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ABSTRACT OF THE THESIS

denm (dynamic environmental notation for music): A
Performance-centric Music Notation Interface

by

James Bean

Master of Arts in Music

University of California, San Diego, 2015

Professor Rand Steiger, Chair

In this thesis, I describe the state of development for an automatic music

notation generator and tablet-based graphical user interface. The programs cur-

rently available for the automatic generation of music notation are focused on the

compositional and theoretical aspects of the music-making process. denm (dy-

namic environmental notation for music) is being designed to provide tools for the

rehearsal and performance of contemporary music. All of the strategies underlying

these tools are utilized by performers today. These strategies traditionally involve

the re-notation of aspects of a musical score by hand, the process of which can

be detrimentally time-consuming. Much of what performers re-notate into their

parts is composed of information latent in the musical model—the musical model

xiii



which is already being represented graphically as the musical score. denm will

provide this latent information instantaneously to performers with a real-time mu-

sic notation generator. The thesis presents a few of the techniques currently used

by performers of contemporary music, the features with denm that are designed

to make these techniques more efficient, as well as the underlying algorithms that

make this possible.
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Part I

Overview
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denm is a software application for iPad tablet computers that automat-

ically generates fully formatted music notation, with support for the notational

techniques used by composers of contemporary music. In addition to generat-

ing music notation, denm generates supplemental graphical information that aids

the learning, rehearsal, and performance processes of performers of contemporary

music.

Performers often manually annotate supplemental information in their parts.

Much of this information already exists in the musical model that was used to gen-

erate their part. Inspired by what performers have notated in their parts while

learning and performing my own music, denm seeks to automate some of the tasks

of performers that are detrimentally time-consuming. With a notational environ-

ment that can be tailored by a performer to the music that they are playing, I

believe that performers will be able to make more informed interpretations of the

music of today.

In Chapter 1, we will investigate some of the re-notational procedures of

performers of contemporary music. Then in Chapter 2, we will look at the ways in

which denm seeks to make these extant practices more efficient, freeing up time

and energy for performers to focus on more substantive musical issues.



Chapter 1

Annotation Strategies of

Contemporary Music Performers

Percussionist Steven Schick [1] explains the multiple facets of the learning,

rehearsing, and performing processes well:

Painted in broad strokes, it seems to me that the act of learning a piece
is primarily one of simplification, while the art of performance is one of
(re)complexifying. In the learning process, rhythms must be calculated
and reduced to some potable form, the turbulence of the microforces of
form must be generalized, and various kinds of inane mnemonics must
be employed simply to remember what to do next. An artificial skin of
practical considerations must be stretched tightly across the lumps of
a living, breathing piece. Performance reinflates the piece, fine tuning
its formal gyroscope, revivifying polyphonic structures, and packaging
the intellectual energy of the score into meaningful physicality.

While learning and rehearsing a musical work, performers often add mark-

ings to the score from which they are performing. Extra notational information

is often helpful for the performer to understand the structures of the music that

they are playing. These markings are not the musical material itself, but rather

supplemental information that improves a performer’s understanding of a piece of

music.

3
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1.1 Color Coding

Figure 1.1: Performer-highlighted objects.

In Fig. 1.1, flutist Ine Vanoeveren highlights a variety of music notational

objects with a system of colors and shapes to help clarify the learning of Brian

Ferneyhough’s Sisyphus Redux [2]. Vanoeveren stratifies different classes of musical

objects by using different colors. As a result, very complex notational relationships

are understandable at a glance.

The eye of a performer flickers quickly between many music notational ob-

jects in the act of performing a piece of music from a score. Complexly notated

works make this process even more unreliable when utilizing traditional black-

ink-on-paper notation preparation methods. As the amount of types of musical

symbols on the page increases, it becomes more difficult for the performer’s eye

to “land” on the graphical representation of a particular stratum of musical infor-

mation, in the process of evaluating the stratum’s current state or value. When

performers annotate their scores, they most often use different colors and translu-

cencies of writing utensil to make more apparent the differentiations between the

strata of musical information on the page.

In the case of Fig, 1.1, Vanoeveren highlights information about performing

techniques (e.g., trill, bisbigliando, voiced sounds, fluttertongue, etc.) in orange

colored pencil. Objects representing tempo and its fluctuations (e.g., tempo mark-

ing: eighth note = 52, rallentando from eighth note = 56 to eighth note = 52) are

highlighted in pink marker. Lastly, dynamics are highlighted with red and blue
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colored pencil: dynamic markings and interpolations highlighted with red colored

pencil are mf or louder, while those highlighted with blue colored pencil are mp

or quieter.

Without the clarifying markings made by Vanoeveren, this score may be

quite difficult to parse, particularly in real-time. Many of the compositional strate-

gies and performing techniques in this work are not traditional, though they are

presented with conventional notational techniques that have a low headroom for

notational complexity. This music bends these traditional notational techniques

to the point of breaking, resulting in a saturated notational image. The dynamic

and highly differentiated nature of the musical model of this work is neutralized

to flat black graphical representation.

1.2 Ensemble Cues

When musicians perform in groups from a notated score, each performer

performs from an abbreviated form of the full score, called a Part. A Part contains

only the single viewing performer’s music, omitting the music of the other instru-

ments in the ensemble. In Parts for orchestral music, where a given performer may

have many rests between passages, an additional staff of music shows supplemental

musical information of another player that serves as a Cue.

By carefully curating this environmental information, the notational image

for a single performer is able to be concise, while still making providing the per-

former with enough musical information to remain oriented within the ensemble

and the structure of the composition. Cues may show all of the musical infor-

mation that the other performer may see (e.g., pitch, rhythm, dynamics, articu-

lations, etc.), or they may show only an abbreviated combination of this musical

information (e.g., only rhythm). The decision to show some or all of the musical

information to a performer is defined by the musical context. In traditional music

preparation, the preparer of the Parts (the composer, or a dedicated engraver)

has agency in this decision. In some contexts, this may be sufficient; however,

in more contemporary compositional contexts, where the complexity of ensemble
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relationships may be higher, such a static and centralized distribution of agency

in notational representation can be inefficient (i.e., the knowledge of different as-

pects of an ensemble environment are useful at different points in the rehearsal

and performing processes).

In small ensemble contexts, it is common for performers to manually notate

varying amounts of detail of other performers’ music in their Part. Performers may

notate just the rhythmic information, as is the case of Tyler J. Borden’s annotations

on his part of Thoracic Asphyxiating Dystrophy by Harris Papatrechas [3]. In other

cases, they may notate other information (e.g., pitch, dynamics, articulations, etc.)

as is appropriate for a given context. By making explicit the musical relationships

that a performer has with the other performers, a performer may adjust their

interpretation of their Part to make these musical relationships most effective.

Further, the annotations of their colleague’s Parts enables performers to glance

ahead to an upcoming ensemble relationship, in order to modify their current

performative trajectory to this future point. Larger-scale ensemble relationships

can then become effective to an audience, as they become explicit to the performers

thoughtfully embodying the composition.

Figure 1.2: Performer-notated cues from ensemble.

In Fig. 1.2, cellist Tyler J. Borden manually notates the rhythmic infor-

mation of the clarinetist in the cello and clarinet duo by Papatrechas. These

annotations have been made with the ForScore application [4] for iPad tablet de-

vices. This program displays PDF (Portable Document Format) representations

of music notation, allowing performers to add annotations directly onto the score

by interacting with the touch screen element of the iPad.
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1.3 Meter

Figure 1.3: Performer-notated clarification of meter.

Borden notates a clarification of the underlying meter of the passage shown

in Fig. 1.3 for several reasons: the rhythmic environment is inherently complex,

the underlying meter of this passage is a series of uneven durational values with

varying subdivision values, and the notated horizontal spacing of the music in this

passage is irregular. For example, the third, fourth, and fifth performer-notated

rhythmical values have the same durations, though the horizontal space occupied

by each varies drastically.

Figure 1.4: Performer-notated clarification of meter.

Vanoeveren uses vertical lines and triangles to intelligently clump note

events in Franco Donatoni’s Nidi [5], shown in Fig. 1.4. Without these nota-

tions, it would be easy to get lost in the unmetered collection of notes that com-

prise this work. The vertical lines represent duple-beats, while triangles represent

triple-beats. The MetricalAnalyzer class in denm (described in Sec. 10.1) uses

the organization of beats into duple- and triple-beat groupings as a model of rep-

resenting an underlying metrical structure for rhythms of arbitrary complexity.

Vanoeveren’s process elucidates the natural tendency to group rhythmic events for

the process of memory.
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Click-tracks

Figure 1.5: Performer-notated clarification of meter.

Performing Mnemosyne by Brian Ferneyhough [6] necessitates a significant

amount of rehearsal technique infrastructure. This work, an excerpt shown of

which is shown in Fig. 1.5, is written for solo bass flute, along with a recording

of eight bass flutes. The live performer synchronizes with the recording with the

help of a “click-track” (i.e., a metronome specifically tailored to the meter of a

piece). This “click-track” is critical to the learning, rehearsing, and performing

of this work as the metrical profile is complex. As a result, performers add more

annotations relating to the meter than they may in other contexts.

There are several aspects of this Ferneyhough work that make it intrinsi-

cally difficult with respect to time. The metrical structure does not only contain

subdivision values that are results of the statement 2n (e.g., 8, 16, 128, etc. — the

case in most traditionally notated Western music). Instead, meters in this work

incorporate another element of m into the equation, where subdivision values are

results of the statement m ∗ 2n (e.g., 10, 24, 56, etc.). The traditional subdivision

idiom is a subset of values of the expanded model, resulting from the statement of

2 ∗ 2n. In this case, m = 2, as the subdivision values are duple-beat constructs. In

some meters in Mnemosyne, m may be 3, 5, or 7. In the cases where m 6= 2, the

underlying pulse is a non-duple subdivision of the tempo (e.g., triplets, quintuplets,

or septuplets).

Consequently, the “click-track” is very specific and must be understood

thoroughly by the performer. Vanoeveren adds several layers of annotations in

the score to clarify the grouping of beats within a meter, to keep synchronized

with the “click-track”. Vertical lines represent duple-beats and triangles represent
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triple-beats, as in the Donatoni example shown in Fig. 1.4. Vanoeveren takes

this method even further for the Ferneyhough, as she annotates the numerical rep-

resentations of the internal beat groupings, in addition to the global pulse. For

example, Vanoeveren decides that the 7
16 measure shall be subdivided into sub-

groups of [3,4]. There are no events that actually fall on these subgroup points,

though this has proved the most reliable scaffolding of meter for her. In addition

to the duple-beat-representing lines and the triple-beat-representing triangles, Va-

noeveren notates the numbers of each subdivided beat within the subgroups she

has decided.



Chapter 2

Features of denm

denm seeks to provide many of the extant annotational strategies of per-

formers that are described in Chapter 1 more efficiently. Often, what is annotated

by performers onto their scores already exists symbolically within the musical

model that is being used to generate their part. denm provides performers with

the opportunity to use these strategies without spending as much time preparing

them.

2.1 Color Coding

For concerns of cost and reliable reproducibility, music notation is most

often printed with black ink on paper. This technique is sufficient for music no-

tational contexts that have a low density of music notational information and few

graphical objects. Many musics written today incorporate extended forms of no-

tation that utilize music notational concepts beyond those found in traditional

music notation. As the amount of music notational objects within a music no-

tational context increases, the low headroom of the traditional paradigm is made

apparent. As a result, performers spend a considerable amount of time and energy

annotating their scores with colored markings, to make sense of a dense notational

image.

As described in Sec. 1.1, performers are forced to work around the inef-

ficiencies of the over-saturated black-ink music notational images. Within these

10
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notational environments, it is very hard to establish contrast between classes of

musical elements. When performing from a musical score, a performer’s eye flickers

between classes of music notational objects that have influence of varying scales of

musical activity. This flickering is less agile when a high a density of monochro-

matic notational images is present; it is difficult to discern the function of a given

object quickly. Subsequently, performers will overlay colored annotations over a

musical score, in order to make clearer the functional contrasts between notational

objects. An example of this can be seen in Fig. 1.1.

9
16

1

7 6

Figure 2.1: Different classes of music notational objects colored differently.

Graphical objects in denm are colored in order to create easily identifiable

stratifications of function between different classes of music notational objects.

Objects with lesser degrees of semantic influence on the objects around them (e.g.,

barlines, staff lines, etc.) are desaturated in color to be pushed toward the back-

ground of the music notational image. Objects that have direct semantic influence

over objects around them (e.g., clefs and accidentals), though are a more rarely oc-

curring, like clefs, have more highly saturated colors in order to be pushed toward

the foreground of the music notational image. Certain objects, such as the light red

rectangles shown in 2.1, are temporarily shown at the request of the user. These

objects are positioned in the foreground, though are given a very low opacity. This
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high degree of transparency allows these rectangles to be visible over the entire

vertical span of a System, without occluding any other objects. See Part II for a

more in-depth discussion of the topics of utilizing depth-of-field in contemporary

music notation.

Many of the workarounds that performers use to overcome the over-saturated

monochromatic environment of traditionally printed musical scores are unnecessary

with sensible color coding of objects in a music notational environment. Certain

strategies (e.g., color coding specific values of dynamic markings (shown in Fig.

1.1)) will be elective in future iterations of the software.

2.2 Ensemble Cues

Performers will often annotate varying levels of detail of other players’ Parts

in their own when playing in an ensemble. This process requires asking around

the ensemble what each player is doing, in order to establish what to remember,

and therefore annotate onto their Part.

The cues annotated onto performers’ Parts are often representations of mu-

sical information latent in the musical model that is already being represented as

the musical Score and Parts. denm makes it possible for a performer to show or

hide any other players’ part in an ensemble for any musical span. Further, any

combination of musical components may be included or excluded, as desired by

the performer. As in Fig. 1.2, merely notating the rhythms of the other player

was the most efficient strategy for the cellist Borden.

In different circumstances, different information is helpful. In the case of

orchestral cues, the engraver has control over what is curated for the performer. In

most orchestral music, there are relatively few musical (and therefore notational)

elements that a performer may be listening for. In the context of more complex

chamber music, there may be many musical (and therefore notational) elements

that could warrant attention (and therefore annotation).

In some cases, showing the pitches of another part may give a player an

identifiable entity that helps in the orientation within the ensemble environment
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and compositional structure (e.g., when salient melodies are present). In other

cases, showing the pitches of another part may be helpful for tuning. In other cases,

showing the pitches of another part may be superfluous. Most importantly, each of

these cases can be applicable to the same musical passage, at different points in the

learning, rehearsal, and performing processes. denm allows performers to curate

their own music notational environment. Fig. 2.2 shows multiple representations

of another performer’s part in an ensemble context. Progressively less information

is shown in each example. The fourth example shows the most spartan possibility,

where only the points of events of the other part is shown.

9 8

7 8

9 8

7 8

9 8

7 8 7 8

Figure 2.2: User-definable cues.

Rhythm Representation for Cues

When annotating rhythms of passages from other players, a performer may

notate varying degrees of rhythmic specificity. In some cases, performers will

notate lines with a horizontal relationship to their own part, and in other cases,

annotating the full rhythm, with all of the beaming and tuplet information, is

required for the cue to be useful.

denm incorporates a variety of strategies into a user-definable cue-ing sys-

tem. In addition to showing any component of another player’s part, the beaming

and tuplet information (if present) can be optionally shown. The beaming (if a

rhythm is represented as metrical) and the tuplet information (if a rhythm is rep-

resented as numerical) can be included according the user’s preference for a given

context. The first three examples in Fig. 2.2 show metrical and numerical rep-

resentation of another player’s rhythm, while the fourth example shows a rhythmic

representation that is neither metrical nor numerical.
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2.3 Meter

MetricalGrid

The first thing that many performers annotate into the part of a rhythmi-

cally context musical environment is a collection of vertical lines showing the beats

of the measures [7]. This is often done hastily, in graphite, and vertically above the

musical material. To accomplish this automatically via a dynamic screen represen-

tation of the score is simple, as long as the notational rendering engine has access

to the underlying musical model at hand. denm allows the performer to show or

hide a MetricalGrid, which is the extension of this vertical line technique, laid over

the musical material. A MetricalGrid extends over an entire system of musical

information. The lines comprising it are given a low opacity, allowing the musical

information to show through. The lines extend to the bottom of the system, so

that all events, regardless of vertical placement within a system, can be related

visually to a global tactus.

3
8
1

3 2
7 8

7 8 3 2

Figure 2.3: Simple Metrical Grid in use.

MetronomeGraphics

denm extends the chunking of durational values into groups of duple- and

triple-beats that is naturally done by performers. MetronomeGraphics are the

graphical representation of the metrical analysis process described in 10.1. In ad-

dition to operating on a Measure-level, as performers often do (see Fig. 1.4 and

Fig. 1.5), MetronomeGraphics are applied to any container DurationNode in a Du-
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rationNode tree structure (described in Sec. 7.4). In Fig. 2.4, an embedded tuplet

rhythm is shown, where each tuplet bracket is given its own set of Metronome-

Graphics. As you may see in the 11:12 tuplet bracket, there are two distinct levels

of MetronomeGraphics. In this case, there are two nodes of MetronomeGraphics

grouped, with the first node containing three “clicks”, and the second contain-

ing two “clicks”. An entire tree structure of prototype beat structures is created,

with each container node containing two or three child nodes. The duple- and

triple-beat paradigm is replicated recursively.

7 9

5 4 11 12

Figure 2.4: MetronomeGraphics in use.

Click-tracks

The underlying timing system is implemented to a proof-of-concept level

within denm. This timing system provides a sample accurate (i.e., accurate to

within 1
44100

second) foundation for generating sonic and visual representations of

metronomes tailored to the content of a musical work. When this “click-track”

is fully implemented into the graphical dimension of the system, objects like the

MetricalGrid and MetronomeGraphics will graphically represent what is heard

sonically by the performer. A planned development will be to extend the hierar-

chical metrical analysis procedure (described in Sec. 10.1, currently graphically

represented by MetronomeGraphics) into the sonic realm. That is, a hierarchy of

beat-weightings will be sonically represented with different timbral construction

of “clicks”: strong-beats will have a certain sonic profile, while weaker-beats will

have their own.



Part II

Graphic Design Concepts for

Contemporary Music Notation
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Performers interpret graphical representations of musical content, called

scores. Composers today are most often the creators of these graphical represen-

tations. As such, there is an intertwining relationship between the musical content

generated by a composer and the capabilities of the graphical representation of it:

composers must create within the pragmatic boundaries afforded by the current

state of music notational conception, while they may also stretch these pragmatic

boundaries to fit their creative impulses. The cost to performers to learn new

music notational concepts, the technical limitations of music preparation meth-

ods, and the effectiveness of new music notational concepts to represent desired

musical contexts must be considered by a composer when experimenting with the

extension of the shared music notational landscape. Performers of notated music

are necessarily impacted by the music notational concepts represented in a score.

As a result, the content of a notated musical composition is entangled within the

methods of its graphical representation.



Chapter 3

Practical Considerations for Score

Preparation By Example

Throughout the last four years, I have invested in the experimenting of and

implementing different methods of preparing scores and parts. Many lessons have

been learned regarding graphic design, and printing technology. How this all fits

into the intricate process of preparing scores and parts is messy: I will go through

a lineage of works, and will investigate the lessons learned by each. It is easy to see

how the score-preparation strategies of each piece build upon those of the previous.

Starting in the fall of 2013, with Proof of Concept: deserving of Songs

(described in Sec. 3.6), my creative focus became singularly aimed at authoring

denm (dynamic environmental notation for music), a software application for iPad

tablet computers. Projects of this nature contain many subprojects which are both

implementations of techniques, and experiments of techniques at varying levels of

development. Testing such things in a real-world situation is necessary, though

it is often quite painful. Each subproject contains goals with shorter and longer

aspirational trajectories embedded within it. While implementing any subproject,

it is often quite difficult to point to an objective desired outcome, or even what is

being “tested” at the current stage of the process. Upon reflection, the sequence of

works presented here provides enough context to see some shorter-term and longer-

term aspirational trajectories bearing fruit — enough at least to provide evidence

that the current “tests”, which are perhaps hard to define, will show their purpose

18
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when the time is appropriate.

Perhaps it makes sense that many of the lessons learned the hard way

pertain to the printing process: I am convinced now that the use of direct manip-

ulation touch interfaces (e.g., iPads) will enable performers to access information

about the music they are playing with greater efficiency than is currently possible

with paper scores.

3.1 This Will Be Changed and Made Solid I A

This Will Be Changed and Made Solid I A for solo voice, is the first com-

position of mine that uses colored music notational objects in its score.If colors

are used in musical scores, it is most often used statically to represent different

strata of musical information (e.g., red objects belong to one category of informa-

tion while green objects belong to another category). In this work, the mapping is

within a single stratum, showing a continuous value within that stratum. Colors

are mapped directly onto a two-dimensional organization of vowel space. As is

indicated in Fig. 3.1, colors such as red, yellow, green, and blue represent corners

of the IPA (International Phonetic Alphabet) diagram.

a).

s z

t

r

k x

x

Mid

Near-front Near-backFront

Close

Close-mid

Near-close

Open-mid

Near-open

Open

Central Back

Figure 3.1: Two-dimensional color coding of vowel space.

This color mapping operates in two-dimensions: the height of the vowel, and
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the backness of the vowel. The vowel shape of the performer shifts continuously

between “aahs”, “uuhs”, “oohs”, “ees”, and between, as the colors representing

these vowels does the same. The performer glides between these static vowel states

continuously, as can be seen in Fig. 3.2.

Figure 3.2: System view: This Will Be Changed and Made Solid I A.

In addition to a continuous definition of vowel placement in This Will Be

Changed and Made Solid I A, there is a continuous definition of tongue placement

and pressure. As described in Fig. 3.3, tongue placement and pressure is shown

graphically with different stroking styles. The activity of the tongue is split into

two parts: the tip of the tongue and the back of the tongue. The two zones of

activity are notated in two places: the graphical information representing the tip of

the tongue is placed above the vowel information, while the graphical information

representing the back of the tongue is placed below the vowel information.
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Near-open
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Central Back

Figure 3.3: Explanation of tongue activity.

Figure 3.4: Detailed view: This Will Be Changed and Made Solid I A.
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Figure 3.5: Very detailed view: This Will Be Changed and Made Solid I A.

Practical Considerations of Color Printing

Much of the musical information graphically represented in the score varies

by subtle degrees. Slight shifts in tongue placement and vocal cavity shape define

the character of the work from a musical perspective, but the graphical represen-

tations of it proved to be quite problematic in the printing process. Colors can be

represented uniformly on high quality screen displays. As this work was built in

Adobe Illustrator, the entire visual feedback process was screen-based. The cost of

printing in color is quite high, and as a result, there were no printed proofs made

to verify the success of the colors representing the continuous shifting of vowel

shapes. While this work is successful on a screen (in a sense, the visual medium

for which it was designed), there are certain issues revealed when the score is

printed physically.

In addition to being costly, the color printing process can be unreliable.

When printing a black and white image (as is the case with most music notation),

a single mechanism carries black ink that applies ink to the page. However, when

color printing is used, at least four different mechanisms carry different colors (most

often Cyan, Magenta, Yellow, and Key (Black)). The printer must make multiple

passes over the colored graphical image, applying varying amounts of each over the

previous. This process, called “registration” is not perfect. With each pass, the
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printer may be in slightly the wrong position. When this happens, a viewer is able

to see fuzzy outlines around objects with a particular defining color (either cyan,

magenta, or yellow). This artifact of color printing is called “misregistration” [8].

As music notational objects are quite small, the error tolerance of misregistration

is significant in comparison to the size of the object.

The semantic information in the score of This Will Be Changed and Made

Solid I A is carried in the color itself, not merely the shape or placement of objects.

If the coloring system is unreliable, the notational environment is unreliable as a

whole. When printing the score for this work, the coloring system was largely unre-

liable. Certain colors seemed to print more successfully: objects colored with cyan

and magenta were the most reliable, even at very small sizes. Objects with other

colors were blurry, and would disappear as soon as strokes became thin. When

the printer is representing colors like cyan and magenta, it only makes a single

pass with a single color; “misregistration” is no longer an issue. These colors print

well, but others do not. There is a large discrepancy between the successfully and

unsuccessfully printed colors. When a notational system is continuous (e.g., vow-

els shift continuously analogously with the colors), there must not be irregularities

through the range of representation. The notational process of this work, while

successful on high quality displays, presents challenges of irregularities in printing

quality through its range representation.

3.2 This Will Be Changed and Made Solid I B

The color-related strategies of the score preparation process of This Will

Be Changed and Made Solid I B for solo alto saxophone are directly related to

the lessons learned in the printing process of This Will Be Changed and Made

Solid I A. Colored objects in this work, most of which are thin strokes, are pri-

marily magenta or cyan. The use of color is more conservative than the previous

work, and the colors print consistently and successfully, contrasting well with the

monochromatic conventional music notational objects set in the background of the

notational image.
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37Figure 3.6: System view: This Will Be Changed and Made Solid I B.

The use of color in this piece is not continuous in the manner of This Will

Be Changed and Made Solid I A. Different colors are used to differentiate strata

of musical objects: cyan-colored objects represent the mouth-related activities of

the saxophonist (e.g., articulation, tongue-techniques, airflow), while magenta-

color objects represent dynamic components in the fingers of the saxophonist (e.g.,

trilled keys).

Practical Considerations of Grayscale Printing

While the use of color in This Will Be Changed and Made Solid I B is

more conservative than that of the preceding work, new issues were found in the

process of using grayscale in printing. In this work, there are two layers of rhythmic

activity. To differentiate between these two levels, light gray and black are used.

On the screen, a slight contrast between varying levels of darkness of grayscale,

from white to black and all values in between, can be effective. When printing,

the already-fragile music notational symbols are mode more fragile when grayscale

values are used. The choices made intuitively for the darkness of gray rhythms

here backfired: instead of an elegant graphical isolation of overlapping rhythms,

half of the rhythms disappeared.
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Figure 3.7: Detailed view: This Will Be Changed and Made Solid I B.

The process of producing grayscale colors in a print context is called “halfton-

ing” [8]. Instead of having a dedicated ink for every possible darkness of gray, dots

of black (or in some cases, combinations of CMYK colors) are printed in varying

densities, proportionate to the darkness of the grayscale value. Light grays are not

lighter inks, but they are rather a lesser amount of dark dots in the same area. As

a result of this process, images with lighter gray values have a lower resolution.

Small music notational objects (e.g., stems, small numbers), can become illegible

when printed as a grayscale image, when black versions of the same objects will

print effectively.
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3.3 This Will Be Changed and Made Solid II
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Figure 3.8: Page view: This Will Be Changed and Made Solid II.

This Will Be Changed and Made Solid II for string quartet refines the

notation of a continuous mapping of a musical parameter to a color value. With

several lessons learned from the previous score preparation processes, this score is

significantly more successful. While This Will Be Changed and Made Solid I A

utilizes an adventurous two-dimensional mapping of color space onto vowel space,

the string quartet reduces the mapping of color onto a single physical dimension

of movement (in this case, the placement of a string players bow along a string,

between the nut and the bridge). Instead of exhausting the entire color space, the

notation of the string quartet narrows the use of colors to the values between cyan

(representing molto sul tasto: toward the nut) and magenta (representing molto

sul ponticello: on the bridge). Colors that interpolate between these two extreme
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color values represent positions between these two extreme positions.
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Figure 3.9: Violin part: This Will Be Changed and Made Solid II.

Colors like orange and green are used in specific circumstances. Orange and

light green objects are always filled rectangles, which have an inherently robust

characteristic, while dark green is saved for cue-ing information that is represented

with capital case bold text and relatively thick lines. Varying levels of grays are

used to indicate finger pressure, where conservative gray values and thick lines are

used. Multiple layers of rhythmic information are also stratified in grayscale, as in

This Will Be Changed and Made Solid I B, though more conservative (i.e., darker)

gray values are used.
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Figure 3.10: Detailed view: This Will Be Changed and Made Solid II.

The use of color in this score is successful, even though I was initially

concerned of the misregistration issues faced in This Will Be Changed and Made

Solid I A. Colors that have the potential to misregister are used here specifically

in cases where either the semantic value of notational object is not reliant on the

color (e.g., cue-ing text information, etc.) or where the graphical object itself is

not intricate (e.g., filled rectangles).

More important than the technical success of printing colors is the utility of

the colored notation in practice: does this color mapping make certain interpretive

parsing tasks easier for the performer? Further, does this color mapping make

certain tasks notatable that would otherwise not be? I found that the answer to

both of these questions was yes. Not only does a continuous mapping of color

afford an efficient way to notate continuous transitions in physical motion, this

implementation of the color mapping still made it possible for the performer to

begin objectively at the correct point (with a resolution of seven positions along

the string). In my experience, the amount of time to land on the correct bow

position with this notation is much less than with traditional methods of notation.
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Conventionally, bow placement may be indicated in a score with a verbal descrip-

tion (e.g., molto sul ponticello, m. sul pont., msp, etc.), and transitions between

these objective states are notated with lines and arrows. Along with most black-

ink-on-paper notational strategies, this sort of information has a low headroom

for complexity. By embedding multiple strata of musical information into a single

notational object, multiple layers of information can be embodied quickly by the

performer. This is made possible only with the use of color.

Practical Considerations of Part Preparation

Each of the pieces demonstrated thus far were generated with a hybrid ap-

proach of using traditional music typesetting software (in this case, MakeMusic

Finale), and a vector graphics authoring program (in this case, Adobe Illustrator).

The traditional typesetting program is used to produce the layer of traditional

musical information (e.g., measures, measure numbers, time signatures, rhythms,

etc.), as this information is stored semantically in a subsystem within the type-

setting application. This storing of the musical information enables the program

to generate parts and a score: multiple views of the same musical model (this

model is discussed in Sec. 6.1). The typesetting program automatically generates

measure numbers, and places rhythms correctly, and allows an efficient interface

for “flowing” systems (i.e., deciding how much music is distributed on a single sys-

tem, and at what point music is flowed to the next system). However, traditional

typesetting programs are categorically poor graphics editors.

The skeleton of pieces of this sort, generated with Finale, is then imported

into Adobe Illustrator. In the case of This Will Be Changed and Made Solid II,

every musical object that does not mark time in some fashion is generated in

Illustrator. The information that is placed on the score in Illustrator is no longer

stored in the musical model generated by Finale. The repercussion of this is that

the ability to generate parts from a centralized model of the music is no longer

possible. As This Will Be Changed and Made Solid II is for string quartet, parts

had to be generated manually. This process is inherently problematic: if you decide

to make a change in the score, you must also make this change in at least one part



30

(multiplying the amount of work needed to implement this change by at least 2).

This very wide feedback loop of semantic change to notational implementation of

this change makes an actionable criticality of one’s music nearly impossible.

3.4 This Will Be Changed and Made Solid III
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Figure 3.11: Very detailed view: This Will Be Changed and Made Solid III.

After producing a sequence of ambitiously notated, semantically unstable,

and expensive scores, I was compelled to produce a score with few risks in its

reproduction. One reason for this was that the upcoming project, This Will Be

Changed and Made Solid III, was going to be of a slightly more ambitious musical

endeavor, with more performers and a longer duration. While the part preparation

of This Will Be Changed and Made Solid II was not catastrophic during its prepa-

ration, it was clear that the lack of a unified musical model created an unscalable

score and part preparation process, particularly as the number of parts increases.

In a search for reliability, I generated the entire score in Finale, using the music

notational techniques available in the program.
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Figure 3.12: Very detailed view: This Will Be Changed and Made Solid III.

3.5 This Is Causing Itself

While the score and part preparation of This Will Be Changed and Made

Solid III was made scalable by using a traditional score editor, there were many

musical concepts that were not achievable through this system. It became clear

that a music notational environment must be able to render more complex graph-

ical environments than in the current music typesetting programs, while still re-

taining the semantic unification of a rich musical model. Thus began the project

that would become denm.

Upon completion of This Will Be Changed and Made Solid III, I began

work on a project that was both a compositional experiment, as well as a fact-

finding mission: in search of optimum ways to programmatically generate and

organize music notational objects. This project was This Is Causing Itself. Fig.

3.13 shows a single panel of a large installation graphical score algorithmically

generated in Adobe Illustrator. The score of this work is composed entirely of

algorithmically generated grayscale and yellow paths. In the case of this work, there

are no traditional music notational symbols, nor a sense of robust organization of

these objects. Instead, a low level of understanding the algorithmic control of

graphical objects was prioritized.
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Figure 3.13: Panel view: This Is Causing Itself.

3.6 Proof of Concept: deserving of Songs

While generating the score for This Is Causing Itself, I examined techniques

for low-level programmatic generation of graphical objects. The next objective was

to generate musical symbols, and then find ways to properly organize them. In

Proof of Concept: deserving of Songs, the first attempt was made to generate the

contents of a full musical score by scripting algorithmically into Adobe Illustrator.

This work is written for two flutes, and two contrabasses.

Fig. 3.14 shows a full page of the score of deserving of Songs. There

were two primary concerns for this process: to create a rich model for woodwind

fingering diagrams, with elegantly designed fingering diagram graphics, and to

make an automatic translation between fingered-pitch and sounding-pitch staff

and graphical tablature representations for string instruments with support for

scordatura.
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Figure 3.14: Page: Proof of Concept: deserving of Songs.
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Figure 3.15: Flute fingering diagram: Proof of Concept: deserving of Songs.

Fig. 3.15 shows a detailed view of the fingering diagrams used in deserving

of Songs. The graphic design was inspired by the fingering diagrams generated

by Bret Pimentel’s Fingering Diagram Builder [9]. In addition to the design and

implementation of the graphical representation of the fingering diagram, a robust

model of storing key states of the instrument was developed. This model uses

JSON [10] to store thousands of monophonic and multiphonic flute fingerings,

which where used in this work.

There are several directions that this research will take along with fur-

ther development of denm: for the compositional process, creating an intuitive

interface for graphically presenting and choosing strings of fingerings, based on

sounding content and the physical actions necessary to enact them, and for the

performer, creating an intuitive interface of quickly entering and saving finger-

ing diagrams. Mock-ups of these interfaces were developed in TouchOSC [11], that

made the physical activity of entering thousands of fingerings into a database more

efficient. A significant amount of interface design strategies for this specific task

were learned, though the environment used was inherently unscalable. The lessons

learned in this process will be translated into a more scalable environment, for the

use with other woodwind families.
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Figure 3.16: Contrabass part: Proof of Concept: deserving of Songs.

Fig. 3.16 shows a contrabass part, with three graphs. The topmost graph is

the initial sounding pitch of the gesture, accommodating for a scordatura. The mid-

dle graph is a string tablature, which shows the finger(s) used, and their placement.

The bottommost graph is the initial fingered pitch of the gesture. One technique

developed for this application is the automatic selection of clef and transposition

optimized for a musical context and a set of instrument-specific preferences.
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Figure 3.17: Bass tablature graph: Proof of Concept: deserving of Songs.

Fig. 3.17 shows the string tablature notation used for the contrabasses.

One benefit of string tablature notation is that continuous movement is graphi-

cally represented elegantly. Complex physical gestures can be shown with very

little translation needed. While relative positions are rendered more effectively

with tablature notations, objective placement is often less understandable in this

context. In an attempt to solve this issue, a tablature notation system with hori-

zontal dashed lines representing harmonic nodes was developed. In this tablature

system, line thickness, dash length, and opacity are each inversely proportional to

the partial number that they represent. For example, the most present dashed line

that is positioned at the vertical middle represents the second partial (positioned

only at 1
2
∗ length). The least present dashed lines represent the fifth partial (po-

sitioned at [1
5
, 2

5
, 3

5
, 4

5
] ∗ length). This could be extended infinitely, so maximum

and minimum partial limits are user-definable.
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3.7 Field Test 1: dry;run.

Rhythms are conspicuously absent from deserving of Songs. Field Test 1:

dry;run. served as a continuation of development of the previous work algorith-

mically generating music notation in Adobe Illustrator. A more robust model of

rhythm was developed for the score preparation of this work. Beyond the funda-

mental concepts of rhythm, ensemble organization was highly prioritized in this

process. Whereas the layout of deserving of Songs was predominately hard-coded

with knowledge of the incoming ensemble context, dry;run. required a more flex-

ible automated layout system, where systems and pages of a variety of sizes were

possible as the amount of performers active in a given measure is dynamic.

In addition to the ensemble organization model developed for this work,

the work of a dynamic cue-ing system (discussed in 2.2) is initiated. In the case of

this work, a static, version of a variable cue-ing system is implemented. Fig. 3.18

shows selected measures of the flute part. The flute music is at the bottom of the

system, with stems facing upward. The other two parts are shown in abbreviated

form: only rhythms and dynamics are shown, with stems facing downward.
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Figure 3.18: Flute part: Field Test 1: dry;run..
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Figure 3.19: Clarinet part: Field Test 1: dry;run..

Fig. 3.19 shows the clarinet part of dry;run.. In addition to the abbreviated

representation of the other two parts, in the style of the flute part, the clarinetist is

also given a secondary staff with a non-transposed (concert-pitch) representation

of pitches. In the case of this score, the secondary staff is hardly useful, though it

was necessary to investigate the methods of creating an intermediate version of his

concept to enable a more scalable implementation in the future. This secondary

staff, in tablet-based versions of this software, can be shown and hidden by the

performer. It is useful in the case of having a quick reference of a relationship with

the pitch content of another player who may not have the same transposition as

the B-flat clarinet.



Chapter 4

Graphic Design Strategies

4.1 Depth of Field

4.1.1 Creating Depth of Field

In traditional black-ink-on-paper music notation preparation, it is often

challenging to create a functional sense of depth of field of visual elements. As

a result, graphic design choices have been made that have negatively impacted a

performer’s ability to visually parse the music notational image. Because all objects

must be black, it is not possible to overlay objects while retaining legibility.

For example, the technique of placing a time signature to the right of a

barline catastrophically disrupts the flow of musical time represented horizontally.

As shown in Fig. 4.1, the solution of centering the time signature directly above

the horizontal point indicating the initialization of a measure avoids disrupting

the flow of the horizontal representation of time. This is enabled by changing the

design of a barline from a thin black line (with no ability to overlay other objects),

to a thick light-gray line, able to be positioned behind the musical information

carrying notation objects.

39
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2
8

2

Figure 4.1: TimeSignature centered over beginning of Measure.

There are several strategies used in denm that serve to create a functional

depth of field:

• Occlusion: the overlapping of objects

• Transparency: the ability to see through objects to others

• Color hue / saturation:

– Cool and dark colors are perceived in the background

– Warm and bright colors are perceived in the foreground

• Color contrast: distance on color wheel from other colors in context

• Grayscale value:

– Light gray values are perceived in the background

– Dark gray values are perceived in the foreground

• Grayscale contrast: Difference of gray value in relation to objects in context

In Fig. 4.1, one could perceive the depth of field in the order of background

to foreground: barline, staff lines, measure number, time signature, stems / beams,

noteheads, accidentals. The barline and staff lines are both light gray, putting them
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in a position to be perceived in the background. This predisposition is confirmed as

multiple objects occlude them (e.g., noteheads, accidentals, stems, beams, etc.).

An interesting relationship occurs between the stems and noteheads: while the

noteheads occlude the stems, putting the noteheads in a foreground position, the

vibrancy of the purple stems gives them emphasis.

The objects that are the furthest towards the background of a notational

image should almost disappear to the viewer — their function is not to portray

information, but rather create a frame of reference for other objects to portray

information (e.g., a staff line is not a representation of a datum in the musical

model, but rather it serves as a graphical scaffolding that enables noteheads and

accidentals to represent pitch information from the musical model).

4.1.2 Positioning Objects in a Depth of Field

The choice of attributing music notational objects different graphical prop-

erties is critical to creating a functional depth of field. Over time, I have found

that I tend to use three factors to establish where to place objects in a depth of

field: semantic influence, width of scope, and degree of repetition. These choices

are generally made intuitively, though they often reveal an implicit formalization

in the mapping of abstract musical relationships to perceived graphical space.

Semantic Influence

Some music notational elements have a direct, semantic influence over the

elements that occur “after” them (graphically speaking in terms of Common West-

ern Music Notation, to the right of the object). A few examples of the elements

that have direct influence on upcoming objects are accidentals and clefs. In these

cases, the relationship between the influencing object and influenced object can

be seen as destructive (i.e., the modification of the influencing object onto the

influenced object must be preserved, or else the material is no longer preserved).

If you play a “c-natural” when there is a “sharp” in front of the notehead, you

will not be actuating the material properly. If you play the notes on a staff with

a treble clef as if it had a bass clef, the pitch material is no longer accurate.
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Elements with direct influence over other objects are brought to the fore-

ground of the music notational image. In the case of accidentals, black is used,

in a context where noteheads are medium-gray. Clefs, which occur less frequently,

are colored red, for maximum contrast with the surrounding environment.

Width of Scope

The scope of a music notational element (and analogously, the scope of the

element in the musical model that it is graphically representing) contributes to

the speed at which a performer must access the graphical object. For example,

information regarding the tempo of a section, with linguistic notes regarding a

general affect of a section, may be considered to have a wide scope, and will

therefore need to be accessed less quickly than the pitch of an event, which can be

considered to have a narrow scope. Types of musical elements that have a wide

scope often have an effect on the elements that are contained within this scope,

though this influence is often of a non-destructive sense (i.e., you can perform the

same musical material at different tempos, and to a certain degree, it will still be

acceptable as a representation of the material). Elements with a wide scope (e.g.,

barlines, staff lines, measure numbers, etc.) may be moved toward the background

of the music notational image, as they have no semantic influence over objects in

their contained scope.

Degree of Repetition

Graphical objects that have many instances in a single music notational

context may be moved further to the background of the music notational image.

For example, staff lines are iterative by design. Staff lines have an inherently wide

scope, as they comprise the container object of the Staff. As such, staff lines are

colored light-gray, to push them to the background and to provide as much of

a headroom for informational objects to be placed on top of them as possible.

Noteheads of a normal type are not providing information that must be accessed

uniquely for each instance. As a result, noteheads are colored medium-gray.

Barlines are also iterative by design, and have wide scope of influence,
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though with no direct semantic influence over the objects within its graphical

scope. Barlines are merely clarifying markers of information presented in time

signatures, and are therefore pushed toward the background of the notational image

as possible. Accidentals as a class are highly represented on a staff, though the

particular state of an instance of an accidental is highly various, and is critical to

defining the graphical objects in its influential scope. Therefore, accidentals are

colored black in order to be brought to a more-foreground position than noteheads.

4.2 Dynamic notational elements

While effective graphic design of a music notational image will enhance

a performer’s relationship to a score, direct manipulation touch interfaces (e.g.,

iPads) enable the graphical image to be dynamic. As the learning, rehearsing, and

performing processes of performers are inherently dynamic, the static image of

paper or a PDF is necessarily inhibiting the workflow of a performer. As discussed

in Chapter 8, a robust model of laying out musical object is needed for the real-time

interactive notational environment for music.

7 9

5 4 11 12

Figure 4.2: Showing of MetronomeGraphicNodes.

An important aspect of a dynamic notational interface is that notational

objects can be shown or hidden at any time, and that the layout of the view is

updated automatically (and in the best case scenario: elegantly). For example,

Fig. 4.2 shows how that when a strand of MetronomeGraphics is shown or hidden,

the objects around them are adjusted to use as little space as possible.



Part III

Software Organization and

Algorithms

44
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denm seeks to solve inefficiencies in the learning, rehearsing, and perform-

ing process of performers that are caused by a static notation of music on a page.

While conceptually this is simple, a significant degree of “reinventing the wheel” is

necessary to achieve these goals in a truly interactive, intuitive, and elegant way.

In this part, we will discuss the current state of Automatic Notation Generators

(ANGs), software architecture patterns used, the musical model, the graphical

layout model, specific implementations of music notational objects, and the algo-

rithms that analyze the musical for the purposes of alleviating the amount of work

normally required from performers to annotate their scores.



Chapter 5

Discussion of Automatic Notation

Generators (ANG)

Commercial music typesetting software, such as Finale and Sibelius, are

the most common tools for creating musical scores, which require a musician to

manually enter musical information via graphical user interfaces. There are cases,

for example when compositions are algorithmically generated, where the process

of manually entering musical information in this manner is inefficient. As such,

programs have been designed to create musical scores where the input from the

user is text-based, generated by algorithmic processes, or extracted from spectral

analyses.

Most Automatic Notation Generators (ANGs) [12] create a static image,

either to be read by musicians from paper, or from a screen displaying it in a

Portable Document Format (PDF) representation. LilyPond [13] and GUIDO [14]

and convert textual descriptions of music into musical scores. Abjad [15] and

FOMUS [16] generate musical score information that can be graphically rendered

by LilyPond. OpenMusic [17], Bach [18], PWGL [19] / ENP [20], and JMSL

/ JSCORE [21] are software tools for composers that generate music notation

as part of the compositional process. Belle, Bonne, Sage [22] is a vector graphics

library for music notation that enables the drawing of advanced notational concepts

not offered by traditional music typesetters. Music21 [23] is a music analysis

program that creates score information to be graphically rendered in LilyPond.

46
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Spectmore [12] maps spectral analysis information onto a musical score. A few

newer ANGs, such as INScore [24] and LiveScore [25], generate animated musical

notation for screen representation.

Thus far, ANGs generate static scores that are useful to composers and

theorists, and animated scores that are useful for those performing in real-time

(described as the immanent screen score paradigm by Hope and Vickory [26]). No

ANGs specifically target the rehearsal processes of contemporary music performers

(a process described as interpretive by Hope and Vickory).

I have found that the most critical period for the success of my own works is

the rehearsal processes with performers. Performers spend a considerable amount

of time in individual rehearsal and group rehearsal settings, and have developed

extensive strategies to comprehend, embody, and execute the propositions of com-

posers (discussed in Chapter 1). Many of the cues that performers notate into

their parts are composed of information latent in the musical model—the musical

model which is already being represented graphically as the musical score.



Chapter 6

Software Architecture Patterns

Used

6.1 Model View Controller

denm implements a software architecture pattern called Model View Con-

troller (MVC). The MVC architectural pattern ensures that information (Model)

and its graphical representations (View) are isolated. By decoupling the Model

and View elements in a software organization, multiple Views may be generated

from the same Model in a flexible and robust manner. A common implementation

of this technique is in file management software such as the Finder application on

the Macintosh operating system. Files on a computer can be shown either as a

list, by icons, or in other ways. When represented as a list, this graphical repre-

sentation of the information can be sorted by any number of attributes: by name,

kind, size, and so on. Regardless of how the information is shown, the data is the

same.

The Controller in the MVC pattern is an intermediary layer, situated be-

tween the information of the Model and the graphical representation that is View,

that offers a user the opportunity to interact with the information. In the example

of the Finder application, a user is able to choose which View of the Model they

desire (as a list, by icons, etc.). The Controller element sends instructions to the

48
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data source to update its contents and to the View to update its graphical represen-

tation of the information. The user interacts only with the Controller element in

the MVC architecture, allowing the Model and View to be decoupled entirely, and

to protect the data from being manipulated directly by ignorant and/or malicious

users.

MODEL VIEW

CONTROLLER

abstract information
to be represented

visual representation
of  information

model & view
decoupled

the user interacts with an intermediary layer of  abstraction (CONTROLLER)
that communicates between the abstract information (MODEL) 

and the visual representation of  that information (VIEW)

Figure 6.1: Model View Controller (MVC) design pattern.

A similar organization of information and its multiple graphical represen-

tations is critical in the preparation of music. A musical score and the parts read

by performers are multiple Views of the same Model. The Model of a piece of

Common Practice Era Western music may contain abstract data points of pitches,

durations, dynamics, articulations, tempo information, and others. The sheet mu-

sic that is performed from is not a spreadsheet of abstract musical information,

but rather graphical representations of it.

For example, pitches are represented graphically with noteheads that are

placed on specific points along the y-axis of a staff, conventionally composed of five

equidistantly spaced horizontal lines. Further clarification is made with acciden-
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tals, objects positioned next to the noteheads that represent adjustments of pitches

either up or down in pitch space. Durations are organized with varying amounts

of beams and varying graphical styles of noteheads. Dynamics may be graphically

represented by a combination of specifically styled f , p, and m characters, and the

interpolations between them may be represented with hairpin graphics, showing

relative values of the objective dynamic states.

In traditionally printed Common Western Music Notation, there is simply a

Model, with multiple Views (a Score and multiple Parts). As a result of the printing

of the View on paper with ink, the graphical representation is static. The performer

inherently has no agency in a re-construction of the graphical representation of the

musical information.

MUSICAL
MODEL

VIEW

pitches, rhythms, dynamics, etc.

e.g.: Score
VIEW

e.g.: Violin I
Part

VIEW
e.g.: Violin II

Part

VIEW
e.g.: Viola

Part

VIEW
e.g.: Violoncello

Part

Figure 6.2: Current usage of Model / View separation in music preparation.

Performer’s spend a considerable amount of time marking-up their parts in

order to provide themselves with a richer graphical representation of the musical

environment (see Chapter 1 for further discussion). Because of the inherently static

representation of ink-on-paper, the View element of a traditionally prepared score

or part is immutable. The information that the performer may be summoning

(e.g., abbreviated representations of other players’ parts, subdivision markings

for complex metrical environments, etc), is not automatically retrievable, and is
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therefore re-entered by the performer. There is a cost of time and energy of the

re-entering process of secondary notation.

In some cases, each performer in an ensemble context elects to play from

a full score, where representations of all parts are visible. This technique may be

necessary when the complexity of ensemble interaction is high. For these cases,

a performer benefits from the knowledge of what other performers are doing; this

knowledge contextualizes their own actions. Having a rich understanding of one’s

environment aids the intelligent clumping of their part into a higher-order orga-

nization of intent. The downside of this technique, however, is that a full-score

representation of the environment may be too graphically rich. When this is the

case, a cost of access is incurred as the player is forced to parse a complex graphical

environment for the relevant information.

The traditional Model / View separation of the musical Model and multiple

Views (manifested as a full score and a set of parts) is a simple implementation of

the concept. To reach an optimal notational space for the performer that enables

a complex set of relationships to an ensemble environment, while graphically rep-

resenting an essentialized form of these relationships, requires extending the use of

the MVC pattern into more subtle realms of the music notational environment.

The ideal context of learning, rehearsal, and performing music via notation

synthesizes the richness of environmental information found in a full score (attain-

able, though, at a cost of parsing its complexity), and the terseness of a single

part. denm is designed to enable the performer to benefit from a rich model of

a musical work, without the cost associated with the previous models of access.

By introducing a dynamic View element via a screen score, and a Controller el-

ement via a touch-based direct-manipulation interface (e.g., iPad), to the music

notational environmental, this synthesis will be possible.

6.2 Tree Structure

Many aspects of the structures in denm are modeled hierarchically. A

robust and flexible tree model was implemented and thoroughly tested in the Swift
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language to enable a scalable architectural design and expressive programming

process.

r

I II

A B A B

i ii iii

C

III IV

Figure 6.3: Example of tree structure.

Fig. 6.3 shows an N-ary tree structure that is the underlying model of

many components in the denm software architecture. There are many attributes

and operations that are implemented in this model. In the denm software, a

single class called Node exists that, when linked to other Node instances, can be

aggregated into a rich tree structure.

Properties of Node that can be set and retrieved

parent : Node?

A Node that contains this Node instance as a child. In Fig. 6.3, the parent Node

of r.IV.B is r.IV. All Nodes in Fig. 6.3 have a parent Node except for the root

Node r.

children : Array of Node

The children of a Node is a mutable ordered collection of Nodes. In Fig. 6.3,

the children of r.ii is [r.II.A, r.II.B, r.II.C ]. The children array is

initialized with a length of 0. r.IV.A has 0 children, for example.
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Properties of Node that are retrievable (computed)

root : Node?

The root Node of a Node has no parent Node. If there is only a single Node in a

tree structure, the single Node is its own root Node. For every Node in Fig. 6.3,

the root Node is r.

siblingLeft : Node?

The sibling Node to the left of a given Node may or may not exist (as notated by the

?). In the case that the index of the given Node in its parent Node’s children

array is > 0, the Node with an index of n− 1 in the given Node’s parent Node’s

children array is returned. Otherwise, the nil value is returned.

siblingRight : Node?

The sibling Node to the right of a given Node may or may not exist (as notated by

the ?). In the case that the index of the given Node in its parent Node’s children

array is < the amount of children contained by the given Node’s parent Node,

the Node with an index of n + 1 in the given Node’s parent Node’s children

array is returned. Otherwise, the nil value is returned.

leafLeft : Node?

The leaf Node to the left of a given Node may or may not exist (as notated by the

?). A leaf Node, by definition, has no children. In Fig. 6.3, the leafLeft of

r.IV.A is r.III, while the leafLeft of r.IV.B.III is r.IV.B.II. The leafLeft

of r.I is nil. In this case, the leafLeft and siblingLeft properties point to the

same Node.

leafRight : Node?

The leaf Node to the right of a given Node may or may not exist (as notated by

the ?). In Fig. 6.3, the leafRight of r.II.C is r.III, while the leafRight of

r.II.B is r.II.C. The leafRight of r.IV.B.iii is nil.
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leaves : Array of Node

The leaves of a Node is an ordered collection of Nodes. In Fig. 6.3,

the leaves of r are: [r.I, r.II.A, r.II.B, r.II.C, r.III, r.IV.A,

r.IV.B.i, r.IV.B.ii, r.IV.B.iii]. The leaves of r.IV are: [r.IV.A,

r.IV.B.i, r.IV.B.ii, r.IV.B.iii].

pathToRoot : Array of Node

The pathToRoot of a Node is an ordered collection of Nodes, providing the hier-

archical lineage from the given Node to its root, with each parent Node in in the

path. In Fig. 6.3, the pathToRoot of r.II.B is [r.II.B, r.II, r].

height : Int

The height of a Node is the distance between the given Node and its furthest de-

scendant Node. In Fig. 6.3, the height of r.II.B is 0, while the height of r.IV

is 2.

heightOfTree : Int

The height of the tree of a given Node is the height property of a Node’s root.

In Fig. 6.3, the heightOfTree of all Nodes is 3.

depth : Int

The depth of a Node is the amount of Nodes in its pathToRoot −1.

isRoot : Bool

If a given Node is the root of a tree structure (if the parent of the given node is

not nil).

isLeaf : Bool

If a given Node is a leaf in a tree structure (if the amount of children of the

given Node is 0).
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isContainer : Bool

If a given Node has an amount of children> 0.

Methods of Node

addChild (Node)

Add a Node to the children array of a given Node. This method appends the

Node submitted through the method call to the end of the given Node’s children

array. The parent property of the Node submitted through the method call is set

to a pointer to the given Node.

insertChild (Node) atIndex (Int)

Insert a Node to the children array of the given Node at a specified index (if

possible). The parent property of the Node submitted through the method call is

set to a pointer to the given Node.

removeChild (Node)

Removes a specified Node from the children array of the given Node.

copy -> Node

Generates a deep copy of the given Node. The object returned by this method

is identical to the given Node, though it is duplicated in memory (the pointers

contained within the given Node do not point to the same spaces as the pointers

in the returned object of this method). This method is to be overridden by each

subclass to be tailored to its specific stored data.

getAncestorAtDistance : (Int) -> Node?

Returns a Node, if present, that is the specified distance up from the given Node.

getDescendantAtDistance : (Int) -> Node?

Returns a Node, if present, that is the specified distance down from the given Node.



Chapter 7

Musical Model

The musical model denm is designed to be thorough in its representation of

Common Western Music Notation concepts, but also extended to support musical

concepts implemented by composers of contemporary music. The current imple-

mentation of the musical model of denm contains DurationNodes (described in

Sec. 7.4) and Measures. These two elements, unlike in the musical models of

some traditional music typesetting softwares, are isolated. DurationNodes contain

Components, which are the lowest-level element in the musical model.

7.1 Component

Musical information such as pitch, dynamic markings, articulations, etc.,

is organized internally as an enumeration (enum) in the Swift language called

Component. An enum in the Swift language allows related values to be handled in

a type-safe manner.

Component Cases

case SlurStart(pID: String, iID: String)

case SlurStop(pID: String, iID: String)

case Rest(pID: String, iID: String)

case Dynamic(pID: String, iID: String, marking: String)

56
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case Articulation(pID: String, iID: String, marking: [String])

case Pitch(pID: String, iID: String, midi: [Float])

For example, the Component enum contains values like .Pitch, .Dynamic,

.Articulation, and others. Each enum value may also carry with it specific

parameters that are applicable to that particular enum value. Every Component

value is has PerformerID (pID) and InstrumentID (iID) values, as well as any

other value-specific information (e.g., in the case of .Pitch, a MIDI value is passed

in the form of a Float, or in the case of .Dynamic, as dynamic marking value is

passed in the form of a String (e.g., ‘‘mf’’ or ‘‘ppp’’), etc.). Some Component

enum values require no extra parameters to be passed, such as the .SlurStart

component.

leaf

durationNode

Components:
 .Pitch(midi: 60.0),

.Dynamic(marking: “fff”),

.Articulation(marking: “>”),

.SlurStart

Figure 7.1: Example of Components held by a DurationNode.

The implementation of the Component will be extended to support ad-

ditional types of musical information as these additional types are supported

throughout all stages of the softwares architecture (e.g., input, model, and graph-

ical representation).
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7.2 Pitch

A Pitch in the denm musical model can be initialized with either a MIDI

or Frequency value.

MIDI

MIDI is a struct, which can be converted to and from a Frequency.

Frequency

Frequency is a struct, which can be converted to and from a MIDI.

PitchClass

PitchClass is a subclass of Pitch generated from the modulo 12 represen-

tation of a given Pitch.

PitchSpelling

A Pitch may or may not be spelled. A PitchSpelling contains values

Coarse, and Fine, as well as a LetterName. For example, a F quarter-sharp down

an eighth tone (one possible PitchSpelling of the MIDI value of 65.25), has a

Coarse value of 0.5, a Fine value of -0.25, and a LetterName of .F.

PitchDyad

A collection of two Pitches.

PitchInterval

A PitchInterval is a subclass of Pitch that is created with the difference

of the two Pitches in a PitchDyad.



59

PitchVerticality

A PitchVerticality is a collection of 1 − n Pitches. Contains nC2 or

n!
2! (n−2)!

PitchDyads.

PitchPolyphony

A PitchPolyphony is a collection of 1− n PitchVerticalities.

7.3 Duration

The concept of Duration critical to any musical model. The model of

Duration in the current implementation of denm is only metrical. That is, all

Durations have a property of Beats and Subdivision, which provide a unit of

musical time that is relative, converted into an objective sense of time with a Tempo

(beats per minute) and objective sense of graphical width with a BeatWidth (how

many graphical points per beat) property. Future implementations of denm will

include a non-metrical definition of Duration.

Comprising a metrical Duration are two properties: Beats and Subdivision.

Beats are integer values that are counted by a performer, and a Subdivision is

an integer value (conforming to the statement 2n) that dictates the speed at which

you count Beats in a given Tempo context.

7.3.1 Beats

Properties of Beats that can be set and retrieved

amount : Int

Operator Overloading for Beats

== Check if Beats A is equivalent to Beats B

>= Check if Beats A is greater than or equal to Beats B

<= Check if Beats A is less than or equal to Beats B

> Check if Beats A is greater than Beats B
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< Check if Beats A is less than Beats B

+ Returns sum of Beats B to Beats A

- Returns difference of Beats B from Beats A

/ Returns dividend of Beats A by Beats B

* Returns product of Beats A by Beats B

+= Add Beats B to Beats A

-= Subtract Beats B from Beats A

/= Divide Beats A by Beats B

*= Multiply Beats A by Beats B

7.3.2 Subdivision

Properties of Subdivision that can be set and retrieved

value : Int

The value of Subdivision in terms of 2n (e.g., 8, 16, 32, 64, etc).

level : Int

The amount of beams in the graphical representation of a Subdivision (e.g., if

value = 8, level = 1, if value = 32, level = 3, etc)

Operator Overloading for Subdivision

== Check if Subdivision A is equivalent to Subdivision B

>= Check if Subdivision A is greater than or equal to Subdivision B

<= Check if Subdivision A is less than or equal to Subdivision B

> Check if Subdivision A is greater than Subdivision B

< Check if Subdivision A is less than Subdivision B

+ Returns sum of Subdivision B to Subdivision A

- Returns difference of Subdivision B from Subdivision A

/ Returns dividend of Subdivision A by Subdivision B

* Returns product of Subdivision A by Subdivision B

+= Add Subdivision B to Subdivision A
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-= Subtract Subdivision B from Subdivision A

/= Divide Subdivision A by Subdivision B

*= Multiply Subdivision A by Subdivision B

Properties of Duration that may be set and retrieved

beats : Beats

Beats in the Duration

subdivision : Subdivision

Subdivision of the Duration

subdivisionValue : Int

Amount of beams necessary for graphically representing the Duration

scale : Float

The scale of a Duration is initialized to a value of 1.0. It is only modified in the

case of embedded tuplet rhythms, where the Durations of the children of a Dura-

tionNode have their scale properties set to the sum of the children / the amount of

beats in the parent DurationNode’s duration. This property is set recursively, al-

lowing children DurationNode’s to inherit their parent DurationNode’s scale value.

7.3.3 Duration

Methods of Duration

respellAccordingToBeats (Beats)

Adjusts the Beats value to the value submitted. The Subdivision value is then

adjusted to maintain an equivalent objective duration. For example, if a duration

with a Beats amount of 5 and Subdivision value of 16 is respelled according to a

Beats amount of 20, the duration then has a Beats amount of 20 and a Subdivision

value of 64. In a sense, this a non-destructive operation on Duration, where the
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objective metrical duration is maintained, only the representation is adjusted.

respellAccordingToSubdivision (Subdivision)

Adjusts the Subdivision value to the value submitted. The Beats value is then

adjusted to maintain an equivalent objective duration. For example, if a duration

with a Beats amount of 3 and a Subdivision value of 16 is respelled according to

a Subdivision value of 64, the duration then has a Beats amount 12 and a Subdi-

vision value of 64.

getGraphicalWidth (BeatWidth)

Returns the width of the Duration in points for a screen representation. The width

in points of an eighth-note is submitted. A planned extension of this method will

take in a tempo function and a BeatWidth, to accommodate scaling of the graph-

ical width of the Duration based on a fluctuating tempo.

getDurationInMilliseconds (Tempo)

Returns the amount of milliseconds of a Duration given a Tempo. A planned ex-

tension of this method will take in a Tempo Function, which will accommodate

scaling of the objective duration by a fluctuating tempo.

getDurationInSamples (Tempo, SamplingRate)

Returns the amount of samples of a Duration. This is dependent upon a given

Tempo and SamplingRate (how many samples taken per second). This value is

used for the internal timing mechanisms for auditory and visual playback.

Operator Overloading for Duration

== Check if Duration A is equivalent to Duration B

>= Check if Duration A is greater than or equal to Duration B

<= Check if Duration A is less than or equal to Duration B

> Check if Duration A is greater than Duration B

< Check if Duration A is less than Duration B
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+ Returns sum of Duration B to Duration A

- Returns difference of Duration B from Duration A

/ Returns dividend of Duration A by Duration B

* Returns product of Duration A by Duration B

+= Add Duration B to Duration A

-= Subtract Duration B from Duration A

/= Divide Duration A by Duration B

*= Multiply Duration A by Duration B

7.4 DurationNode

Rhythm in denm is modeled hierarchically. The DurationNode is a sub-

class of Node (described in Sec. 6.2), and therefore inherits all methods defined in

the implementation of Node. DurationNode is the only class in this tree structure,

though it can be a root, container or leaf DurationNode. Events in a mu-

sical context are equivalent to leaf DurationNodes in this tree structure, while

a BeamGroup (described Sec. 9.3) is the equivalent to the root DurationNode.

Container DurationNodes act only as abstract organizational elements in this

model, which have no direct manifestation as musical material. Instead, container

nodes are represented with tuplet brackets, if applicable.

Properties of DurationNode that are settable and retrievable

id : String?

A string identifying a DurationNode (e.g., “Violin I”)

duration : Duration

The metrical Duration of a DurationNode.

components: Array of Component

Collection of Components (musical data: pitch information, dynamic marking, ar-

ticulation marking, etc.)
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offsetDuration : Duration

Distance in Duration from the beginning of the piece. This is an initial imple-

mentation of offsetDuration. In order to support musics containing alternat-

ing metered and unmetered sections, there will be need to be an infrastructure

of Sections, subclasses of which may be metered or unmetered. In this case,

offsetDuration will be the distance in Duration from the beginning of the current

Section, while an additional property of Section will be added to DurationNode.

relativeDurationsOfChildren : Array of Int

An ordered collection of integer values of Beats of the Durations of children Dura-

tionNodes.

Class Methods of DurationNode

durationNodeRangeFromDurationNodes (Array of DurationNode)

afterDuration (Duration)

untilDuration (Duration)

-> Array of DurationNode

Returns an ordered collection of DurationNodes that fit within the specified range

of Durations. A common use for this method is to split an entire piece’s worth of

DurationNodes into only those to be represented in a single System.

reduceDurationsOfSequence (Array of DurationNode)

Reduces the Durations of a collection of DurationNodes by the greatest common

denominator of the Beats amount. This method first calls to levelDurationsOfSe-

quence: to ensure that the Subdivision values are equivalent of all DurationNodes

in the sequence before comparing Beats amounts.

levelDurationsOfSequence (Array of DurationNode) Ensures that the Sub-

division values of each DurationNode in a collection are equivalent.
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matchDurationsOfSequence (Array of DurationNode)

This is a public interface that calls to level and reduce the Duration of a collection

of DurationNodes.

Initialize a DurationNode

init(duration: Duration)

Create a DurationNode with a Duration.

init(duration: Duration, sequence: NSArray)

Create a DurationNode with a Duration, and an arbitrarily deep nested collection

of Integers, or Array of Integers. The sequence in this case is similar to the rtm

model of OpenMusic [17].

A simple example of this is:

init(duration: Duration(3,8), sequence: [4,2,1])

Whereas an example of a embedded tuplet is:

init(

duration: Duration(3,8),

sequence: [[4,[2,1,[2,[1,2]]]],[2,[1,1,1]],1]

)

Methods of DurationNode

addComponent (Component)

Adds a musical component to the given DurationNode (pitch information, dy-

namic marking, etc.)
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11 12

5 4

DurationNode representation (model)

3 1 1

3

4

1 2 4

2 1 4

7 8

BeamGroup representation (view)

2 1131241Beats:

11 12
7 8 5 4

Figure 7.2: Example of DurationNode and corresponding BeamGroup.

In Fig. 7.2, a representation of a complete tree structure model of a rhythm

is presented above a score representation of the rhythm. In the next figures, we

will examine each container DurationNode in isolation, in order to demonstrate

a few of the processes that are required to build a graphical representation of

arbitrarily complex nested-tuplet rhythms.

In the model representation of these DurationNodes, container

DurationNodes are displayed with orange circles, whereas leaf DurationNodes

are displayed with green circles. Likewise, in the score representation of these

DurationNodes, container DurationNodes are displayed with orange beams

(only the case in Fig. 7.4), and leaf DurationNodes are displayed with green
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beams.

The DurationNodes comprising each level of depth in the model represen-

tation of this DurationNode tree structure are outlined with a pale blue rectangle.

Only the relative durational values (e.g., [4,2,1,4] for level of depth = 1) are

shown in the DurationNodes that are not the root DurationNode. Similarly, the

relative durational values of the leaf DurationNodes are displayed, also contained

within pale blue rectangles (e.g., [1,2,4],[2,1],[3,1,1]]). The container

DurationNodes are not represented with orange beams in the score representa-

tion, as the container DurationNodes are represented with tuplet brackets (e.g.,

11:12, 7:8, 5:4).

DurationNode representation (model)

BeamGroup representation (view)

Duration: (Beats: 3, Subdivision: 8)

3

Figure 7.3: Root DurationNode in 7.2.

In Fig. 7.3, a model and score representation of the root DurationNode of

this rhythm are shown. This DurationNode carries with it a Duration of (3,8),

or three beats with a subdivision of eighth notes. If this DurationNode were to be

represented in a score, a dotted quarter note would be displayed. As we will see

as DurationNodes are added to the root DurationNode as children, the basic

Duration of (3,8) will be modified to accommodate the necessities of the newly

added DurationNodes.
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Subdivision: 32

BeamGroup representation (view)

12 44 Sum: 11 Beats:

11 12

Subdivision: 32

DurationNode representation (model)

parent duration
locally respelled non-destructively: 
objective duration equivalent

3

4 2 1 4Beats: Sum: 11 

Duration: (Beats: 12, Subdivision: 32)

12

Figure 7.4: Children of root DurationNode in 7.2.

In Fig. 7.4, the beams of container DurationNodes in the score rep-

resentation of this rhythm are colored orange. This type of representation will

never be displayed as the actual musical material, as the container DurationNodes

do not serve as events to be actuated by the performer, but rather they func-

tion as abstract organizational elements. This type of representation will be

displayed, however, in a user-defined context wherein the underlying structures

of an embedded rhythmic context may be useful in the learning process. As

DurationNodes are added to a DurationNode as children, the Durations of the

parent DurationNode as well as the children DurationNodes may necessitate

adjustment. For example, in Fig. 7.4, the Duration of the root DurationNode

has been changed from (3,8) to (12,32).



69

DurationNodes may be added with Durations in any form (i.e., they

may or may not have the same Subdivision as the parent). Further, as more

DurationNodes are added, their cumulative values may no longer be compatible

with the previous representation of Duration held by the parent.

When DurationNodes are added, the Duration of each child

DurationNode is leveled to match the others. That is, in whatever form

the Duration of each child DurationNode is when it is added (e.g., with a

Subdivision of 8ths, 16ths, or 32nds, etc.), it must be adjusted to match the oth-

ers. This process is undertaken to ensure that the Durations of a set of children

DurationNodes can be compared properly. Once the Duration of each child

DurationNode is calibrated to the same Subdivision, the Durations are then

reduced. This process entails checking each Duration to see if it is in its most re-

duced form (e.g., a Duration of (2,32) can be reduced to (1,16), or a Duration

of (6,16) can be reduced to (3,8)). If all of the Durations can be reduced, the

greatest common denominator of all Durations is found, and each Duration is

divided by this greatest common denominator value. For example, an array of

children DurationNodes with relative durational values of [2,4,2,6] will be

reduced to attain Beats values of [1,2,1,3], with the Subdivision values of

each being adjusted to maintain the same objective Duration (e.g., ensuring that

a Duration before reduction has a value of (2,64) has a value of (1,32) after

reduction).

Once the Duration of each child DurationNode is leveled then reduced,

the sum of the Beats values of the Durations is calculated. In the instance of

the children of the root DurationNode of this rhythm, as shown in Fig. 7.4, the

sum of the Beats values of the Duration is 11. The sum of the Beats values of the

Durations of the children DurationNodes is then compared to the Beats value

of the Duration of the parent DurationNode. In this case, the sum of relative

durational values of the children is 11, while the Beats value of the Duration of

the parent DurationNode is 3.

If the Durations of the child DurationNodes were to be scaled to match

the current Subdivision of the Duration of the parent DurationNode, the results
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would be cumbersome; the first DurationNode child would have a Duration with

a value of (4,8), or a half note. To remedy this problem, the representation of

the Durations of the parent and children may require modification.

There is often much debate among performers and composers how to spell

certain tuplet groupings in certain ways (e.g., 7:4 or 7:8). denm always chooses

the closest match between the sum of relative durational values of the children

and the Beats value of the parent (e.g., 7:8, not 7:4). The reason for this

is, particularly in the case of embedded tuplet rhythms where durational impact

of tuplets multiply recursively, that the beam representation of the Subdivision

values can become wildly misrepresentative of the Duration at hand. For example,

a Duration that is technically shorter than another Duration that is immediately

adjacent, may have a beam representation indicating that it is multiple times longer

than the adjacent Duration.

The Durations of the children DurationNodes must be matched to the

parent DurationNode, and vice versa. In the case that the the sum of the relative

durational values of the child DurationNodes is greater than the Beats value of

the parent DurationNode, an array of integers is generated, composed of values

of beats ∗ 2n where 0 < n < 5, and the closest match in this array is found to the

Beats value of the parent DurationNode. For example, the array created for the

container DurationNode in Fig. 7.4 is [3,6,12,24,48,96]. The closest match

here is 12. In the case that the sum of the relative durational values of the children

DurationNodes is less than the Beats value of the parent DurationNode, the

same process occurs as before, though with the values of the sum of the relative

durational values of the children DurationNodes and the Beats value of the

Duration of the parent DurationNode are switched. In this case, an array of

integers is generated, composed of values of sum ∗ 2n where 0 < n < 5.

This is a static implementation for this process, and will be made dynamic

as development continues. Instead of generating a fixed array with six values,

each value to be compared will be generated only as needed. In the case of this

container DurationNode, the values [24,48,96] were unnecessarily added to

the array, adding to the computation time of finding the closest match.
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BeamGroup representation (view)

DurationNode representation (model)

4

1 2 4

Subdivision: 64
2 41Beats:

Subdivision: 64

Beats: Sum: 7

Sum: 7

Duration: (Beats: 8, Subdivision: 64)

7 8

8

Figure 7.5: Example of DurationNode and corresponding BeamGroup.

Fig. 7.5 demonstrates the addition of DurationNodes to an already em-

bedded DurationNode. As before, the Duration of the parent DurationNode and

the Durations of the children DurationNodes have been modified to provide the

optimal Subdivision relationship, and therefore beaming representation. As can

be seen in this example, the choice of 7:8 is made, rather than 7:4. If 7:4 was

chosen, the beaming representation of the Duration of the last DurationNode in

this sequence would indicate a Duration roughly twice as long as the the Duration

of the next leaf DurationNode of this DurationNode tree structure. As can be

seen in the proportionately spaced rhythmic representation of Fig. 7.2, these two

adjacent Durations are quite similar. If the scaling of Durations in a tuplet

context is slight, the beaming representation should reflect this.
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BeamGroup representation (view)

DurationNode representation (model)

Subdivision: 32
1 13Beats: Sum: 5

Subdivision: 32

3 1 1Beats: Sum: 5

Duration: (Beats: 4, Subdivision: 32)

5 4

4

Figure 7.6: Example of DurationNode and corresponding BeamGroup.

In Fig. 7.6, no adjustment of Durations is necessary, as the sum of the rel-

ative durational values of the child DurationNodes is already optimally matched

to the Beats value of the parent Duration.



Chapter 8

Graphical Layout Model

There are three fundamental types of graphical objects in denm: ViewN-

ode, Ligature, and Placed. ViewNode objects are organized hierarchically for

the purposes of automated layout, Ligature objects connect two ViewNodes, and

Placed objects are positioned statically, as they graphically represent a datum in

the musical model.

8.1 ViewNode Objects

The ViewNode class implements the methods and properties of the Node

class of an implementation of a tree structure described in Sec. 6.2. As such,

the ViewNode organization permits hierarchically automated layout of graphical

objects. In order to make a score fully interactive, the layout of the graphical

objects comprising it must be fully automated. For example, if a performer needs

to see a certain type of information at a given time, they must be able to insert

it the correct position, without the overlapping of objects. Automated layout will

make possible continual optimization of screen real estate and visual clarity of

musical objects, regardless of the scope of changes made by the user. ViewNodes

are flexible in the way that they lay out their objects, in ways similar to the text-

alignment methods of text editors. A parent ViewNode is able to resize according

to the children ViewNodes that they contain, as to achieve an optimum screen

usage.
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r

I II

A B A B

i ii iiii ii

CA B C

III

Figure 8.1: Model Representation of ViewNode Tree.

Fig 8.1 shows a model representation of a complete ViewNode hierarchy.

In the following examples, we will see the graphical repercussions of removing

ViewNodes from a ViewNode tree. When a change is made anywhere within a

ViewNode tree structure, each ViewNode in the pathToRoot array of of the modified

ViewNode recalculates its size and lays out its contents. Each ViewNode has several

properties that can be set to modify the behavior of the layout method. In Fig.

8.2, we see a graphical representation of the ViewNode tree model shown in Fig.

8.1.

Dashed lines with arrows in Fig. 8.2 represent the direction of

layoutAccumulation_vertical or layoutAccumulation_horizontal if applica-

ble, while solid lines with arrows represent the direction of layoutFlow_vertical

or layoutFlow_horizontal if applicable. layoutAccumulation refers to the di-

rection which the ViewNode stacks its children ViewNodes. layoutFlow refers

to the direction which the ViewNode aligns its children ViewNodes.
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r
I

II

III

IIIB

IIC

IA
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IC

IIIA

IIIAi IIIBi

IIIBii

IIIBiii
IIIAii

IIA

IIB

Figure 8.2: View Representation of ViewNode Tree.
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r layout()

layout()

I

A B

i ii iiii ii

A B C

III

removeNode(II)

Figure 8.3: ViewNodeTree.

In Fig. 8.3, r.II is removed. Fig. 8.4 shows the graphical repercussion of

this change in the model. r.III is animated upward to fill in the space occupied

by r.II, and the total size of r is adjusted to fit the contents.
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r
I

III

IIIB

IA
IB

IC

IIIA

IIIAi IIIBi

IIIBii

IIIBiii
IIIAii

Figure 8.4: ViewNodeTree.

r

I

A B

i ii iiii ii

A C

IIIlayout()

removeNode(B)

layout()

layout()

Figure 8.5: ViewNodeTree.
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In Fig. 8.5, r.I.B is removed. See in Fig. 8.6, that r.I has fit itself

to its contents. When a change occurs to a ViewNode, a call is made up to its

parent ViewNode to adjust its size and lay out its contents. These calls are made

recursively all the way up to the root ViewNode of a ViewNode hierarchy.

rI

III

IIIB

IA
IC

IIIA

IIIAi IIIBi

IIIBii

IIIBiii
IIIAii

Figure 8.6: ViewNodeTree.



79

r

I

A

i ii

A C

III layout()

layout()

layout()

removeNode(B)

Figure 8.7: ViewNodeTree.

In the previous examples, ViewNodes have been removed and the overall

height has been adjusted. In Fig. 8.8, r.II.B is removed, causing r.II to adjust

its width. As a result, r adjusts its width inward.

rI

III

IA
IC

IIIA

IIIAi

IIIAii

Figure 8.8: ViewNodeTree.
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8.2 Ligature Objects

Ligatures connect two ViewNodes. While ViewNodes may be laid out au-

tomatically, ligatures are dynamically resized to maintain a connection between

these ViewNodes. Ligatures are contained by the parent ViewNode of the two

ViewNodes that it connects. One example of a Ligature in the denm graphical

environment is a Stem. A Stem connects BeamGroup Strata to Graphs. While

the distance between a Graph and a BeamGroup Stratum may change due to the

insertion of another ViewNode (such as a stratum of Dynamics or other markings),

the Stem must be adjusted accordingly. While a ViewNode lays out its content,

the path of a Ligature is animated to an adjusted path with the proper coordinates

enabling the connection of its two ViewNode references.

8.3 Placed Objects

Placed objects are not moved when their superlayer lays out its contents.

Most often, Placed objects represent data in the musical model. For example,

noteheads and accidentals are placed specifically to represent pitch information.



Chapter 9

Music Notational Objects and

their Organization

Each music notational object supported thus far by the denm musical

model has been redesigned specifically for use in an interactive context.

9.1 Structural Organization

Certain objects in a musical score provide a context for other objects to por-

tray musical information, rather that portraying musical information themselves.

Objects of this sort are considered Structural Organization objects.

9.1.1 PerformerInterfaceView

The primary organizational element of denm is the

PerformerInterfaceView. The PerformerInterfaceView is the Con-

troller element in the MVC design pattern (discussed in Sec. 6.1. The

PerformerInterfaceView manages all of the Pages that a viewing performer

may interact with. User interface actions are delegated through this class, which

modify the View of the musical information with input from a user. For example,

a user may turn pages either by touching the screen in designated areas, or

connecting a Bluetooth foot-pedal to the tablet device. Further, a user may
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initiate the showing or hiding of a specific graphical objects via this controller

mechanism.

9.1.2 Page

As Page is a subclass of ViewNode, its size is managed automatically as ob-

jects are removed or inserted anywhere within the graphical object organizational

hierarchy. The Page is the organizer of a single screen’s worth of music. The Page

contains 0− n Systems.

9.1.3 System

The System is a subclass of ViewNode, and therefore its size is managed

automatically as objects are inserted or removed anywhere within its ViewNode

hierarchy. A System contains as much music as can be fit horizontally within the

bounds of the given screen.

9
16

2
8

1 2

15 16

7 6 3 2 9 10 3 2
5 4 4 3

A
B

C i
ii

i
ii
iii

D

Ir

E

F

G

Figure 9.1: Score Representation of System.
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r Page

Time
Signatures

TupletBracket
Stratum

TupletBracket
Stratum

TupletBracket
Stratum

BeamsBeams

BeamGroup
Stratum

BeamGroup
Stratum

DynamicsStaff
(cue)

Staff
(primary)

Measure
Numbers

SystemI

i ii iiii ii

A B C D E F G

Figure 9.2: Model Representation of System.

9.1.4 Measure

Measures, in the denm Musical Model (discussed in Chapter 7), as well

as in the graphical domain are decoupled from the musical material that it may

seem as they contain. Instead, Measures are a separate stratum of information

layered on top of a layer of DurationNodes in the Model, and BeamGroups in the

View. The musical models of traditional typesetting software organizes the musical

materials as being contained within the hierarchy of measures. This becomes

problematic when rhythms may exist outside of the hierarchy of measures, or

the beaming of rhythms is to extend across barlines. When using traditional

typesetting software, this organizational constraint poses a problem for the user,

who will ultimately be required to “break” the organizational constructs of the

musical model, creating music notation that will not be scalable (e.g., parts will

require readjustment, etc.).
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MetricalGrid

A MetricalGrid is a subclass of Ligature, which adjusts its length with an

update in the layout of a System. A MetricalGrid shows the beats of Measure. The

object consists of an almost transparent line laid over the top of all of the musical

information in a measure. The MetricalGrid serves as an immediate indicator of

the metrical structure of a measure. Performers often draw lines at the points

of beats of a measure to clarify rhythmic proportions of events held within the

measure.

3
8
1

3 2
7 8

7 8 3 2

Figure 9.3: Metrical Grid.

MetricalGrids may be engaged for any measure by tapping on the TimeS-

ignature of the given measure. With further development, a user will be able to

show or hide all of the MetricalGrids in a given level of structural organization

(e.g., Measure, System, Page, or the entire score).

TimeSignature

The TimeSignature in denm is centered directly over the starting point of

its parent Measure. In traditional music engraving practice, the time signature is

placed on a staff, to the right of a barline. This approach consumes a considerable



85

amount of horizontal space that is coupled tightly (or in the case of denm, di-

rectly) with the horizontal representation of time. The consequence of this loss of

horizontal space is not just a decrease in the amount of material that can be placed

on a system, but also an unstable space-to-time relationship of graphical objects

and the durations that they represent. By placing the TimeSignature above the

musical material, no horizontal space is lost, while a greater isolation of struc-

tural information (i.e. meter) and content (e.g., rhythm, pitch, etc.) is achieved.

TimeSignatures are organized in a TimeSignatureNode subclass of ViewNode.

2
8

2

Figure 9.4: TimeSignature centered over beginning of Measure.

Barline

The Barline is a subclass of Ligature, which adjusts its length when the

layout of its parent System is modified. The Barline serves to mark the begin-

ning and ending of a Measure. In denm, the Barline is designed such that it is

perceived in the background of the total notational image. As the a Measure is

considered Structural in the graphical model of denm, its elements are designed

to be perceived as environmental, rather than informational. In denm, there is

no horizontal space given to the TimeSignature, as is the case in traditional music

engraving practice. For further discussion of the reasons behind this choice, see

Sec. 4.

The musical information that starts at the onset of a Measure starts at ex-
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actly the left point of the Measure, therefore it is placed on top of the Barline. In

traditional typesetting, this would cause a collision with multiple black-ink com-

ponents that would make legibility poor. As such, the Barline in denm functions

as a subtle confirmation of the structural properties of a metrical structure (i.e.

a Measure), without competing visually with the information. The color of the

Barline is very low in contrast to the background color environment, and very high

in contrast to the informational elements layered above it.

2
8

2

15 16

3 2

Figure 9.5: Barline.

MeasureNumber

The current implementation of measure numbers is simple, providing the

one-based index of a given Measure. A MeasureNumber is a ViewNode that is

organized in a MeasureNumberNode hierarchy, that is held ultimately within the

System level of organization. Along with the TimeSignature and Barline, the

MeasureNumber is centered exactly over the beginning of a Measure, in order to

prevent the loss of the horizontal graphical representation of time.
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9.2 Ensemble Organization

A single musician in an ensemble is modeled as a Performer in denm. This

musician may be playing one or more instruments (e.g., double bass and voice).

Each instrument may necessitate one or more strata of musical information (most

commonly a Staff).

This model of ensemble organization is constructed to enable the dynamic

creation of a View of the musical model of a piece (i.e., a Part) for a particular

musician, where the musical material may warrant multiple representations. Cou-

pled with the ViewNode model, these groupings of musical information may be

dynamically shown or hidden as desired by the player. The level of notated detail

of a given passage is then defined by the performer, optimized for their current

stage of learning, rehearsing, or performing the piece.
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Performer I

Performer II

Ensemble

Instrument A

Graph i

Graph i

Graph ii

Graph ii

Graph iii

GraphEvent

Instrument B

Figure 9.6: Ensemble Organization.

Fig. 9.6 shows an example of ensemble organization in denm. An ensemble

may contain 1−n Performers. Each Performer may contain 1−n Instruments.

Each Instrument may contain 1 − n Graph. Each Graph may contain 0 − n

GraphEvents.

9.2.1 GraphEvent

A GraphEvent contains graphical information pertaining to a single repre-

sentation of a musical event. For example, a triad of pitches arranged harmonically

on a Staff would all be contained by the same GraphEvent.
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9.2.2 Graph

The Graph is a subclass of ViewNode, that is contained by an Instrument.

The Graph is the base class for all containers of placed musical information. The

most common subclass of Graph is a Staff. In traditional music notation, note-

heads and accidentals are placed vertically along five equidistantly-spaced horizon-

tal lines. The placement of these objects specifies the pitch information stored in

the musical model of a work. In other contexts, such as with string tablatures,

finger or bow placement may be positioned along the y-axis of a more generalized

Graph instance.

9.2.3 Instrument

The Instrument is a subclass of ViewNode, which is contained by a Performer.

An Instrument is the graphical collection of Graphs pertaining to a single phys-

ical instrument (e.g., clarinet, contrabass, viola). Often, the notation for a single

instrument will necessitate more than one Staff or other graphical representation

of musical information.

9.2.4 Performer

The Performer is a subclass of ViewNode, that is contained by a System.

In the graphical organization of the ensemble, a single musician is represented by

a Performer class.

9.3 BeamGroup and its Organization

The BeamGroup is the graphical representation of a complete DurationNode

tree structure (described in Sec. 7.4.)
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9 10
5 4 4 3

Figure 9.7: BeamGroup.

BeamGroup Event (BGEvent)

The graphical representation of a leaf DurationNode. Contains reference

to Stem, and the DurationNode leaf with musical information in the form of

Components.

4 3

Figure 9.8: BeamGroupEvent.

BeamGroup Container (BGContainer)

The graphical representation of a container DurationNode.

4 3

Figure 9.9: BeamGroupContainer.



91

BeamGroupStratum (BGStratum)

The graphical representation of multiple DurationNode tree structures com-

prising the musical information shown in a System.

7 6 3 2 9 10 3 2
5 4 4 3

Figure 9.10: BeamGroupStratum.

9.4 Stems

A Stem is a subclass of Ligature that contains references to a BGEvent

(discussed in Sec. 9.3) and a GraphEvent (discussed in Sec. 9.2.1). Stems are

resized when the layout of their parent System is modified.

9.5 Music Notation Object Design

DynamicMarking

Figure 9.11: Dynamic Markings.

DynamicMarkings are collections of DynamicMarkingCharacters.

DynamicMarking Character (DMCharacter)

Figure 9.12: Currently implemented DynamicMarkingCharacters.
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DynamicMarking Ligature (DMLigature)

Figure 9.13: DynamicMarkingLigature.

DynamicMarkingLigatures are automatically placed to connect a pair of

DynamicMarkings.

Clefs

Figure 9.14: Clef Design.

The four clefs in Fig. 9.14 are treble, bass, alto, and tenor clefs. The mini-

malist design of these clefs minimize the horizontal space that they use. Clefs are

colored red to maximize the visual contrast between the object and its environ-

ment.

Accidentals

Figure 9.15: Accidental Design.

Accidentals are drawn programmatically, as opposed to being instances of

glyphs from a font. The advantage to uniquely drawing each accidental is that

small vertical adjustments can be made to individual components of the object (e.g.
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body, column(s), arrow) in order to avoid collisions in a more dynamic fashion than

is usually implemented in other music notation software (this accidental collision

avoidance process is discussed in Sec. 11)



Chapter 10

Algorithms for Musical Analysis

10.1 Metrical Analysis

denm analyzes rhythms of any complexity. The result of this analysis pro-

vides a performer with an optimal manner in which to subdivide the rhythm. The

graphical representation of this process is a MetronomeGraphicNode, which can be

seen in Sec. 2.3. The metrical analysis process attempts to compare the actuation

points of DurationNode leaves against a set of MetricalAnalysisPrototypes,

which are sequences of two or three elements, each of which having a duple- or

triple-beat Duration. The metrical analysis process is shown in Alg. 1. The

output of the metrical analysis process is a MetricalAnalysisNode, which is a

subclass of DurationNode, with the additional constraints that the sum of the

relative durational values of the children MetricalAnalysisNodes is equivalent

to the amount of Beats in the Duration of the given MetricalAnalysisNode.

Total durational values between and including 4 and 7 have a dedicated list

of prototypes1, each of which can be compared against any rhythm with a relative

1List of prototype sequences by relative durational sum:
4 : (2, 2)
5 : (3, 2), (2, 3)
6 : (2, 2, 2), (3, 3)
7 : (2, 2, 3), (3, 2, 2), (2, 3, 2)
8 : (4, 4), (3, 3, 2), (2, 3, 3), (3, 2, 3) ∗
9 : (3, 3, 3), (4, 5), (5, 4) ∗
∗ Rhythms with relative durational sums of 8 and 9 are compared against all of these com-
binations shown here. If the combination with least syncopation contains only values of 2 or
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durational sum of the same value, the process of which can be seen in Alg. 2.

Rhythms with relative durational sums of 8 and 9 are compared against

all of these combinations shown here. If the combination with least syncopa-

tion contains only values of 2 or 3, a MetricalAnalysisPrototype is gener-

ated with children containing Durations of duple- and triple-values. In the

case that the combination with least syncopation contains values > 3, internal

MetricalAnalysisNodes are created with the Durations of these values. The

original DurationNode array is partitioned at points determined by the combi-

nation. The MetricalAnalysis process is then applied for each partition, and

MetricalAnalysisNode leaves with duple- and triple-value Durations are added

to each of these internal MetricalAnalysisNodes.

Cuthbert and Ariza [23] apply their metrical analysis process to beaming

in the score representation of rhythms. This strategy will be the model for con-

tinued development in denm, extending to cases of arbitrarily-deep nested-tuplet

rhythms.

3, a MetricalAnalysisPrototype is generated with children containing Durations of duple-
and triple-values. In the case that the combination with least syncopation contains values > 3,
internal MetricalAnalysisNodes are created with the Durations of these values. The original
DurationNode array is partitioned at points determined by the combination. The metrical anal-
ysis process is then applied for each partition, and MetricalAnalysisNode leaves with duple-
and triple-value Durations are added to each of these internal MetricalAnalysisNodes.
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Algorithm 1 Metrical Analysis

1: durNodes←DurationNode.children

2: parent←Root MetricalAnalysisNode

3: function analyze(durNodes, parent)

4: s← durNodes.sum()

5: if s = 1 then

6: child←MANode(beats: 2)

7: . subdivision level ∗ = 2

8: . add child to parent

9: else if s <= 3 then

10: child←MANode(beats: s)

11: . add child to parent

12: else if 4 <= s <= 7 then

13: p← prototypeWithLeastSyncopation

14: for pp in p do

15: child←MANode(beats: pp)

16: . add child to parent

17: end for

18: else if 8 <= s <= 9 then

19: p← prototypeWithLeastSyncopation

20: if p contains values > 3 then

21: for pp in p do

22: part← durNodes partitioned at pp

23: newParent←MANode(beats: cc)

24: analyze(part, newParent)

25: end for

26: end if
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27: else

28: . create array of all combinations

29: . of values 4 <= v <= 7 with sum of s

30: c← combinationWithLeastSyncopation

31: for cc in c do

32: part← durNodes partitioned at cc

33: newParent←MANode(beats: cc)

34: analyze(part, newParent)

35: end for

36: end if

37: end function
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Algorithm 2 Syncopation

1: d← durationNodes.cumulative()

2: . e.g. [4, 5, 7]← [4, 1, 2].cumulative()

3: p← prototype.cumulative()

4: . e.g. [2, 4, 7]← [2, 2, 3].cumulative()

5: syncopation← 0

6: function getSyncopation(d, p)

7: if d[0] = p[0] then

8: . Rhythm beat falls on prototype beat

9: . No syncopation penalty added

10: . Adjust d and s accordingly

11: getSyncopation(d, s)

12: else if d[0] < p[0] then

13: . Rhythm beat falls before prototype beat

14: . Check if next duration falls on prototype beat

15: if delayedMatch then

16: . No syncopation penalty added

17: else

18: syncopation← syncopation + penalty

19: end if

20: . Adjust d and s accordingly

21: getSyncopation(d, s)

22: else

23: . Rhythm beat falls after prototype beat

24: . Check if next prototype value falls on duration

25: if delayedMatch then

26: . No syncopation penalty added

27: else

28: syncopation← syncopation + penalty

29: end if

30: . Adjust d and s accordingly

31: getSyncopation(d, s)

32: end if

33: end function
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10.2 Automatic 1/8-tone Pitch Spelling

Effective pitch spelling is critical to the process of generating staff notation

for music that is algorithmically composed or extracted from spectral analyses. Al-

gorithms for pitch spelling within tonal musical contexts have been compared by

Meredith [27] and Kilian [28]. The musical contexts that denm is most immedi-

ately supporting are rarely tonal. More often these musical contexts are microtonal.

The preferences in the current tonally-based pitch spelling algorithms, however,

are defined by establishing tonal center. The benefits of tonal-center-based pitch

spelling are lost in atonal musical contexts. Primitive intervallic relationships are

preserved objectively, rather than being subjected to the requirements of a tonal

center. When spelling pitches in microtonal contexts, other pragmatics arise that

influence the decision-making process.

The short-term goal of the pitch spelling process in denm is to spell mi-

crotonal polyphonic music up to the resolution of an 1/8-tone (48 equal divisions

of the octave). In time, this process may be extended to accommodate other

tuning systems. The development of this microtonal pitch spelling procedure is

in process. Currently, verticalities consisting of any combination of resolutions

(1/2-tone, 1/4-tone, 1/8-tone) are spelled correctly, though more rigorous testing

is underway to verify this. Further development of this pitch spelling algorithm

into polyphonic microtonal contexts will incorporate aspects of Cambouropoulos’

shifting overlapping windowing technique [29].

Figure 10.1: PitchDyadSpeller spelling 1/2-tone dyads contextually.

Fig. 10.1 shows the MIDI Pitch 68.0 (shown in orange) spelled contextually,

depending on the other pitch present in a dyad. This demonstrates the underly-

ing priority in the pitch spelling process of denm called step-preservation, where
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augmented and diminished are discouraged in favor for perfect, major, and minor

intervals.

Figure 10.2: PitchDyadSpeller spelling 1/4-tone dyads contextually.

Fig. 10.2 shows dyads consisting of a combination of 1/2-tone and 1/4-

tone pitches spelled. Identical direction of the Coarse values of the spellings is

prioritized: if one Pitch is spelled as a 1/4-tone sharp, the other Pitch should be

spelled as a sharp, not a flat.

Figure 10.3: PitchDyadSpeller spelling 1/8-tone dyads contextually.

Fig. 10.3 shows the MIDI Pitch 65.75 spelled in each of three different

possible ways, depending on the other Pitch in a dyad.

Figure 10.4: PitchVerticalitySpeller spelling 1/2-tone verticalities contextually.

Fig. 10.4 shows an accumulation of 1/2-tone Pitches into more complex

harmonies. As a new Pitch is added to the harmony, each Pitch in the harmony

is reconsidered for spelling.
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Figure 10.5: PitchVerticalitySpeller spelling 1/8-tone verticalities contextually.

Fig. 10.5 shows a set of verticialities of Pitches that consist of combi-

nations of resolution (1/2-tone, 1/4-tone, 1/8-tone). When there are multiple

Pitches in a harmony that have an 1/8-tone resolution, and therefore have an ar-

row in their graphical representation, a consistency of arrow direction is enforced.

By enforcing equivalence of arrow direction, the resolutions of intervals of each

dyad are made explicit.



Chapter 11

Accidental Collision Avoidance

The stacking of accidentals has been compared extensively by Spread-

bury [30]. Accidental stacking in traditional typesetting software uses quite con-

servative rules to dictate the shifting of accidentals into new columns. In contexts

where music spacing is quite loose, this technique works acceptably well. More

complex pitch contexts, however, often require a considerable amount of manual

re-positioning of accidentals.

Figure 11.1: Accidental Collision.

Fig. 11.1 shows dyads with accidentals that traditionally collide. For

denm, individual components of the colliding accidentals have been modified to

avoid a lower-level collision. The bottom staff shows the components adjusted with

cyan and orange colors. Stems are shortened and arrows are moved as necessary. In

the worst case scenario, where a collision cannot be avoided via movement of these
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components, the accidentals are stacked in the traditional fashion. By extending

the sense of accidental stacking to a more local concern, a significant amount of

horizontal space can be saved.
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