fun’s Nont’l Fun’s Pairs Same-File Pairs Sel’d Runtime Clones

antlrj ANTLR Java 13,770 1,393 694 240,471 4,942 505 0:56:18 14Java 13,770 1,393 694

antlrjsj ANTLR Java 13,770 1,393 694 281,070 6,240 663 0:25:01 45JavaScript 7,323 728 405

antlrcppjs ANTLR C++ 15,766 1,222 480 194,400 3,762 752 0:17:11 17JavaScript 7,323 728 405

toxic toxiclibs Java 36,178 3,734 2,156 5,004,076 11,637 1,060 3:01:12 63JavaScript 36,976 4,108 2,321

zxing ZXing Java 38,968 2,659 1,689 684,045 1,388 254 2:10:51 45C++ 22,784 866 405

lame java-lame Java 20,950 575 436 101,152 4,645 873 0:27:37 34lamejs JavaScript 11,112 285 232

2.6.3 Results

For our main set of tests, we compare FETT against (1) our purely Structural algo-

rithm (i.e., no token similarity), and (2) our Nominal algorithm. We also apply the

APTED tree edit distance algorithm combined with our abstraction method on our

handwritten data set; tree edit distance takes at least an order of magnitude longer

than the other tools, and we did not evaluate the large data set using tree edit distance

because of this and due to its poor performance on the handwritten tests. We use

NiCad on the Java-Java same-language case of our large data set.

Cumulative clone ratios. We look at the graphs of cumulative clone distributions

to choose a good cut-off point for each of the three techniques. These graphs were
20
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originally used in [42], and they are meant to give an intuition about where a clone

detector separates clones from non-clones.

Similarity vs. cumulative clone ratio graphs track the ratio of clones to non-clones

as the similarity score varies from 1.0 to 0. For example, at point 0.4 on the similarity

axis, we plot the ratio of clones to non-clones of all samples with similarity scores > 0.4.

A successful clone detector would have a similarity value at which there is a significant

drop in this ratio, and that would create the optimal cutoff point. A clone detector

may not assign very high scores to any pairs based on its similarity metric; in such

cases, we start the plot from the first nonempty bin. Figure 2.7 shows the cumulative

clone ratios for antlrj and toxic; graphs of other test cases are omitted because of space

constraints, but they are of similar overall shape. We chose a cutoff point for each clone

detector based on the drops from these graphs (e.g. we chose the cutoff point of 0.4

for FETT’s Java/Java case). The relative shape of the graph is more important than

absolute scores—squishing or stretching the similarity scores only affects the choice of

the optimal cutoff point.

Handwritten test set. When evaluating the manually created (handwritten) data set,

we used the same parameters µ = 7, g = −2 overall for all pairs of functions in the data

set and considered the combined results for both FETT and the Structural algorithm.

FETT had its nominal multiplier set to 2. Figure 2.6 shows the clone distributions

of different clone detection methods for the handwritten program set; and precision,

recall, and F-measure (harmonic mean of precision and recall) for this set are given

in Table 2.3. FETT and the Structural algorithm had a cutoff of 0.5, and the Nominal

algorithm’s cutoff was 0.6.

Handwritten test set discussion. The table and the figures paint a similar picture. Both

FETT and the Structural algorithm seem to perform the best on this data set—the graphs
21
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Figure 2.6: Cumulative clone ratio distribution for handwritten programs. Results of
FETT and structural coincide.
for the higher similarity scores have a high clone ratio, and there is a sharp decline

visible in both graphs as the similarity score is allowed to lower. The Nominal algorithm

has a less sharp drop, and this indicates that it is assigning mid-range similarity scores

with low precision. It is also notable that tree edit distance does so poorly; we believe

that this is because we are not allowed to give weights to matches, as described above.

Table 2.3: Precision, recall, and F-measure for handwritten program set.

Data set Method Precision Recall F-measure

Handwritten

FETT 1.000 0.970 0.985
Structural 1.000 0.970 0.985
Nominal 0.886 0.939 0.912

Tree Edit Dist. 0.821 0.697 0.754

Large test set. We now present and discuss all the cross-language results for our large

test set. The same-language case is different from the cross-language cases, so the

reader is asked to consult Figure 2.7b, which is indicative of all the cross-language

cases, and not Figure 2.7a.

Cutoffs were chosen on a per-language pair basis that maximized a given tool’s

score. For FETT, for the three JavaScript/Java test cases and the Java/C++ test case, we

used a cutoff of 0.4, and the rest used a cutoff of 0.5. For the Structural algorithm, we

used a cutoff of 0.6 for JavaScript/Java, 0.5 for Java/C++ and JavaScript/C++, and 0.4
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for Java/Java. For the Nominal algorithm, we used a cutoff of 0.5 for JavaScript/C++,

and 0.6 for the rest.

Figure 2.8 shows precision, recall and F-measure of all the tools we compared for

each data set and provides a visual and quantitative assessment of efficacy of all the

techniques.

Large test set discussion. Clone ratios relate most closely to the precision scores for

each data set, and from the results it appears that the Structural algorithm generally has

the upper hand in this area—applying the intuition described above, we see that the

Structural algorithm seems to cut off at the sharpest angle in most cases. It makes sense

why this is the case, as pieces of code that look similar across languages are generally

prime candidates for clones.

Precision is of course not the whole story. It is clear that FETT is able to take the best

of both the nominal and structural worlds, and the F-measure is always the highest.

When it comes to Structural’s results, the toxiclibs case is an outlier, where we found that

there were more cases of the structural differences; FETT’s hybrid structural/nominal

algorithm was able to make up for this, though.
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Figure 2.7: Similarity vs. cumulative clone ratio for the samples from the large open-
source program set.

Same-language test case. To assess performance on same-language clones, we com-

pared our tool with NiCad on the Java version of ANTLR. Returning to the same figures,
23
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Figure 2.8: Precision, recall and F-measure of clone detection tools on the large program
set.
the antlrj case is quite similar to the other language pairs in terms of precision, recall,

and F-measure, which demonstrates that our tool is capable of holding its ground in a

same-language setting.

FETT performs slightly worse (by one percentage point in terms of F-measure) than

NiCad. This result is not surprising because NiCad uses more information about the

code whereas we deliberately discard some information by abstracting parse trees

to work in a cross-language setting. Even with our filtering of parse trees, FETT’s

F-measure score is very close, and this shows that our tool is capable of producing

similar results to a dedicated same-language tool.

Overall results. We observe that the FETT’s hybrid algorithm, in terms of F-measure,

outperforms both the Nominal algorithm and the Structural algorithm consistently in

our large test set experiments.

Limitations. FETT may have difficulty scaling to repositories with large numbers of

large functions—a run of FETT on the entire toxiclibs library (comparing every function
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pair, not just same file pairs) takes 5.13 hours—and so further improvements will

be required to enable such a target. One possible future direction for improvements

could be to develop semi-automated solutions where we have the user use her domain

knowledge and pick out the files or functions to compare beforehand, or the user can

prune the search space by telling the tool which modules are unrelated.

2.7 The Full Algorithm

Algorithm 1 Algorithm to find cross-language function clones.
1: procedure SIMILARITY(s, t, C, W, µ, g, θ)

input:
Two sets of parse trees s and t, a set of equivalence classes between nodes C, an equivalence class
weight function W, a match coefficient µ to control overall tolerance, a gap penalty coefficient g, a
threshold θ on function subtree size

output:
A similarity score map S from pairs of functions to scores between 0 and 1.

2: m← NodeToEqClassMap(C)
3: ŝ← {Abstract(Preprocess(τ), m) | τ ∈ s}
4: t̂← {Abstract(Preprocess(τ), m) | τ ∈ t}
5: S← EmptyMap
6: for all f ∈ {Functions(τ) | τ ∈ ŝ ∧ | f | ≥ θ} do
7: for all g ∈

{
Functions(τ)

∣∣ τ ∈ t̂ ∧ |g| ≥ θ
}

do
8: a← Preorder( f )
9: b← Preorder(g)

10: M← λi, j.

 ν (1− d(v(i), v(j))) i, j are bags of words
µW(i), i = j
−max(W(i), W(j)), i 6= j

11: Compute Z according to Section 2.4.3

12: S← S[( f , g) 7→ SmithWaterman(a,b,M,g)
Z ]

13: end for
14: end for
15: return S
16: end procedure

The hybrid algorithm shown in Algorithm 1 works mostly the same as the structural

algorithm as described in Section 2.4.3, but on a tree with terminals with two differences:

(1) in the hybrid algorithm, the Preprocess function also merges consecutive terminals

and converts terminals into bags of words, and (2) whenever the hybrid algorithm is
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comparing two bags of words, it runs the nominal algorithm on the two terminals to

compute the similarity between them; then, it multiplies this score with the nominal

multiplier ν.

This method for introducing nominal information works at a finer granularity than

our Nominal algorithm, and the token information is added in order (so the results are

still highly structural); thus it should be less prone to false positives if the same tokens

appear out of order. The nominal multiplier exists for tuning purposes, just like the

other parameters, and intuitively it should be lower when an implementation has more

name mismatches (e.g., for language pairs where the standard libraries look vastly

different, or in an educational setting to check student code duplication, a smaller

multiplier would be more suitable).

2.8 End-to-End Example

2.8.1 Parsing Is Such Sweet Sorrow

For our running example, consider the two functions in Figure 2.9. Both are im-

plementations of binary search (one in C++, the other in Java), and they have some

structural, nominal, and semantic differences.

We would like to systematically figure out that these two functions are indeed

similar—to do so we must get them into a common form. We begin by parsing them.

2.8.2 A Tale of Two Parse Trees

We use the ANTLR parser generator and open-source grammar definitions to parse

the two files and generate concrete parse trees. The original parse trees generated by

ANTLR are shown in Figures 2.10a and 2.10b.
26



Section 2.8 End-to-End Example

template <class T>
int binsearch(const T array[], int left, int right, T what) {

if (right < left) return -1;
int mid = (right + left) / 2;
if (array[mid] > what)

return binsearch(array, left, mid-1, what);
if (array[mid] < what) {

return binsearch(array, mid+1, right, what);
}
return mid;

}

(a) A generic C++ binary search implementation.
public static int binarySearch(int[] nums, int check,

int low, int high) {
if (high < low) return -1;
int center = (high + low) / 2;
if (array[center] > check)

return binarySearch(nums, check, low, center-1);
else if (array[center] < check)

return binarySearch(array, check, center+1, high);
else

return center;
}

(b) A non-generic Java binary search implementation.

Figure 2.9: Two cross-language clones for binary search.

At a glance, it is obvious that the parse trees are vastly different; even though the

two functions look similar textually, the parse trees do not reflect this. Our goal is to

make these parse trees look more similar.

Some ANTLR grammars use hard-coded precedence—i.e., they have explicit prece-

dence levels defined using nonterminals. A common example of this is the standard

arithmetic expression grammar:

'antlrparsers.cpp14.CPP14Parser$CastexpressionContext

'antlrparsers.cpp14.CPP14Parser$DontKnowWhatToPutHereContext

',

';

'antlrparsers.cpp14.CPP14Parser$IdexpressionContext

'antlrparsers.cpp14.CPP14Parser$UnqualifiedidContext

'antlrparsers.cpp14.CPP14Parser$AdditiveexpressionContext

'antlrparsers.cpp14.CPP14Parser$MultiplicativeexpressionContext

'antlrparsers.cpp14.CPP14Parser$DontKnowWhatToPutHereContext

'antlrparsers.cpp14.CPP14Parser$PrimaryExpressionOnlyContext

'antlrparsers.cpp14.CPP14Parser$ExpressionContext

'antlrparsers.cpp14.CPP14Parser$AssignmentexpressionContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'if

'antlrparsers.cpp14.CPP14Parser$InclusiveorexpressionContext

'antlrparsers.cpp14.CPP14Parser$ExclusiveorexpressionContext

';

'antlrparsers.cpp14.CPP14Parser$TrailingtypespecifierContext

'antlrparsers.cpp14.CPP14Parser$SimpletypespecifierContext 'antlrparsers.cpp14.CPP14Parser$TypenameContext

'antlrparsers.cpp14.CPP14Parser$ClassnameContext

'antlrparsers.cpp14.CPP14Parser$AndexpressionContext

'antlrparsers.cpp14.CPP14Parser$EqualityexpressionContext

'antlrparsers.cpp14.CPP14Parser$ConditionalexpressionContext

'antlrparsers.cpp14.CPP14Parser$LogicalorexpressionContext

'antlrparsers.cpp14.CPP14Parser$LogicalorexpressionContext

'antlrparsers.cpp14.CPP14Parser$LogicalandexpressionContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'left

'antlrparsers.cpp14.CPP14Parser$PmexpressionContext

'antlrparsers.cpp14.CPP14Parser$CastexpressionContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'return

'antlrparsers.cpp14.CPP14Parser$MultiplicativeexpressionContext

'antlrparsers.cpp14.CPP14Parser$PmexpressionContext

'antlrparsers.cpp14.CPP14Parser$UnqualifiedidContext

'antlrparsers.cpp14.CPP14Parser$FunctiondefinitionContext

'antlrparsers.cpp14.CPP14Parser$FunctionbodyContext'antlrparsers.cpp14.CPP14Parser$DeclspecifierseqContext 'antlrparsers.cpp14.CPP14Parser$DeclaratorContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'-

'antlrparsers.cpp14.CPP14Parser$DeclaratoridContext

'antlrparsers.cpp14.CPP14Parser$IdexpressionContext

'antlrparsers.cpp14.CPP14Parser$ShiftexpressionContext

'antlrparsers.cpp14.CPP14Parser$AdditiveexpressionContext

'antlrparsers.cpp14.CPP14Parser$IdexpressionContext

'antlrparsers.cpp14.CPP14Parser$UnqualifiedidContext

'antlrparsers.cpp14.CPP14Parser$AssignmentexpressionContext

'antlrparsers.cpp14.CPP14Parser$ConditionalexpressionContext

'array

'antlrparsers.cpp14.CPP14Parser$DeclspecifierContext

'antlrparsers.cpp14.CPP14Parser$TypespecifierContext

'antlrparsers.cpp14.CPP14Parser$CompoundstatementContext

'antlrparsers.cpp14.CPP14Parser$StatementseqContext'org.antlr.v4.runtime.tree.TerminalNodeImpl 'org.antlr.v4.runtime.tree.TerminalNodeImpl

'antlrparsers.cpp14.CPP14Parser$DeclaratorContext

'antlrparsers.cpp14.CPP14Parser$PtrdeclaratorContext

'antlrparsers.cpp14.CPP14Parser$PmexpressionContext

'antlrparsers.cpp14.CPP14Parser$CastexpressionContext

'antlrparsers.cpp14.CPP14Parser$MultiplicativeexpressionContext

'antlrparsers.cpp14.CPP14Parser$PmexpressionContext

'array

'antlrparsers.cpp14.CPP14Parser$MultiplicativeexpressionContext

'antlrparsers.cpp14.CPP14Parser$PmexpressionContext

'antlrparsers.cpp14.CPP14Parser$DeclaratoridContext

'antlrparsers.cpp14.CPP14Parser$IdexpressionContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'antlrparsers.cpp14.CPP14Parser$MultiplicativeexpressionContext

'antlrparsers.cpp14.CPP14Parser$PmexpressionContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'array

'antlrparsers.cpp14.CPP14Parser$LogicalorexpressionContext

'antlrparsers.cpp14.CPP14Parser$LogicalandexpressionContext

'array

'antlrparsers.cpp14.CPP14Parser$CastexpressionContext

'antlrparsers.cpp14.CPP14Parser$DontKnowWhatToPutHereContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'if

'antlrparsers.cpp14.CPP14Parser$ShiftexpressionContext

'antlrparsers.cpp14.CPP14Parser$AdditiveexpressionContext

'what

'antlrparsers.cpp14.CPP14Parser$StatementseqContext

'antlrparsers.cpp14.CPP14Parser$StatementContext

'antlrparsers.cpp14.CPP14Parser$AssignmentexpressionContext

'antlrparsers.cpp14.CPP14Parser$ConditionalexpressionContext

'antlrparsers.cpp14.CPP14Parser$PrimaryexpressionContext

'antlrparsers.cpp14.CPP14Parser$IdexpressionContext

'antlrparsers.cpp14.CPP14Parser$ConditionalexpressionContext

'antlrparsers.cpp14.CPP14Parser$LogicalorexpressionContext

'antlrparsers.cpp14.CPP14Parser$FunctionCallContext

'antlrparsers.cpp14.CPP14Parser$PrimaryExpressionOnlyContext 'org.antlr.v4.runtime.tree.TerminalNodeImpl'org.antlr.v4.runtime.tree.TerminalNodeImpl 'antlrparsers.cpp14.CPP14Parser$ExpressionlistContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'right

'antlrparsers.cpp14.CPP14Parser$PrimaryexpressionContext

'what

'antlrparsers.cpp14.CPP14Parser$StatementContext

'antlrparsers.cpp14.CPP14Parser$SelectionstatementContext

'antlrparsers.cpp14.CPP14Parser$LogicalandexpressionContext

'antlrparsers.cpp14.CPP14Parser$InclusiveorexpressionContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'1

'antlrparsers.cpp14.CPP14Parser$AssignmentexpressionContext

'antlrparsers.cpp14.CPP14Parser$ConditionalexpressionContext

'antlrparsers.cpp14.CPP14Parser$InclusiveorexpressionContext

'antlrparsers.cpp14.CPP14Parser$ExclusiveorexpressionContext

'antlrparsers.cpp14.CPP14Parser$PmexpressionContext

'antlrparsers.cpp14.CPP14Parser$CastexpressionContext

'antlrparsers.cpp14.CPP14Parser$ExclusiveorexpressionContext

'antlrparsers.cpp14.CPP14Parser$AndexpressionContext

'antlrparsers.cpp14.CPP14Parser$IdexpressionContext

'antlrparsers.cpp14.CPP14Parser$UnqualifiedidContext

'antlrparsers.cpp14.CPP14Parser$AdditiveexpressionContext

'antlrparsers.cpp14.CPP14Parser$MultiplicativeexpressionContext

'antlrparsers.cpp14.CPP14Parser$NoptrdeclaratorContext

'antlrparsers.cpp14.CPP14Parser$DeclaratoridContext

'antlrparsers.cpp14.CPP14Parser$LiteralContext

'antlrparsers.cpp14.CPP14Parser$PrimaryExpressionOnlyContext

'antlrparsers.cpp14.CPP14Parser$PrimaryexpressionContext

'antlrparsers.cpp14.CPP14Parser$PmexpressionContext

'antlrparsers.cpp14.CPP14Parser$CastexpressionContext

'antlrparsers.cpp14.CPP14Parser$TrailingtypespecifierContext

'antlrparsers.cpp14.CPP14Parser$SimpletypespecifierContext

'antlrparsers.cpp14.CPP14Parser$SimpledeclarationContext

'antlrparsers.cpp14.CPP14Parser$InitdeclaratorlistContext 'org.antlr.v4.runtime.tree.TerminalNodeImpl'antlrparsers.cpp14.CPP14Parser$DeclspecifierseqContext

'antlrparsers.cpp14.CPP14Parser$PmexpressionContext

'antlrparsers.cpp14.CPP14Parser$CastexpressionContext

'antlrparsers.cpp14.CPP14Parser$UnqualifiedidContext

'}'antlrparsers.cpp14.CPP14Parser$ConditionalexpressionContext

'antlrparsers.cpp14.CPP14Parser$LogicalorexpressionContext

'antlrparsers.cpp14.CPP14Parser$ParameterdeclarationContext

'antlrparsers.cpp14.CPP14Parser$DeclspecifierseqContext 'antlrparsers.cpp14.CPP14Parser$DeclaratorContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'int

'antlrparsers.cpp14.CPP14Parser$IdexpressionContext

'antlrparsers.cpp14.CPP14Parser$UnqualifiedidContext

'mid

',

'antlrparsers.cpp14.CPP14Parser$InclusiveorexpressionContext

'antlrparsers.cpp14.CPP14Parser$ExclusiveorexpressionContext

'antlrparsers.cpp14.CPP14Parser$LogicalandexpressionContext

'antlrparsers.cpp14.CPP14Parser$InclusiveorexpressionContext

'return

'antlrparsers.cpp14.CPP14Parser$ShiftexpressionContext

'antlrparsers.cpp14.CPP14Parser$AdditiveexpressionContext

'antlrparsers.cpp14.CPP14Parser$TrailingtypespecifierContext

'antlrparsers.cpp14.CPP14Parser$SimpletypespecifierContext

'antlrparsers.cpp14.CPP14Parser$StatementseqContext

'antlrparsers.cpp14.CPP14Parser$StatementseqContext

'antlrparsers.cpp14.CPP14Parser$AdditiveexpressionContext

'antlrparsers.cpp14.CPP14Parser$TypespecifierContext

'antlrparsers.cpp14.CPP14Parser$IdexpressionContext

'antlrparsers.cpp14.CPP14Parser$UnqualifiedidContext

'+

'antlrparsers.cpp14.CPP14Parser$UnqualifiedidContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'(

'antlrparsers.cpp14.CPP14Parser$ReturnContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl'antlrparsers.cpp14.CPP14Parser$ExpressionContext

'antlrparsers.cpp14.CPP14Parser$MultiplicativeexpressionContext

'antlrparsers.cpp14.CPP14Parser$PmexpressionContext

'antlrparsers.cpp14.CPP14Parser$AdditiveexpressionContext

'antlrparsers.cpp14.CPP14Parser$MultiplicativeexpressionContext

'antlrparsers.cpp14.CPP14Parser$DontKnowWhatToPutHereContext

'antlrparsers.cpp14.CPP14Parser$PrimaryExpressionOnlyContext

'antlrparsers.cpp14.CPP14Parser$InitializerclauseContext

'antlrparsers.cpp14.CPP14Parser$AssignmentexpressionContext

'antlrparsers.cpp14.CPP14Parser$AdditiveexpressionContext

'antlrparsers.cpp14.CPP14Parser$MultiplicativeexpressionContext

'antlrparsers.cpp14.CPP14Parser$PrimaryexpressionContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'left

'antlrparsers.cpp14.CPP14Parser$CastexpressionContext

'antlrparsers.cpp14.CPP14Parser$DontKnowWhatToPutHereContext

'antlrparsers.cpp14.CPP14Parser$AssignmentexpressionContext

'antlrparsers.cpp14.CPP14Parser$ConditionalexpressionContext

'antlrparsers.cpp14.CPP14Parser$RelationalexpressionContext

'antlrparsers.cpp14.CPP14Parser$ShiftexpressionContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'what

'antlrparsers.cpp14.CPP14Parser$InclusiveorexpressionContext

'antlrparsers.cpp14.CPP14Parser$ExclusiveorexpressionContext

'antlrparsers.cpp14.CPP14Parser$DontKnowWhatToPutHereContext

'antlrparsers.cpp14.CPP14Parser$PrimaryExpressionOnlyContext

'antlrparsers.cpp14.CPP14Parser$EqualityexpressionContext

'antlrparsers.cpp14.CPP14Parser$RelationalexpressionContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'mid

'antlrparsers.cpp14.CPP14Parser$PrimaryexpressionContext

'antlrparsers.cpp14.CPP14Parser$IdexpressionContext

'antlrparsers.cpp14.CPP14Parser$EqualityexpressionContext

'antlrparsers.cpp14.CPP14Parser$RelationalexpressionContext

'antlrparsers.cpp14.CPP14Parser$UnqualifiedidContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'T

'antlrparsers.cpp14.CPP14Parser$ExpressionContext

'antlrparsers.cpp14.CPP14Parser$AssignmentexpressionContext

'antlrparsers.cpp14.CPP14Parser$StatementContext'antlrparsers.cpp14.CPP14Parser$StatementseqContext

'antlrparsers.cpp14.CPP14Parser$AndexpressionContext

'antlrparsers.cpp14.CPP14Parser$EqualityexpressionContext

'antlrparsers.cpp14.CPP14Parser$ArrayAccessContext

'antlrparsers.cpp14.CPP14Parser$ExpressionContext'antlrparsers.cpp14.CPP14Parser$PrimaryExpressionOnlyContext 'org.antlr.v4.runtime.tree.TerminalNodeImpl'org.antlr.v4.runtime.tree.TerminalNodeImpl

'antlrparsers.cpp14.CPP14Parser$InitdeclaratorContext

'antlrparsers.cpp14.CPP14Parser$InitializerContext

'antlrparsers.cpp14.CPP14Parser$ParameterdeclarationlistContext

'antlrparsers.cpp14.CPP14Parser$ParameterdeclarationContext

'what

'antlrparsers.cpp14.CPP14Parser$AdditiveexpressionContext

'antlrparsers.cpp14.CPP14Parser$MultiplicativeexpressionContext

'antlrparsers.cpp14.CPP14Parser$ConditionalexpressionContext

'antlrparsers.cpp14.CPP14Parser$LogicalorexpressionContext

'antlrparsers.cpp14.CPP14Parser$EqualityexpressionContext

'antlrparsers.cpp14.CPP14Parser$RelationalexpressionContext

'antlrparsers.cpp14.CPP14Parser$UnqualifiedidContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'antlrparsers.cpp14.CPP14Parser$PrimaryExpressionOnlyContext

'antlrparsers.cpp14.CPP14Parser$PrimaryexpressionContext

'antlrparsers.cpp14.CPP14Parser$ArrayAccessContext

'antlrparsers.cpp14.CPP14Parser$LogicalorexpressionContext

'antlrparsers.cpp14.CPP14Parser$LogicalandexpressionContext

'antlrparsers.cpp14.CPP14Parser$AndexpressionContext

'antlrparsers.cpp14.CPP14Parser$EqualityexpressionContext

'antlrparsers.cpp14.CPP14Parser$DontKnowWhatToPutHereContext

'antlrparsers.cpp14.CPP14Parser$PrimaryExpressionOnlyContext

'antlrparsers.cpp14.CPP14Parser$ConditionContext

'antlrparsers.cpp14.CPP14Parser$ExpressionContext

'antlrparsers.cpp14.CPP14Parser$UnqualifiedidContext

'antlrparsers.cpp14.CPP14Parser$TypespecifierContext

'antlrparsers.cpp14.CPP14Parser$TrailingtypespecifierContext

'antlrparsers.cpp14.CPP14Parser$InitializerclauseContext

'antlrparsers.cpp14.CPP14Parser$AssignmentexpressionContext

'antlrparsers.cpp14.CPP14Parser$LogicalorexpressionContext

'antlrparsers.cpp14.CPP14Parser$LogicalandexpressionContext

'antlrparsers.cpp14.CPP14Parser$UnqualifiedidContext

'antlrparsers.cpp14.CPP14Parser$LiteralContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'1 'antlrparsers.cpp14.CPP14Parser$PrimaryExpressionOnlyContext

'antlrparsers.cpp14.CPP14Parser$PrimaryexpressionContext

'antlrparsers.cpp14.CPP14Parser$EqualityexpressionContext

'antlrparsers.cpp14.CPP14Parser$RelationalexpressionContext

'antlrparsers.cpp14.CPP14Parser$EqualityexpressionContext

'antlrparsers.cpp14.CPP14Parser$PrimaryExpressionOnlyContext

'antlrparsers.cpp14.CPP14Parser$UnqualifiedidContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'antlrparsers.cpp14.CPP14Parser$InitializerclauseContext

'antlrparsers.cpp14.CPP14Parser$NoptrdeclaratorContext

')

'antlrparsers.cpp14.CPP14Parser$ReturnContext

'antlrparsers.cpp14.CPP14Parser$ExpressionContext'org.antlr.v4.runtime.tree.TerminalNodeImpl 'org.antlr.v4.runtime.tree.TerminalNodeImpl

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'what

'antlrparsers.cpp14.CPP14Parser$UnqualifiedidContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'antlrparsers.cpp14.CPP14Parser$ParameterdeclarationlistContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl'antlrparsers.cpp14.CPP14Parser$ParameterdeclarationlistContext

'antlrparsers.cpp14.CPP14Parser$MultiplicativeexpressionContext

'antlrparsers.cpp14.CPP14Parser$PmexpressionContext

'antlrparsers.cpp14.CPP14Parser$RelationalexpressionContext

'antlrparsers.cpp14.CPP14Parser$ShiftexpressionContext

'left

'antlrparsers.cpp14.CPP14Parser$InitializerclauseContext

'antlrparsers.cpp14.CPP14Parser$AssignmentexpressionContext

')

';

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'(

'antlrparsers.cpp14.CPP14Parser$PmexpressionContext

'antlrparsers.cpp14.CPP14Parser$CastexpressionContext

'(

'antlrparsers.cpp14.CPP14Parser$DeclspecifierContext

'antlrparsers.cpp14.CPP14Parser$ExclusiveorexpressionContext

'antlrparsers.cpp14.CPP14Parser$AndexpressionContext

'antlrparsers.cpp14.CPP14Parser$BraceorequalinitializerContext

'antlrparsers.cpp14.CPP14Parser$AdditiveexpressionContext

'antlrparsers.cpp14.CPP14Parser$MultiplicativeexpressionContext

'2

'antlrparsers.cpp14.CPP14Parser$IdexpressionContext

'antlrparsers.cpp14.CPP14Parser$UnqualifiedidContext

'antlrparsers.cpp14.CPP14Parser$DontKnowWhatToPutHereContext

'antlrparsers.cpp14.CPP14Parser$PrimaryExpressionOnlyContext

'antlrparsers.cpp14.CPP14Parser$CastexpressionContext

'antlrparsers.cpp14.CPP14Parser$DontKnowWhatToPutHereContext

'antlrparsers.cpp14.CPP14Parser$NoptrdeclaratorContext

'antlrparsers.cpp14.CPP14Parser$ParametersandqualifiersContext

'antlrparsers.cpp14.CPP14Parser$UnqualifiedidContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'antlrparsers.cpp14.CPP14Parser$PmexpressionContext

'antlrparsers.cpp14.CPP14Parser$CastexpressionContext

'antlrparsers.cpp14.CPP14Parser$FunctionCallContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl 'org.antlr.v4.runtime.tree.TerminalNodeImpl'antlrparsers.cpp14.CPP14Parser$ExpressionlistContext'antlrparsers.cpp14.CPP14Parser$PrimaryExpressionOnlyContext

'antlrparsers.cpp14.CPP14Parser$NoptrdeclaratorContext

'antlrparsers.cpp14.CPP14Parser$ExclusiveorexpressionContext

'antlrparsers.cpp14.CPP14Parser$AndexpressionContext

'antlrparsers.cpp14.CPP14Parser$CastexpressionContext

'antlrparsers.cpp14.CPP14Parser$CastexpressionContext

'antlrparsers.cpp14.CPP14Parser$DontKnowWhatToPutHereContext

'antlrparsers.cpp14.CPP14Parser$ParameterdeclarationContext

'antlrparsers.cpp14.CPP14Parser$DeclspecifierseqContext 'antlrparsers.cpp14.CPP14Parser$DeclaratorContext 'antlrparsers.cpp14.CPP14Parser$AssignmentexpressionContext

'antlrparsers.cpp14.CPP14Parser$LogicalandexpressionContext

'antlrparsers.cpp14.CPP14Parser$PmexpressionContext

'antlrparsers.cpp14.CPP14Parser$CastexpressionContext

'antlrparsers.cpp14.CPP14Parser$InitializerclauseContext

'antlrparsers.cpp14.CPP14Parser$AssignmentexpressionContext

'antlrparsers.cpp14.CPP14Parser$PrimaryexpressionContext

'antlrparsers.cpp14.CPP14Parser$IdexpressionContext

'antlrparsers.cpp14.CPP14Parser$ExpressionContext

'antlrparsers.cpp14.CPP14Parser$AssignmentexpressionContext

'antlrparsers.cpp14.CPP14Parser$AssignmentexpressionContext

'antlrparsers.cpp14.CPP14Parser$ConditionalexpressionContext

'antlrparsers.cpp14.CPP14Parser$UnqualifiedidContext

'antlrparsers.cpp14.CPP14Parser$PrimaryexpressionContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl

',

'antlrparsers.cpp14.CPP14Parser$SimpletypespecifierContext

'antlrparsers.cpp14.CPP14Parser$TypenameContext

'antlrparsers.cpp14.CPP14Parser$DontKnowWhatToPutHereContext

'antlrparsers.cpp14.CPP14Parser$PrimaryExpressionOnlyContext

'antlrparsers.cpp14.CPP14Parser$PrimaryExpressionOnlyContext

'antlrparsers.cpp14.CPP14Parser$PrimaryexpressionContext

'antlrparsers.cpp14.CPP14Parser$ExclusiveorexpressionContext

'antlrparsers.cpp14.CPP14Parser$AndexpressionContext

'antlrparsers.cpp14.CPP14Parser$PrimaryexpressionContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl 'antlrparsers.cpp14.CPP14Parser$ExpressionContext 'org.antlr.v4.runtime.tree.TerminalNodeImpl

'antlrparsers.cpp14.CPP14Parser$DeclarationstatementContext

'antlrparsers.cpp14.CPP14Parser$BlockdeclarationContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'mid

'antlrparsers.cpp14.CPP14Parser$ShiftexpressionContext

'antlrparsers.cpp14.CPP14Parser$AdditiveexpressionContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl

',

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'+

'antlrparsers.cpp14.CPP14Parser$PtrdeclaratorContext

'antlrparsers.cpp14.CPP14Parser$InclusiveorexpressionContext

'if

'antlrparsers.cpp14.CPP14Parser$AdditiveexpressionContext

'antlrparsers.cpp14.CPP14Parser$MultiplicativeexpressionContext

'antlrparsers.cpp14.CPP14Parser$AssignmentexpressionContext

'antlrparsers.cpp14.CPP14Parser$ConditionalexpressionContext

'antlrparsers.cpp14.CPP14Parser$SelectionstatementContext

'antlrparsers.cpp14.CPP14Parser$UnqualifiedidContext

'antlrparsers.cpp14.CPP14Parser$PrimaryexpressionContext

'antlrparsers.cpp14.CPP14Parser$StatementContext

'antlrparsers.cpp14.CPP14Parser$ReturnContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'antlrparsers.cpp14.CPP14Parser$IdexpressionContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl

'T

'antlrparsers.cpp14.CPP14Parser$CompoundstatementContext

'antlrparsers.cpp14.CPP14Parser$LogicalorexpressionContext

'antlrparsers.cpp14.CPP14Parser$LogicalandexpressionContext

'antlrparsers.cpp14.CPP14Parser$PrimaryexpressionContext

'antlrparsers.cpp14.CPP14Parser$IdexpressionContext'antlrparsers.cpp14.CPP14Parser$CastexpressionContext

'antlrparsers.cpp14.CPP14Parser$DontKnowWhatToPutHereContext

'antlrparsers.cpp14.CPP14Parser$CastexpressionContext

'antlrparsers.cpp14.CPP14Parser$ShiftexpressionContext

'antlrparsers.cpp14.CPP14Parser$AdditiveexpressionContext

'antlrparsers.cpp14.CPP14Parser$LogicalorexpressionContext

'antlrparsers.cpp14.CPP14Parser$CastexpressionContext

'antlrparsers.cpp14.CPP14Parser$PrimaryexpressionContext

'antlrparsers.cpp14.CPP14Parser$LiteralContext

'antlrparsers.cpp14.CPP14Parser$CastexpressionContext

'antlrparsers.cpp14.CPP14Parser$PrimaryexpressionContext

'antlrparsers.cpp14.CPP14Parser$IdexpressionContext

'org.antlr.v4.runtime.tree.TerminalNodeImpl

',

'antlrparsers.cpp14.CPP14Parser$AdditiveexpressionContext

'antlrparsers.cpp14.CPP14Parser$DontKnowWhatToPutHereContext

'antlrparsers.cpp14.CPP14Parser$PrimaryExpressionOnlyContext

'antlrparsers.cpp14.CPP14Parser$UnqualifiedidContext

'antlrparsers.cpp14.CPP14Parser$TrailingtypespecifierContext

'antlrparsers.cpp14.CPP14Parser$RelationalexpressionContext

'antlrparsers.cpp14.CPP14Parser$ShiftexpressionContext

'antlrparsers.cpp14.CPP14Parser$DontKnowWhatToPutHereContext

'antlrparsers.cpp14.CPP14Parser$PrimaryExpressionOnlyContext

'antlrparsers.cpp14.CPP14Parser$ParameterdeclarationclauseContext

'antlrparsers.cpp14.CPP14Parser$ParameterdeclarationlistContext

'antlrparsers.cpp14.CPP14Parser$AssignmentexpressionContext

'antlrparsers.cpp14.CPP14Parser$ExclusiveorexpressionContext

'antlrparsers.cpp14.CPP14Parser$AndexpressionContext

'antlrparsers.cpp14.CPP14Parser$MultiplicativeexpressionContext

'antlrparsers.cpp14.CPP14Parser$PmexpressionContext

'antlrparsers.cpp14.CPP14Parser$RelationalexpressionContext

'antlrparsers.cpp14.CPP14Parser$ShiftexpressionContext

'antlrparsers.cpp14.CPP14Parser$PrimaryexpressionContext

'antlrparsers.cpp14.CPP14Parser$InclusiveorexpressionContext

'antlrparsers.cpp14.CPP14Parser$DontKnowWhatToPutHereContext

'antlrparsers.cpp14.CPP14Parser$PrimaryExpressionOnlyContext

'antlrparsers.cpp14.CPP14Parser$EqualityexpressionContext

'antlrparsers.cpp14.CPP14Parser$RelationalexpressionContext
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(a) Original C++ parse tree
for the code in Figure 2.9a.
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(c) Reduced C++ parse tree
obtained from the parse tree
in Figure 2.10a.

Figure 2.10: Different forms of parse trees for the code snippets in Figure 2.9.
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AddE ::= AddE + Term

| AddE− Term

|MulE

MulE ::= MulE ∗Number

|MulE / Number

| Number

Parse trees for multiplication expressions would contain addition expression nontermi-

nals, and this would confuse a cross-language clone detector when the other language’s

grammar does not encode precedence. We propose a simple technique that converts

ANTLR parse trees that have hard-coded precedence into what we call reduced parse

trees, resembling an abstract syntax tree. We then abstract upon all trees to arrive at a

good common approximation. We refer to the process of creating reduced parse trees

as parse tree reduction, and it is described in Section 2.5. After reduction, we are left with

a new, smaller parse tree represented in Figure 2.10c. It is now both drastically smaller

and more similar to the Java parse tree in terms of structure and number of nodes.

2.8.3 Score and Peace

We now have trees that superficially look similar, but they are still arranged differ-

ently and come from grammars with different nonterminals and levels of granularity.

We address this issue by categorizing nonterminals into equivalence classes and com-

paring those classes. We call this process parse tree abstraction, and the resulting trees

abstracted parse trees.

We must also find a way to compare the terminals. Before abstraction, we combine

any consecutive terminal nodes into bags of words, correcting for camel-case, under-

scores, and capitalization. We can then compare the bags of words using characteristic

vector similarity.

Finally, we linearize the abstracted trees by performing a preorder traversal of the two

abstracted trees to minimize the remaining dissimilarities between the two languages.
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Section 2.8 End-to-End Example

For our example function pair, we place each node in the parse tree into its equiva-

lence class, remove any “uninteresting” nonterminal nodes that do not belong to any

equivalence class, and split the terminals on word boundaries. After linearization, this

process yields the two final sequences to compare:

• C++: FunDef, {"int"}, Id, {"binsearch"}, {"const"}, {"t"}, Id, {"array"}, {"int"}, Id, {"left"}, {"int"}, Id,

{"right"}, {"t"}, Id, {"what"}, If, {"if"}, Relational, Id, {"right"}, Id, {"left"}, Return, {"return"}, Unary, Literal,

Decl, {"int"}, Decl, Id, {"mid"}, Multiply, Add, ...

• Java: FunDef, {"int"}, Id, {"binary", "search"}, {"int"}, Id, {"nums"}, {"int"}, Id, {"check"}, {"int"}, Id,

{"low"}, {"int"}, Id, {"high"}, If, {"if"}, Relational, Id, {"high"}, Id, {"low"}, Return, {"return"}, Unary, Id,

Literal, Decl, {"int"}, Decl, Id, {"center"}, Multiply, Id, Add, ...

We can now use a sequence alignment algorithm to compute the similarity of the

two sequences. A pair of bags of words is compared by converting to a characteristic

vector and calculating characteristic vector similarity, and these terminal sets never

match against nonterminals. A pair of nonterminals is compared by checking the

equivalence classes for equality. To incentivize aligning similar kinds of nonterminal

statements with each other, we assign higher weights to some equivalence classes (such

as those representing if statements). We also allow for a weight to be applied to the

bags of words.

We feed the combined terminal/nonterminal sequences and weights to the Smith-

Waterman local sequence alignment algorithm; this contrasts with Levenshtein distance,

a global alignment algorithm that was used in Kraft et al.’s and Al-Omari et al.’s work.

Local alignment algorithms are better suited for finding small pockets of similarity in

sequences, whereas global alignment must consider the entire length of each sequence

pair [23]. Thus, we believe that local alignment is a better choice for cross-language

clone detection.

We normalize the result to get a similarity score between 0 and 1. These similarity

scores do not have an absolute meaning but instead have a meaning relative to each

other. In order to turn a score into a binary decision one can apply a threshold score
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such that only function pairs with scores over the threshold are considered possible

clones.

For this particular example, when we run our scoring algorithm with the parameters

we chose for C++ and Java in Section 2.6, we get a score of 0.607; this is greater than the

cutoff value of 0.5 we chose in our evaluation section, so we come to the conclusion

that these two snippets are clones.
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Chapter 3

Plagiarism Detection

3.1 Introduction

Plagiarism cheats plagiarizers out of their own education, and can lead to unfair

grading of students who do not plagiarize. As such, the detection of software pla-

giarism is an important problem. While there is a large existing body of work on

plagiarism detection (e.g., [103, 131, 117, 107, 134, 105, 120], we observe that plagiarism

detection remains an unsolved problem. Specifically, existing plagiarism detection

approaches tend to be inaccurrate, language-specific, or closed source [103], limiting

their practicality.

Towards solving these problems, we observe the following:

• The syntax of most languages allows programs to differ in operationally indistin-

guishable ways, as by varying whitespace or variable names. This sort of syntactic

noise is frequently exploited to obfuscate plagiarism [103].

• Most languages have features which are related to each other (e.g., both if and

switch perform conditional code execution). A common plagiarism obfuscation

is to substitute these features with each other [103].

• Many kinds of plagiarism obfuscations can be phrased as code additions, deletions,
31



Plagiarism Detection Chapter 3

or modifications.

In this work, we directly exploit these observations to inform the design of a novel

plagiarism detection approach. Towards removing superfluous syntactic informa-

tion, we adopt a syntax-aware approach with filtering refinements, which strip away

anything the user considers uninteresting. As a countermeasure to language feature

substitution, we define abstraction refinements, which allow the user to specify how

similar different language features are to each other. Finally, we observe that the Smith-

Waterman algorithm [133], classically from bioinformatics, is well-suited to plagiarism

detection; the algorithm was was specifically designed to compare sequences in the

presence of additions, deletions, and modifications. The use of these refinements,

in conjunction with the Smith-Waterman algorithm, leads to a plagiarism detection

solution which is accurate by design.

While our approach is syntax-aware, it is not tied to the syntax of any particular

language. We use ANTLR [110] grammars for defining program syntax, which are

commonly used when defining language parsers for compilers. Most languages can be

defined with ANTLR grammars, and many already have ANTLR grammars available,

making our approach applicable to most languages. While our filtering and abstraction

refinements require an additional time investment to specify, this investment needs to

be performed only once per language, making the specification burden overall minute.

To evaluate the accurracy of our approach, we compare it against multiple existing

plagiarism detection approaches (namely, MOSS [131], JPLAG [120], and Zhang and

Liu [117]) on Java programs. While designing our evaluation, we discovered that many

evaluations are based on simulated plagiarized programs written by the very authors

of the corresponding plagiarism detection technique (e.g., [117, 105, 65, 103, 138]).

We observe that subtle biases can be introduced with this evaluation approach, as
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it is possible for an author to subconsciously write programs which are more liable

to be caught by their own technique. To reduce such bias, we base our evaluation

on randomly-generated Java programs which have been automatically obfuscated

using plagiarism obfuscation approaches observed in the wild (e.g., those in Martins et

al. [103]). Our evaluation shows that our approach is superior to that of all competing

approaches, in terms of true/false positives/negatives discovered.

Overall, our contributions are as follows:

• We introduce a novel syntax-aware plagiarism detection approach. We explain

our technique in Section 3.3, and provide an example in Section 3.4.

• We introduce a new evaluation approach based on random program generation

and obfuscation, and use this evaluation approach to evaluate our plagiarism

detection approach. We find that our plagiarism detection approach offers superior

accurracy to that of all competitors considered. Section 3.5 provides further details.

• We make our plagiarism detection and evaluation approaches, along with their

corresponding source code, freely available.

3.2 Background and Related Work

Plagiarism is associated with malicious intent, and students who plagiarize code

will often obfuscate it to avoid detection [103]. Plagiarism detection tools (hereafter

referred to as “detectors”) must see through these obfuscations.

Similarity-based detectors give scores to all possible pairs of programs, where

higher-scoring pairs are more similar to each other (and more indicative of plagiarism)

than lower-scoring pairs. Exactly what constitutes a “high score” is relative to the listing

of scores; in practice, instructors would look at the code corresponding to some of the
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highest-scoring pairs, in order to make a judgement call on whether or not plagiarism

occurred. While this still requires instructors to perform manual code inspection to

find plagiarism, it dramatically reduces the number of pairs to consider, going from

hundreds to thousands of pairs to perhaps several. With this in mind, the purpose of

detectors in practice is to eliminate unlikely cases of plagiarism, leaving only likely

cases.

3.2.1 Evaluating Plagiarism Detectors

Effective detectors will consistently give high scores to plagiarism and low scores to

non-plagiarism. This suggests an evaluation strategy: see how a given detector scores

known cases of plagiarism and non-plagiarism, and measure how close these scores

are to expectations. Ideally, this evaluation would involve real student assignment

submissions, reflecting how detectors are intended to be used. However using real sub-

missions has a problem: students must honestly tell us whether or not they plagiarized.

Given the negative consequences of plagiarism, along with the fact that plagiarism is

intentionally obfuscated to avoid detection, students cannot be relied upon to provide

this information. As such, alternative evaluation strategies are frequently used.

A common alternative strategy is to manually create benchmarks which intention-

ally plagiarize code [117, 105, 65, 103, 138]. We argue that this is prone to bias, as

authors may subconsciously write benchmarks which behave differently on their own

detector. In contrast, we generate random programs and randomly perturb them in a

manner consistent with plagiarism.
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3.2.2 Related Work on Plagiarism Detection

Only two of the papers mentioned in a recent plagiarism detection survey [103] are

open source, and each lacks widespread language support. We believe our approach

fills this gap.

The most successful detector is MOSS [131], and we compare our tool against it

in our evaluation. The algorithm behind MOSS (namely, Winnowing [131]) is freely

available, though the MOSS tool itself is closed source. While Winnowing is language-

agnostic, MOSS has language-specific modes, and setting these modes properly has

dramatic impact on the results (see Section 3.5.3). As such, MOSS’s approach is neither

widely applicable nor freely available, unlike our approach. MOSS, Nayayanan et

al. [107], and Chilowicz et al. [43] are all based on fingerprinting at various granularity

levels, with MOSS using files, Nayayanan et al. using token sequences, and Chilowicz

et al. using syntax trees.

JPLAG is a Java-specific detector which applies a string tiling algorithm at the

token level [120]. Son et al.’s [134] approach, like ours, is based on comparing parse

trees, though their comparison is based on convolution kernels instead of sequence

alignment.

Tahaei and Noelle [141] detect plagiarism by observing multiple submissions of

code and comparing the differences between those submsisions via logistic regression.

In contrast, our work does not require multiple submissions of student programs. Their

evaluation was done on student code labeled by the instructor.

Fu et al. [60] use a version of the TF-IDF statistic to find the most “surprising”

differences on abstract syntax trees. Their evaluation was on short programs, and cases

of plagiarism were generated from starter code using generators made by multiple

people. This evaluation is similar to our own, but the types of program transformations
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performed by the generators are unclear.

Prado et al. [119] introduce a detector which uses static and dynamic analyses to

perform plagiarism detection, making it reliant on existing tools and analyses for the

languages that it supports. In contrast, our method only requires an ANTLR grammar

and minimal work to add a new language.

Sulistiani and Karnalim [138] compare token sequences, filtering them using cosine

similarity for efficiency. We observe that token sequences remove some of the underly-

ing structure of a program, and so our detector instead works with parse trees. Their

evaluation consists of handmade cases of plagiarism.

Zhang and Liu’s [117] approach is arguably the most similar to our own, as they also

make use of the Smith-Waterman algorithm [133]. However, Zhang and Liu’s approach

has several key differences from that of our own: to the best of our knowledge, they

convert trees to sequences via a preorder traversal instead of a postorder traversal

(Section 3.3.1), their scoring function is less general than that of our own (Section 3.3.5),

they do not perform sorting (Section 3.3.2), and most importantly, they lack our filtering

and abstraction refinements (see Section 3.3.3). For these reasons, we have found that

Zhang and Liu’s approach cannot detect plagiarism as accurately as our proposed

method, as our evaluation shows (Section 3.5.3).

3.3 Our Method

a.java

Java.g4

b.java

Source files

ANTLR grammar
 Parse trees

Sorted, 
linearized sequences

Preprocessed 
sequences

Modified
Smith-Waterman 

0.328

Normalized
similarity score 

Figure 3.1: A graphical overview of our method.
Figure 3.1 provides a graphical view of our process. In the rest of this section, we
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cover each part in more detail.

3.3.1 Parsing: ANTLR Grammars to Sequences

Our method requires as input the parse tree of a program—because parse trees can

be made for any programming language, every further step works exactly the same

regardless of the initial language. We assume that input programs are syntactically

well-formed, which is reasonably ensured via a course policy which states that only

compiling programs may receive credit. To get parse trees, we use the ANTLR parser

generator [110], which has existing grammars for several popular languages.

Adding support for a new language

With this in mind, to apply our approach to a new language, a user needs only to:

(1) find (or create) an ANTLR grammar describing the language; (2) use the ANTLR

tool to create a corresponding parser for the grammar; (3) write fairly straightforward

boilerplate code to attach the parser to our tool; (4) provide minimal information for

filtering (see Section 3.3.3). To keep things concrete, we focus on Java for the remainder

of this chapter, but any other language could be substituted in its place.

The parser from ANTLR produces parse trees corresponding to input programs.

Once we obtain a parse tree for two given programs, we linearize the two trees by

performing a postorder traversal and outputting the labels of each node traversed.

Once we have the two programs that we wish to compare in this linearized form,

we then preprocess them before performing sequence alignment on them. The first

preprocessing step is sorting the functions.
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3.3.2 Sorting

Because we are comparing entire files at a time, we must be wary of a common

plagiarism operation: function rearrangement. The order of the functions should not

matter when evaluating cases of plagiarism—it makes no difference if foo() comes

before or after bar() if their contents are plagiarized.

The heuristic we use is to sort functions in each file by size (i.e., the number of nodes

in the parse tree) before we linearize each parse tree. We found that this gives good

results while avoiding the exponential blowup that would occur with trying every

possible combination of functions.

After the linearized sequences are in this sorted order, we can further prune and

enhance the information contained within them.

3.3.3 Filtering, Abstraction, and Weight

In this step, we determine which parse tree node labels to keep, what equivalence

class they belong to (if any), and provide a relative score that indicates how important

a given label is. Users must provide information specifying how labels are grouped,

once per language. We explain each case along with its justification.

Filtering

Another common plagiarism operation is renaming variable names and other

identifiers, so we cannot trust any such node in a parse tree. We have a filtering phase

to get rid of these and other parse tree labels that we deem unsuitable for comparison.

In fact, we found the ratio of useful to interesting nodes to be so small that we only

require a list of nodes to keep.

As an example, consider the Java grammar rule for expressions:
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expression
: primary
...
| methodCall
| NEW creator
| '(' typeType ')' expression
| expression postfix=('++' | '--')
| prefix=('+'|'-'|'++'|'--') expression
...

This is essentially a catch-all rule, and almost every line of Java code will contain

an expression node in its sub-parse tree. As such, there no useful information in

expression, and so we omit it from our output. There are many similar rules in the

Java grammar.

Abstraction

Several nodes act in a similar way, and should be considered as such. For example,

several if/else statements may be transformed into one switch statement, and vice

versa. We therefore consider parse tree node labels for if/else and switch to be in

the same equivalence class, and we consider them to “match” in our Smith-Waterman

algorithm. Different kinds of loops also belong together in the same equivalence class.

This concludes our preprocessing steps. We are now ready to compare two pro-

gram sequences with a modified Smith-Waterman algorithm. Before introducing our

algorithm, we first discuss sequence comparison in general.

3.3.4 Comparing Sequences: False Start

Smith-Waterman is a relatively unfamiliar algorithm to most computer scientists,

so we will briefly compare it to the more familiar and similar concept of string edit

distance. Levenshtein distance is the most common string edit distance measurement
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algorithm.

Levenshtein distance has notions of insertion, deletion, and mismatch “costs”, and

the final answer is the minimized cost of performing these different string-altering

operations. Overall, Levenshtein distance determines the most cost-effective way to

turn one string into another. Smith-Waterman has similar computational costs, but

matching is more customizable; for example, Smith-Waterman allows a matrix of scores,

which allows a programmer to give different match/mismatch scores to different pairs

of elements of a sequence. In this work, we assign higher scores to programs that match

at certain key nodes, such as loops and if statements.

Levenshtein distance also computes a cost over the entire string, in what is known

as a global alignment. For example, comparing the strings A = “cat” and B =

“ cat ” results in a score of 5, because the entire string A must be transformed

into the entire string B. In contrast, Smith-Waterman performs a local alignment and

finds the largest substrings of each string that match. Local alignment is important for

our purposes because we want to give a high similarity score to a pair of programs

when a portion of one is found in the other; our method would be less accurate if we

only gave high similarity scores to program pairs when they have almost everything in

common.

3.3.5 Comparing Sequences: Smith-Waterman

The Smith-Waterman algorithm [133] is a dynamic programming-based sequence

alignment algorithm. It computes a numerical value representing how similar or

dissimilar two sequences are. Originally implemented with bioinformatics in mind, it

is used to compare biological sequences (e.g., RNA and proteins) and to determine how

closely two such sequences overlap each other. The algorithm works for sequences
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of any kind, not just sequences of characters; in this work, we align sequences of

abstracted parse tree nodes.

Smith-Waterman is parameterized by a gap score (for insertions and deletions) and

a scoring matrix (for matching and mismatching). This matrix is consulted each time

nodes are compared to determine how similar they are, and so tuning this matrix has a

major impact on the results. We simplify the process of constructing a scoring matrix

by: (1) providing all nodes that match a default match score, and all nodes that do not

match a default mismatch score; and (2) assigning relative weights to certain matches.

Weights

Experimentally, we found that some label classes are more important than others.

For example, it is quite likely that several if statements will match in a plagiarized

pair of programs, whereas assignment statements do not closely correspond. For this

reason, we assign relative weights to certain equivalence classes of labels. Just like the

rest of our method, these weights are completely customizable to fit any instructor’s

needs. The relevant portion of our weight/equivalence class file follows:

{"conditional": 5, "loop": 5, "return": 5,
"functioncall": 5, "assign": 2}

This syntax specifies that conditional statements (e.g., if/else, switch) that match

are to be given 5× the match score. If such a node does not match, we perform the

same multiplcation against the mismatch score.

Final steps

After obtaining a similarity score from the Smith-Waterman algorithm, we nor-

malize the scores to be between 0.0 and 1.0. Without such a normalization, larger

plagiarized program pairs (which naturally have more similar portions than shorter
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plagiarized program pairs) would have larger scores, rendering sorting by score useless.

3.4 Complete Example

This section goes through an in-depth example of our method.

Description of the programs

Figure 3.2 contains three example programs: A, B, and C. Programs A and B

have been plagiarized using several common operations (e.g., identifier renaming,

manipulation of spacing, etc.) [103], while program C is independent of A and B. We

use this example to demonstrate our method, and we further elaborate on plagiarism

operations in our evaluation (Section 3.5).

Parsing

We first parse the three programs, creating the parse trees shown in Figure 3.3. None

of these parse trees look similar to each other, with differences in both the number of

nodes and node structure. Our goal is to get Programs A and B into a format where

they both “look” similar; it is for this reason that we preprocess and linearize the parse

tree nodes.

Sorting

We then extract functions and sort them by their size, in terms of the number of

parse tree nodes. In this example, sorting will not change the function order in Program

A. However, in Program B, func2 will be moved to come before func1. This sorting

heuristic thus puts the plagiarized functions in the same order.
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public class A {
public void foo() {

for (int i = 1; i < 10; i++) {
System.out.println(i);

}
}

public int bar() {
int sum = 0;
for (int i = 0; i < 10; i++) {

for (int j = 0; j < 10; j++) {
sum += i + j;

}
}
return sum;

}
}

(a) Program A

public class B
{public int func1(int dummy1, int dummy2)

{int extraStmt1 = 5; int extraStmt2 = 42;
int s = 0; int i = 1;

while (11 > i)
{ int j = 1; while (11 > j) {

s += (i - 1) + (j - 1);
j = j + 1;

}
++i;

}
return s;

}
public void func2()
{int z = 1; while (10 > z)
{System.out.println(z); z++;}}

}

(b) Program B

public class C {
public void hello() {

System.out.println("Hello, world!");
}

public int sum2(int x) {
int a = 0;
for (;;) {

if (x <= 0) break;
a += x;
x--;

}
return a;

}
}

(c) Program C

Figure 3.2: Three contrived example programs: A and B for a plagiarized pair, while C
has no plagiarized information taken from A or B.
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(a) Parse tree for Program A (b) Parse tree for Program B

(c) Parse tree for Program C

Figure 3.3: A bird’s eye view of the parse tree structure for Programs A, B, and C.
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Linearization

We then perform a postorder traversal of the parse trees before we prune further.

The contents, however, are the important part, and we want to get Programs A and B

into a format where they have a lot in common. The first few nodes of Program A’s

bar function are (bold font indicating common elements):

TerminalNodeImpl, IdentifierNonterminal, (,

TerminalNodeImpl, ), TerminalNodeImpl,

FormalParameters, {, TerminalNodeImpl, int,

TerminalNodeImpl, PrimitiveType, TypeType, sum,

TerminalNodeImpl, VariableDeclaratorId, =,

TerminalNodeImpl, 0, TerminalNodeImpl, Literal,

Primary, PrimaryExpression, VariableInitializer,

VariableDeclarator, VariableDeclarators,

LocalVariableDeclaration, ...

The first few nodes of Program B’s func1 function are:

TerminalNodeImpl, IdentifierNonterminal, (,

TerminalNodeImpl, int, TerminalNodeImpl,

PrimitiveType, TypeType, dummy1, TerminalNodeImpl,

VariableDeclaratorId, FormalParameter,

TerminalNodeImpl, int, TerminalNodeImpl,

PrimitiveType, TypeType, dummy2, TerminalNodeImpl,

VariableDeclaratorId, FormalParameter,

FormalParameterList, ), TerminalNodeImpl,

FormalParameters, {, TerminalNodeImpl, int, ...

While there are similarities at the beginning, they do not last long. func2’s extra
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parameters and names, as well as the extra statements at the beginning, are taking up

a substantial amount of space, so we want to remove them. Similarly, any identifier

names are naturally untrustworthy, and are thus ripe for removal. Not shown are the

nodes for the while and for loops, which are currently considered different; we want

to treat these as being similar to each other.

Pruning and Abstraction

Beforehand, we have compiled a set of “useful” parse tree nodes which we want

to keep; it is only necessary to do this once per language. In this step, we prune out

any node that is not in our useful set. After performing this pruning, we are left with

sequences that are typically ~33% as large as the originals. Pruning reduces both

the amount of input to process downstream (improving performance), as well as the

amount of irrelevant “noise” in the input (improving accurracy/precision). The final

nodes of Program A’s bar function are (bold font indicating common elements):

..., Primary, Primary, AdditiveExpression,

AssignExpression, ForLoop, ForLoop, Primary,

ReturnStatement

The last nodes of Program B’s func1 function are:

..., Literal, Primary, AdditiveExpression,

AssignExpression, WhileLoop, Primary,

PrefixIncDecNegPlus, WhileLoop, Primary,

ReturnStatement

These pruned sequences share several similar elements, and sequence alignment will

give a larger score on these than the originals. One final step that is not shown is

abstraction, where we group similar nodes. In this example, we will end up grouping
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WhileLoop and ForLoop into the same equivalence class, and so we will consider

them to represent the same node; this allows sequence alignment to return a larger

score for these plagiarized programs.

Smith-Waterman

Running Smith-Waterman on the abstracted sequences is the last step. We run the

algorithm for each pair of input programs with the scoring matrix generated by the

supplied node weights. The scores are relative to each other, and are not meaningful

on an absolute scale. Higher-scoring pairs are more indicative of plagiarism than

lower-scoring pairs, and in practice users need only look at the several highest-scoring

pairs to find plagiarism.

The final scores

After all this work has been done, we are left with a similarity score between 0 and

1 for each pair of programs:

• Program A and Program B: 0.299

• Program A and Program C: 0.193

• Program B and Program C: 0.120

In this case, our method has correctly scored the plagiarized program pair higher than

the non-plagiarized program pairs.

3.5 Evaluation

In this section we compare our method to existing methods.
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Table 3.1: Results for each method. ↓ indicates that a lower value is better, and ↑
indicates that a higher value is better

Method Cutoff Time (s)
(↓)

True Pos.
(↑)

False Pos.
(↓)

True Neg.
(↑)

False Neg.
(↓)

Precision
(↑)

Recall
(↑)

F-Measure
(↑)

Our method 0.15 115.9 33 16 4,884 17 0.673 0.660 0.667
Zhang and Liu 0.58 970.3 16 37 4,863 34 0.302 0.320 0.311

MOSS, Java Mode 0.44 30.8 11 33 4,867 39 0.250 0.220 0.234
MOSS, Text Mode N/A 4.1 0 0 4900 50 ∞ 0.000 0.000

JPLAG 0.17 4.7 18 46 4,854 32 0.281 0.360 0.316

3.5.1 What We Compare Against

We evaluate our method against MOSS [131] and JPLAG [120], both widely used

plagiarism detection tools. We tested MOSS in Java mode and in text mode; we did

this to evaluate what would happen if MOSS was run on a language that it does not

support. Both MOSS and JPLAG were run with default parameters.

We also evaluate against our implementation of Zhang and Liu’s method [117]. Both

our method and Zhang and Liu’s method require multiple parameters, namely a tree

traversal order, a match score, a mismatch score, and a gap score. We experimentally

determined optimal values for each of these parameters. For our method, we use

postorder traversal, a match score of 1, a mismatch score of -1, and a gap score of -2.

For Zhang and Liu, we use preorder traversal, a match score of 1, a mismatch score of

-1, and a gap score of -1—we also tried a gap score of -2, but -1 gave better results.

3.5.2 Benchmarks and Methodology

To address the bias problem discussed in Section 3.2.1, we employ random program

generation and random program transformation to create our benchmark suite. We

have created 50 pairs of original and plagiarized Java programs for a total of 100 Java

programs, and we evaluate by comparing all pairs of those 100 programs. We imple-

mented our generator to perform several popular plagiarism obfuscations observed in

the wild [103]:
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• Addition of random amounts of whitespace.

• Changing every identifier name (e.g., variable names, argument names, function

names, etc.).

• Changing type names to equivalent ones (we overapproximate this by transform-

ing type names into random strings).

• Changing operations to equivalent ones (e.g., replacing A + B < C with C >

B + A).

• Replacing control structures with equivalent ones (e.g., swapping while with for

and vice versa).

• Changing the order of statements and functions.

Our metrics are the standard ones of precision (true positives / (true positives + false

positives)) and recall (true positives / (true positives + false negatives)). These numbers

are combined via F-measure [130], which provides a single number to compare the

relative performance of each method.

3.5.3 Results

Table 3.1 shows the results for every method that we tried. There were 4,950

possible pairs of programs to compare, and 50 “true” cases of plagiarism; all other pairs

are considered to be false positives. Each method produces a score between 0 and 1

indicating the likelihood that a pair was plagiarized. To convert this score to a binary

yes/no for whether or not plagiarism was detected, we selected a cutoff value for

each technique, where scores ≥ to the cutoff were considered indicative of plagiarism.

Cutoff scores were picked to maximize the F-measure for each method.
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Discussion

Our method has the best F-measure, and the running time is in the middle of the

group.

Both ours and Zhang and Liu’s methods start with the same parse trees and subse-

quently run anO(n2) algorithm. However, our method is nearly 8.4x faster than Zhang

and Liu’s method. This is because our filtering stage dramatically reduces the input

size, minimizing n in the aforementioned time complexity. It is possible that pruning

obviously non-matching pairs (e.g., programs of vastly different lengths) could help to

further reduce our runtime, but we leave this investigation for future work.

MOSS’ text mode returned no matching results, which was to be expected; all

identifiers were changed, and so there would be no meaningful matches in any sliding

window of results. As such, while Winnowing [131] (the technique MOSS is based

on) is language-agnostic, MOSS itself is not. While some effort is needed to apply our

technique to a new language, this is fundamentally impossible with MOSS, due to

MOSS’ closed-source nature.

MOSS’ Java mode and JPLAG both had similar results. MOSS’ time includes

sending the files over the network and waiting for a response from the server, so it is

possible that the running time of the main plagiarism detection algorithm is closer to

that of JPLAG.

Threats to Validity

Our method cannot detect every kind of plagiarism. For example, it cannot cur-

rently handle obfuscation where functions are broken down into many small functions,

though it would be possible to mitigate this issue (at the expense of increased runtime)

by comparing all function pairs. Semantic similarity is also a research-worthy chal-
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lenge: it is always possible to trick a syntax-based method by swapping the code with

completely different code that does the same thing (e.g., insertion sort with quicksort).
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Fixpoint Reuse

4.1 Introduction

JavaScript programs are an integral part of the internet ecosystem, from the server to

the client, and present a tempting target for malicious actors. For example, JavaScript-

based browser addons have complete access to the browser’s state and can do anything

they want with that information, including collecting and disseminating users’ sensitive

data; examples of such behavior have been found in the wild [9, 13]. Thus, JavaScript

is an important target for static analyses that attempt to ensure safety and security.

Numerous such analyses have been published, e.g., to ensure that browser addons do

not leak sensitive information [142, 77, 143].

However, a single-time static analysis is not sufficient when programs are continu-

ally updated with new versions. There are known instances where malicious code has

been snuck into existing JavaScript programs during such updates [5]. To ensure safety

and security, static analyses must be run on every version of a program, not just the first

one. However, JavaScript is a highly dynamic and difficult language to analyze with

precision, and the resource cost can be high. If there is a central entity serving as the

main gateway for these programs (e.g., browser addon repositories) that is responsible
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for running all of these analyses, they must shoulder the bulk of this cost. Being forced

to re-run the analyses for every update and new program version only exacerbates

these problems. The contribution of this chapter is a technique called fixpoint reuse

to mitigate the performance problems attendant on repeatedly statically analyzing

the same JavaScript program over multiple updates and versions.

Our technique falls under the general rubric of incremental static analysis, a topic

that has been extensively studied over the years. However, no existing work deals with

a dynamic language such as JavaScript. In particular, the existing work generally relies

on two major assumptions: (1) an a priori known flow-graph model of the program;

and (2) a known or (given the flow-graph model) trivially computable syntax mapping

between the old and new program versions. Unfortunately, JavaScript programs do

not have a simple flow-graph model, and in fact require extensive and expensive static

analysis to compute precise control-flow and data-flow information. Thus, the existing

works’ assumptions do not hold and they are not immediately applicable to languages

such as JavaScript.

We rely on two key insights to reposition incremental static analysis for JavaScript:

(1) the problem of matching between two program versions is similar to the problem

of clone-detection, and thus we can leverage existing clone-detection techniques [35,

76, 122]; and (2) whereas modern incremental analyses are precise (i.e., yield the same

answer as a non-incremental analysis), we can relax the requirement for precision while

still getting useful results. That is, our incremental analysis can yield additional false

positives beyond what a from-scratch analysis would yield, but we show empirically

that this does not happen very often. Together, these insights enable our technique to

achieve speedups within 2× of an optimal incremental analysis (which we define as an

incremental analysis on a program version that is identical to the earlier version, thus

allowing maximum reuse).
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In the context of a central gateway such as a browser addon repository that is

analyzing third-party programs, another benefit of our technique is that it does not

rely on the gateway having to store past analysis results for every program that it

analyzes. Previous analysis summaries can safely be left to the third-party developers

to store and transmit with any program updates; our technique guarantees that the

results of the analysis will still be sound. The most that a malicious developer could do

is to degrade the performance and precision of the incremental analysis up to some

limit, after which we would fall back to a normal from-scratch analysis. Our technique

is flexible enough to handle a variety of scenarios that distribute the analysis work

between the central authority and the app developer in different ways, while still

allowing the central authority to guarantee the soundness of the results.

4.2 Related Work

In this section we review the work on incremental static analysis to put our tech-

nique in context.

4.2.1 Incremental Analysis via Restarting Iteration

Perhaps the most closely related work to our technique is from the early ’80s. There

are three works that present a technique called restarting iteration [45, 46, 64]. Unlike

our fixpoint-reuse work, restarting iteration assumes a known control-flow graph and

a provided mapping from old to new program version. Similarly to our fixpoint-reuse

technique, the technique does not guarantee a precise incremental analysis, i.e., it could

introduce additional false positives. The main contributions of our work in relation to

this old work are (1) removing the assumption of a known, simple flow-graph, thus
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making the technique applicable to dynamic languages such as JavaScript; and (2)

providing a method to compute a mapping between program versions rather than

assuming one will be provided, thus making the technique more practical.

4.2.2 Precise Incremental Analysis

Starting in the late ’80s the work on restarting iteration was abandoned in favor of

techniques that guarantee precise results—i.e., analyses that return the same results

as a non-incremental analysis. This flavor of incremental analysis has dominated

the field since that point [118, 40, 102, 74, 98, 135, 26, 89, 97, 140, 104, 44, 106, 87, 68].

Modern incremental analyses focus on pruning old results that might negatively impact

precision. There have been a number of advancements, but all are for non-dynamic

languages with simple flow-graph program models and assume that either the version

mapping is provided or can be simply computed from the respective flow-graphs.

None of the precise incrementalization methods is immediately applicable to languages

such as JavaScript.

“Incremental” Analysis of JavaScript

Livshits and Guarnieri [95] present Gulfstream for streaming JavaScript programs.

The word “incremental” is used in a different context in that paper: the analysis is

incremental in the sense that it statically analyzes all JavaScript code that it can, and

then when dynamic processes load new JavaScript files, those files are analyzed in

an incremental fashion. The paper presents a points-to analysis of JavaScript that is

unsound and makes use of analysis result invalidation; whereas our work maintains

soundness, is a general abstract interpretation, and does not invalidate any previous

information.
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4.3 Fixpoint Reuse

In this section we describe the problem that we are solving and the basic ideas of

our approach, called fixpoint reuse. We stay at a relatively high level in this section in

order to convey the central concepts; Section 4.4 will go into more details within the

context of our method’s instantiation to a specific JavaScript analysis framework. We

invite any reader without a background in program analysis to consult Section 4.6 for

more information on abstract interpretation and taint analysis.

4.3.1 High-Level Summary

The three inputs are Pprior (the prior version of the program), FPprior (the fixpoint

analysis solution for Pprior), and Pupd (the new, updated version of the program). We

assume FPprior is in the form of a map from program points to abstract states. The

goal is to compute FPûpd, an over-approximation of FPupd (the precise fixpoint analysis

solution for Pupd).

Our approach is to (1) compute a partial mapping Pprior → Pupd from program

points in Pprior to program points in Pupd that correspond with high confidence, then

(2) use Pprior → Pupd to seed the initial analysis state for FPûpd with the abstract states

for corresponding program points as given in FPprior. We then (3) analyze Pupd starting

from the seeded initial analysis state and ensuring that we visit every program point in

Pupd at least once in order to guarantee a sound analysis.

Algorithm 2 shows a high-level view of the entire matching and reuse process.

Section 4.4 describes exactly how we instantiate this generic algorithm in the case of

JavaScript and the SAFE analysis framework.
56



Section 4.3 Fixpoint Reuse

Algorithm 2 Generic Fixpoint Reuse

1: procedure REUSE(Pprior, Pupd, FPprior)
2: Input: The two versions of the program, in some traversable form, and version

Pprior’s fixpoint data structure
3: Output: FPûpd, a prepopulated fixpoint for version Pupd

4: Match program points, call sites, abstract addresses, and variable names of Pprior
with those from Pupd using program similarity techniques

5: Populate Pprior → Pupd
6: Populate FPûpd using FPprior and Pprior → Pupd.
7: Analyze Pupd starting from FPûpd
8: end procedure

4.3.2 Example

To make this process more concrete, we provide a specific example based on taint-

tracking program analysis. Consider the two program excerpts in Figure 4.1. Version

Pprior contains a function f, which is called with the argument secret, and we do not

want the value of this secret variable to leak to the outside world. Assume that these

snippets are part of a larger program.

After running the analysis on version Pprior, we have a fixpoint solution FPprior

that maps every (calling context, program point) pair in Pprior to some abstract state. An

abstract state will, for this analysis, map program variables and abstract heap locations

to either definitely tainted, definitely not tainted, or possibly tainted. We can inspect the

abstract state at the output statement to see if the value being output is tainted in any

calling context. Suppose that the result is that there is no taint in this case.

Figure 4.1b shows an updated program version Pupd (which we can see by inspection

does leak tainted data). Our incremental analysis will first use a program matching

algorithm to find corresponding program points between the two versions. In this

case, it finds that the definition of f in Pprior matches the definition of f in Pupd, that a

number of the basic blocks inside f match between Pprior and Pupd, and finally that the
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1 function f(x) {
2 for (...) {
3 for (...) {
4 // expensive computation
5 }
6 }
7

8 return result;
9 }

10

11 var secret = 42;
12 var next = f(secret);

(a) Version Pprior

1 function f(x) {
2 for (...) {
3 for (...) {
4 // same expensive computation
5 }
6 }
7 output(x); // leak!
8 return result;
9 }

10

11 var secret = 42;
12 var next = f(secret);

(b) Version Pupd

Figure 4.1: Two programs, unalike in dignity
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last two lines in each version also match.

The incremental analysis will then use this matching to transfer abstract states from

FPprior to FPûpd. As part of this matching and transfer, calling contexts and abstract

heap locations from FPprior will be renamed to the corresponding calling contexts and

abstract heap locations appropriate to Pupd. The final analysis on Pupd will start from

this seeded FPûpd to compute the final fixpoint solution for Pupd. The analysis must be

certain to visit every program point in Pupd at least once to guarantee a sound solution

(e.g., by initializing the worklist with every program point rather than just the entry

point). This requirement is due to the fact that otherwise the seeded FPûpd may cause

the analysis to prematurely converge at a pre-fixpoint solution.

The incremental analysis correctly concludes that there is a leak in the updated

program. With reuse, the taint analysis on version Pupd could reuse the analysis results

for a vast majority of the program and thus converge much faster than a from-scratch

analysis. While this example is trivial, we have achieved good results and significant

speedups using this method on real-world JavaScript code that runs in browsers and/or

servers.

4.3.3 On Program Matching

Computing the map Pprior → Pupd is an important part of the process that can have

extreme effects on the efficacy of the incremental analysis. When matching there are

three possibilities:

1. We correctly match,

2. We incorrectly match, or

3. We cannot match.
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The first case is the best case; the more correct matches we compute the more

effective the incremental analysis will be in improving performance. The third case,

while not ideal, isn’t too harmful; the incremental analysis won’t benefit from the prior

analysis in this case, but it can simply compute the information in the same way as a

from-scratch analysis.

The second case, however, is by far the worst case and demonstrates the non-

triviality of the matching problem. An incorrect match means that the incremental

analysis will be seeded with incorrect information from the prior analysis. While this

incorrect information doesn’t affect the soundness of the results, it does mean that

the incremental analysis must propagate this incorrect information to all reachable

program points, reducing performance and polluting precision. Thus, it is far better

to fail to match a program point than it is to incorrectly match a program point. This

means that our matching algorithm must carefully balance between matching often

and matching well. Failing to match often enough means that we get no performance

improvement; failing to match well means that we get both performance and precision

reduction.

4.4 Fixpoint Reuse for SAFE

Our prototype implementation is built on top of SAFE version 2.0. The SAFE Java-

Script analysis framework [91] does not perform its analysis at the level of the original

JavaScript source code. Instead, the source is translated to a simpler intermediate rep-

resentation (IR) that is more amenable to analysis—it breaks complicated expressions

into simpler ones, and makes explicit the implicit operations of the JavaScript language

(e.g., type coercion, argument array construction before a function call, etc.).

In order to reuse analysis results, we must therefore create a correspondence
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mapping between programs at the level of SAFE’s IR. In this section we describe

its constituent pieces, along with the different matching methods we implemented and

evaluated against.

4.4.1 Functions, Blocks, and Instructions, Oh My!

SAFE programs are divided into three main categories: functions, blocks, and

instructions. We explain them via an example. Consider the JavaScript program in

Figure 4.2a, made up of two functions and a free-standing statement that calls one

of those functions. This program is translated into SAFE’s intermediate program as

Figure 4.2b.

At both the textual- and the data structure-level, the program is represented as

a hierarchy of three entities: functions, blocks, and instructions. Any statements

that occur outside of a function are gathered together in the top-level function,

which serves as the entry point to the translated IR version of the program and its

subsequent analysis. For example, there are eight separate blocks in the top-level

function—Entry[-1], Block[0], Call[1], AfterCall[2], AfterCatch[3], Block[4], Exit[-2],

and ExitExc[-3]. There are nine instructions inside Block[0], which prepares for the call

to isEven, and there is just one instruction in the Call[1] block, which performs the

actual call to the function.

When we match JavaScript programs at the SAFE IR level, we match functions,

blocks, and instructions, in that order. Once we are confident that two functions

correspond, we then match their blocks, and once we believe we have chosen the

best block correspondence we match individual instructions. Matching instructions is

necessary for two main reasons: (1) correctly translating calling contexts from FPprior

to FPûpd requires accurate mapping of call instructions, and (2) correctly translating
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function isEven(x) {
if (x == 0) {

return true;
} else {

return isOdd(x-1);
}

}

function isOdd(x) {
if (x == 0) {

return false;
} else {

return isEven(x-1);
}

}

var b = isEven(42);

(a) A JavaScript program (b) The same program converted to SAFE IR

Figure 4.2: SAFE’s intermediate representation for JavaScript programs
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abstract heap addresses (in the IR, anything that begins with a “#”) from FPprior to

FPûpd requires accurate mapping of allocation instructions. In both cases, failing to

accurately match corresponding program entities does not cause unsoundness but

results in imprecision and will cause the analysis to visit unnecessary program locations

and heap addresses. Thus it is important that we match with high confidence if we

want any hope of making our analysis reuse method efficient and accurate.

4.4.2 Function Matching

Our function matching algorithm is based on an edit-distance calculation, as shown

in Algorithm 3. The algorithm is parameterized by a function CRITERIA that determines

the distance between pairs of functions as a numerical score—we consider two functions

to “match” when the criteria is below a certain threshold. We instantiated CRITERIA

with different choices as shown in Table 4.1 in order to evaluate which combination

of distance criteria worked best. Given the distances, the algorithm matches those

functions with the best distance score that is under our empirically-calculated threshold.

Algorithm 3 works under the assumption that functions between program versions

may be nested differently but generally still appear in the same order. We took inspira-

tion from Revolver, a work which found success using a longest common subsequence

algorithm to find similar pieces of malware among JavaScript programs [76]. Longest

common subsequence is a specific instantiation of the more general problem of edit

distance, and so we chose to design our matching algorithms around edit distance

calculations—it plays a part in our block and instruction matching methods as well.

Matches can be extracted from the algorithm’s resulting table.

Function Similarity Scoring Criteria. Table 4.1 shows the different kinds of function

criteria that we evaluate against. These are different combinations of differences based
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Algorithm 3 Edit Distance Function Matching

procedure EDIT-DISTANCE-MATCH-FUNCTIONS(
−−−−→
funcscurr,

−−−−→
funcsupd, CRITERIA)

Input: Functions from version Pprior, functions from version Pupd, and a function
CRITERIA that scores functions based on similarity
Output: A list of pairs of functions that have been deemed similar

matchingFunctions← ∅
M← PARAMETERIZED-EDIT-DISTANCE(

−−−−→
funcscurr,

−−−−→
funcsupd, CRITERIA)

Inspect the score matrix M, and populate matchingFunctions with the function
pairs that were successfully matched
return matchingFunctions

end procedure

Table 4.1: Different function matching criteria

Name Criteria

Position-only Distance between function IDs, distance between function line
numbers

Instruction-only Difference between number of instructions, (Size of the larger
multiset of identifiers that occur in each function) – (Number of
common identifiers occurring in both the functions)

Combined Combination of Position-only and Instruction-only
Staged Instruction-only, with ties broken by Position-only

on function position and based on instructions contained within the functions. We

chose the two axes of position-based and instruction-based matching after manually

inspecting the version differences among our benchmarks: quite often we discovered

that the functions appeared in the same order, and that the instructions for the most

part were identical. We also noticed that there were cases of the same function body

appearing in multiple places, so that led us to combine the two areas in different ways

to determine which combination was best. The criteria are in the form of distance

functions, so a higher number indicates a larger difference. We combine features using

the geomean.
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4.4.3 Block Matching

Our chosen block matching algorithm also uses an edit distance calculation. Edit

distance-based block matching is similar to Algorithm 3, and the blocks of two functions

are matched using edit distance in the order in which they appear in the SAFE IR. This

choice is based on the assumption that that changes to functions will not drastically

affect the analysis results, and so matching as many blocks as we can will be helpful

when we transfer old analysis computations. The best scoring blocks that match under

a threshold are returned.

Block Similarity Scoring Criteria. The block criteria we chose is a combination of the

following:

• Block type (Normal, Call, etc.),

• Instruction count difference, and

• (Size of the larger multiset of identifiers that occur in each block) - (Number of

common identifiers occurring in both the blocks).

We save the corresponding blocks, because Call blocks are used in abstract state

calling contexts.

4.4.4 Instruction Matching

For each matched pair of blocks, we once again perform a distance calculation.

Instructions are matched based on the type of the instruction, the number of allocation

sites appearing in the instruction, and the names of the variables involved (modulo the

generated numerical suffixes). We save the corresponding allocation sites and variables

that appear as the left-hand side of assignment instructions, as they will need to be

remapped between abstract heaps.
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4.4.5 Fixpoint Reuse

After a successful program matching effort we must use this information to remap

results from FPprior into the new FPûpd before the incremental analysis begins its calcu-

lation. We keep this section high-level; the details are tedious but straightforward.

Figure 4.3 shows a high-level version of the data structures we work with. SAFE

contains a map that keeps track of the saved abstract state for every ControlPoint,

which is a (Block, Context) pair. Contexts keep track of which functions were called

immediately preceding the current one, and can contain zero or more call sites, which

are themselves Blocks (specifically, the Call blocks where the function call to the current

function or one of its predecessors took place). For example, if we start out from the

top level of our program, and call a function foo, the context will change from ∅ to

the list [foo], assuming our context sensitivity is greater than zero. So, we must remap

each block using our saved correspondence mapping generated during the matching

phase; it is for this purpose that we keep track of corresponding blocks.

For the abstract states, we must traverse and find any addresses and local variable

names that we know how to map over. Local variables are held in a specific part of the

abstract state, while abstract addresses are spread everywhere (though mainly exist in

the heap and abstract JavaScript objects). It is for this purpose that we keep track of

corresponding instructions.

4.5 Evaluation

In this section we evaluate the efficacy of fixpoint reuse in terms of performance

and precision. Because we’re guaranteeing the soundness of the incremental analysis,

we must at a minimum visit every program point in the updated version at least once.
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ControlPoint

Block Context

...

CallSite (Block)

AbstractState

...

AbstractValue

Address ... Address

...

...

Variable ... Address

Figure 4.3: Reuse occurs inside of the ControlPoint and AbstractState data structures.
This figure shows the general layout of these structures, and the leaves are things that
we must map over between versions. For example, the abstract Addresses will often
change with program versions.

Thus, the potential for speedup lies in reducing the number of times the analysis has

to revisit a program point before convergence. The quality of the program matching

between versions will play a large role.

We want to study the efficacy of fixpoint reuse on actual programs from the wild.

We take four JavaScript-based browser addons and four Node.js programs along with

between 1–4 updates for each program taken from available public repositories. These

benchmarks are described in Table 4.2. These benchmarks were chosen from a set of

similar programs because SAFE can completely model their code and analyze them

using a reasonable amount of resources (we are limited in our benchmark selection by
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Table 4.2: Open-Source Benchmarks. For every sequence of benchmark versions (e.g.,
[A, B, C]), we compare the closest pairs (i.e., (A, B) and (B, C)).

Benchmark Name Version A Lines Version B Diff Distance

chess1 [4] 0.1.0.1 283 0.1.1.2 127+/116– 44
chess2 0.1.1.2 295 0.1.1.3 40+/10– 69
emoji-helper1 [8] 1.1.0 579 1.1.1 17+/3– 24
emoji-helper2 1.1.1 594 1.2.0 15+/1– 10
simple-translate [14] 2017.09.25 301 2017.10.14 2+/2– 0
k-cup-deals [11] 1.2 499 1.3 12+/0– 63
dateformat1 [7] 2011.03.13 166 2012.11.08 49+/7– 22
dateformat2 2012.11.08 208 2013.03.11 15+/8– 6
dateformat3 2013.03.11 216 2014.11.28 201+/55– 44
dateformat4 2014.11.28 261 2017.09.18 11+/6– 10
yallist1 [17] 2015.12.19 585 2017.03.11 24+/16– 8
yallist2 2017.03.11 594 2017.03.13 9+/0– 8
yallist3 2017.03.13 602 2017.04.25 2+/0– 0
balanced-match [3] 0.4.2 193 1.0.0 93+/102– 161
url-join1 [16] 2.0.0 149 2.0.1 1+/1– 0
url-join2 2.0.1 149 2.0.2 1+/1– 0

SAFE’s capabilities). Following previous work on analyzing browser add-ons [77], we

edit the original code to provide stubs for built-in browser functions, and we include

some amount of driver code to ensure that the analysis visits all interesting locations in

the source file. We manually selected sources and sinks for each file.

The actual analysis that we perform on these benchmarks is a taint analysis im-

plemented using the SAFE JavaScript analysis infrastructure, suitably modified to

implement fixpoint reuse. The implementation is available online. We use the taint

results to measure the precision of the incremental analysis versus a from-scratch

analysis.

To help calibrate expectations, we start with a limits study to determine the max-

imum speedup the incremental analysis could possibly get. We accomplish this by

running the incremental analysis on “updated” benchmark versions that are exactly
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the same as the original, thus ensuring a perfect program match and minimal revisiting

of program points. The results are in Section 4.5.1.

Another factor that comes into play is how different the original and updated

programs are. In the extreme, the updated program could be completely different from

the original and not benefit from incremental analysis at all. To help understand the

effect of program “distance”, we have created a set of handmade benchmarks and a

series of successively more “distant” updates for each benchmark, allowing us to study

the effects of program distance in a controlled manner. The results are in Section 4.5.2.

Finally, we compare the speedups that we achieve on the actual updated program

versions to determine how close to the optimal results we are. These results are in

Section 4.5.3, and we study the sizes of the reused fixpoints in Section 4.5.4.

4.5.1 Limits Study

For our limits study we take each program version of each benchmark and run

an incremental analysis on itself—in other words, we take the from-scratch analysis

and apply fixpoint reuse to exactly the same program. This is the ideal case for reuse

and provides the maximum benefit. Because we have a perfect program match, the

only cost in the incremental case is for visiting each program point exactly once. We

run three different experiments varying context-sensitivity from 0-CFA to 2-CFA; a

“program point” for a context-sensitive analysis includes the context. The results are

shown in Table 4.3.

4.5.2 Controlled Distance Study

Table 4.4 contains information on our handmade benchmarks: they are versions

of the v8 Navier-Stokes (Table 4.4a) and the Richards (Table 4.4b) benchmarks with
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Table 4.3: Best possible speedups. Exact times can be calculated using Table 4.6.

Benchmark 0CFA (×) 1CFA (×) 2CFA (×)

chess1 6.30 3.23 2.84
chess2 9.59 5.66 3.61

emoji-helper1 7.98 8.17 5.64
emoji-helper2 9.15 9.47 5.67

simple-translate 3.17 4.24 2.60
k-cup-deals 11.58 3.12 1.12
dateformat1 4.30 3.93 3.00
dateformat2 4.84 3.92 3.12
dateformat3 4.05 2.95 1.92
dateformat4 4.04 2.77 1.96

yallist1 9.85 13.05 11.93
yallist2 8.37 13.44 10.84
yallist3 9.44 13.36 11.55

balanced-match 7.92 12.58 14.46
url-join1 4.41 2.85 3.93
url-join2 4.68 2.93 4.30

Average 6.85 6.58 5.53

statements deleted. We made random (but attempted to avoid program-breaking)

deletions—these files are then “played backwards” to appear as a sequence of code

additions. Thus, successive versions contain greater and greater differences to the

original version.

Our distance metric is derived from our program matching algorithm. Given two

programs A and B, we compute the set of matching function pairs and, for each pair, we

compute the block edit distance. The sum of the block edit distances over all matching

function pairs is our measure of distance between A and B. We investigated several

other possible distance metrics and found that they all behaved similarly.

We chose this methodology because additions seem to be the most common updates

to code: in our real-world, open-source benchmarks, each commit contains over 4×

the number of additions to deletions on average. Of the four outliers, only one was a
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Table 4.4: Handmade Benchmarks

(a) Navier-Stokes (v8 lines of code:
398)

Versions (A–B) Diff Distance

v0–v8 35+/4– 68
v1–v8 32+/4– 62
v2–v8 27+/3– 53
v3–v8 20+/3– 43
v4–v8 17+/2– 39
v5–v8 11+/2– 22
v6–v8 8+/2– 11
v7–v8 2+/0– 1

(b) Richards (v8 lines of code: 546)

Versions (A–B) Diff Distance

v0–v8 30+/2– 64
v1–v8 28+/2– 60
v2–v8 23+/2– 51
v3–v8 21+/2– 43
v4–v8 19+/1– 38
v5–v8 13+/0– 33
v6–v8 11+/0– 27
v7–v8 8+/0– 16

legitimate case of refactoring; others were superficial changes regarding whitespace or

test suite configuration, and so these diffs were exaggerating the truth.

Figure 4.4 shows the results of our handmade benchmarks. We ran every combi-

nation of version pairs that respected the order, e.g., v1∼v2, v1∼v3, v1∼v4, v2∼v3,

v2∼v4, v3∼v4, etc. We grouped each pair of programs based on their distance score.

These 1CFA analysis results paint a picture of how program additions impact reuse.

Figure 4.4a shows the results for the Richards benchmarks. This benchmark consists

of several small functions. For the original benchmark, the fixpoint took 9,081 iterations

to converge, there were 494 unique program points visited, and there were 3 loops.
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Figure 4.4: Handmade Results
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Figure 4.4b shows the results for the Navier-Stokes benchmarks. This benchmark

consists of a small number of large functions. The original benchmark’s fixpoint took

7,060 iterations to converge, there were 562 unique program points visited, and there

were 26 loops. For both benchmarks, the chosen taints were calculated precisely for all

version pairs.

Both sets of benchmarks tend to degrade in performance as the difference between

version pairs increases, but the Richards benchmark appears to be more amenable to

reuse and therefore has more to lose as the distance increases. Given the statistics in

the previous paragraph, compared with the Navier-Stokes benchmark set, the Richards

benchmark set has more iterations to save by reusing information, fewer program

points to visit at least once, and significantly fewer loops through which any updated

information must be propagated. This experiment helps to give insight into which

kinds of programs see better fixpoint reuse performance, while also highlighting that

some amount of improvement is usually possible as long as the changes are not too

drastic. Even in the face of unrecoverable program differences (see the line of dots

hovering above the 1× speedup in Figure 4.4b), for these benchmarks our method does

not do worse than a from-scratch analysis.

Unmatched instructions

Figure 4.5 provides insight into the abilities of our matching algorithm by showing

the total number of instructions that could not be matched across all the different

versions of the Richards handmade benchmarks. The Navier-Stokes results are similar.

As the textual difference between programs increases, it becomes more difficult to

match functions and blocks—this difficulty culminates in the algorithm’s inability to

match individual instructions inside of blocks. The larger the gap between handmade

benchmark versions, the more changes exist in the code, and the number of unmatched
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Figure 4.5: Number of unmatched instructions across the Richards handmade bench-
marks.
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Table 4.5: Correspondence map creation times.

Benchmark Time (s)

chess1 1.03
chess2 1.07

emoji-helper1 4.70
emoji-helper2 4.82

simple-translate 1.18
k-cup-deals 2.24
dateformat1 0.82
dateformat2 0.75
dateformat3 0.77
dateformat4 0.84

yallist1 3.92
yallist2 4.27
yallist3 4.33

balanced-match 0.42
url-join1 0.55
url-join2 0.55

instructions reflects this. Matching is not exact, and so there is one outlier in the

v0–v2 version pair, but the results show that our matching method keeps unmatched

instructions to a minimum and performs well in the vast majority of cases.

For the instructions that could be matched, there is still a possibility that they were

matched incorrectly—discovering errors in instruction matching would require manual

effort, but we believe the lack of extra taints demonstrates that our edit distance-based

matching is precise.

4.5.3 Real-World Evaluation

We run the real-world version updates at three context-sensitivity levels. The time

it takes to perform the program matching process on a given version pair is the same

for every context sensitivity level. Table 4.5 shows the times, and they are all quite

small. For the longer-running analyses this number is completely negligible.
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Table 4.6: Baseline results.

Benchmark 0CFA 1CFA 2CFA
Time (s) Taints Time (s) Taints Time (s) Taints

chess1 39.46 3 22.20 3 24.28 5
chess2 71.77 3 39.05 3 39.01 4

emoji-helper1 213.90 1 135.78 1 84.55 1
emoji-helper2 251.39 1 150.80 1 95.04 1

simple-translate 13.60 1 17.34 1 14.29 2
k-cup-deals 86.89 1 30.58 1 20.45 1
dateformat1 52.28 4 56.71 8 50.92 8
dateformat2 67.06 4 60.39 8 55.52 8
dateformat3 66.60 4 42.74 7 34.34 7
dateformat4 68.92 4 44.25 7 35.76 7

yallist1 843.39 7 1443.23 60 2084.17 60
yallist2 857.51 7 1432.67 60 2033.51 60
yallist3 823.98 7 1429.20 60 2107.08 60

balanced-match 249.31 20 523.17 420 2397.87 420
url-join1 41.11 2 29.83 17 112.95 17
url-join2 41.60 2 30.42 17 114.35 17

Baseline results

Table 4.6 shows the results for running the static analysis on the updated version

of each benchmark from scratch (i.e., with fixpoint reuse turned off). The number of

taints output is the sum of all tainted sources for a given tainted sink state—note that

states can become duplicated when context sensitivity increases, and that is why the

number increases.

Incremental Results

Table 4.7 shows the results of reuse for each different context sensitivity level.

We find that all taints are carried over with very little imprecision. The dateformat

benchmark is the only case with imprecise taints, and this is due to the modeling of

a JavaScript built-in object that causes the analysis to return the >addr address (i.e.,
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Table 4.7: Results, relative to from-scratch analysis. Exact times can be calculated using
Table 4.6.

Benchmark 0CFA 1CFA 2CFA
Speedup Taints Speedup Taints Speedup Taints

chess1 1.28 3 1.01 3 0.97 5
chess2 1.61 3 1.08 3 0.97 4

emoji-helper1 4.70 1 4.35 1 3.40 1
emoji-helper2 7.07 1 7.37 1 4.87 1

simple-translate 3.14 1 4.15 1 2.63 2
k-cup-deals 4.32 1 1.46 1 0.93 1
dateformat1 1.47 4 1.02 8 0.90 8
dateformat2 2.59 4 1.60 8 1.44 8
dateformat3 2.19 4 0.90 8 0.91 8
dateformat4 4.13 4 2.26 8 1.48 8

yallist1 1.18 7 1.03 60 1.07 60
yallist2 1.23 7 1.42 60 1.48 60
yallist3 9.36 7 14.41 60 13.16 60

balanced-match 0.88 20 0.97 420 1.02 420
url-join1 4.23 2 2.56 17 3.93 17
url-join2 4.27 2 2.60 17 3.99 17

Average: 3.35 3.01 2.70

the abstract address corresponding to all concrete addresses). Because the heap is

prepopulated with extra information, there are more locations to point to than in the

from-scratch case.

All in all, while maintaining soundness and high precision in a proof-of-concept

taint analysis, our fixpoint reuse method allows us to more than double the speed of an

analysis on average for real-world programs.

For another perspective, Table 4.8 shows our speedup relative to our best possi-

ble incremental analysis results (i.e., the observed speedup divided by the optimal

speedup). These results provide another means of observing program difference: the

version pairs with the fewest differences have either an optimal or close-to-optimal

speedup. Due to natural variation in analysis times, some results were slightly above
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Table 4.8: Speedup results, relative to a perfect incremental analysis. Exact times can be
calculated using Table 4.6.

Benchmark 0CFA 1CFA 2CFA

chess1 0.20 0.31 0.34
chess2 0.17 0.19 0.27

emoji-helper1 0.59 0.53 0.60
emoji-helper2 0.77 0.78 0.86

simple-translate 0.99 0.98 1.00
k-cup-deals 0.37 0.47 0.83
dateformat1 0.34 0.26 0.30
dateformat2 0.54 0.41 0.46
dateformat3 0.54 0.31 0.48
dateformat4 1.00 0.82 0.76

yallist1 0.12 0.08 0.09
yallist2 0.15 0.11 0.14
yallist3 0.99 1.00 1.00

balanced-match 0.11 0.08 0.07
url-join1 0.96 0.90 1.00
url-join2 0.91 0.89 0.93

Average: 0.55 0.51 0.57
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1.0—we capped those results at 1.0 to paint a more accurate picture. On average, our

reuse method is within a factor of two of the optimal speedup for these benchmarks,

and we believe this is representative of the general case.

4.5.4 Size of Saved Fixpoints

Figure 4.6 shows the sizes of each fixpoint after compressing with the gzip com-

pression utility. The longer-running benchmarks compute more information during the

analysis, and are therefore larger. An increase in context sensitivity also causes more

information to be saved, and this increases the size of each fixpoint as well. As these

files can get large, an interesting area of future investigation could be investigating how

to take advantage of the semantic struture of fixpoints to aid further compression.

4.6 Background

In this section we provide some background on abstract interpretation and taint

analysis.

4.6.1 Abstract Interpretation

Abstract interpretation [48] discovers invariants about a program by running it in

an abstract way. For example, assume that the computation of 2 + 3 was too difficult to

compute—one way of making this easier computationally is to get rid of the numbers,

and instead calculate positive+ positive—a table lookup would provide the final answer

of positive. We can capture this process with a function α : Z → PosNegZero, where

PosNegZero is the powerset of the set {positive, negative, 0}; it is an example of an abstract

domain.
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chess-0.1.1.2
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index-0.4.2
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Figure 4.6: Size of gzip-compressed fixpoints in megabytes.
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positive, however, is not the same as 5—it is an abstraction. Information is clearly yet

deliberately lost when we move to an abstraction, and there is much work on the fine

line between giving up too much information and just enough to solve the original

problem. Information is ordered in the logical way: {positive} is clearly more precise

than {positive, 0}, so we write this fact as {positive} v {positive, 0} in this new abstract

sense, so less precise things are abstractly bigger than more precise things—intuitively,

such imprecise values “believe” that they are more things.

Programming languages are more complicated than simple arithmetic expressions:

we must figure out how to “abstractly” run the computations involved during function

calls and complicated loops and numerical operations. And, we must do all this while

preserving the key property that all program analyses must have: the analysis must

halt, even if the program does not. We want some information about a program, and

we accept that we must settle for some information loss, but we don’t want to wait

a lifetime to get the final answer. A more complicated analysis that is essential for

JavaScript analysis is called control-flow analysis: instead of generating values of

variables, it creates a control flow graph for the analyzed program.

Fortunately, we are not forced to reinvent the wheel to implement a program

analysis. One piece of machinery that gets us most of the way there is an interpreter

for a programming language—it has most of the features that we desire, but it is too

precise. We can implement an abstract interpreter on top of a regular (the technical term

is concrete) interpreter fairly easily (see, e.g., [144]) after one has chosen the abstract

domains to use.

Interpreters (and therefore abstract interpreters) often have a lot of moving parts—

especially for a language like JavaScript, where values can be of many different types

all at once, functions are first-class objects, inheritance is modeled with prototypes, etc.

Abstract heaps are often used to keep track of data that has been allocated, and there is
81



Fixpoint Reuse Chapter 4

also a stack of functions that have been called and pointers to where they should return

to. None of this information goes away during the transition to an abstract interpreter.

Nondeterminism often plays a large role in abstract interpretation, due to lost

precision—this can cause loops to arise where they would not appear otherwise. As

an example of lost precision and nondeterminism, consider the following program

statement:
if (1 <= 2)

X();
else

Y();
A concrete interpreter would immediately conclude that only the true branch will ever

be executed, but consider the abstract interpreter with the PosNegZero numerical ab-

stract domain from above: it would instead ask itself about the truth or falsity of the

expression positive ≤ positive, and the correct answer is “I don’t know”, since 4 <= 3

looks exactly the same as 1 <= 2 from its viewpoint. Thus the abstract interpreter

returns true and false for this expression, runs both branches, and must find a way

to combine the information that it calculates for each branch to use as the result of the

entire if/else expression.

This combination of imprecise values is key to our analysis reuse: maybe the

program changes, and X() does something completely different while Y() remains the

same—could we use our old information about the abstract result of Y() again? Our

method revolves around populating abstract states with previously-computed values.

A term that appears often in this chapter is context sensitivity, which describes how

an analysis keeps track of where functions that are called should return. It is infeasible

(and in programs with call stacks of indeterminate depth, impossible) to keep track of

the entire call stack in an abstract interpreter, and so many analyses settle for saving

only the very top of the stack. Saving one function on the top of the call stack is

abbreviated as 1CFA, two is 2CFA, and saving nothing is called either 0CFA or context
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insensitive. These different context sensitivities make a difference in the precision and

performance of an analysis, and this difference translates into the realm of reuse that

we explore.

Abstract interpreters often run what is called a worklist algorithm, which keeps

track of which locations in the program to visit and calculate abstract results for—

initially, the first line of the program is inserted as the initial state, because the analysis

has not yet saved any information about its execution. The analysis halts when the

information it knows about each state does not change. When the analysis stops

and the information converges, we say that it has reached a fixpoint. We refer to this

conglomerate of saved information about each abstract state as the “fixpoint” of the

entire analysis.

If we give an analysis some starting information from a previous program version,

it has the potential to terminate more quickly, though there is the risk of having too

much imprecision. That is the challenge we overcome in this chapter.

One important property that a analysis should have is soundness: a sound analysis

overapproximates the results of any concrete run of a program and does not leave out

a possible behavior—we ensure that our analysis reuse method retains the soundness

of the underlying analysis.

4.6.2 Taint Analysis

As the name indicates, a program taint is something that is undesirable. Taints have

to do with data dependence, i.e., which values get where. For example, consider the

following code:
var x = 5;
var y = x + 7;
var z = y * 8 + 42;

We say that x flows to z (and also y). If the number 5 was a confidential value that we
83



Fixpoint Reuse Chapter 4

did not wish to pass around to too many places, we would say that it is a tainted source

and try to track where this information flows. Instead of propagating actual numbers or

positivity information, this analysis tracks information about the taintedness of a given

expression.

Taint tracking is a common program analysis, and the goal is to find whether any

tainted sources reach any undesirable program locations, or sinks. A more high-level

example of a source and a sink is that of a system password and a network request.

To evaluate our analysis reuse method, we implement taint analysis on top of

an existing JavaScript abstract interpreter, and we use this analysis to evaluate the

precision of our worklist reuse algorithm. We want the reused analysis to not return

too many extra sinks that an analysis that started from scratch would not return, for

some definition of “too many”.

This may sound too good to be true, so we briefly provide some insight on why

this goal of precise reuse without any pruning is attainable. Consider once more the

example of the imprecise if statement from the previous subsection, and imagine

again that X() is changed drastically while Y() remains the same. We will carry over

the taints from Y() in the reused analysis, since it has an exact correspondence in the

new program, but we will also remember any taints that occurred inside X(), and at

first glance this may be interpreted as a bad thing. But, the key point is that we assume

that the old program was “accepted” or already considered safe, so any “incorrect”

taints will in fact not pollute the output. Our evaluation confirms this.
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Semantic Clone Detection

5.1 Introduction

Clone detection, the process of discovering duplicated and/or similar code across

a code base, is an important software engineering problem to solve in order to help

prevent code bloat and code redundancy, and the attendant issues that these raise—for

example, failing to propagate a bug fix in one part of the code to other parts of the code

that are (near-)duplicates of the first. The term “similar code” is vague; to make the

concept more precise the community has categorized code clones, that is, sets of code

fragments that are considered similar, into different types based on how “similarity” is

defined [125]:

• Types I, II, and III. Similarity of code fragments is defined in a purely syntactic

way, either in terms of program text or of syntax trees. As the numbered Type

increases, so does the generality of the Type definitions.

• Type IV. Code fragments are Type IV clones if they perform similar functionality,

compute a similar solution, or operate in a similar manner. Type IV clones are also

known as semantic clones. They ignore syntax, and so they are not necessarily a

superset of Type III clones, or have any particular relation at all to the sets of Type
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I, Type II, or Type III clones. We focus on Type IV clones in this chapter.

This chapter proposes a new method for semantic clone detection, the least stud-

ied and most difficult to find class of code clones [125]. A simple example of the type

of clones we detect are two distinct implementations of different sorting algorithms,

e.g., insertion sort and bubble sort. The implementations of these two sorting routines

look completely different syntactically, but semantically they accomplish the same task

and hence are Type IV clones.

Prior work on semantic clone detection usually uses program dependence graphs

(PDGs) to expose non-syntactic similarities between code fragments [84, 88, 94, 61].

The intuition behind those techniques is that similar data- and control-dependencies

imply similar semantic behavior. Sometimes this heuristic is borne out, but other

times it fails to identify clones that are clearly semantically identical (and sometimes

fails to distinguish non-clones), as shown in our evaluation in Section 5.4. Our key

insight is a complete departure from that previous approach; our intuition is that

semantically similar programs ask similar questions with similar frequencies. This

intuition gives rise to a novel heuristic for identifying semantic clones, which we show

in our evaluation to work well in practice.

Our heuristic for detecting semantic clones is to compute the probability distribution

over individual paths in a given code fragment,1 and then judge whether two code

fragments are semantic clones by comparing their path distributions to see if they are

“close enough”. We work in the style of Probabilistic Symbolic Execution [63]. Paths

are defined by the conditions that are tested at various branching points in the code,

i.e., the “questions” that the code asks. The distribution over those paths indicates the

frequency that the code asks these questions. If the distributions are similar for the two

1Under certain assumptions as detailed later in this chapter, such as restricting infinite domains to a
finite interval.
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code fragments, then the fragments are asking the same kinds of questions with the

same frequencies, and hence are likely (according to our intuition, and borne out by

our evaluation) to be semantic clones.

To compute this heuristic we employ a symbolic execution engine to derive the set

of paths that a code fragment can execute; we then employ a model counter for each

derived path to obtain the paths’ relative frequencies. A model counter takes a logical

formula (such as a path condition from the symbolic execution engine) and returns

the number of satisfying solutions for that formula. As an example, consider the two

code fragments in Figure 5.1. Figure 5.1a and Figure 5.1b contain programs that are

syntactically different yet semantically identical. For each code fragment there are two

execution paths based on the value of variable x that are equally likely, as shown by

the distributions in Figure 5.1c and Figure 5.1d. Hence our heuristic categorizes these

code fragments as semantic clones.

On the other end of the spectrum, consider the two code fragments in Figure 5.2.

In Figure 5.2a and Figure 5.2b we have programs that are semantically different yet

syntactically similar. For Figure 5.1a we count the number of values of i that satisfy

the constraint i == 0 (obtaining 1), and then we do the same for the else branch’s

constraint i != 0 (obtaining 232 − 2, assuming 32-bit integers). Assuming a uniform

distribution over the input space, there is a sharp contrast between the branch distri-

butions of these two programs, as shown in Figure 5.1c and Figure 5.1d. Hence our

heuristic categorizes these code fragments as non-clones.

The implementation of our proposed technique operates at the granularity of

functions: it forms discrete probability distributions over function execution paths and

then compares these distributions using statistical techniques. If the resulting metric

exceeds a given threshold then the two functions are considered clones, otherwise they

are considered non-clones. The specific contributions of this chapter are the following:
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if (x % 2 == 1)
odd++;

else
even++;

(a) Testing the parity of x. Assuming
every value of x occurs equally often,
both branches are taken with equal
probability.

while (x & 1) {
odd++;
even--;
x = 0;

}
even++;

(b) A semantically identical, syntacti-
cally different version of Figure 5.1a.

Path 1 Path 2

(c) The distribution of path frequen-
cies for Figure 5.1a.

Path 1 Path 2

(d) The distribution of path frequen-
cies for Figure 5.1b.

Figure 5.1: An example of the usefulness of model counting: the distributions of the
branches in each code snippet are the same.

if (i == 0)
foo();

else
bar();

(a) Choosing between two function
calls. Assuming every value of i oc-
curs equally often, bar() gets exe-
cuted more often than foo().

if (i < INT_MAX / 2)
far();

else
boo();

(b) A syntactically similar, semanti-
cally different version of Figure 5.2a.
Under similar assumptions, far() is
executed equally as often as boo().

foo bar
(c) The distribution of path frequen-
cies for Figure 5.2a.

far boo
(d) The distribution of path frequen-
cies for Figure 5.2b.

Figure 5.2: An example of the usefulness of model counting: the distributions of the
branches in each code snippet are vastly different.
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• We present a novel clone detection method that is more sensitive to semantic

differences than existing work (Section 5.3). Both this proposed method and

existing work are imperfect heuristics; we believe that in certain cases (discussed

in our evaluation) this method is complementary to existing methods—that is,

they can be useful together.

• We provide an evaluation of our method and show that we detect semantic simi-

larities and differences that existing methods cannot (Section 5.4).

• We make our source code and benchmarks freely available to the research commu-

nity for modification and improvement.

Before describing the details of our technique, we provide a high-level overview

and example to facilitate understanding and intuition (Section 5.2). We put our work

into context by examining the related work in Section 5.5.

5.2 Overview and Example

In this section we provide a high-level walkthrough of our method by means of

an example. Any technical details not fully explained here have been saved for the

following section. To begin, we discuss our definition of semantic clones.

5.2.1 Our Definition of Semantic Clones

Semantic clones (also known as Type IV clones) in the literature are commonly

defined in an abstract and informal way [88, 127, 128, 83, 114], and usually a sentence

or two is used to describe them. For the most part, prior work has settled on the idea

that a semantic clone is a pair of program snippets that perform the same functionality
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while possibly appearing textually different. More advanced definitions are given in

the form of Simions [71] and Code Relatives [137]—with Code Relatives being the more

technical of the two—but these definitions are not applicable to all methods of semantic

clone detection.

Instead, we interpret semantic clones using program execution traces as a basis

(which contain, e.g., the values of variables, the current program point that is being

executed, the contents of the stack, etc.) and imagine semantic similarity as matching

certain feature sets extracted from those traces. For a specific instance of semantic

clone detection, a researcher can supply a scoring function to a static or dynamic

program trace, and this interpretation is general enough to cover our method as well

as competing methods; we believe that it provides enough generality to represent most

semantic clone detection methods.

5.2.2 The Programs

Our running example will use the programs displayed in Figure 5.3. The first

two are both sorting functions: Figure 5.3a is an implementation of insertion sort and

Figure 5.3b is an implementation of bubble sort. The end goal of each algorithm is the

same, but the method by which the two programs achieve this goal is quite different;

therefore, these two programs are exact semantic clones of one another, and we would

like to algorithmically discern this fact.

Figure 5.3c contains code for the longest increasing subsequence algorithm, which

tries to find a sorted subsequence inside an array. We claim that, while it is not an exact

semantic match to the above sorting algorithms, this code fragment is semantically

similar in the sense that it is concerned with the property of sortedness—this should

be visible through an appropriate comparison of program execution traces, and thus
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this fits our definition of semantic clones. We would like our semantic clone detection

algorithm to discover this similarity.

Figure 5.3d contains an iterative version of binary search on integer arrays. This

program is quite different from the others because it searches through an already sorted

array and does not compare array elements to each other, thus we claim that it is not

semantically similar to the previous code fragments. We would like our similarity

detection algorithm to distinguish between this code fragment and all of the other

fragments.

The first step of our method involves symbolic execution, which is necessary to

understand the different ways that the programs interact with their data.

5.2.3 Exploring Execution Paths

We first run Symbolic Pathfinder (SPF) [111], a state-of-the-art symbolic execution

engine for Java, on each program. Symbolic execution allows us to execute each

program in all possible ways, up to a given bound. We must bound the data as well as

the control paths, for example, we arbitrarily bound array sizes to three in this example.

Symbolic execution attempts to discover every feasible control path in the program

(i.e., every possible path that a program can possibly take in a concrete execution);

therefore the symbolic execution engine collects path conditions along the way—these

are, in essence, a justification for why a particular path was feasible. A path condition is

a conjunction of logical formulae that explains the decisions that a particular program’s

execution took with respect to branches, and they form the basis for our similarity

detection algorithm. Those path conditions are sent to a solver whenever they are

updated, and the engine only continues exploring a given path if its path condition is

satisfiable. We configure SPF to use the Z3 [52] SMT solver.
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public static void insertSort(int[] A){
for(int i = 1; i < A.length; i++){
int value = A[i];
int j = i - 1;
while(j >= 0 && A[j] > value){
A[j + 1] = A[j];
j = j - 1;

}
A[j + 1] = value;

}
}

(a) Insertion sort
public static void bubbleSort(int[] comparable) {

boolean changed = false;
do {

changed = false;
for (int a = 0; a < comparable.length - 1; a++) {

if (comparable[a] > comparable[a + 1]) {
int tmp = comparable[a];
comparable[a] = comparable[a + 1];
comparable[a + 1] = tmp;
changed = true;

}
}

} while (changed);
}

(b) Bubble sort
static int lis(int arr[], int n) {
int lis[] = new int[n];
int i,j,max = 0;
/* Initialize LIS values for all indexes */
for ( i = 0; i < n; i++ )

lis[i] = 1;
/* Compute optimized LIS values in bottom up manner */
for ( i = 1; i < n; i++ )

for ( j = 0; j < i; j++ )
if ( arr[i] > arr[j] && lis[i] < lis[j] + 1)

lis[i] = lis[j] + 1;
/* Pick maximum of all LIS values */
for ( i = 0; i < n; i++ )

if ( max < lis[i] )
max = lis[i];

return max;
}

(c) Longest increasing subsequence
public static int binarySearch(int[] nums, int check) {

int hi = nums.length - 1;
int lo = 0;
while (hi >= lo) {

int guess = (lo + hi) / 2;
if (nums[guess] > check) {

hi = guess - 1;
} else if (nums[guess] < check) {

lo = guess + 1;
} else {

return guess;
}

}
return -1;

}

(d) Iterative binary search

Figure 5.3: Three semantically similar programs (a, b, c) and one control program that
is semantically different from the others (d).
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We run the programs being compared through SPF and ask for the resulting path

conditions; a representative path condition from the insertion sort function is:

Path Condition: constraint

a_1[1] > a_2[0] &&

a_0[2] > a_2[0] &&

a_0[2] > a_1[1] &&

[I@15b_length[0] >= CONST_0

Even at this level, the path conditions for insertion sort and bubble sort turn out

to be exactly the same. Sorting algorithms take a different path depending on the

arrangement of the data in the provided array; the path conditions show that at the end

of their execution, both insertion sort and bubble sort will have asked the same questions

about their data. The methods by which the two programs obtained their information

and effected their branching are quite different from one another—insertion sort is

much more efficient, after all—but their discoveries were the same in the end.

As for the longest increasing subsequence path conditions, the similarities are not

yet obvious, and so we must generalize our method if we hope to compare any two

given functions. We choose to employ model counting in order to obtain a representation

for program paths that may be readily compared with one another.

The iterative binary search path conditions are quite different from the rest, with

many having completely different numbers of paths, and we expect that the final model

counts will demonstrate this fact as well.

5.2.4 Model Counting Path Conditions

In order to detect semantically similar (but not necessarily identical) code fragments,

we must abstract the path conditions for each fragment into a form that can be readily
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{17341665826650, 17867170851700,
1751511700, 17867170851700,
17867170851700, 1804057051}

(a) Insertion sort

{17341665826650, 17867170851700,
1751511700, 17867170851700,
17867170851700, 1804057051}

(b) Bubble sort

{17341665826650, 17867170851700,
1751511700, 1751511700,

17867170851700, 18403185977251}
(c) Longest increasing subsequence

{338350, 166650, 5050, 166650, 338350,
5050, 101}

(d) Iterative binary search

Figure 5.4: Model counts for each path condition.

compared. We choose to abstract each set of path conditions as a discrete probability

distribution. This abstraction obviously loses information about the individual path

conditions; however, we show in our evaluation that this choice for abstraction works

well in practice.

We use the Barvinok model counter [145] in order to obtain the number of satisfying

solutions to constraints over integers. We focus on integer constraints in this chap-

ter, but there exist other model counters that handle other kinds of constraints (e.g.,

strings [28]). Our method can be applied to any type of countable constraint without

requiring any changes.

For this example we bound the integers to range from 0 to 100 because unbounded

integers would produce a count of ∞, which is not useful. We explain and justify our

bounding assumptions in Section 5.3. After placing our constraints in the format that

Barvinok accepts, we obtain the counts shown in Figure 5.4.

Each integer is the number of satisfying solutions to the path condition that it

represents. Again, we can see that insertion sort and bubble sort are equivalent, while
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there is a slight difference between the two sorting functions and the longest increasing

subsequence function. There is a large difference between iterative binary search and

the others in terms of magnitude, but perhaps the relative probabilities tell a different

story. In order to compare these counts and return a final similarity score, we convert

these counts to distributions.

5.2.5 Path Distributions

If we assume, as is customary [115, 32], that all paths and values are equally likely,

it is simple to convert the path counts to path probabilities [63]. We will justify these

assumptions and others in Section 5.3; for now it suffices to say that these same

assumptions are made across all programs, so each program is on a level playing field.

After performing this conversion we are left with the discrete probability distributions

shown graphically in Figure 5.5.

Again, insertion sort and bubble sort remain identical. Longest increasing subse-

quence is quite similar to the other two, but not identical, and we would like the ability

to quantify this difference. Iterative binary search also has some clear differences in

this graphical form. As we now have obtained probability distributions, one of our

insights is that we may now compare them using standard statistical techniques.

5.2.6 Comparing Distributions

We save the specifics of our score calculation for the next section; it suffices to say

here that we use a statistical divergence algorithm to obtain a number quantifying the

difference between two discrete distributions. Our final results are shown in Table 5.1,

along with how long it took for the scores to be calculated.

The score is an unbounded divergence value that represents how different the two
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(c) Iterative binary search

Figure 5.5: Path distributions obtained from the path counts. Insertion and bubble sort
are identical and have been conflated into the same graph.

Table 5.1: Final scores and timing data for the example programs.

Program Pair Score Running Time

(Insertion sort, Bubble sort) 0.000000 8.14 s
(Insertion sort, Longest increasing subsequence) 0.000119 8.03 s
(Insertion sort, Iterative binary search) 1.335384 5.92 s
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programs are. While the scores have no absolute cutoff between similar and different,

they are meaningful relative to one another. It is clear that insertion sort and bubble

sort are deemed to be exactly the same, and insertion sort and longest increasing

subsequence are calculated to be quite similar. For our control example we achieve a

much larger score, i.e., insertion sort and binary search are judged to be different from

each other. All scores are calculated in a matter of seconds.

Having peeked into the inner workings of our method at a high level, we fill in the

gaps and missing technical details in the following section.

5.3 Our Method in Detail

5.3.1 SPF Specifics

We use Symbolic PathFinder (SPF) [111] to symbolically execute programs in order

to obtain path conditions. SPF has certain requirements that we must fulfill:

• We must create a configuration file to manage each symbolic execution run. Inside

this file we configure the solver to be Z3 [52] and we set the symbolic method (i.e.,

what part is to be symbolically executed) to be the function that we are comparing

for semantic similarity.

• We must create driver code to exercise each function that we are comparing for

semantic similarity. For example, the driver code for our insertion sort example

from Section 5.2 contains the main function shown in Figure 5.6. This code creates

an array of concrete values and fills it with symbolic integers. The last thing the

driver does is print the current path condition. Because every execution path in

the program is visited, this one statement is visited many times (once for each

path). Thus, every path condition is shown in SPF’s final output.
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public static void main(String [] args) {
int[] a = {8, 6, 7};
for (int i = 0; i < a.length; ++i) {

a[i] = Debug.makeSymbolicInteger("a_" + i);
}
insertSort(a);
Debug.printPC("\n Path Condition: ");

}

Figure 5.6: An example of the kind of driver code required by SPF.

P := { [x1,x2] :
0 <= x1 <= 100 and
0 <= x2 <= 100 and
x1 >= 2 and
x1 <= 2

};
card P;

Figure 5.7: A sample Barvinok query file.

Assumptions. We set the min and max symbolic integers to be 0 and 100, respectively.

Small ranges such as this are commonly used in SPF [19] to make the symbolic execution

tractable, and as long as all programs are treated the same the specific range chosen

makes little difference to our method.

5.3.2 Barvinok Specifics

We parse the output from SPF and perform a syntactic transformation to turn it

into a form that the Barvinok model counter [145] can understand. A sample Barvinok

query file is shown in Figure 5.7. This file defines a two-dimensional polytope P

constrained by four inequalities. The card keyword in the card P; line stands for

cardinality, and this expression asks Barvinok to count the number of integer solutions

to the given constraints. We perform this process for every path condition output by

SPF.

After obtaining the counts for each path condition for a pair of programs, we have

the beginnings of two discrete probability distributions that we can compare using

statistical methods.
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Figure 5.8: An example of sorting the discrete distributions to aid in alignment.

5.3.3 Distribution Comparison

Assumptions. In order to create proper probability distributions from a set of path

counts, we must create percentages from each count. We make a commonly-used

simplifying assumption here: that every input to the original function (within the

chosen bounds) is equally likely. We make this choice because we cannot assume that

we have access to the exact probabilities for program inputs. If a user were able to

provide those probabilities for every program our method would likely see increased

precision. Our assumption allows us to divide each individual count by the total count

in order to generate a distribution that sums to 1.0.

To have any hope of comparing two different discrete probability distributions, we

must know which elements correspond. This is a tricky problem to solve exactly; our

solution is to abstract the semantics further by sorting the probabilities in ascending

order and aligning the probabilities between the two distributions based on their

position. An example of this process is shown in Figure 5.8. This abstraction does lose

precision, but as shown in our evaluation it works well in practice.
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Figure 5.9: An example of shrinking a discrete distribution to enable comparison.

It is also impossible to compare two distributions if the number of elements differ.

Our solution to this issue is to shrink the larger distribution one element at a time by

combining the two smallest probabilities into one and re-sorting. This process alters the

original distribution, which helps to penalize comparisons of two distributions with

different numbers of elements. Our hypothesis is that programs which have similar

numbers of paths are more likely to be semantically similar. An example of this shrink-

ing process is shown in Figure 5.9. If the number of paths differs significantly, then we

mark the two distributions as different without further comparison. Our algorithm

(shown in Algorithm 4) yields and compares two discrete probability distributions,

and the final piece to explain is how we compare the distributions to yield a similarity

metric.

KL Divergence. The natural way to translate distributions into scores is via a diver-

gence metric, and arguably the most popular such metric is Kullback-Leibler Diver-

gence (KL Divergence) [90]—we use this metric in our method. It is an information-

theoretic metric that operates via entropy calculations, measuring how “surprising”

the difference between two probability distributions is. The result is a number between

0 and ∞, with 0 representing exact similarity and larger numbers representing relative

dissimilarity. The numbers returned by calculating the KL divergence are relative to

one another and are not absolute; only through experimentation can an appropriate

cutoff between similar and dissimilar programs be chosen.

We are now armed with a complete method for comparing two functions via
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Algorithm 4 Distribution comparison
1: function COMPARE-DISTRIBUTIONS(countsP, countsQ)

Input: Two lists, countsP and countsQ, containing the number of satisfying solutions
output by the Barvinok model counter.
Output: A numerical representation of how “far apart” the two sets of counts were.

2: if |countsP| > |countsQ| then
3: Swap countsP and countsQ . Make countsQ the larger list
4: end if
5: if |countsQ| ≥ 3 · |countsQ| then
6: return ∞ . Return a large distance when the number of paths differs

significantly
7: end if
8: P← map(λx.x/sum(countsP), countsP) . Convert counts to probabilities
9: Q← map(λx.x/sum(countsQ), countsQ)

10: Sort P and Q
11: while |Q| > |P| do
12: Q[1]← Q[1] + Q[0]
13: Q← Q[1..] . Make the distributions the same length
14: Sort Q
15: end while
16: return KL-DIVERGENCE(P, Q)
17: end function
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{17341665826650, 17867170851700, 1751511700, 17867170851700, 17867170851700,
1804057051},

{17341665826650, 17867170851700, 1751511700, 1751511700, 17867170851700,
18403185977251}

⇓
[2.468770× 10−5, 2.542833× 10−5, 0.244432, 0.251839, 0.251839, 0.251839],
[2.450260× 10−5, 2.450260× 10−5, 0.242599, 0.249951, 0.249951, 0.257450]

⇓

2.468770× 10−5 · log2(
2.468770× 10−5

2.450260× 10−5 ) +

2.542833× 10−5 · log2(
2.542833× 10−5

2.450260× 10−5 ) +

0.244432 · log2(
0.244432
0.242599

) +

0.251839 · log2(
0.251839
0.249951

) +

0.251839 · log2(
0.251839
0.249951

) +

0.251839 · log2(
0.251839
0.257450

)

≈ 0.00012

Figure 5.10: The final steps of comparing the insertion sort and longest increasing
subsequence functions from Section 5.2.
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path conditions. As an example, we reproduce the final steps in the comparison of

the insertion sort and longest increasing subsequence functions from Section 5.2 in

Figure 5.10. In the following section, we evaluate the performance of this method

against related work.

5.4 Evaluation

5.4.1 Methodology

For our evaluation we compare our Type IV semantic clone detection technique

against a state of the art PDG-based Type IV semantic clone detection technique, using

two separate benchmark suites: (1) a handcrafted suite that contains both semantically-

similar but syntactically-dissimilar programs (SEMTRUESYNFALSE) and syntactically-

similar but semantically-dissimilar programs

(SEMFALSESYNTRUE); and (2) a subset of BigCloneBench [139] semantic clone/non-

clone pairs. We make our implementations of all of the techniques and our benchmark

suites freely available (see Section 5.1).

PDG Comparison Specifics. The source code for existing PDG-based clone detection

techniques is not available, and so we implement our own based on the literature. We

generate program dependence graphs for a pair of functions using the sourcedg PDG

generator described in Marin and Rivero [101]. The usual method for comparing two

program dependence graphs is via subgraph isomorphism, but the standard imple-

mentations are not sufficient. For example, the popular VF2 algorithm [47] performs

graph-subgraph isomorphism testing, whereas we want to find subgraph-subgraph iso-

morphism (i.e., we want to match a sub-program to another sub-program). Therefore,

we compare ourselves against two separate techniques for graph comparison. The first
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is an eigenvector-based approach that works by comparing Laplacian spectrums [85, 1],

and the second uses a graph edit distance technique [21]. The graph edit distance

algorithm that we use is incremental in the sense that it returns better approximations

the longer it is run; we let this algorithm run for 30 seconds in our evaluation.

We first describe and evaluate our handcrafted benchmark suite, and then we do

the same for our benchmarks taken from BigCloneBench. We provide timing data for

all methods in Section 5.4.4.

5.4.2 Handcrafted Benchmark Suite

Limitations. In this work we are limited by the tools that we have at our disposal.

Specifically, Symbolic PathFinder cannot handle many types of program constructs

(e.g., doubly-nested symbolic arrays), and benchmarks used in works that employ SPF

are typically small [see, e.g., 56, 146, 147, 38, 29, 115, 33]. In addition, Barvinok can only

count integer constraints. Therefore, our choice of benchmarks is limited to relatively

small programs operating over integers. These restrictions are purely a matter of the

infrastructure that we base our implementation on, and not of our technique itself. Our

technique can take advantage of any symbolic execution engine and model counter

that are available, and it does not impose any additional restrictions itself.

Description of Handcrafted Benchmarks. As mentioned previously, we have chosen

to evaluate along two axes: (1) against semantically similar, syntactically different

programs (SEMTRUESYNFALSE); and (2) against syntactically similar, semantically

different programs (SEMFALSESYNTRUE). Figure 5.11 lists our chosen benchmarks

along the first axis; each set consists of semantically-similar but syntactically-dissimilar

programs. Any two programs that belong to different sets are semantically dissimilar.
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• Binary search (iterative), Binary search (recursive)

• Insertion sort, Bubble sort, Selection sort, Heapsort, Cocktail sort, Circle sort, Shell
sort, Longest increasing subsequence

• Palindrome, Reverse array

• Factorial (recursive), Factorial (iterative)

• Linear search forward (recursive), Linear search backward (iterative)

Figure 5.11: Sets of semantically similar, syntactically different benchmark programs,
i.e., SEMTRUESYNFALSE.

All of the algorithms the programs are based on are common algorithms used in the

wild. We evaluate our method’s ability to cluster the programs into the correct sets in

Section 5.4.2.

To evaluate along the second axis, we have created syntactically similar, semantically

different programs for a selection of the above benchmarks. These benchmarks all

syntactically look like the original benchmarks—we invite the reader to view the source

code to see exactly how these benchmark programs operate. We evaluate our method’s

ability to differentiate between these syntactic “decoy” programs in Section 5.4.2.

Results for SEMTRUESYNFALSE

We provide a graphical interpretation of our results and then present them using the

standard metrics of precision and recall.

Our Method. Results for our method on the benchmarks from Figure 5.11 are shown

in Figure 5.12. The pairwise scores for each benchmark are shown in the form of a

heatmap, and lower scores indicate greater similarity was detected. At a glance it is

apparent that our method does well for most of the benchmarks—the sorting functions,
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for example, are all marked as similar to each other; the same is true of most other

groups.

Our method is not perfect, and contains some inaccuracies. The factorial bench-

marks are marked as similar to the sorting benchmarks because of the distributions of

the paths: for both sets of benchmarks, the probability of a given path is mostly equal

to another, and that is why we see this output. The PDG methods have a better ability

to differentiate this particular pair of benchmark sets, and so our method would benefit

from such a complementary technique.

The palindrome and array reversal functions are not marked as similar, and this

is another error of our method. The array reversal program does not contain any

branches, and so our method fails to generate any path conditions—we return a default

high distance value (10.0) in this case. This is one limitation of our method: we operate

on path conditions, and if there are no path conditions we have nothing to compare.

The PDG method also has trouble differentiating this pair of benchmarks.

PDG-Based Method. Results for the program dependence graph-based method are

shown in Figure 5.13. Lower scores again indicate more similar programs. The figure

only shows the results of the Eigenvector Distance method; the Graph Edit Distance

method returned similar results, just differently scaled. The PDG method seems to

have trouble on several benchmarks, notably iterative and recursive algorithm pairs;

this makes sense because the programs look quite different, hence their program depen-

dence graphs will also differ. The method does give low scores to many semantically

similar functions, such as the sorting algorithms, though the range of scores among

similar functions is larger than for our method.

Precision and Recall. For another view into the data, we also compute precision and

recall numbers. To do so we must define a “cutoff” threshold value for each method,
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Figure 5.12: Results of our method on SEMTRUESYNFALSE. Lower scores indicate
higher similarity.

such that each pair on one side of the threshold is called a clone and on the other side

is called a non-clone. To present each method at its best, we computed a separate

cutoff for each method that gave that method the best results in terms of its overall F-

measure [130]. The results are in Table 5.2. Precision (number of true positives divided

by the sum of true and false positives) measures the percentage of pairs that a method

claims are clones that really are clones. Recall (number of true positives divided by the

sum of true positives and false negatives) measures the percentage of pairs that really

are clones that a method correctly identifies as clones. F-measure combines precision

and recall into a single overall score, and our method is the clear winner.
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Figure 5.13: Results of the Eigenvector PDG-based method on SEMTRUESYNFALSE.
The Graph Edit Distance heatmap is similar. Lower scores indicate higher similarity.

Table 5.2: F-measure, Precision, and Recall for SEMTRUESYNFALSE: a numeric per-
spective on the results. TP stands for “true positives”, FN for “false negatives”, etc.
Higher is better for the Precision, Recall, and F-measure columns.

Method TP FP TN FN Cutoff Precision Recall F-measure

Our method 31 2 86 1 0.0065 0.939 0.969 0.954
PDG (Eigenvector Dist.) 26 41 47 6 7.8772 0.388 0.813 0.525
PDG (Graph Edit Dist.) 25 42 46 7 0.5135 0.373 0.781 0.505
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Table 5.3: For each benchmark in the left column, we choose a semantically similar,
syntactically different benchmark to compare against from the SEMTRUESYNFALSE
benchmarks.

Benchmark SEMTRUESYNFALSE

Binary search, iterative Binary search, recursive
Insertion sort Bubble sort
Palindrome Reverse array

Selection sort Heapsort
Cocktail sort Circle sort

Factorial, recursive Factorial, iterative
Longest increasing subsequence Shell sort
Linear search forward, recursive Linear search backward, iterative

Results for SEMFALSESYNTRUE

We compare the different clone detection techniques’ abilities to distinguish seman-

tically dissimilar but syntactically similar programs. Because the reported scores are

relative, we also provide the results of comparing the programs in the left-hand column

of Table 5.3 against semantically similar, syntactically dissimilar programs as described

above. The idea is that the results for the SEMFALSESYNTRUE pairs should be much

higher (i.e., indicate greater distance) than the results for the SEMTRUESYNFALSE

pairs.

Our Method. Results for our method are shown in Figure 5.14. The graph is ar-

ranged with each benchmark grouped next to its SEMTRUESYNFALSE (blue) and

SEMFALSESYNTRUE (orange) counterparts. Small slivers indicate 0 or very small

distances.

The goal is for the SEMTRUESYNFALSE benchmarks to be given low distances

and for the SEMFALSESYNTRUE benchmarks to be given high distances; thus, one

can find a clear “cutoff” point that separates the semantically similar programs from
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Figure 5.14: Results of our method. Lower is better for SEMTRUESYNFALSE, and
higher is better for SEMFALSESYNTRUE.

the semantically different programs. In all cases but two our method has this ideal

property.

The first outlier is the palindrome case, which was explained in the previous

subsection.

The second is the recursive factorial case. The comparison function in the SEM-

FALSESYNTRUE case is a recursive sum function, and the one comparison taking place

in both of those benchmarks is a test for the base case. One could argue that this

benchmark is not semantically different enough, but we prefer to highlight it as a

possible limitation.

We note that, as is apparent from the following figures, the PDG-based methods

cannot properly distinguish these two outlier benchmarks either.

PDG-Based Methods. Results for the program dependence graph-based methods are

shown in Figure 5.15. Again, the goal is for the blue bars to be low and the red bars to

be high. The Eigenvector Distance method and the Graph Edit Distance method return

relatively similar results, and the difficulties with iterative and recursive function pairs
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Table 5.4: F-measure, Precision, and Recall for the SEMFALSESYNTRUE benchmarks.

Method TP FP TN FN Cutoff Precision Recall F-measure

Our method 7 0 8 1 0.0064 1.0 0.875 0.933
PDG (Eigenvector Dist.) 7 6 2 1 7.8769 0.538 0.875 0.667
PDG (Graph Edit Dist.) 8 7 1 0 0.6875 0.533 1.0 0.696

are carried over from the previous subsection.

Precision and Recall. Again we find an optimal “cutoff” value for each method that

best splits the clones from the non-clones, and the results are in Table 5.4. The results

are similar to those in the previous subsection.

5.4.3 BigCloneBench Benchmark Suite

BigCloneBench benchmark description. BigCloneBench [139] contains Type IV clone

pairs (placed into a category called “Weakly Type III/Type IV”), and they are specified

as clone pairs having a token similarity of less than 50% or a line similarity of less than

50%. The benchmark suite also has false positive Type IV clone pairs. We chose 50

pairs of true Type IV clone pairs and 50 pairs of false positive Type IV clone pairs as

our benchmark suite—we manually made minimal edits to these programs so that they

would work with our clone detection method.

Results. The results of running each of the different methods through our BigCloneBench

benchmark suite is shown in Table 5.5, and our method is on top with the highest F-

measure. For the graph edit distance-based PDG method, the best cutoff was chosen so

that almost everything was marked as a clone; the eigenvector distance-based method

also had poor precision, with the best cutoff maximizing recall.

These results indicate that our method can also detect semantic clones with high

precision and recall in a well-regarded benchmark suite.
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Figure 5.15: Results of the PDG-based methods. Lower is better for SEMTRUESYN-
FALSE, and higher is better for SEMFALSESYNTRUE.

Table 5.5: F-measure, Precision, and Recall for the BigCloneBench benchmarks.

Method TP FP TN FN Cutoff Precision Recall F-measure

Our method 42 13 37 8 5.923 0.764 0.840 0.800
PDG (Eigenvector Dist.) 43 29 21 7 10.105 0.597 0.86 0.705
PDG (Graph Edit Dist.) 50 48 2 0 0.871 0.510 1.000 0.676
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Table 5.6: Aggregate timing data for all methods and benchmarks. The column labeled
“BCB” signifies the BigCloneBench benchmarks.

Statistic Our Method Eigen. Dist. Graph Edit Dist.
Handcrafted BCB Handcrafted BCB Handcrafted BCB

Min 2.227 s 2.119 s 1.191 s 1.168 s 1.330 s 1.169 s
Max 8.269 s 21.177 s 1.411 s 1.565 s 31.408 s 31.560 s

Mean 3.598 s 2.665 s 1.319 s 1.341 s 25.952 s 20.345 s
Median 2.554 s 2.393 s 1.329 s 1.330 s 31.306 s 31.314 s

Std. Dev. 1.561 s 1.971 s 0.046 s 0.076 s 10.980 s 14.458 s

5.4.4 Average Running Times for Both Benchmark Suites

In Table 5.6 we list the aggregate timing information for all of our benchmark suites

and methods. We have compiled the data separately for the Handcrafted benchmarks

and for the BigCloneBench benchmarks, and we have done so for our own method and

the two we compare against.

It is clear that our method is in between the Graph Edit Distance method, which

often takes the full time we allot to it, and the Eigenvector Distance method. We observe

a roughly 2–3× slowdown on average when compared to the faster of the two PDG

similarity methods, and this makes our method a reasonable alternative or complement

in many cases.

5.5 Related Work

We discuss related work first in non-semantic and then semantic clone detection.

5.5.1 Non-Semantic Clone Detection

Non-semantic clone detection has been studied extensively [125, 121]; it also pre-

ceded semantic clone detection as a research area. In this subsection we provide a few
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examples to give context before we introduce work related to semantic clone detection.

All clone detectors accept programs in a certain representation, and the represen-

tation affects what kinds of matching techniques can be used. The representation

yields performance and precision tradeoffs as well. The three main levels of program

representations used in non-semantic clone detection are strings, tokens, and syntax

trees; we give a notable example of each here from the literature:

• NICAD [126] compares textual lines of code (i.e., a string representation of each

line) after a normalization process.

• CCFinder [75] employs a tokenizer, and then transforms the tokens according to

certain transformation rules. This method avoids issues regarding whitespace that

affect string-based methods.

• Deckard [69] converts syntax trees into feature vectors for fast comparison. The

method they describe allows access to a tree distance-like result at a much lower

computational cost. This method is able to compare program structures in a way

that the string-based and token-based methods cannot.

5.5.2 Semantic Clone Detection

Defining Semantic Similarity. As explained in Section 5.1 there is no existing formal,

precise definition of semantic similarity that we can use to obtain a ground truth and

classify code fragments as true clones or non-clones. Existing work relies on more

intuitive notions of semantic similarity, i.e., the two code fragments “do similar things”

[88, 127, 128, 83, 114]. Two notable works take this vague definition further: Simions

and Code Relatives. Simions [71] are defined in terms of similar input/output behavior,

while we believe that inputs and outputs do not paint the full picture. Code Relatives
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[137] make the case for examining the behavior of program executions via a comparison

function, which is like our own interpretation, but the program executions are defined

only as traces of program locations—again, this cannot account for all types of semantic

clone techniques, including our own.

Works most similar to ours. The most similar related work to our proposed technique

is from Filieri et al. [57]. That work proposes the idea of using Symbolic PathFinder

(SPF) [111] to quantify the impact of changes between two programs, but it does not

describe any algorithms to perform such differencing. The running example they

use depicts the comparison of symbolic execution trees, however that method would

not work for programs that are not incremental updates from each other, as it is not

clear how to compare such trees when the control flow graphs look vastly different.

In contrast, our method sidesteps these issues by observing the probabilities of each

branch and performing comparisons in a more syntax-agnostic way. We also describe

our algorithm in depth and evaluate it against existing work.

Another more recent work that shares similarities with our own is SemCluster [114].

This work employs model counting to help cluster student code submissions. Key

differences to our work are (1) that SemCluster uses dynamic analysis to compute

path conditions (and therefore is limited by the number of test cases available), and (2)

that SemCluster applies dynamic data-flow similarity techniques to explicitly exclude

semantically similar programs that do not share data-flow patterns (e.g., insertion sort

and bubble sort).

Program Dependence Graphs. Most existing works on semantic clone detection in-

volve the use of program dependence graphs (PDGs) [84, 88, 94, 61]. Each paper

describes different methods used to match code fragments based on their dependence

graphs. Komondoor and Horwitz [84] find isomorphic PDG subgraphs via program
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slicing. Krinke [88] finds similar subgraphs within a given pair of PDGs. Liu et al.

[94] apply subgraph isomorphism checking to PDGs in the context of plagiairism

detection for student code. Gabel et al. [61] converts program dependence graphs to

characteristic vectors and applies Deckard-like methods to compare them.

All of the above-mentioned methods are based on the underlying assumption

that similar programs have similar control and data dependencies, as that is what a

program dependence graph provides. This assumption, however, is not always a valid

one—different algorithms can solve the same problem in vastly different ways, and the

structure of data and control in such semantically similar program pairs often does not

correspond. Likewise, recursive and iterative versions of the same function naturally

differ in terms of control flow, and often contain extra variables that affect the data flow

dependencies.

Our method works at the level of branch conditions made in each path that a

program takes, and this underlying structure tends to be similar across semantically

similar code pairs. This does mean that our technique does not tend to work well in

cases where there are few branches, and so PDG-based methods are complementary to

our work for that case.

Symbolic Execution. Luo et al. [99] find subsequences of semantically equivalent basic

blocks in order to detect source code plagiarism. This is related to an earlier work

which employed subgraph isomorphism checking on control flow graphs, matching

the basic blocks using theorem proving and symbolic execution [62]. In contrast,

our work operates in the style of Probabilistic Symbolic Execution [63]—i.e., on path

conditions rather than basic blocks—and does not focus on exact equivalence and

theorem proving, which can be time-intensive processes; instead we define a notion

of distance between distributions of sets of execution path conditions. Stolee et al.
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[136] use symbolic execution to extract an execution tree and then form input/output

constraints (instead of path constrains) to encode the semantics of a program.

Other Approaches. Alternative methods for semantic clone detection take advantage

of comment text [100], make use of fingerprinting [81], compare abstract memory

states [82], employ random testing [70], and use machine learning techniques [127, 151].

Quantitative solutions such as the one proposed in this chapter have not been employed

in those works.
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Chapter 6

Student Feedback Using Invariant
Inference

6.1 Introduction

One of the primary ways to gain confidence in the correctness of a program is

software testing, i.e., executing a program on a set of inputs and checking the resulting

outputs against some oracle. When tests fail, the programmer must determine why

failure occurred and how to fix it. These same issues arise in the context of computer

science education: instructors often grade and provide feedback on programming

assignments by checking student submissions against a predetermined set of test cases

and informing the student how many test cases failed. If trial submissions are allowed

then a student can use this feedback to improve their solution and submit again; if not

then a student might still wish to know what was wrong with their solution to improve

for the next assignment.

Simply knowing how many tests failed does not do much to help a student under-

stand what went wrong, and even showing the failing tests does not explain much to a

neophyte programmer. Ideally an instructor can take the time to review each student’s

work with them and help them understand their respective issues, but this model is
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unrealistic in large classroom settings. The focus of this chapter is how to provide

automated feedback about programming assignments that have been graded via a

test oracle, in order to help students understand and fix incorrect submissions. To do

so, we take a radically different approach to the problem than existing work which

leverages program repair or ad-hoc analyses. Our key insight is to explain to the stu-

dent the characteristics that distinguish passing inputs and failing inputs. In other

words, we run the student’s submission on a set of test inputs and use the oracle to

classify the inputs as passing or failing; we then infer invariants about these two sets

that provide the student some insight into what their solution is doing right and what

it is doing wrong.

The passing tests represent cases where the student’s understanding of the problem

matches that of the reference solution, while the failing tests represent cases where the

student’s understanding is inconsistent with the reference solution. The computed

invariants help characterize these similarities and differences and explain them to

the student. We believe that the invariants are useful to the student to help them

understand what logical aspects of the problem they are misunderstanding. Our focus

in this chapter is on providing feedback for logical program errors, though we could

extend our method to provide feedback on other kinds of errors by adding additional

classification categories for inputs that cause various kinds of crashes or that exhibit

undefined behavior (e.g., according to UBSan [20]).

While our approach could in theory be used for any kind of assignment for which a

student would submit an executable program that can be tested, in this chapter we look

specifically at assignments suitable for a sequence of introductory C++ programming

classes. Note that our general approach could be useful for any setting (even outside

CS education) where we can take a set of inputs and use a classifier to partition those

inputs into interesting sets.
119



Student Feedback Using Invariant Inference Chapter 6

In this chapter we make the following contributions:

• We describe a general method to generate automated student feedback for pro-

gramming assignments, based on classifying test inputs into two sets (failing

and passing inputs) and using invariant inference to characterize the differences

between those sets (Section 6.2).

• We describe a specific instantiation of our proposed method targeting feedback

for introductory C++ programming assignments using the Daikon [55] invariant

inferencer (Section 6.3).

• We evaluate our proposed method on actual student submissions for a set of

assignments taken from a sequence of courses introducing C++ programming

(Section 6.4).

• We make our implementation publically available as open source for the research

and educational communities.

We describe related work in Section 6.5.

6.2 Method Overview

We discuss our method in the context of a course that allows students to submit their

potential solutions online multiple times before they submit their final version. Each

time they submit a potential solution it is automatically checked against a predefined

set of tests (created by the instructor) and the students are informed of whether their

solution fails any tests. This context is taken directly from the way that the introductory

programming courses are taught in the authors’ department.
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Our goal in this work is to improve the automated feedback that students get on

their potential solutions to help them understand what they are doing wrong. We focus

specifically on logic errors that represent a misunderstanding of either the problem

itself or of how the programming language being used works (though our method

could potentially be useful for helping with other kinds of errors such as crashes, we

do not evaluate it on such in this chapter).

Existing methods for automated feedback as discussed in Section 6.5 examine the

text of the student’s program in order to compare it against other student solutions or a

reference solution, and/or attempt to repair the program to make it pass the given tests.

The feedback given to the student is in the form of suggested program changes. In

contrast to the existing methods, we take a completely different (and complementary)

approach that treats the student’s program as a black box. Instead, we wish to generate

feedback that helps the student focus on potential misunderstandings they have about

the problem being solved or the language being used.

Given a reference solution and a set of test inputs, we can classify each test input by

whether the student solution’s output agrees with the reference output (the input is

passing) or the student’s output does not agree with the reference output (the input is

failing). Failing inputs represent a mismatch between the way that the student under-

stood the problem and the way the instructor understood the problem (or, alternatively,

the student misunderstood how some particular language feature actually works).

In order to help the student narrow in on their misunderstandings, the feedback we

generate characterizes the passing and failing sets by generating invariants which are

then translated into a form that is usable by the student.
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6.2.1 Generating Invariants

We will call a tuple of 〈INPUT, OUTPUTS , OUTPUTR〉 a sample, where INPUT is the

test input, OUTPUTS is the output of the student submission, and OUTPUTR is the output

of the reference solution. Samples are computed by running a program (either the

reference solution or a student solution) on the inputs and recording the respective

outputs. Let Refs be the set of samples obtained by running the reference solution

on each of the inputs (necessarily OUTPUTS = OUTPUTR). Let Pass and Fail be the

sets of samples obtained by running the student solution on each of the inputs and

categorizing the results according to whether they agree with the reference solution

or not (i.e., for Pass OUTPUTS = OUTPUTR and for Fail OUTPUTS 6= OUTPUTR). Then

Pass ⊆ Refs and Fail corresponds to Refs \ Pass except with the student and reference

outputs being different. Including the student and reference solutions in the same

sample is useful for the Fail case, where we can derive invariants relating the student’s

solution to the reference solution.

Invariant inference takes a set of samples and derives a formula that is true for all

elements of that set. The exact inference mechanism can vary based on the content of

the samples and the types of invariants desired. In Section 6.3 we describe a specific

inference mechanism based on Daikon [55] which uses invariant templates, but our

method is mostly agnostic to this choice and other inference mechanisms would be

interesting to explore (e.g., formal language learning [109] for samples involving

strings).

We denote the invariants inferred from a particular set of samples using J·K, so

that JRefsK, JPassK, and JFailK are the invariants inferred from each respective set of

samples. JRefsK describes characteristics that are true of all correct samples; this is

what the student should be trying to achieve. JPassK describes characteristics that are
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true of all samples the student’s solution got correct; this is what the student is doing

right. JFailK is more complicated because it actually consists of two type of statements:

(1) things that are true of Fail that are not true of Pass or Refs, indicating potential

misunderstandings that led to error; and (2) things that are also true of Pass or Refs,

indicating things that the student’s solution is getting correct even though the final

answer was wrong. The former statements in (1) help the student pinpoint where they

need to fix something, while the latter statements in (2) help the student narrow down

potential sources of error by eliminating cases that they are actually getting correct.

In addition to these invariants, we also compute another useful set of samples:

Pass ∪ Fail. This set contains all the student solution’s samples whether they were

correct or not. Then JPass ∪ FailK describes characteristics that are true about the

student’s solution itself, ignoring whether it was doing the right thing or not.

6.2.2 Method Workflow

The general workflow for generating student feedback is the following:

1. The instructor creates a reference solution for the assignment and generates a large

number of diverse inputs, which they execute the reference solution on to get the

set Refs of 〈INPUT, OUTPUTS , OUTPUTR〉 tuples.

2. When a student submits a solution, their program is run on the same inputs to

get a set of 〈INPUT, OUTPUTS , OUTPUTR〉 samples which are sorted into Pass or

Fail depending on whether the sample’s student output agrees with the sample’s

reference output.

3. From the Pass and Fail sets we create the additional sample set Fail∪ Pass.
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4. We infer invariants for each tuple set using an appropriate inferencer, yielding the

invariants JRefsK, JPassK, JFailK, and JFail∪ PassK.

5. We translate each invariant above into a natural language description suitable for

a neophyte programmer.1 These descriptions are sent as feedback to the student.

6.2.3 Method Example

We explain and motivate our proposed feedback method via a concrete example

taken from an actual programming assignment given in an introduction to program-

ming course.2. The problem can be stated as follows (modified for succinctness from

the actual assignment description given to students):

Anagram Detection: Given two strings S1 and S2 return true if S1 and S2 are

permutations of each other, otherwise return false.

There are a number of logical errors that a student could make in their solution;

one possibility is that they enforce the following mistaken invariant: |S1| = |S2| ∧ (c ∈

S1 ⇐⇒ c ∈ S2). This incorrect solution does not check the actual quantity of each

character and would, for example, misclassify the strings “aab” and “abb” as anagrams

of each other. The student’s enforced invariant is weaker than the reference solution’s

invariant, i.e., it will accept a proper superset of string pairs as anagrams.

The test inputs are pairs of strings and the output is a boolean, therefore samples are

of the form 〈STRING, STRING, BOOL, BOOL〉. Table 6.1 contains a subset of the possible

Pass and Fail sets given the mistaken solution described above (we don’t list Refs

explicitly for space, but it is trivially derivable from Pass and Fail as is Pass∪ Fail).

1While the exact translation process would depend on the form of invariant being inferred, for the
work described in this chapter we found that a simple, straightforward mapping from formulae to
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Pass Fail
〈A, A, TRUE, TRUE〉 〈AAB, ABB, TRUE, FALSE〉
〈AB, BA, TRUE, TRUE〉 〈BAA, BBA, TRUE, FALSE〉
〈AABB, BABA, TRUE, TRUE〉 〈ABB, AAB, TRUE, FALSE〉
〈A, AA, FALSE, FALSE〉 〈AABB, BBBA, TRUE, FALSE〉
〈AA, AB, FALSE, FALSE〉 〈ABCC, AABC, TRUE, FALSE〉

...
...

Table 6.1: Example Pass and Fail sets. The Refs set is the union of Pass and Fail except
the Fail student outputs would all be changed to FALSE.

From these sets we can infer the following invariants (keeping in mind that we are

showing only a subset of the actual sets), where #c(S) is the number of occurrences

of character c in string S. We don’t show all possible invariants we can infer, only a

sample of them. Note that it can be useful to derive invariants that are strictly weaker

than (i.e., implied by) stronger invariants rather than only reporting the strongest

possible invariant; these weaker invariants provide specificity that can help the student

understand the problem.

JRefsK

outS = outR = TRUE ⇒|S1| = |S2|,

∀c.#c(S1) > 0⇔ #c(S2) > 0,

∀c.#c(S1) = #c(S2)

outS = outR = FALSE ⇒∃c.#c(S1) 6= #c(S2)

natural language sufficed.
2UCSB’s CMPSC 16: Problem Solving with Computers I
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JPassK

Same as JRefsK

JFailK

¬outR = outS = TRUE ⇒|S1| = |S2|,

∀c.#c(S1) > 0⇔ #c(S2) > 0,

∃c1, c2.#c1(S1) > #c1(S2) ∧ #c2(S1) < #c2(S2),

∃c.#c(S1) 6= #c(S2)

JPass∪FailK

outS = TRUE ⇒|S1| = |S2|,

∀c.#c(S1) ≥ 0⇔ #c(S2) ≥ 0,

∃c1, c2.#c1(S1) ≥ #c1(S2) ∧ #c2(S1) ≤ #c2(S2)

outS = FALSE ⇒∃c.#c(S1) 6= #c(S2)

Since we record both the student and reference solution in a sample, technically

the last set Pass ∪ Fail could be used to derive all of the invariants (e.g., OUTS =

OUTR ⇒ ...; OUTS 6= OUTR ⇒ ...; outS = TRUE ⇒ ...; outS = FALSE ⇒ ...; outR =

TRUE ⇒ ...; outR = FALSE ⇒ ...; etc). However, doing so puts the onus on the inference

engine to figure out all of the necessary implications. By explicitly separating out these
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sets a priori we greatly reduce the burden on the inferencer and make inference more

practical.

The JRefsK invariant describes a correct solution, i.e., what is true about all inputs

that should yield TRUE and what is true about all inputs that should yield FALSE.

Unsurprisingly, one is the negation of the other. We also include weaker invariants for

the TRUE case such as |S1| = |S2| and ∀c.#c(S1) > 0⇔ #c(S2) > 0 that are implied by

the strongest invariant ∀c.#c(S1) = #c(S2).

The JPassK invariant is the same as JRefsK because the mistaken student solution

will still recognize all correct anagrams; the problem with the student solution lies with

failing to reject some non-anagrams.

The JFailK invariant has something in common with JRefsK because the incorrectly

accepted inputs are almost anagrams; that is, they share some characteristics in common

with true anagrams. However, the existential invariants show exactly the difference

between JFailK and JRefsK.

The JPass∪ FailK invariant is a union of JFailK without the last clause and the FALSE

case of JRefsK because the student solution is enforcing a weaker invariant than the

reference solution.

6.2.4 Method Limitations

While our evaluation shows that our proposed method can yield good results, it is

not perfect and has some limitations that we discuss here:

• Our method depends on the presence and quality of an invariant inferencer suit-

able for the types of inputs and outputs required by the assignment. If a suitable

inferencer is lacking then our method will not apply.

• The instructor may need to guide the invariant inferencer by giving it hints about
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the invariants that are of particular interest for a given assignment. For example,

given an inferencer based on template instantiation the instructor may need to

provide suitable templates if the inferencer’s standard set is not adequate.

• The more mistaken a student’s solution, the weaker the inferred invariants can

become. In an extreme case all of the test inputs end up in Fail and none in Pass

(which means that Refs \ Pass = Refs and Pass ∪ Fail = Fail). The weakness

of the invariants derived from these sets may lessen their use in pinpointing

misunderstandings, though they are still true invariants and can still be useful.

The last limitation could be mitigated by partitioning Fail based on instructor-

provided predicates derived from common, expected student mistakes. Each partition

can have invariants inferred separately, recovering stronger, more useful invariants to

provide as feedback. We leave investigating this possibility for future work.

6.3 Method in Detail

The method described in Section 6.2 is a general approach rather than a specific

system. We describe how to instantiate that approach to a specific system in this section,

motivated in our choices by a set of actual assignments used in a series of introductory

C++ programming courses.

The remainder of this section discusses the types of samples we handle (i.e., what

kinds of inputs and outputs the assignments require) and how to generate appropriate

inputs; the exact mechanism for invariant inference that we employ; and how we

translate the final invariants into a form that is useful for neophyte programmers.
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Sample = String] Integer] Boolean] Sample?

Figure 6.1: Definition of samples: a sample is a sequence of strings, integers, booleans,
or sequences of samples. A sample will always have a minimum of two positions: at
least one input and at least one output.

6.3.1 Types of Samples

The types of samples we handle are shown in Figure 6.1; they consist of tuples

that contain strings, booleans, integers, and (recursively) more tuples. These types

of samples are sufficient to deal with a wide variety of assignments, including those

based on data structures such as binary search trees, linked lists, and hash tables. For

example, a binary search tree input can be represented as a sequence of integers in

the order they will be inserted into the tree; a hash table with integer keys and string

values can be represented as a sequence of (integer, string) pairs, etc. Essentially, any

inputs or outputs that can be flattened into a sequence are representable in this format.

We describe the exact samples used in our evaluation in Section 6.4.

Our method depends on the quantity and diversity of inputs used to test the student

solutions, as they directly influence the quality of the inferred invariants. Hand-crafted

inputs, while they can be used as part of the tests, are not likely to be sufficient to

generate useful invariants. Thus, we need to be able to automatically generate suitable

inputs from the space we’ve defined above. There are sophisticated automatic input

generation schemes available in the literature (e.g., Dewey et al. [54]), but we found

that a simple scheme of random generation under certain constraints was sufficient for

our experiments.

We restrict integers to a finite range, and treat strings as a sequence of characters.

Now each basic type (integer, character, and boolean) is a finite domain. Given a specific

sample type (e.g., 〈STRING, INTEGER∗ , INTEGER〉), for each position of the sample:
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• If it is an integer, character, or boolean position we pick a random value of the

appropriate type from the restricted finite domains defined earlier;

• If it is a sequence type (including string) we pick a random integer within the

integer finite domain to be the length of the sequence, then for each element of the

sequence we recursively generate values using this same procedure.

For some inputs we need to enforce certain properties to be certain of getting

relevant inputs. For example, the anagram problem requires us to generate some

inputs that are anagrams as well as some that are not, and it is unlikely that completely

random generation would generate many anagrams. We employed a simple strategy

for these cases (which only arise for two assignments, one involving anagrams and one

involving palindromes):

• To ensure that we generate sufficient anagrams, we employ the above strategy to

randomly generate the first string and then instead of generating a second string

we randomly permute the first string to get the second string.

• To ensure that we generate sufficient palindromes, we employ the above strategy

to randomly generate a string and then reverse that string and append it to the

original string to get a palindrome (with some tweaks to ensure we get both even-

and odd-length palindromes).

This simple generation strategy does not allow us to enforce complex properties

on the inputs (e.g., sortedness of lists or balanced trees) but such properties were not

necessary for the assignments we evaluated against. If properties like this are necessary

then there are, as mentioned previously, more complex generation strategies that can

handle such a requirement.
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6.3.2 Invariant Inference

Rather than build our own invariant inferencer, we used the existing Daikon dy-

namic invariant inferencer [55]. Daikon is intended to infer invariants over a program’s

entire execution, but since we only want to derive invariants relating the inputs and

outputs we adapted the Daikon workflow to our needs.

Daikon

In order to explain our adaptation, we first describe the standard Daikon usage and

how it works. Daikon is a template-based inferencer and comes with a wide variety

of existing templates. A set of invariant templates look, for example, like $1 = $2,

$1 ≤ $2, $1 % $2 = 0, LENGTH($1) ≥ $2, etc. The invariants that Daikon infers will be

instantiations of these templates with program variables and values from the program’s

execution. Daikon consists of a front-end that is responsible for instrumenting the code,

running tests, and collecting execution traces (as described below); and a back-end that

is responsible for taking the traces and inferring invariants from them.

To infer invariants, first the program is compiled using the Daikon front-end infras-

tructure in order to add instrumentation to the program’s binary. This instrumentation

is added throughout the program’s structure, e.g., at all function entry and exit points.

The instrumentation is responsible for outputting the values of the program variables

in scope at that point in the execution (and values reachable from those variables, e.g.,

using pointer dereference or array indexing).

Then the front-end executes the instrumented binary on a set of program inputs.

Each execution results in a trace consisting of a mapping from program points to values.

The end result is a set of traces, one for each input. Once the traces are collected, the

front-end collates the traces and sends them to the back-end inferencer.
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The inferencer is responsible for inferring invariants for each program point using

the provided templates and the trace values at that program point. A simple, naive

strategy would be to take each template, instantiate the template variables with all

possible combinations of program variables and values for a particular trace to see

which ones hold for that trace, then for each surviving potential invariant see if it holds

across all the traces. Any invariant instantiation which is true over all traces would be

reported as a likely invariant.

This naive strategy is both prohibitively expensive and likely to report invariants

that have little supporting evidence in the traces. The actual strategy Daikon employs is

more sophisticated and uses various optimizations and statistical techniques to report

likely invariants in reasonable time.

Observer Methods

The template-based methodology for invariant inference can be restrictive. A well-

known trick for increasing the expressiveness of the invariants that Daikon can report

are so-called observer methods [27]. An observer method is a pure (i.e., side-effect

free) predicate over the program variables and values. Daikon by default operates on

primitive values (integers, pointers, etc). To infer more complex invariants or invariants

over complex data structures, we can encode the desired invariant as a predicate using

an observer method. Daikon will apply the observer method to various combinations

of program variables and values and, using the same techniques as for instantiating

templates, discover if the observer method corresponds to an invariant predicate for a

given set of variables and values.

An example observer method that we use in our experiments is contains-

capital-letter, which takes a string and returns whether that string contains a

capital letter or not. This information is not a standard Daikon invariant template, but
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it is useful because for several of the assignments that we evaluate it turns out that the

presence or absence of capital letters is relevant.

Putting It Together

We need to adapt Daikon for our purposes, because we are not interested in in-

strumenting and collecting traces over executions of the student code but instead in

inferring invariants over samples. Thus, we ignore Daikon’s front-end altogether and

only use its back-end.

When a student’s solution is submitted we execute it on all of the test inputs and

create a set of samples as described in Section 6.2. Each sample corresponds to a Daikon

execution trace, where we can think of the sample as a trace containing only a single

“program point”. The samples (in the format of fictitious “traces”) are then fed to the

Daikon back-end exactly as if they had come from the Daikon front-end.

6.3.3 Invariant Translation

Neophyte programmers are unlikely to be able to usefully interpret invariants given

as logical formulae. Thus, we need to translate the final invariants into some form that

they will be able to understand. Since we are using template-based invariant inference

plus observer methods, we are able to predefine straightforward translations of the

invariant templates and observer method results into natural English. The results are

somewhat stilted, but still perfectly understandable.

For example, when defining the observer method

contains-capital-letter(x) we can predefine a translation as “the string x

contains a capital letter”, where x would be replaced with the appropriate string vari-

able. For a template such as $1 = $2 we can predefine a translation as “the value of $1
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is equal to the value of $2”, where $1 and $2 would be replaced with the appropriate

program variables or values.

6.4 Evaluation

We evaluate our proposed feedback method on actual student submissions for ten

assignments taken from a series of introduction to C++ programming courses, taken

from an archive of previous course offerings. For legal privacy reasons we cannot

provide the set of student submissions in the artifact linked to earlier in this chapter;

the artifact only provides our implementation of our proposed method.

6.4.1 Evaluation Methodology

For each of the ten assignments we randomly select 25 student submissions that

compile, run without crashing, yet provide incorrect answers. For two of the assign-

ments (Binary Search Tree Node Removal and List Copy Assignment Operator) we

were not able to obtain 25 valid samples from the set of incorrect submissions due to

compilation errors, runtime errors, or because the student did not fill in the code stub

at all, and therefore we use 12 and 8 samples, respectively, for those assignments.

For each assignment, for each student submission, we generate feedback in the

form of a list of (translated) invariants. We judge the quality of this list by (1) whether it

contains actionable, useful feedback that describes a specific property of the student’s

submission that points to why or how the submission was incorrect; and (2) by how

many of the (translated) invariants in the list are useful rather than extraneous.

This evaluation is necessarily subjective, and to try to mitigate bias the primary

author and implementor of our feedback method was not involved in this judgement
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process. Instead, the second author, a grad student who was not involved in the

preliminary research and implementation of our method, independently made the

judgements.

6.4.2 Description of Benchmarks

We describe each of our ten benchmarks below:

• Copy Odd Elements across Arrays. Students are to traverse a source array and

copy only the odd elements into a destination array.

– Inputs: INTEGER? × INTEGER? × INTEGER. The source and destination arrays

and the minimum size of the arrays.

– Outputs: INTEGER. The number of elements copied.

• ASCII Art with Custom Width×Height. Students are to write a function that

creates a letter ‘Z’ made of ‘*’ characters of a given width and height. Certain

widths and heights, (such as 2×2) are invalid and should result in an empty string.

– Inputs: INTEGER× INTEGER. The width and height.

– Outputs: STRING. The resulting ASCII art.

• Anagram Identification. Students are to return whether the two input strings are

anagrams of each other, disregarding whitespace, punctuation, and capitalization.

– Inputs: STRING× STRING.

– Outputs: BOOLEAN.

• Palindrome Identification. Students are to return whether the input string is a

palindrome, disregarding capitalization.
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– Inputs: STRING

– Outputs: BOOLEAN

• Binary Search Tree Predecessor. Students are to take a binary search tree and an

integer present in the tree and provide the largest number in the tree smaller than

the given integer.

– Inputs: INTEGER? × INTEGER. The contents of the binary tree in the order

they are inserted and the integer bound.

– Outputs: INTEGER.

• Binary Search Tree Node Removal. Students are to delete an entry from a binary

search tree.

– Inputs: INTEGER? × INTEGER. The contents of the binary tree in the order

they are inserted and the integer to delete.

– Outputs: INTEGER?. The updated tree.

• List Average. Students are to compute and return the average over all the elements

in a linked list containing integer values.

– Inputs: INTEGER?. The contents of the linked list in the order they are inserted.

– Outputs: DOUBLE.

• List Copy Assignment Operator. Students are to complete the C++ copy assign-

ment operator for a custom linked list class.

– Inputs: INTEGER? × INTEGER?. The left- and right-hand sides of the assign-

ment.

– Outputs: INTEGER? × INTEGER?. The resulting linked lists.
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• Hash Table Assignment Operator. Students are to complete the C++ copy assign-

ment operator for a custom hash table class that uses integers as keys and strings

as values.

– Inputs: (INTEGER × STRING)? × (INTEGER × STRING)?. The left- and right-

hand sides of the assignment.

– Outputs: (INTEGER× STRING)? × (INTEGER× STRING)?. The resulting hash

tables.

• Hash Table Insertion and Retrieval. Students are to implement a custom hash ta-

ble class, along with the associated functions for inserting and retrieving elements.

– Inputs: (INTEGER× STRING)?. The hash table.

– Outputs: (INTEGER× STRING)? (the new hash table, for insertion) or STRING

(for retrieval).

6.4.3 Results

Figure 6.2 shows the percentage of assignment submissions where feedback gave

useful results for our random samples of incorrect student submissions. Any non-zero

percentage of useful feedback means that the feedback would have helped at least

one student understand what was wrong with their code, and our results exceed this

humble goal: 80% of the assignment submissions provide some useful feedback 100%

of the time, and in total 96% of our benchmarks provide some useful feedback.

The hash table assignment submissions performed the worst, indicating that we

need to work on better methods for generating interesting invariants for complex data

structures that improve on treating them like a flat list. Still, the results are promising,
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Figure 6.2: Ratio of assignment submissions for which at least one useful invariant was
output as feedback.

and one could potentially add better, domain-specific observer functions to improve

the performance of our method.

For each assignment, while we provide useful feedback the vast majority of the

time, some of the lines of feedback that we return can be spurious—students must look

through the results to find the useful feedback and determine what is helpful for them.

Figure 6.3 presents this per-feedback view for our results. There, for each assignment,

we calculate the percentage of individual invariants displayed that are of use to the

student. It is promising that we tend to provide a majority of useful lines of feedback,

but we believe that focusing on minimizing our outputs could be a good area of future

exploration.

The outlier in the figure is the Hash Table Insertion and Retrieval benchmark. It is

interesting to note that when two hash tables are available to compare (as is true in the

Hash Table Assignment Operator benchmark), we provide better results significantly

more often. We believe that this is because two hash tables allow us to derive invariants

that relate the structures even though our method does not understand the structure

itself, while only having a single hash table does not give our method any leverage for

inferring interesting invariants.
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Figure 6.3: Average ratio of useful to non-usefull invariants per assignment submission.
While we generate useful feedback for most submissions, some invariants that we
output are spurious and do not provide information about the student’s error.

Table 6.2: Average running times of our method, over 25 separate student submissions.

Benchmark Avg. Compilation Time (s) Avg. Execution Time (s) Avg. Invariant Inference Time (s)

Copy Odd Elements across Arrays 1.910 0.994 25.251
ASCII Art with Custom Width×Height 2.953 0.095 20.487
Anagram Identification 2.985 1.311 27.413
Palindrome Identification 2.444 0.443 21.790
Binary Search Tree Predecessor 2.915 0.982 25.594
Binary Search Tree Removal 2.730 1.163 22.221
List Average 3.268 0.186 22.111
List Copy Assignment Operator 3.015 0.350 18.575
Hash Table Assignment Operator 3.699 1.541 23.235
Hash Table Insertion and Retrieval 3.266 1.170 20.234

Running Time

Table 6.2 contains average running times for our method. The largest invariant

inference time is for the Anagram Identification benchmark, and this is likely due to

the implications that we ask our invariant inference engine to infer. It is clear from the

results that this output can be generated with only a small delay, and this will allow

our method to be used as a part of today’s autograders, which function in an “almost

real-time” environment.
139



Student Feedback Using Invariant Inference Chapter 6

6.4.4 Sample Outputs

Figure 6.4 shows two representative output examples from two of our more compli-

cated benchmarks; we omit the full output for space reasons.

Binary Search Feedback.

In Figure 6.4a we have a snippet of the output feedback from the Binary Search Tree

Predecessor—we show the Fail set, which indicates the properties of the code that hold

whenever the student’s solution and the instructor’s solution do not agree. A student,

upon receiving this feedback, will go down the list to try to understand what went

wrong. The first four invariants eliminate potential complications due to edge cases

(the given value was the minimum value in the tree, or the maximal value, or the root

of the tree, or not in the tree at all). The student can be assured, then, that none of these

edge cases are the problem and can dismiss them from consideration.

The fifth invariant states that the return value in every failing case was the sentinel

value 0, which represents the assertion that the predecessor for the given node does

not exist, while the sixth invariant shows that this is not the case for the reference

solution. Finally, the seventh, eighth, and tenth invariants pinpoint that the depth of

the predecessor node is the culprit, and that in all failing cases the predecessor node is

an ancestor of the given node—a case that the student apparently forgot to account for.

List Average Feedback.

For the List Average example in Figure 6.4b, a student may proceed as follows.

Going through Fail, a student will discover that the instructor’s average for each of

the failing cases is never 0. That same invariant, however, does not appear about the

student’s average, indicating that the student is sometimes returning 0 when they
140



Section 6.4 Evaluation

should not. The issue always lies with a non-empty list case, shown by the invariant

involving the list length. Perhaps the most helpful single invariant is the one relating

the absolute value of the student’s average to the absolute value of the instructor’s

average, and the student’s is always smaller—the issue with this student’s code is that

the average is being computed using an int variable rather than a double variable,

chopping off any necessary decimal values. If the final invariant of Fail does not

indicate this issue to the student, the combination of the third invariant of Pass and the

second invariant of Fail (which both talk about the absolute value of the average with

respect to some constant) will—from this the student could deduce that something

could be going wrong when the average is supposed to be a number between 0.0 and

1.0.

6.4.5 Discussion

From these results we conclude that the feedback is already useful given the current

implementation, but could be improved in several ways that we will investigate in

future work:

• We could improve the inferencer’s understanding of complex data structures,

allowing it to generate more interesting and expressive invariants.

• We could improve the translation of invarariants into natural language and make

the implications of those invariants more clear to the student. Some of the rea-

soning that we went through for the example outputs above, for instance, seem

automatable and something that we could provide to the student directly.

• We could improve the ability to prune useless invariants while keeping the useful

ones (noting that this does not necessarily always mean keeping stronger invariants
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+----+
|Fail|
+----+
The element to search for was the minimum value in the tree == false
The element to search for was the maximum value in the tree == false
The element to search for was the root of the tree == false
The element to search for was not in the tree == false
Your result for the predecessor == 0
The instructor's result for the predecessor != 0
The depth of the predecessor node >= 0
The depth of the original node >= 2
Your result for the predecessor != The instructor's result for the predecessor
The depth of the predecessor node < The depth of the original node

...

(a) Snippet of output for Binary Search Tree Predecessor.

+----+
|Fail|
+----+
.average() called on the instructor's list != 0
.average() called on your list >= 0.0
size(The input list) >= 1
.average() called on the instructor's list != .average() called on your list
.average() called on the instructor's list > .average() called on your list

+----+
|Pass|
+----+
.average() called on the instructor's list == .average() called on your list
.average() called on the instructor's list == .average() called on your list
.average() called on the instructor's list >= 1.0

+-----------+
|Fail U Pass|
+-----------+
.average() called on the instructor's list != 0
.average() called on your list >= 0.0
.average() called on the instructor's list >= .average() called on your list

...

(b) Snippet of output for List Average.

Figure 6.4: Sample output snippets.
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and pruning weaker ones). In addition, we could attempt to rank the invariants

by how useful we think they will be to the student.

6.5 Related Work

Our method is a combination of automated feedback and program invariant in-

ference, so we describe related work in both areas in this section. We begin with

automated feedback. A common theme among related work is that students are given

commands to follow or solution fragments to implement rather than the less-revealing

feedback that we provide (e.g., [132, 25, 78, 72, 37]).

6.5.1 Automated Feedback

Repair- and synthesis-based methods are among the most interesting in this space,

but there are many different ways to provide feedback. We give a broad review in this

subsection.

Literature reviews

Keuning et al. [79, 80] provide two literature reviews on automated feedback gener-

ation, and we refer the interested reader to these for further information; we provide a

shorter such survey below. One interesting note from these surveys is that less than

50% of papers on the subject of feedback generation perform some sort of technical

analysis—we go against the majority in this chapter. 60% of feedback methods focus

on solution errors, including our own method.
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Repair and synthesis

Singh et al. [132] use constraint-based synthesis to compute minimal corrections to

students’ incorrect solutions to introductory programming assignments. They require

an error model describing the potential corrections, whereas our method may be re-

used across different kinds of programs. Their tool was able to synthesize corrections

for 64% of their corpus. Kaleeswaran et al. [73] use recurrent neural networks to

provide repair-based feedback on syntax errors. They formalize the problem of finding

fixes for syntax errors in student submissions as a token sequence learning problem

using the recurrent neural networks.

Yi et al. [150] try several existing program repair tools out of the box on real student

code and find that they do not perform well; they find that allowing for partial repairs

improves their results. They perform a user study and discover that “while the graders

seem to gain benefits from repairs, novice students do not seem to know how to

effectively make use of generated repairs as hints”—this is an interesting argument

against popular program-repair based methods that are at the forefront of feedback

generation.

Analysis

Program analysis-based methods are another interesting means of observing the

semantic meaning of a program. Gulwani et al. [66] target the performance of solutions

to introductory programming assignments. Their tool allows a teacher to define an

algorithmic strategy by specifying certain key values that should occur during the

execution of an implementation, and uses dynamic analysis to test whether a given

program matches this specification. In contrast, we do not require any such pre-

population of strategies: our method can be useful without initial knowledge of how
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students will solve a problem. Blau and Moss [37] use dataflow analysis and AST

searching to find “silent flaws” in Java programs—e.g., instance variables that should

have been static constants, uses of public that should really have been private, etc.

These are all pre-programmed patterns to search for.

Transition-based

Piech et al. [116] encourage students to transition from one partial solution to

another that is closer to the correct solution. They compute how accurately they predict

the next transition that a student should take, given a corpus of solution transitions

from students to use as ground truth. Similarly, Rivers and Koedinger [124] generate

personalized hints for students, even when given states that have not occurred in their

training data. This method requires a reference solution and test cases, and computes

transitions to the correct solution. Our method differs in that we place no requirements

on the shape of a correct solution.

Similarity and clustering

Keuning et al. [78] provide strategy-based feedback: their method recognizes when

student solutions are similar to one of the instructor-given models, and incrementally

fills in correct statements or adds holes for the student to fill in. Again, we only

require one correct solution for our method, rather than several. Kaleeswaran et al.

[72] provide feedback by clustering student submissions by solution strategy, and then

doing program equivalence checking within each cluster. Feedback is generated based

on a correct solution from each cluster.
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Other tools

Antonucci et al. [25] create an incremental hint system for assignment. Hints are

created in advance from the source code of an exercise’s reference solution; there are

two kinds of hints (“textual" and “code-revealing"), and they are all created ahead of

time by the instructor. D’antoni et al. [51] focus on feedback for automata-construction

assignments, and find that “providing either counterexamples or hints is judged as

helpful, increases student perseverance, and can improve problem completion time”.

Our invariant-based method is seen as a mixture of counterexamples and hints, and so

this is a promising result. In contrast to these two previous techniques, our method

is general and more automatic. Wrenn and Krishnamurthi [148] presents a method

for testing the validity of students’ handmade input/output examples for a particular

program; it requires multiple correct and buggy implementations to be premade to

compare against. This method is quite complementary to our own—instead of auto-

matically calculating input/output invariants, this tool requires manually-specified

inputs and outputs.

6.5.2 Program Invariants and Their Inference

Daikon

Ernst et al. [55] introduce Daikon, arguably the most well-known dynamic invariant

inference tool and method. Instead of requiring programmers to annotate their code,

Daikon automatically infers “likely” invariants about a program by observing traces

of program executions. The Daikon method calculates invariants about both single

variables and combinations of variables at specific program points, and there are many

built-in invariants that Daikon checks for. We make use of Daikon in this work.

Daikon has not existed statically, and has been improved over the years. Csallner
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et al. [50], for example, present DySy, which employs symbolic execution along with

the standard dynamic analysis to produce more appropriate invariants. Demsky et al.

[53] harness Daikon to create repair inconsistency properties of data structure due to,

e.g., data corruption.

Daikon, however, is not the only contender in this space; we list some other tech-

niques as well as applications below. We note that we chose Daikon because it was easy

to use and the first method that we tried—it is possible that some of the techniques or

tools listed below could prove useful to our method, and we leave that exploration to

future work.

Other popular tools

Flanagan et al. [58] introduce the Extended Static Checker for Java, a tool which

allows for automatic verification of annotated source code. The existence of invariants

is refuted by program verification over the declared invariants, and other warnings

(which can be interpreted as likely invariants) are also generated about the code.

Hangal and Lam [67] introduces the DIDUCE tool: similar to Daikon, it detects

likely invariants across many points in a program. Instead of relying on a static set

of test cases like Daikon, DIDUCE constantly instruments a running program on real

data; this allows for the detection of anomalies in a program’s execution.

Machine learning

Brun and Ernst [39] employ machine learning to provide a method for finding

program properties that are indicative of errors. Program properties are provided by

an analysis and then machine learning is applied to select those properties that will

most likely result in an error state.
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Applications

Csallner and Smaragdakis [49] infer invariants in the face of interfaces and method

overriding. Subtyping introduces consistency issues, and the authors discuss a solution.

Baliga et al. [30, 31] learn invariants about Linux kernel data structures, and uses

those invariants to detect the presence of a rootkit. Livshits and Zimmermann [96]

compute invariants over software revision histories in order to discover common

bug fixes and application-specific patterns. Astorga et al. [27] present a method for

precondition generation based on dynamic analysis. Observer methods are used to

translate advanced properties and/or non-primitive types into primitive types.

Improvements to Supported Invariants

Li et al. [92] study the consistency of dynamic invariant detectors by means of

second-order constraints. Second-order constraints are identified and used to prune

inconsistent invariants. Nguyen et al. [108] notice that support for invariant inference

of disjunctions (e.g., arising from conditional statements) is limited. They harness

dynamic invariant inference in order to generate disjunctive invariants over numerical

domains, and then verifies the correctness those invariants statically.
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All lies and jest

Still, a man hears what he wants to hear

And strong rejects the rest

Chapter 7

Conclusions and Future Work

In this dissertation, I presented several case studies to support my thesis that there is

room for improvement in the realm of program similarity. I made contributions along

two different axes:

1. Methods: syntactic similarity across languages, and semantic similarity; and

2. Applications: plagiarism detection, incremental analysis, and student feedback.

As technologies improve, these ideas can be made more useful and can be applied in

more areas. In addition, new domains will bring about new applications of similarity.

In the near-term, there are a couple of improvements that can be made to our

student feedback work. The first is to provide better English translation of the resulting

Daikon invariants—at the moment, we are doing simpler, text-based substitution of

the results; this does seem to work well as a starting point, but it is likely that more

advanced invariants would benefit from a parsing-based translation approach.

Another topic for investigation is the ordering of the invariants that we output—

currently we return them in the order that we get them back from Daikon. Some
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invariants are more important than others, though, and a potential solution could

involve using statistics to calculate how “surprising” a particular invariant is, relative

to the others that we output. We could measure this surprise in terms of how often it

appears in other invariant sets (e.g., Pass, Refs, etc.), or perhaps even in terms of the

model count of the formula.

In the long-term, I see two low-hanging areas for improvement, and they are

both based off the student feedback project. The first is application-specific feedback.

Currently our feedback method is quite general, and this works well for introductory

programming classes. Determining what it would take to get a feedback method

for an upper-division course (e.g., operating systems) or for a non-general-purpose

programming language (e.g., ARM assembly) would be an interesting challenge. Both

of those examples would require new kinds of invariants—for example, those that take

registers and flags into consideration—as well as new ways to present those invariants

to a student in an intuitive manner.

The second long-term project I envision is using dynamic invariants for program

similarity. To the best of my knowledge, dynamic program invariants have not been

used to detect similarity, though there are ways to compare logical formulae (e.g., SAT

solving, model counting, etc.). Dynamic invariants seem like an excellent tool for

fingerprinting code, and appear to be a new point in the program similarity space.
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[66] Sumit Gulwani, Ivan Radiček, and Florian Zuleger. 2014. Feedback generation for
performance problems in introductory programming assignments. In Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 41–51.

[67] S. Hangal and M. S. Lam. 2002. Tracking down software bugs using auto-
matic anomaly detection. In Proceedings of the 24th International Conference on Soft-
ware Engineering. ICSE 2002. 291–301. https://doi.org/10.1145/581376.
581377

156

https://doi.org/10.1145/2502508.2502520
https://doi.org/10.1145/2502508.2502520
https://doi.org/10.1145/581376.581377
https://doi.org/10.1145/581376.581377


[68] Manuel Hermenegildo, German Puebla, Kim Marriott, and Peter J Stuckey. 2000.
Incremental analysis of constraint logic programs. ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 22, 2 (2000), 187–223.

[69] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
Deckard: Scalable and accurate tree-based detection of code clones. In Proceedings
of the 29th international conference on Software Engineering. IEEE Computer Society,
96–105.

[70] Lingxiao Jiang and Zhendong Su. 2009. Automatic mining of functionally equiva-
lent code fragments via random testing. In Proceedings of the eighteenth international
symposium on Software testing and analysis. ACM, 81–92.

[71] Elmar Juergens, Florian Deissenboeck, and Benjamin Hummel. 2010. Code
similarities beyond copy & paste. In 2010 14th European Conference on Software
Maintenance and Reengineering. IEEE, 78–87.

[72] Shalini Kaleeswaran, Anirudh Santhiar, Aditya Kanade, and Sumit Gulwani.
2016. Semi-supervised verified feedback generation. In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering.
ACM, 739–750.

[73] Shalini Kaleeswaran, Varun Tulsian, Aditya Kanade, and Alessandro Orso. 2014.
Minthint: Automated synthesis of repair hints. In Proceedings of the 36th Interna-
tional Conference on Software Engineering. ACM, 266–276.

[74] D. Kalman, M. Pistoia, G. Podjarny, O. Tripp, and O. Weisman. 2012. Incremental
static analysis. https://www.google.com/patents/US20120054724 US
Patent App. 12/873,219.

[75] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: a
multilinguistic token-based code clone detection system for large scale source
code. IEEE Transactions on Software Engineering 28, 7 (2002), 654–670.

[76] Alexandros Kapravelos, Yan Shoshitaishvili, Marco Cova, Christopher Kruegel,
and Giovanni Vigna. 2013. Revolver: An Automated Approach to the Detection
of Evasive Web-based Malware.. In USENIX Security Symposium.

[77] Vineeth Kashyap and Ben Hardekopf. 2014. Security signature inference for
javascript-based browser addons. In CGO. ACM, 219.

[78] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2014. Strategy-based feed-
back in a programming tutor. In Proceedings of the Computer Science Education
Research Conference. ACM, 43–54.

157

https://www.google.com/patents/US20120054724


[79] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2016. Towards a systematic
review of automated feedback generation for programming exercises. In Proceed-
ings of the 2016 ACM Conference on Innovation and Technology in Computer Science
Education. ACM, 41–46.

[80] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2018. A systematic literature
review of automated feedback generation for programming exercises. ACM
Transactions on Computing Education (TOCE) 19, 1 (2018), 3.

[81] Daeyoung Kim, Amruta Gokhale, Vinod Ganapathy, and Abhinav Srivastava.
2016. Detecting plagiarized mobile apps using API birthmarks. Automated
Software Engineering 23, 4 (2016), 591–618.

[82] Heejung Kim, Yungbum Jung, Sunghun Kim, and Kwankeun Yi. 2011. MeCC:
memory comparison-based clone detector. In Proceedings of the 33rd International
Conference on Software Engineering. ACM, 301–310.

[83] Kisub Kim, Dongsun Kim, Tegawendé F Bissyandé, Eunjong Choi, Li Li, Jacques
Klein, and Yves Le Traon. 2018. F a C o Y: a code-to-code search engine. In
Proceedings of the 40th International Conference on Software Engineering. ACM, 946–
957.

[84] Raghavan Komondoor and Susan Horwitz. 2001. Using slicing to identify dupli-
cation in source code. In International static analysis symposium. Springer, 40–56.

[85] Danai Koutra, Ankur Parikh, Aaditya Ramdas, and Jing Xiang. 2011. Algorithms
for Graph Similarityand Subgraph Matching. https://www.cs.cmu.edu/
~jingx/docs/DBreport.pdf. (2011).

[86] Nicholas A Kraft, Brandon W Bonds, and Randy K Smith. 2008. Cross-language
Clone Detection. In SEKE. 54–59.

[87] Andreas Krall and Thomas Berger. 1994. Incremental Flow Analysis.

[88] Jens Krinke. 2001. Identifying similar code with program dependence graphs.
In Reverse Engineering, 2001. Proceedings. Eighth Working Conference on. IEEE,
301–309.

[89] Sulekha Kulkarni, Ravi Mangal, Xin Zhang, and Mayur Naik. 2016. Accelerating
Program Analyses by Cross-program Training. In OOPSLA 2016. ACM, 359–377.

[90] S. Kullback and R. A. Leibler. 1951. On Information and Sufficiency. Ann.
Math. Statist. 22, 1 (03 1951), 79–86. https://doi.org/10.1214/aoms/
1177729694

158

https://www.cs.cmu.edu/~jingx/docs/DBreport.pdf
https://www.cs.cmu.edu/~jingx/docs/DBreport.pdf
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694


[91] Hongki Lee, Sooncheol Won, Joonho Jin, Junhee Cho, and Sukyoung Ryu. 2012.
SAFE: Formal specification and implementation of a scalable analysis framework
for ECMAScript. In FOOL 2012. 96.

[92] Kaituo Li, Christoph Reichenbach, Yannis Smaragdakis, and Michal Young. 2013.
Second-order constraints in dynamic invariant inference. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2013. ACM
Press, Saint Petersburg, Russia, 103. https://doi.org/10.1145/2491411.
2491457

[93] Yujian Li and Zhang Chenguang. 2011. A metric normalization of tree edit
distance. Frontiers of Computer Science in China 5, 1 (2011), 119–125. https:
//doi.org/10.1007/s11704-011-9336-2

[94] Chao Liu, Chen Chen, Jiawei Han, and Philip S Yu. 2006. GPLAG: detection of
software plagiarism by program dependence graph analysis. In Proceedings of the
12th ACM SIGKDD international conference on Knowledge discovery and data mining.
ACM, 872–881.

[95] Ben Livshits and Salvatore Guarnieri. 2010. Gulfstream: Incremental Static Analysis
for Streaming JavaScript Applications. Technical Report. Microsoft Research.

[96] Benjamin Livshits and Thomas Zimmermann. 2005. DynaMine: Finding Com-
mon Error Patterns by Mining Software Revision Histories. In Proceedings of the
10th European Software Engineering Conference Held Jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (ESEC/FSE-13).
ACM, New York, NY, USA, 296–305. https://doi.org/10.1145/1081706.
1081754

[97] Francesco Logozzo, Shuvendu K. Lahiri, Manuel Fähndrich, and Sam Blackshear.
2014. Verification Modulo Versions: Towards Usable Verification. In PLDI ’14.
294–304.

[98] Yi Lu, Lei Shang, Xinwei Xie, and Jingling Xue. 2013. An Incremental Points-to
Analysis with CFL-Reachability. Springer Berlin Heidelberg, Berlin, Heidelberg,
61–81.

[99] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2017.
Semantics-based obfuscation-resilient binary code similarity comparison with
applications to software and algorithm plagiarism detection. IEEE Transactions
on Software Engineering 12 (2017), 1157–1177.

[100] Andrian Marcus and Jonathan I Maletic. 2001. Identification of high-level con-
cept clones in source code. In Automated Software Engineering, 2001.(ASE 2001).
Proceedings. 16th Annual International Conference on. IEEE, 107–114.

159

https://doi.org/10.1145/2491411.2491457
https://doi.org/10.1145/2491411.2491457
https://doi.org/10.1007/s11704-011-9336-2
https://doi.org/10.1007/s11704-011-9336-2
https://doi.org/10.1145/1081706.1081754
https://doi.org/10.1145/1081706.1081754


[101] Victor J. Marin and Carlos R. Rivero. 2018. Towards a Framework for Generating
Program Dependence Graphs from Source Code. In Proceedings of the 4th ACM
SIGSOFT International Workshop on Software Analytics (SWAN 2018). ACM, New
York, NY, USA, 30–36. https://doi.org/10.1145/3278142.3278144

[102] Thomas J. Marlowe and Barbara G. Ryder. 1990. An Efficient Hybrid Algorithm
for Incremental Data Flow Analysis. In POPL ’90. 184–196.

[103] Vítor T Martins, Daniela Fonte, Pedro Rangel Henriques, and Daniela da Cruz.
2014. Plagiarism detection: A tool survey and comparison. In OASIcs-OpenAccess
Series in Informatics, Vol. 38. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[104] Scott McPeak, Charles-Henri Gros, and Murali Krishna Ramanathan. 2013. Scal-
able and Incremental Software Bug Detection. In FSE 2013. 554–564.

[105] Lefteris Moussiades and Athena Vakali. 2005. PDetect: A clustering approach for
detecting plagiarism in source code datasets. The computer journal 48, 6 (2005),
651–661.

[106] Rashmi Mudduluru and Murali Krishna Ramanathan. 2014. Efficient Incremen-
tal Static Analysis Using Path Abstraction. Springer Berlin Heidelberg, Berlin,
Heidelberg, 125–139.

[107] Sandhya Narayanan and S Simi. 2012. Source code plagiarism detection and per-
formance analysis using fingerprint based distance measure method. In Computer
Science & Education (ICCSE), 2012 7th International Conference on. IEEE, 1065–1068.

[108] ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2014.
Using Dynamic Analysis to Generate Disjunctive Invariants. In Proceedings of
the 36th International Conference on Software Engineering (ICSE 2014). ACM, New
York, NY, USA, 608–619. https://doi.org/10.1145/2568225.2568275
event-place: Hyderabad, India.

[109] José Oncina and Pedro Garcia. 1992. Identifying regular languages in polynomial
time. In Advances in structural and syntactic pattern recognition. World Scientific,
99–108.

[110] Terence J. Parr and Russell W. Quong. 1995. ANTLR: A predicated-LL (k) parser
generator. Software: Practice and Experience 25, 7 (1995), 789–810.
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