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Abstract: 
  
 Graphene grown by chemical vapor deposition and supported on SiO2 and 

sapphire substrates was studied following controlled introduction of defects induced by 

35 keV carbon ion irradiation.  Changes in Raman spectra following fluences ranging 

from 1012 cm-2
 to 1015 cm-2 indicate that the structure of graphene evolves from a highly-

ordered layer, to a patchwork of disordered domains, to an essentially amorphous film.  

These structural changes result in a dramatic decrease in the Hall mobility by orders of 

magnitude while, remarkably, the Hall concentration remains almost unchanged, 

suggesting that the Fermi level is pinned at a hole concentration near 1x1013 cm-2.  A 

model for scattering by resonant scatterers is in good agreement with mobility 

measurements up to an ion fluence of 1x1014 cm-2.    
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 Graphene, a sheet of sp2-bonded carbon atoms, is attracting tremendous interest 

due to its potentially transformative impact across a wide range of applications including 

advanced electronics and sensing [1].  The electronic structure and high quality of 

isolated, microscale flakes of nearly-perfect graphene enable the observation of 

spectacular properties such as the quantum Hall effect [2] and carrier mobilities 

approaching 120,000 cm2/Vs [3] near room temperature.  Graphene grown on copper 

foils by chemical vapor deposition (CVD) has garnered much attention as a method for 

producing large-area, monolayer-thick films that can be transferred to a variety of 

supporting substrates [1,4].  Because of the more defective nature of CVD-grown 

graphene compared to exfoliated flakes, an important challenge remains to understand 

the role of defects on electronic properties. 

 Carrier scattering in supported graphene is attributed to a variety of sources 

including ripples in the graphene layer, point defects and their associated short-range 

potentials, electron-electron (hole-hole) interactions, charged impurities residing in the 

supporting substrate, and adsorbed atoms on the surface [5,6,7].  Earlier studies 

suggested that charged impurity scattering could explain the dominant behavior in 

experimental findings [5,8].  However, more recent studies indicate that transport is 

limited by resonant scatterers [9,10], atomic-scale defects such as vacancies or 

molecules adsorbed to the surface (e.g. hydrogen) that generate so-called “midgap 

states” very close to the Dirac point [11] .  By controllably introducing defects into 

graphene, one may be able to understand how these mechanisms limit transport.  

Previous studies reported vacancy-type defects induced by ion irradiation of exfoliated 

graphene [12,13].  In this Letter we report on the irradiation of CVD-grown graphene 
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with carbon ions.  While the carrier mobility depends strongly on ion-induced damage, 

the carrier density is very insensitive to C+ irradiation even as the graphene becomes 

highly defective. 

 Graphene films were grown by CVD onto Cu foils using methane and transferred 

onto either SiO2/Si or sapphire substrates using the method described by Li et al. [14].  

The predominant film thickness of one monolayer was identified by atomic force 

microscopy (AFM) and Raman spectroscopy.  Each sample was irradiated with 35 keV 

carbon ions at different fluences ranging from 1x1012 cm-2 to 1x1015 cm-2.  Carbon ions 

of this energy and these fluences were chosen in order to mitigate undesired chemical 

reactions with the graphene film and to controllably introduce point defects (i.e., avoid 

cascades that would be associated with heavier ions or higher energies).  The 

irradiation conditions were chosen such that end-of-range damage would be away from 

the graphene film.  Based on SRIM (Stopping and Range of Ions in Matter) simulations, 

we determined that sputtered atoms from the substrate have negligible effect on the 

graphene.  In order to estimate the irradiation-induced defect density, we referred to 

simulations performed by Lehtinen et al [15].  Interpreting their results for irradiation by 

35 keV C+, we estimate the probability to induce single vacancies, double vacancies or 

complex resonant scatterers per incoming ion to be within 6-8%. 

 Raman spectra were collected using a double-resonance Raman process over 

wavenumbers of 1000 to 3000 cm-1 to investigate the structural changes in the material 

with increasing irradiation.  Variable-temperature resistivity measurements were 

performed from room temperature down to 5 K while the Hall effect was measured in 

the same instrument at fields up to 5 Tesla.  Samples were tested in a He gas ambient, 
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which also served as the cooling medium.  Unirradiated graphene films on SiO2 were p-

type (sheet Hall concentration ~1x1013 cm-2) and displayed an average room-

temperature Hall mobility of 1200 cm2/Vs. 

 Raman spectra for graphene-on-SiO2 following select ion fluences are shown in 

Figure 1a. The unirradiated graphene shows two features: the G line at 1580 cm-1 and 

the more intense G' (or 2D) line appearing at ~2700 cm-1.  A third feature, the D line 

located at 1360 cm-1, appears in graphene films that contain lattice disorder [16].  The 

negligible signal from the D line in the unirradiated sample reflects the relatively low 

level of disorder in the as-grown films.  After an ion fluence of 1012 cm-2, the D line 

appears but is very weak compared to the G and G’ lines.  Following a fluence of 1013 

cm-2, the D line intensity is nearly the same as that of the G line.  Compagnini et al. 

report that when the D line becomes more intense, structurally-disordered domains 

grow throughout the graphene layer [13]. 

 Following a fluence of 1014 cm-2, the D’ line, corresponding to an independent 

intravalley scattering process, appears at 1620 cm-1 [16].  After this fluence, the D line is 

twice as intense as the G line while the G’ line intensity has decreased significantly.  

After total fluences of 5 x 1014 cm-2 and 1015 cm-2, the G’ line is no longer visible, the G 

and D’ lines are indistinguishable from each other, and the D line has broadened due to 

coalescence of disordered regions [13].  This trend with increasing irradiation is 

consistent with studies of Lucchese et al. performed on exfoliated graphene [17]. 

 The observed evolution of the Raman spectra is consistent with an 

amorphization process described by Ferrari and Robertson [18] as reflected in Figure 

1b.  Region I, where the ratio ID / IG is increasing with ion fluence, represents a range of 
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ion-induced damage in which disordered domains grow.  As a result, the G’ line 

decreases to zero intensity since increasing disorder prevents second-order processes.  

In Region II, where the intensity ratio is decreasing, the damage is sufficiently high such 

that the phonon modes soften and the D and G lines broaden.  

 Figure 2 shows the temperature dependence of sheet resistance and Hall 

mobility of graphene-on-SiO2 for ion fluences between 1x1012 cm-2 and 5x1014 cm-2.  

Both the resistance and mobility of the unirradiated film display little to no change over 

temperature.  Irradiation with 1012 cm-2 produces essentially no change in the sample’s 

metallic behavior but results in a small increase (decrease) in the magnitude of the 

resistance (mobility).   However, after a carbon ion fluence of 5 x 1014 cm-2, the 

resistance changes by three orders of magnitude between 300 K and 9 K and scales 

nearly exponentially with T-1/3.  This linear relationship between log(R) and T-1/3 

suggests that the highly-irradiated samples display a two-dimensional hopping 

conductivity previously reported in the behavior of amorphous carbon films [19].  We 

note that a T-1/4 dependence cannot be excluded given the limited data.   This stronger 

dependence on temperature with increasing ion dose is reflected in the Hall mobility 

measurements in Figure 2b. 

 Figure 3 shows the effect of ion irradiation on the normalized Hall mobility (ratio 

of sample mobility after irradiation to that prior to irradiation) and the sheet Hall 

concentration for graphene-on-SiO2 (GSi) and graphene-on-sapphire (GSa) at 290 K.  

The mobility decreases monotonically with ion fluence and is orders of magnitude 

smaller at fluences above 1x1014 cm-2 than the initial mobilities for GSi and GSa.  

Remarkably, the sheet Hall concentration, irrespective of substrate type, remains largely 
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unchanged upon irradiation and is saturated at a value of ~1.3x1013 cm-2, which 

suggests pinning of the Fermi level.  Similar behavior of the Fermi level in ion-irradiated 

conventional semiconductors such as GaAs has been observed and is explained by the 

amphoteric defect model [20] in which the Fermi level is stabilized by native defects. 

 A simple model for the mobility after irradiation (µT)  can be constructed using 

Mattheissen’s rule: 

          (1) 

where µ0 is the mobility measured before irradiation and µd is the mobility contribution 

from the induced defects.  Assuming that irradiation can create an induced defect 

concentration of resonant scatterers with a circular potential well of radius R, then the 

conductivity takes the form 

      (2) 

where n is the carrier concentration and nd is the induced defect concentration [21], 

which we estimate to be about 0.07 times the incoming ion fluence [15].  A model of µd 

/µT with R = 3.0 Å is plotted in Figure 3a  [22].  The model is in good agreement with the 

experimental data up to an ion fluence of 1014 cm-2.  Above this value, the Hall mobility 

displays a fluence dependence that is stronger than that expected from the model, 

indicating that there could be a stronger contribution limiting the mobility in that region 

as a result of significant disorder or an amorphous-like film structure.  

 Connecting the electronic characterization with analysis of the Raman data, the 

damage induced by ion-irradiation in Region I can be well explained by a model 
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identifying resonant scatterers as responsible for the dominant scattering mechanism.  

While the model shows to be in agreement with the changes in mobility for graphene 

isolated on both SiO2 and sapphire up to around 1014 cm-2 ion fluence, there must be a 

different transport mechanism to account for the behavior in Region II.  An increasing 

ion fluence leads to decreasing mobilities with stronger temperature-dependence, 

uncharacteristic of the contributions from charged impurities or resonant scatterers.  

Rather, the behavior at extreme levels of disorder in this sample suggests a two-

dimensional hopping conduction mechanism like that of an amorphous-like carbon film. 

 In summary, we have irradiated graphene with carbon ions to induce a defect 

concentration that reduces mobility significantly with little variability of the sheet carrier 

concentration.  The reduction in mobility can be attributed to resonant scattering for up 

to an ion fluence near 1x1014 cm-2.  The divergence between the model and the 

experimental data at higher fluences marks the transition from structurally disordered 

graphene to an amorphous-like carbon film.   
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Science, Office of Basic Energy Sciences, and Division of Materials Sciences and 
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05CH11231.  O. D. D. acknowledges support from the National Science Foundation 

under contract number DMR-0349257 for electrical measurements of graphene on 

sapphire.  This work was supported in part by the Office of Naval Research, NRL’s 
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FIG. 1. (a) Raman spectra for graphene-on-SiO2 at select ion fluences.  (b) The ratio of 
the intensities for the D and G lines is plotted against the ion fluence for the spectra 
shown in Fig. 1a. 
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FIG. 2. (a) Sheet resistance for graphene-on-SiO2 versus T -1/3 for select carbon ion 
fluences.  At higher irradiation, resistance is fitted to a relation of the form R = R0 exp 
[(T0/T)1/3]. (b) Hall mobility for graphene-on-SiO2 versus temperature for select carbon 
ion fluences. 
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FIG. 3.  (a) Normalized Hall mobility and (b) sheet Hall concentration of graphene-on-
SiO2 (GSi) and graphene-on-sapphire (GSa) versus the C ion fluence.  A model for 
mobility based on a resonant scatterer (RS) defect contribution with R = 3.0 Å is also 
shown in (a).  Initial mobilities for GSi and GSa are ~1200 cm2/Vs and ~500 cm2/Vs, 
respectively. 
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