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Fragment Coupling and the Construction of Quaternary Carbons Using 

Tertiary Radicals Generated From tert-Alkyl N-Phthalimidoyl Oxalates By 

Visible-Light Photocatalysis 

Gregory L. Lackner, Kyle W. Quasdorf, Gerald Pratsch and Larry E. Overman* 

Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 
92697-2025 

 

ABSTRACT 

The coupling of tertiary carbon radicals with alkene acceptors is an underdeveloped strategy for 

uniting complex carbon fragments and forming new quaternary carbons. The scope and 

limitations of a new approach for generating nucleophilic tertiary radicals from tertiary alcohols 

and utilizing these intermediates in fragment coupling reactions is described. In this method, the 

tertiary alcohol is first acylated to give the tert-alkyl N-phthalimidoyl oxalate, which in the 

presence of visible-light, catalytic Ru(bpy)3(PF6)2, and a reductant fragments to form the 

corresponding tertiary carbon radical. In addition to reductive coupling with alkenes, substitution 

reactions of tertiary radicals with allylic and vinylic halides is described. A mechanism for the 

generation of tertiary carbon radicals from tert-alkyl N-phthalimidoyl oxalates is proposed that is 

based on earlier pioneering investigations of Okada and Barton. Deuterium labeling and 

competition experiments reveal that the reductive radical coupling of tert-alkyl N-phthalimidoyl 

oxalates with electron-deficient alkenes is terminated by hydrogen-atom transfer. 

INTRODUCTION 
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 The bimolecular coupling of tertiary nucleophiles with carbon-based electrophiles is a 

straightforward, yet underdeveloped, approach for fragment coupling with concomitant 

formation of sterically encumbered quaternary carbons. Recent total synthesis endeavors in our 

laboratories have suggested the potentially broad utility of both trialkyl-tertiary cuprates and 

nucleophilic carbon radicals in such constructions.1,2,3 Tertiary carbon radicals are often 

generated from halide precursors. However, the synthesis of structurally elaborate tertiary 

halides can be complicated by competing elimination and rearrangement reactions. As a result, 

methods to generate tertiary carbon radicals from other common functional groups have 

particular significance. Barton’s methods for forming carbon radicals by homolytic 

fragmentation of carboxylic acid-derived thiohydroxamate esters4 or alcohol-derived 

thiohydroxamate oxalates,5 introduced more than 25 years ago, are pioneering examples.6,7 

In an early application of visible-light photocatalysis in organic synthesis, Okada reported 

in 1991 the utility of carboxylic acid-derived (N-acyloxy)phthalimides for generating 

nucleophilic carbon radicals and their use in radical conjugate addition reactions to construct 

carbon-carbon bonds.8,9 These precursors are particularly attractive as they are readily prepared, 

highly stable, and often crystalline. This method for generating structurally complex tertiary 

radicals was a central feature of our total syntheses of the diterpenoid (–)-aplyviolene1a,b and 

several trans-clerodane diterpenoids.1c To extend this approach to other readily available 

precursors, we recently described the utility of N-phthalimidoyl oxalate derivatives of tertiary 

alcohols for generating tertiary radicals using visible-light photocatalysis.3b  

Since our recent studies of photoredox-catalyzed generation of tertiary radicals and their 

use in fragment coupling reactions,1b,c,3b several other research programs contributed important 

new methods for accessing tertiary carbon radical intermediates. Baran described the reaction of 
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substituted alkenes with Fe(acac)3/PhSiH3 to generate secondary and tertiary radicals and their 

use in both intramolecular and bimolecular C–C bond-formation.3c In addition, recent reports by 

the MacMillan group detail the generation of radical intermediates by single-electron oxidation 

and decarboxylation of carboxylates.3d Although heteroatom-stabilized secondary radicals are 

most easily formed under these conditions, the adamantyl radical was also produced in this way.  

Even though several approaches for producing tertiary carbon radicals from common 

precursors are now available, the prevalence and accessibility of tertiary alcohols warrants 

comprehensive investigation of the utility of tert-alkyl N-phthalimidoyl oxalates as precursors of 

these intermediates. Presented herein is a detailed exploration of the preparation and visible-light 

photocatalytic coupling of tert-alkyl N-phthalimidoyl oxalates with alkenes.10,11 In addition, 

studies revealing how small modifications in reaction conditions and resulting changes in 

termination steps can affect the outcome of coupling reactions of these radical precursors are also 

disclosed. A comparison of tert-alkyl N-phthalimidoyl oxalates to (N-acyloxy)phthalimide 

derivatives of tertiary carboxylic acids for initiating coupling reactions of tertiary radicals is 

provided in the accompanying paper.12 

 

RESULTS AND DISCUSSION 

 Synthesis of tert-alkyl N-phthalimidoyl oxalates. A general strategy for synthesizing 

tert-alkyl N-phthalimidoyl oxalates from tertiary alcohols consists of the direct acylation of the 

tertiary alcohol with N-phthalimidoyl chlorooxalate 2, as exemplified in the formation of N-

phthalimidoyl oxalate 3a from 1-methylcyclohexanol (1) (eq 1). After careful optimization, the 

following procedure was developed. Chlorooxalate 2 was initially prepared as a colorless solid 
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by adding an excess of oxalyl chloride (5 equiv) to a THF solution of N-hydroxyphthalimide at –

78 °C, allowing the reaction to warm to room temperature (typically overnight), and then 

concentrating the reaction mixture under reduced pressure. This reactive acylating agent was 

then most easily manipulated as a 0.06 M solution in THF. The subsequent acylation of tertiary 

alcohols took place efficiently in THF in the presence of 2 equiv each of chlorooxalate 2 and 

triethylamine and a catalytic amount of DMAP. 

 

 The sensitivity of tertiary N-phthalimidoyl oxalates towards protic nucleophiles 

complicates their isolation and purification. For example, oxalate 3a could not be purified by 

chromatography on silica gel. Washing a dilute Et2O solution of crude 3a with saturated aqueous 

NaHCO3 did remove unreacted N-hydroxyphthalimide from the product mixture. However, 

resubjection of pure phthalimidoyl oxalate 3a to this extraction procedure resulted in substantial 

cleavage to release N-hydroxyphthalimide, suggesting that even this mild workup was 

problematic. tert-Alkyl N-phthalimidoyl oxalates were best isolated by diluting a concentrated 

CH2Cl2 solution of the crude acylation reaction products with hexanes (typically a 25-fold excess 

by volume) and filtering the resulting suspension. After concentration of the filtrate, the mixed 

oxalate diesters 3 were obtained in good purity (typically >95%) and high yield. As illustrated in 

Table 1, this method proved quite general, converting even highly hindered tertiary alcohols to 

the corresponding mixed oxalates efficiently (e.g., formation of 3g and 3h). Solid tert-alkyl N-
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phthalimidoyl oxalates prepared in this way could be stored indefinitely at –20 °C, whereas those 

that are oils could be stored at this temperature for only one week before decomposition was 

apparent.  

Table 1. Synthesis of tert-Alkyl N-Phthalimidoyl Oxalates (NPhth = N-Phthalimidoyl) 

 

 

The structure of the adamantyl N-phthalimidoyl oxalate (3f) was confirmed by single-

crystal X-ray analysis.3b The reduction potential of N-phthalimidoyl oxalate 3a measured by CV 

in acetonitrile is –1.14 V vs SCE, and, as expected, is slightly less negative than that of the (N-

acyloxy)phthalimide derivative of 1-methylcyclohexanecarboxylic acid (–1.26 V vs SCE) under 

identical conditions (see Supporting Information).13 
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 Coupling of tert-alkyl N-phthalimidoyl oxalates with conjugate acceptors. We 

anticipated that tert-alkyl N-phthalimidoyl oxalates would react in the presence of a 

photocatalyst and a stoichiometric reductant via single-electron transfer to the tetracarbonyl 

substrate, followed by homolytic cleavage of the N–O σ-bond with ejection of phthalimide and 

two equivalents of CO2 to generate the radical intermediate (Scheme 1).5,8 Addition of the 

nucleophilic tertiary radical to an electron-deficient olefin and hydrogen-atom transfer to the 

resulting radical intermediate would yield the product. 

Scheme 1. Proposed Mechanism for the Coupling N-Phthalimidoyl Oxalates 3 with 

Conjugate Acceptors 

  

 In our earlier investigations of the use of carboxylic acid-derived (N-

acyloxy)phthalimides in fragment coupling reactions,1b we found that aprotic conditions similar 

to those reported by Gagné for the generation and reaction of radicals derived from glucosyl 

halides—visible light, Ru(bpy)3(BF4)2, diethyl 1,4-dihydro-2,6-dimethyl-3,5-

pyridinedicarboxylate (4), i-Pr2NEt, in CH2Cl214—were preferable to the aqueous conditions 

originally described by Okada.8,12 The reaction of tert-alkyl N-phthalimidoyl oxalate 3a with 

methyl vinyl ketone (MVK) under related conditions in CH2Cl2 employing 1–2 mol% of the 

commercially available bis(hexafluorophosphate) salt of Ru(bpy)32+ indeed did provide the 

coupled product 5, albeit in low yield (eq 2). The low yield was easily traced to competitive 

R3

R1

R2
O

O

O

O
N

O

O

SET

R3

R1

R2
O

O

O

O
N

O

O

R3

R1

R2
O

O–HNPhth
–CO2

–CO2 R3

R2

R1

EWG
"H  "

EWG

HR1

R3
R2

3

photoredox catalyst
reductant

EWG

A B

HX

C



 7 

decomposition of the N-phthalimidoyl oxalate under these conditions, as control experiments 

established that the red conjugate base of N-hydroxyphthalimide was rapidly formed when 

oxalate 3a was exposed at room temperature to amines such as i-Pr2NEt, Bu3N, or Cy2NMe in 

CH2Cl2. As a result of these observations, further experimentation was carried out using 

i-PrNEt•HBF4 instead of i-Pr2NEt. Additional improvement was realized by replacing CH2Cl2 

with a 1:1 mixture of CH2Cl2/THF. This solvent change was necessitated because oxalate 3a 

slowly decomposed in CH2Cl2 overnight, presumably by ionization to form the 1-

methylcyclohexyl cation. In addition to commercially available blue LEDs, a commercially 

available compact fluorescent light was found to be equally effective as the light source.15 

 We then performed a series of reactions to evaluate the necessity of each reaction 

component (Table 2). Although we initially carried out the coupling reactions for 18 h, because 

the oxalate substrates were not amenable to TLC analysis, the yield of 5 was nearly identical 

when the reaction was run for only 2 h (entries 1 and 2). Visible light proved to be essential for 

reactivity, as no conversion of oxalate 3a was observed when the reaction was conducted in the 

dark (entry 3). Omission of Hantzsch ester 4 also resulted in complete recovery of 3a (entry 4). 

In contrast, we observed significant product formation in the absence of the photocatalyst 

(entries 5 and 6). This background reaction was slower than the photocatalyzed reaction, 

producing product 5 in only 28% yield after 2 h, although the yield was improved to 67% after 

18 h. This background reaction, which we believe is mediated by Hantzsch ester 4,16 was also 

observed by Okada and co-workers when the photocatalyst was not present.8 Omitting the 

ammonium additive resulted in a somewhat depressed yield of 5 (entry 7). Finally, revisiting the 

Ru(bpy)3(PF6)2 (1.5 mol%)
MVK (1 equiv)

Hantzsch ester 4 (1.5 equiv)

1:1 THF/CH2Cl2, rt, 18 h
blue LEDs

Me
O

Me3a
(1.5 equiv)

5

(2)

low yield: i-Pr2NEt (1 equiv)
82% yield: i-Pr2NEt·HBF4 (1 equiv)
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stoichiometry of the coupling substrates (entries 8–10) confirmed that the highest yield of 5 was 

obtained when oxalate 3a was used in a slight (50%) excess. 

Table 2. Coupling of N-Phthalimidoyl Oxalate 3a with Methyl Vinyl Ketone (MVK) Under 

Various Reaction Conditionsa 

Entry Modification Yield of 5 
(%)b 

1 none 82 

2 reaction time of 2 h 81 

3 no light <5% 

4 no Hantzsch ester 4 ND 

5 no photocatalyst (2 h) 28 

6 no photocatalyst (18 h) 67 

7 no i-Pr2NEt•HBF4 72 

8 oxalate 3a (1 equiv) 67 

9 oxalate 3a (1.1 equiv) 68 

10 
oxalate 3a (1 equiv) 

MVK (1.5 equiv) 
57 

aConditions of eq 2 using i-Pr2NEt•HBF4; [3a] = 0.15 M. bIsolated yield after silica gel chromatography. ND = not 

detected. 

 Several other photoredox catalysts were examined to promote the formation of adduct 5 

from N-phthalimidoyl oxalate 3a and MVK (Table 3). Although no catalyst performed as well as 

Ru(bpy)32+ (entry 1), several strongly reducing iridium photoredox catalysts were nearly as 

effective (entries 2–4).17 Even Ru(bpz)32+ (E1/2II/I –0.80 V vs SCE),18 a significantly weaker 

reductant than Ru(bpy)32+ (E1/2II/I –1.33 V vs SCE), gave a 62% yield (by NMR analysis) of 

ketone 5 (entry 5). 

Table 3. Coupling of N-Phthalimidoyl Oxalate 3a with MVK in the Presence of Various 

Photocatalysts and Visible Lighta 

Entry Photocatalyst Yield of 5 
(%)b 

1 Ru(bpy)3(BF4)2 82 
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2 Ir(ppy)3 75 
3 Ir(df(CF3)ppy)2(dtbbpy)PF6 74 
4 Ir(dtbbpy)ppy2PF6 76 
5 Ru(bpz)3(PF6)2 62 

aConditions of eq 2 using i-Pr2NEt•HBF4 and a reaction time of 2 h; [3a] = 0.15 M. bYield measured by 1H NMR 

relative to an internal standard (1,4-dimethoxybenzene).  

 We also explored replacing Hantzsch ester 4 with other potential stoichiometric 

reductants (Table 4). Introduction of a substituent at the 4-position of the Hantzsch ester 

rendered the dihydropyridine unreactive under the reaction conditions (entries 2 and 3). The use 

of 2-phenylbenzothiazoline (8) or N,N’-dimethyl-2-phenylbenzimidazoline (9) successfully 

resulted in the formation of product 5, although the yield was somewhat less than that observed 

under identical conditions using Hantzsch ester 4 (entries 4 and 5).19 No conversion to adduct 5 

was observed using N-methylacridane (10), a known reductive quencher of Ru(bpy)32+* (entry 

6).20  

Table 4. Visible-Light Photocatalytic Coupling of N-Phthalimidoyl Oxalate 3a with MVK 

in the Presence of Potential Stoichiometric Reductantsa  

Entry Reductant Yield of 5 (%) 

1 
2 
3  

4 R = H 
  6 R = Me 

            7 R = Ph 

82b 

ND 
ND 

4 

 

60c 

5 

 

73c 

6 

 

ND 

aConditions of eq 2 using i-Pr2NEt•HBF4; [3a] = 0.15 M. bIsolated yield after silica gel chromatography. cYield 

measured by 1H NMR relative to an internal standard (1,4-dimethoxybenzene); ND = not detected. 
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 The results of our initial survey of the coupling of tert-alkyl N-phthalimidoyl oxalates 

with various electron-deficient alkenes are summarized in Table 5. A wide variety of N-

phthalimidoyl oxalate substrates and conjugate acceptors are tolerated in the transformation, 

which generally gives good yields of the coupled products. The highest yields were realized in 

the coupling reactions with alkenes such as MVK, acrylonitrile and phenyl vinyl sulfone, which 

are unsubstituted at the b-carbon. The three chiral N-phthalimidoyl oxalates that we examined 

coupled with MVK from the less-sterically hindered face of the tertiary radical to give products 

14, 15 and 16 with >20:1 diastereoselection, with coupled products 14 and 15 being formed in 

>80% yield. The yield was somewhat lower in the construction of a quaternary center at C17 in 

the estrone series (16, 68%), likely reflecting the steric demand in forming vicinal quaternary 

carbon centers. Many of these transformations require only 2–3 h, as shown by the entries in the 

first row of Table 5. As expected from our exploratory studies, yields were somewhat lower 

when equal amounts of the N-phthalimidoyl oxalate and alkene were employed: 63% vs 85% in 

forming 14 and 43% vs 68% in forming 16. In a number of the coupling reactions summarized in 

Table 5, we observed that the yield was nearly the same when i-Pr2NEt•HBF4 was omitted. 

Nonetheless, we have found that product yields were more reproducible when this additive was 

present. 

  

Table 5. Optimized Visible-Light Photocatalytic Coupling of N-Phthalimidoyl Oxalates 

with Various Electron-Deficient Alkenesa 
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aIsolated yield based upon the radical acceptor after purification by silica gel chromatography (average of two 

experiments). The yield of 27 was measured by 1H NMR relative to an internal standard (1,4-dimethoxybenzene). 
bIsolated yield using 1 equiv each of the phthalimidoyl oxalate and the alkene acceptor. ND = not detected. 

 

 Several radical acceptors having a substituent at the b-carbon also provided coupled 

products in useful yields. Dimethyl fumarate gave adduct 25 in 85% yield from N-phthalimidoyl 

oxalate 3a and cyclopenten-2-one coupled with 3a to give product 13 in 55% yield. The yield of 

adduct 26 resulting from the coupling of 3a with 2-carbomethoxycyclopenten-2-one (62%) was 
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only slightly higher than that observed with cyclopenten-2-one.21 Butenolides were also 

competent acceptors, with the presence of a g-methoxy substituent enhancing the yield of the 

coupled product (72% for 23 and 52% for 22) and completely regulating face-stereoselectivity. 

Unfortunately, radical additions to acceptors possessing electron-donating alkyl groups at the α-

position were much less successful under these conditions. Benzyl methacrylate coupled with 3a 

to provide product 27 in only 41% yield, whereas no product was detected in the coupling of 3a 

with methacrylonitrile.22 

It is well known that alkoxycarbonyl radicals decarboxylate many powers of ten more 

slowly than carboxy radicals,23,24 with the activation barrier decreasing with the stability of the 

carbon radical produced.25 In two cases, the alkoxycarbonyl radical (intermediate B of Scheme 

1) was trapped by the radical acceptor more rapidly than it underwent decarboxylation to 

generate the tertiary radical intermediate. Adamantyl N-phthalimidoyl oxalate (3f) when coupled 

with MVK gave g-ketoester 29 and product 30 of trapping the adamantyl radical in a 3:1 ratio (eq 

3). Trapping of the adamantyl oxycarbonyl radical by MVK to give 29 as the major product is a 

reflection of the higher energy of the non-planar tertiary adamantyl radical than the tertiary 

radicals generated in the reactions reported in Table 5. In the second example illustrated in 

Scheme 2, it is the high rate of 5-exo radical cyclizations (D ® E) that results in capture of the 

intermediate alkoxycarbonyl radical to yield lactone 31 from phthalimidoyl oxalate 3k.26 
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Scheme 2. Trapping of an Alkoxycarbonyl Radical by a 5-Exo Cyclization 

 

 Further investigations of the reaction scope. To expand the scope of C–C bond-

formation using nucleophilic tertiary carbon radicals generated by visible-light photocatalysis, 

we examined the coupling of tertiary N-phthalimidoyl oxalates with several allylic and vinylic 

halide substrates to engage tertiary radical intermediates in addition-fragmentation reactions.27 

The coupling of oxalate 3a with α-(bromomethyl)styrene (32) was examined in detail (Table 6). 

Using the reaction conditions that we had optimized for the reductive coupling reactions, 

substitution product 33 was obtained in 60% yield (entry 1). To our surprise, minor product 34, 

arising from allylation of the intermediate alkoxycarbonyl radical, was isolated in 16% yield. 

Formation of this product must be the result of an unusually fast rate of addition of the 

alkoxycarbonyl radical to α-(bromomethyl)styrene (32). Attempted reactions in the absence of 

light (entry 2) or the Hantzsch ester (entry 3) gave no product formation or only traces of the 

coupled product. The photocatalyst also appears to be essential to achieve useful yields (entry 4). 

Stopping the reaction after 2 h led to incomplete conversion and lower yields (entries 5 and 6). It 

is also advantageous to use an excess of the oxalate (1.5 equiv), since reactions in which an 

excess of acceptor was present gave lower overall yields (entries 7–9). Finally, the additive i-
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Pr2NEt•HBF4 has no influence on the outcome of the reaction of 3a with α-

(bromomethyl)styrene (32) (entry 10). 

Table 6. Optimization and Control Experiments for the Reaction of N-phthalimidoyl 

Oxalate 3a with α-(Bromomethyl)styrene (32). 

 

Entry Modification Yield of 33 
(%)a 

Yield of 
34 (%)a 

1 none 60 16 

2 no light  NDb NDb 

3 no Hantzsch ester 4 traces ND 

4 no photocatalyst 
(18 h) 37 7 

5 no photocatalyst 
(2 h) 24 3 

6 reaction time of 2 h 47 9 

7 oxalate (1 equiv) 48 8 

8 oxalate (1.1 equiv) 50 9 

9 
oxalate (1 equiv) 

acceptor 
(1.5 equiv) 

49 16 

10 i-Pr2NEt•HBF4 
(1 equiv) 59 16 

aIsolated yield after silica gel chromatography. bThese products were formed when the light was turned on after 18 
h. ND = not detected. 

 With optimized reaction conditions in hand, the coupling of tert-alkyl N-phthalimidoyl 

oxalate 3a with three additional allylic halides and two vinylic halides was surveyed (Table 7). 

Methyl 2-(bromomethyl)acrylate (35) coupled with 3a in 69% yield (entry 1). However, the 

reaction with the chlorine analog 37 provided no coupled product (entry 2). In lower yield, 

Ru(bpy)3(PF6)2 (1.5 mol%)
Hantzsch ester 4 (1.5 equiv)

1:1 THF/CH2Cl2, rt, 18 h
blue LEDs

32
(1 equiv)

3a
(1.5 equiv)

Ph
Br

Me
Ph

33

Ph

O

O
Me

34

+
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methyl 3-bromoacrylate (38) gave methyl (E)-3-(1-methylcyclohexyl)acrylate (39) with high E 

stereoselectivity (entry 3). a-(Chloromethyl)styrene (40) and b-bromostyrene (41) also reacted 

successfully with N-phthalimidoyl oxalate 3a, albeit in yields of only 47% and 19%, respectively 

(entries 4 and 5). The efficiency of vinylic substitution reactions was enhanced by the use of 5 

equiv of the radical acceptor (entries 3 and 5). Allylic substitution products 36 and 33 are 

potentially good radical acceptors themselves, nonetheless products resulting from a second 

addition of the tertiary radical were not observed. We attribute this selectivity to the steric 

shielding provided by the quaternary carbon fragment in these products. Furthermore, products 

resulting from the addition of the intermediate alkoxycarbonyl radical to the acceptor were not 

detected with any substrate other than a-(bromomethyl)styrene (32).  

Table 7. Visible-Light Photocatalytic Allylic and Vinylic Substitution Reactions of N-

phthalimidoyl Oxalate 3aa  

 

Entry Acceptor Product Yield 
(%)b 

1 

  

69 

2 

  

ND 

3 
  

35c 

(E/Z > 
20:1) 

4 

  

47 

36

Me
CO2Me

36

Me
CO2Me

39

Me
CO2Me

Me
Ph

33
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5 
  

19c 

(E/Z > 
20:1) 

6 
 

 

42 
(dr 1:1) 

aReaction conditions of Table 6, entry 1. bIsolated yield after silica gel chromatography (average of two 

experiments). c5 equiv of the acceptor and 1 equiv of the oxalate were used. ND = not detected. 

 
 The reaction of N-phthalimidoyl oxalate 3a with styrene (43) was also investigated (entry 

6). In this case, only product 44, resulting from recombination of two benzylic radical 

intermediates, was formed in 42% as a 1:1 mixture of stereoisomers.28 Efforts to capture the 

benzylic radical in different fashions by modifying the reaction conditions or by adding common 

hydrogen atom transfer reagents such as Bu3SnH, Et3SiH, Ph3SiH, and PhSH were 

unsuccessful.29 As expected, couplings of adamantyl N-phthalimidoyl oxalate (3f) and 

homoallylic N-phthalimidoyl oxalate 3k with α-(bromomethyl)styrene (32) resulted in the first 

case in predominant formation of ester 45 (eq 4) and in the latter of g-butyrolactone 47 (eq 5). 

 

Radical coupling in the absence of Ru(bpy)32+. To pursue whether the reductive 

coupling reaction in the absence of the photocatalyst could be a suitable method, we repeated 

four of the reductive radical coupling reactions reported earlier with omission of the 
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photocatalyst. In all cases the yield of the coupled product was lower than that obtained using the 

photocatalyst (compare results in Tables 2 and 8). Useful yields of products after 18 h were 

obtained in the coupling of two oxalates with MVK: formation of product 14 in 78% yield and 5 

in 67% yield. In general, the conversion to coupled products was sluggish and yields were 

inconsistent in the absence of the photocatalyst.  

 

Table 8. Coupling of N-Phthalimidoyl Oxalates with Conjugate Acceptors in the Presence 

of Visible Light and Absence of a Photocatalyst 

 

 

 

To further investigate the influence of the photocatalyst, addition-fragmentation reactions 

were also carried out in the absence of Ru(bpy)3(PF6)2 (Table 9). Using five different acceptors, 
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allylic substitution products were formed in yields approximately half of that (47–62%) realized 

in the presence of the photocatalyst.30  

Table 9. Products and Yields Obtained in Reactions of N-phthalimidoyl Oxalate 3a With 

Allylic and Vinylic Halides in the Presence of Visible Light and Absence of a Photocatalysta 

 

aReaction conditions of Table 8, but no i-Pr2NEt•HBF4; isolated yield after silica gel chromatography. bEster 34 is 

formed in 7% yield. c5 equiv of the acceptor and 1 equiv of the oxalate were used.  

 
Similar radical coupling reactions of (N-acyloxy)phthalimides carried out in the absence 

of a photocatalyst and a discussion of possible mechanisms of such reactions of tertiary radicals 

generated from both N-phthalimidoyl oxalate and (N-acyloxy)phthalimide precursors is provided 

in the accompanying article.12 

 Mechanistic investigations and discussion. The results of our exploratory studies and 

substantial precedent are consistent with the generation of tertiary carbon radicals from the 

visible-light photoredox catalyzed fragmentation of both tertiary N-phthalimidoyl oxalates and 

(N-acyloxy)phthalimide derivatives of tertiary carboxylic acids. With the oxalate precursors, the 

slower rate of the second decarboxylation step (B ® C, Scheme 1) can lead to the 

alkoxycarbonyl radical being intercepted by competing fast intramolecular or bimolecular 

reactions. In the reductive coupling reactions discussed herein, the radical intermediate F 

produced upon addition of a tertiary radical to an alkene could in principle be terminated by 
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hydrogen-atom transfer (path A, Scheme 3) or by a two-step process involving single-electron 

reduction to give the resonance-stabilized anion G followed by protonation to give product H 

(path B).  

Scheme 3. Two Potential Termination Pathways 

 

 The role of the Hantzsch dihydropyridine 4 in the termination mechanism is readily 

examined by using its 4,4-dideuterio derivative 48.31 The coupling of N-phthalimidoyl oxalate 3a 

with MVK under our standard conditions using Hantzsch dihydropyridine 48 gave coupled 

product 5 with nearly quantitative incorporation of deuterium at carbon 2 of the ketone side 

chain (eq 6).32 This result is consistent with hydrogen atom-transfer being the predominant 

termination step in reductive coupling of tertiary N-phthalimidoyl oxalates.33 

 

To further explore whether hydrogen-atom transfer or single-electron reduction is involved in the 

termination steps of radical coupling reactions of N-phthalimidoyl oxalate precursors, we 

examined coupling reactions of N-phthalimidoyl oxalate 3a with an a,b-unsaturated nitrile 
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containing a leaving group at the allylic a' position (eq 7). The reaction of 3a with allylic 

benzoate 49a (X = OBz) under our optimized reaction conditions provided addition products 50 

in 50% yield, with the depicted isomer being formed predominantly. No trace of the allylic 

substitution product 51 was seen. In contrast, the coupling of 3a under identical conditions with 

allylic bromide 49b (X = Br) gave exclusively allylic substitution product 51 in 56% yield. Both 

results are fully consistent with the absence of single-electron reduction of the radical 

intermediate I, which undergoes b-scission only when the leaving group is bromide (Scheme 4).  

 

Scheme 4.  Potential Homolytic Termination Pathways of the Carbon Radical 

Intermediate Generated Upon Coupling in the Absence of Single-Electron Transfer  

 

 The overall mechanism that we suggest for the reductive coupling reactions of tertiary N-

phthalimidoyl oxalates is summarized in Scheme 5. Visible-light excitation of Ru(bpy)32+ 
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provides access to the excited state Ru(bpy)32+*. This complex is quenched by Hantzsch ester 4, 

which produces radical cation L and the strongly reducing Ru(bpy)3+. Single-electron transfer 

from Ru(bpy)3+ to the substrate oxalate then occurs to form radical anion A and regenerate the 

ground-state photocatalyst. Alternatively, electron transfer to the oxalate substrate could be 

accomplished by the strongly reducing dihydropyridine radical M, formed by deprotonation of L 

at C4.34 Homolytic fragmentation of A next occurs to release phthalimide anion, CO2, and 

alkoxycarbonyl radical intermediate B; alternatively, fragmentation of the N–O bond occurs 

subsequent to proton donation to the phthalimide fragment by pyridinium acid P.35 A second 

slower decarboxylation then ensues, forming tertiary carbon radical intermediate C. Addition of 

this radical to an acceptor provides stabilized radical N, which abstracts a hydrogen atom from 

Hantzsch ester 4.36 This event forms the product O and regenerates intermediate M, which is 

capable of propagating the reaction as a radical chain carrier. In the absence of a photoredox 

catalyst, we propose that a radical chain mechanism mediated by Hantzsch ester 4 is operative. 

This sequence is discussed in more detail in the accompanying article.12 

Scheme 5. Proposed Mechanism for Reductive Coupling of N-Phthalimidoyl Oxalates with 

MVK in the Presence of the Ru(bpy)32+ 
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CONCLUSION 

A new method for directly transforming a tertiary alcohol to a quaternary carbon was 

developed. In this method, the tertiary alcohol is first acylated to give a tert-alkyl N-

phthalimidoyl oxalate derivative, which in the presence of visible light, 1.5 mol% 

Ru(bpy)3(PF6)2, and Hantzsch dihydropyridine 4 fragments at room temperature to form the 

corresponding tertiary carbon radical. Nucleophilic tertiary radicals generated in this way add to 

electrophilic alkenes to give reduced products in good to moderate yield, and react with allylic 

and vinylic bromides to provide allylation and vinylation products in moderate yield. With chiral 

precursors, stereoselection in forming a new quaternary stereocenter can be high (>20:1). This 

method offers advantages over the original Barton method for forming tertiary radicals from 

tertiary alcohols,5 as a result of the higher stability of the intermediate mixed oxalate diester in 

the present method.37 
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A mechanism for the generating tertiary carbon radical from tert-alkyl N-phthalimidoyl 

oxalates is proposed that is based on the earlier pioneering investigations of Okada8 and Barton 

(Scheme 5).5 The high incorporation of deuterium in a coupled product when using 4,4-

dideuterio Hantzsch ester 48 (eq 6), and the observation that allylic substitution products are 

formed from allylic bromide but not allylic ester reactants (eq 7), are consistent with the 

reductive radical coupling of tert-alkyl N-phthalimidoyl oxalates with electron-deficient alkenes 

being terminated by hydrogen-atom transfer. The importance of the reaction conditions in 

determining the fate of the coupled radical intermediate is discussed in detail in the 

accompanying article.12 In the absence of the photocatalyst, a slower background reaction has 

been identified that appears to be mediated by Hantzsch ester 4. This sequence is also considered 

in more detail in the accompanying article.12 

EXPERIMENTAL SECTION   

Materials and Methods. Unless stated otherwise, reactions were conducted in oven-dried 

glassware under an atmosphere of nitrogen or argon using anhydrous solvents (either freshly 

distilled or passed through activated alumina columns). For all radical coupling reactions, THF 

and CH2Cl2 were sparged with argon for 5 min prior to use. All commercially obtained reagents 

were used as received. Ru(bpy)3(PF6)2 and other photocatalysts were obtained from Sigma 

Aldrich. Methyl vinyl ketone (MVK), acrylonitrile, benzyl methacrylate and methacrylonitrile 

were distilled from neat solutions prior to use. All reaction components Hantzsch ester 4,38 4,4-

d2-Hantzsch ester 48,27a 4-Me Hantzsch ester 6,39 4-Ph Hantzsch ester 7,39 2-Ph-benzothiazoline 

8,40 N,N’-dimethyl-2-phenylbenzimidazoline 9,19b N-methylacridane 10,41, i-Pr2NEt•HBF4,14 

methyl 2-(bromomethyl)acrylate (35),42 methyl 2-(chloromethyl)acrylate (37),43 (E)-methyl 3-

bromoacrylate (38),44 α-(chloromethyl)styrene (40),45 α-(bromomethyl)styrene (32)45 were 
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prepared according to literature procedures. Usually one representative coupling reaction and 

yield of the product is described in detail; isolated yields reported in the Results section are the 

average yields obtained from duplicate experiments. Reaction temperatures were controlled 

using a temperature modulator, and unless stated otherwise, reactions were performed at room 

temperature (rt, approximately 23 °C). Thin-layer chromatography (TLC) was conducted with E. 

Merck silica gel 60 F254 pre-coated plates, (0.25 mm) and visualized by exposure to UV light 

(254 nm) or by anisaldehyde, ceric ammonium molybdate, iodine, and potassium permanganate 

staining. EMD silica gel 60 (particle size 0.040–0.063 mm) was used for flash column 

chromatography. 1H NMR spectra were recorded at 500 or 600 MHz and are reported relative to 

deuterated solvent signals. Data for 1H NMR spectra are reported as follows: chemical shift (d 

ppm), multiplicity, coupling constant (Hz) and integration. 13C NMR spectra were recorded at 

125 or 150 MHz, and chemical shifts reported in ppm. IR spectra were recorded on a FT-IR 

spectrometer and are reported in terms of frequency of absorption (cm–1). Blue LEDs (30 cm, 1 

watt) were purchased from http://www.creativelightings.com (product code CL-FRS5050-

12WP-12V) and powered by 8 AA batteries.  

4-(1-Methylcyclohexyl)butan-2-one (5). (Table 2, entry 1 and general procedure for 

optimization experiments, photocatalyst screen (Table 3) and reductant screen (Table 4)). 

A 1-dram vial was charged with oxalate 3a (100 mg, 0.30 mmol, 1.5 equiv), Ru(bpy)3(PF6)2 

(3 mg, 3.0 μmol, 0.015 equiv), Hantzsch ester 4 (76 mg, 0.30 mmol, 1.5 equiv), i-Pr2NEt•HBF4 

(44 mg, 0.20 mmol, 1 equiv) and a magnetic stir bar under argon. After sequential addition of 

CH2Cl2, (1 mL, sparged with Ar for 5 min), THF (1 mL, sparged with Ar for 5 min), and methyl 

vinyl ketone (17 μL, 0.20 mmol, 1 equiv), the vial was capped and placed in the center of a 

30 cm loop of blue LEDs. The reaction mixture was stirred for 18 h, after which time it was 
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concentrated under reduced pressure. For all experiments reported in Table 2, the crude residue 

was purified by silica gel chromatography (3% EtOAc/hexanes) to yield ketone 5 as a colorless 

oil. For all experiments reported in Tables 3 and 4, the yield of product obtained was determined 

by comparison of diagnostic 1H NMR signals in the crude reaction mixture to those of an internal 

standard (1,4-dimethoxybenzene). Characterization data for 5 matched those previously 

reported.3b 

(±)-Benzyl 2-methyl-3-(1-methylcyclohexyl)propanoate (27). Following the general procedure 

for optimization experiments, oxalate 3a (100 mg, 0.30 mmol, 1.5 equiv), Ru(bpy)3(PF6)2 (3 mg, 

3.0 μmol, 0.015 equiv), Hantzsch ester 4 (76 mg, 0.30 mmol, 1.5 equiv), i-Pr2NEt•HBF4 (44 mg, 

0.20 mmol, 1 equiv) and benzyl methacrylate (34 μL, 0.20 mmol, 1 equiv) in a mixture of 

CH2Cl2, (1 mL, sparged with Ar for 5 min) and THF (1 mL, sparged with Ar for 5 min) gave a 

crude product mixture. The yield of 27 obtained (41%) was determined by comparison of 

diagnostic 1H NMR signals to those of an internal standard (1,4-dimethoxybenzene). An 

analytically pure sample was obtained by silica gel chromatography (2.5% EtOAc/hexanes) to 

provide 27 as a colorless oil. Rf 0.57 (10% EtOAc/hexanes); 1H NMR (600 MHz, CDCl3): δ 

7.38–7.30 (m, 5H), 5.12–5.07 (m, 2H), 2.61–2.55 (m, 1H), 1.90 (dd, J = 14.2, 9.0, 1H), 1.44–

1.31 (m, 5H), 1.28–1.15 (m, 9H), 0.83 (s, 3H); 13C NMR (125 MHz, CDCl3): δ 178.0, 136.3, 

128.6, 128.4, 128.2, 66.3, 38.1, 37.7, 35.4, 33.3, 26.5, 22.11, 22.10, 20.7; IR (thin film): 2925, 

2850, 1736, 1455, 1145 cm-1; HRMS-ESI (m/z) [M + Na]+ calculated for C18H26O2Na 297.1830, 

found 297.1835. 

(3-(1-Methylcyclohexyl)prop-1-en-2-yl)benzene (33) and 1-methylcyclohexyl 3-phenylbut-3-

enoate (34). (Table 6, entry 1, and general procedure for allylic and vinylic substitution). A 

1-dram vial was charged with oxalate 3a (50 mg, 0.15 mmol, 1.5 equiv), Ru(bpy)3(PF6)2 (1 mg, 
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1.5 μmol, 0.015 equiv), Hantzsch ester 4 (38 mg, 0.15 mmol, 1.5 equiv), and a magnetic stir bar 

under argon. After sequential addition of CH2Cl2, (0.5 mL, sparged with Ar for 5 min), THF 

(0.5 mL, sparged with Ar for 5 min) and α-(bromomethyl)styrene (32, 15 μL, 0.10 mmol, 

1 equiv), the vial was capped and placed in the center of a 30 cm loop of blue LEDs. The 

reaction mixture was stirred for 18 h, after which it was concentrated under reduced pressure. 

The crude residue was purified by silica gel chromatography (0-5% diethyl ether/pentane) to 

provide 33 (13 mg, 0.062 mmol, 62%) and 34 (3.4 mg, 0.013 mmol, 13%) as colorless oils. 

Data for 33: Rf 0.74 (100% pentane); 1H NMR (500 MHz, CDCl3): δ 7.38 (d, J = 7.5, 2H), 7.30 

(t, J = 7.4, 2H), 7.25-7.22 (m, 1H), 5.23 (d, J = 1.7, 1H), 5.03 (bs, 1H), 2.49 (s, 2H), 1.45-1.32 

(m, 5H), 1.27-1.12 (m, 5H), 0.74 (s, 3H); 13C NMR (125 MHz, CDCl3): δ 147.3, 144.3, 128.2, 

127.0, 126.7, 116.7, 38.4, 34.3, 26.5, 22.3; IR (thin film): 3079, 2924, 2855, 1622, 1491, 1445 

cm-1; HRMS-CI (m/z) [M + H]+ calculated for C16H22H 215.1800, found, 215.1798. 

Data for 34: Rf 0.29 (5% EtOAc/hexanes); 1H NMR (500 MHz, CDCl3): δ 7.46 (d, J = 7.8, 2H), 

7.32 (t, J = 7.7, 2H), 7.29–7.26 (m, 1H), 5.52 (s, 1H), 5.23 (s, 1H), 3.47 (s, 2H), 2.07–2.02 (m, 

2H), 1.46–1.40 (m, 1H), 1.38–1.33 (m, 4H), 1.31–1.22 (m, 5H), 1.20-1.12 (m, 1H); 13C NMR 

(125 MHz, CDCl3): δ 170.6, 141.7, 140.1, 128.4, 127.8, 126.1, 116.0, 82.5, 43.0, 36.6, 25.4, 

21.9; IR (thin film): 2932, 2860, 1726, 1447, 1243, 1146 cm-1; HRMS-CI (m/z) [M + NH4]+ 

calculated for C17H22O2NH4 276.1964, found 276.1956. 

Methyl 2-((1-methylcyclohexyl)methyl)acrylate (36). In an identical fashion, oxalate 3a 

(50 mg, 0.15 mmol, 1.5 equiv) was coupled with methyl 2-(bromomethyl)acrylate (35, 12 μL, 

0.10 mmol, 1 equiv) to give a crude residue, which was purified by silica gel chromatography 

(3% diethyl ether/pentane) to provide 36 (14 mg, 0.069 mmol, 70%) as a colorless oil. Rf 0.78 



 27 

(10% diethyl ether/pentane); 1H NMR (500 MHz, CDCl3): δ 6.16 (d, J = 1.3, 1H), 5.44 (bs, 1H), 

3.73 (s, 3H), 2.30 (s, 2H), 1.50-1.38 (m, 5H), 1.26-1.21 (m, 5H), 0.81 (s, 3H); 13C NMR (125 

MHz, CDCl3): δ 169.1, 138.4, 127.4, 52.0, 37.5, 34.0, 26.5, 22.2; IR (thin film): 2926, 2850, 

2359, 2342, 1726, 1457, 1445, 1201, 1154 cm-1; HRMS-CI (m/z) [M + NH4]+ calculated for 

C12H20NO2NH4 214.1807, found, 214.1813. 

Methyl (E)-3-(1-methylcyclohexyl)acrylate (39). In an identical fashion, oxalate 3a (50 mg, 

0.15 mmol, 1.5 equiv) was coupled with (E)-methyl 3-bromoacrylate (38, 72 μL, 0.75 mmol, 

5 equiv) to give a crude residue, which was purified by silica gel chromatography (3% diethyl 

ether/pentane) to provide 39 (11 mg, 0.058 mmol, 39%) as a colorless oil. Rf 0.51 (10% diethyl 

ether/pentane); 1H NMR (500 MHz, CDCl3): δ 6.96 (d, J = 16.2, 1H), 5.77 (d, J = 16.1, 1H), 

3.73 (s, 3H), 1.55-1.31 (m, 10H), 1.02 (s, 3H); 13C NMR (125 MHz, CDCl3): δ 167.9, 159.1, 

117.7, 51.6, 37.2, 26.2, 22.4; IR (thin film): 2929, 2853, 1727, 1650, 1435, 1310, 1274, 1171 cm-

1; HRMS-CI (m/z) [M + NH4]+ calculated for C11H18O2NH4 200.1651, found 200.1648. 

Preparation of 33 from α-(chloromethyl)styrene) (40). In an identical fashion, oxalate 3a 

(50 mg, 0.15 mmol, 1.5 equiv) was coupled with α-(chloromethyl)styrene (40, 14 μL, 

0.10 mmol, 1 equiv) to give 33 (10 mg, 0.048 mmol, 48%). 

(E)-(2-(1-Methylcyclohexyl)vinyl)benzene (42). In an identical fashion, oxalate 3a (50 mg, 

0.15 mmol, 1.5 equiv) was coupled with β-bromostyrene (41, 97 μL, 0.75 mmol, 5 equiv) to give 

a crude residue, which was purified by silica gel chromatography (100% pentane) to provide 42 

(6 mg, 0.029 mmol, 19%) as a colorless oil. Rf 0.78 (100% pentane); 1H NMR (500 MHz, 

CDCl3): δ 7.37 (d, J = 7.1, 2H), 7.32-7.28 (m, 2H), 7.21-7.17 (m, 1H), 6.32 (d, J = 16.5, 1H), 

6.22 (d, J = 16.3, 1H), 1.62-1.58 (m, 1H), 1.55-1.49 (m, 5H), 1.44-1.35 (m, 4H), 1.07 (s, 3H); 
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13C NMR (125 MHz, CDCl3): δ 128.6, 126.8, 126.1, 38.1, 26.5, 22.6; IR (thin film): 2926, 2855, 

1491, 1447, 1260 cm-1; HRMS-CI (m/z) [M]+ calculated for C15H20 200.1565, found, 200.1558. 

(±)-(1,4-Bis(1-methylcyclohexyl)butane-2,3-diyl)dibenzene (44). A 1-dram vial was charged 

with oxalate 3a (50 mg, 0.15 mmol, 1.5 equiv), Ru(bpy)3(PF6)2 (1 mg, 1.5 μmol, 0.015 equiv), 

Hantzsch ester 4 (38 mg, 0.15 mmol, 1.5 equiv), and a magnetic stir bar under argon. After 

sequential addition of CH2Cl2, (0.5 mL, sparged with Ar for 5 min), THF (0.5 mL, sparged with 

Ar for 5 min) and styrene (43, 12 μL, 0.10 mmol, 1 equiv), the vial was capped and placed in the 

center of a 30 cm loop of blue LEDs. The reaction mixture was stirred for 18 h, after which it 

was concentrated under reduced pressure. The crude residue was purified by silica gel 

chromatography (100% pentane) to provide 44 (9 mg, 0.022 mmol, 44%), a 1:1 mixture of 

stereoisomers, as a colorless solid. 

Data for diastereomer 1: Rf 0.66 (100% hexanes); mp: 90-92 °C; 1H NMR (500 MHz, CDCl3): δ 

7.25-7.21 (m, 4H), 7.16 (d, J = 7.3, 2H), 7.12 (d, J = 7.4, 4H), 2.72 (d, J = 9.0, 2H), 1.58-1.53 

(m, 2H), 1.39 (d, J = 14.1, 2H), 1.26-1.19 (m, 6H), 1.14-1.08 (m, 5H), 1.05-0.98 (m, 5H), 0.83 

(bs, 4H), 0.46 (s, 6H); 13C NMR (125 MHz, CDCl3): δ 146.7, 129.5, 127.9, 125.8, 49.2, 38.8, 

38.4, 33.4, 29.9, 26.4, 22.1, 21.9; IR (thin film): 2924, 2854, 1494, 1452 cm-1; HRMS-CI (m/z) 

[M + NH4]+ calculated for C30H46N 420.3630, found, 420.3647. 

Data for diastereomer 2: Rf 0.50 (100% hexanes); mp: 87-89 °C; 1H NMR (500 MHz, CDCl3): δ 

7.10-7.07 (m, 4H), 7.04-7.00 (m, 2H), 6.95 (d, J = 7.1, 4H), 2.82 (d, J = 7.3, 2H), 1.79-1.70 (m, 

4H), 1.37-1.32 (m, 6H), 1.22-1.17 (m, 10H), 1.00-0.95 (m, 4H), 0.63 (s, 6H); 13C NMR (125 

MHz, CDCl3): δ 145.4, 129.7, 127.3, 125.4, 49.1, 38.6, 33.8, 29.9, 26.6, 22.2, 22.1; IR (thin 
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film): 2924, 2858, 1494, 1452 cm-1; HRMS-CI (m/z) [M + NH4]+ calculated for C30H46N 

420.3630, found, 420.3627. 

Adamantan-1-yl 3-phenylbut-3-enoate (45) and 1-(2-phenylallyl)adamantane (46). In an 

identical fashion, oxalate 3f (55 mg, 0.15 mmol, 1.5 equiv) was coupled with α-

(bromomethyl)styrene (32, 15 μL, 0.10 mmol, 1 equiv), to give a crude residue, which was 

purified by silica gel chromatography (0-3% diethyl ether/pentane) to provide 45 (20 mg, 

0.066 mmol, 66%) and 46 (1 mg, 5.0 µmol, 5%) as colorless solids. 

Data for 45: Rf 0.36 (4% EtOAc/hexanes); mp 47–49 °C; 1H NMR (500 MHz, CDCl3): δ 7.43 (d, 

J = 7.1, 2H), 7.32 (t, J = 7.6, 2H), 7.29–7.25 (m, 1H), 5.50 (s, 1H), 5.21 (s, 1H), 3.43 (s, 2H), 

2.11 (s, 3H), 2.00 (d, J = 3.1, 6H), 1.61 (s, 6H); 13C NMR (125 MHz, CDCl3): δ 170.5, 141.8, 

140.3, 128.4, 127.7, 126.0, 115.8, 80.9, 42.9, 41.2, 36.3, 30.9; IR (thin film): 2911, 2853, 1727, 

1455, 1342, 1252, 1165, 1057 cm-1; HRMS-CI (m/z) [M + NH4]+ calculated for C20H24O2NH4 

314.2120, found 314.2130. 

Data for 46: Rf 0.72 (100% hexanes); mp 39–41 °C; 1H NMR (500 MHz, CDCl3): δ 7.40 (d, J = 

7.1, 2H), 7.30 (t, J = 7.4, 2H), 7.25–7.21 (m, 1H), 5.26 (d, J = 2.0, 1H), 4.97 (s, 1H), 2.34 (s, 

2H), 1.86 (s, 3H), 1.62 (d, J = 12.1, 3H), 1.53 (d, J = 13.3, 3H), 1.38 (s, 6H); 13C NMR 

(125 MHz, CDCl3): δ 146.1, 144.0, 128.2, 127.0, 126.6, 116.3, 49.9, 43.1, 37.1, 33.8, 28.9; IR 

(thin film): 2901, 2846, 1450 cm-1; HRMS-CI (m/z) [M]+ calculated for C19H24 252.1878, found 

252.1870. 

3,5,5-Trimethyl-3-(3-phenylbut-3-en-1-yl)dihydrofuran-2(3H)-one (47). In an identical 

fashion, oxalate 3k (50 mg, 0.15 mmol, 1.5 equiv) was coupled with α-(bromomethyl)styrene 

(32, 15 μL, 0.10 mmol, 1 equiv). After 18 h, the reaction mixture was diluted with CH2Cl2. The 
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resulting organic phase was washed with 4 M HCl (3 x 10 mL) and 2 N NaOH (3 x 10 mL), 

dried over Na2SO4, and evaporated under reduced pressure. The crude residue was purified by 

silica gel chromatography (10% acetone/hexanes) to provide 47 (12 mg, 0.047 mmol, 47%) as a 

colorless oil. Rf 0.53 (10% acetone/hexanes); 1H NMR (500 MHz, CDCl3): δ 7.38 (d, J = 7.1, 

2H), 7.33 (t, J = 7.5, 2H), 7.29–7.27 (m, 1H), 5.29 (s, 1H), 5.09 (s, 1H), 2.67–2.60 (m, 1H), 2.48-

2.41 (m, 1H), 2.15 (d, J = 13.3, 1H),1.95 (d, J = 13.5, 1H), 1.77–1.72 (m, 2H), 1.46 (s, 3H), 1.42 

(s, 3H), 1.35 (s, 3H); 13C NMR (125 MHz, CDCl3): δ 181.3, 147.8, 140.9, 128.6, 127.7, 126.2, 

112.9, 81.1, 46.7, 45.1, 38.4, 30.6, 30.3, 30.2, 25.9; IR (thin film): 2974, 2934, 2874, 1758, 1455, 

1376, 1268, 1187, 1090 cm-1; HRMS-CI (m/z) [M + NH4]+ calculated for C17H22O2NH4 

276.1964, found 276.1962. 

General procedure for coupling reactions in the absence of a photocatalyst (Tables 8 and 

9). Preparation of 5. A 1-dram vial was charged with oxalate 3a (100 mg, 0.30 mmol, 

1.5 equiv), Hantzsch ester 4 (76 mg, 0.30 mmol, 1.5 equiv), i-Pr2NEt•HBF4 (44 mg, 0.20 mmol, 

1 equiv) and a magnetic stir bar under argon. After sequential addition of CH2Cl2, (1 mL, 

sparged with Ar for 5 min), THF (1 mL, sparged with Ar for 5 min), and methyl vinyl ketone 

(17 μL, 0.20 mmol, 1 equiv), the vial was capped and placed in the center of a 30 cm loop of 

blue LEDs. The reaction mixture was stirred for 18 h, after which time it was concentrated under 

reduced pressure. The crude residue was purified by silica gel chromatography (3% 

EtOAc/hexanes) to yield ketone 5 (23 mg, 0.14 mmol, 67%) as a colorless oil. Characterization 

data for 5 matched those previously reported.3b 

Deuterium incorporation in product 5 using 4,4-d2-Hantzsch ester 48. A 1-dram vial was 

charged with oxalate 3a (100 mg, 0.30 mmol, 1.5 equiv), Ru(bpy)3(PF6)2 (3 mg, 3.0 μmol, 

0.015 equiv), 4,4-d2-Hantzsch ester 48 (77 mg, 0.30 mmol, 1.5 equiv), i-Pr2NEt•HBF4 (44 mg, 
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0.20 mmol, 1 equiv) and a magnetic stir bar under argon. After sequential addition of CH2Cl2, 

(1 mL, sparged with Ar for 5 min), THF (1 mL, sparged with Ar for 5 min), and methyl vinyl 

ketone (17 μL, 0.20 mmol, 1 equiv), the vial was capped and placed in the center of a 30 cm loop 

of blue LEDs. The reaction mixture was stirred for 18 h, after which time it was concentrated 

under reduced pressure. Purification of the crude residue by silica gel chromatography (2.5% 

EtOAc/hexanes) provided ketone 5 (13 mg, 0.070 mmol, 37%)46 as a colorless oil. Integration of 

all 1H NMR signals determined the deuterium incorporation to be >95%. Rf 0.43 (10% 

EtOAc/hexanes); 1H NMR (600 MHz, CDCl3): δ 2.39–2.30 (m, 1H), 2.15 (s, 3H), 1.49 (d, J = 

8.4, 2 H), 1.46–1.38 (m, 5H), 1.33–1.20 (m, 5H), 0.83 (s, 3H); 13C NMR (125 MHz, CDCl3): δ 

210.2, 38.1 (t, J = 20.2), 37.7, 32.3, 30.0, 29.8, 26.5, 24.7, 22.1; IR (thin film): 2925, 2853, 1716, 

1356 cm-1; HRMS-ESI (m/z) [M + Na]+ calculated for C11H19DONa 192.1475, found 192.1484. 

2-Cyanocyclopent-2-en-1-yl benzoate (49a). A round bottom flask was charged with 5-

hydroxycyclopent1-ene 1-carbonitrile47 (500 mg, 4.58 mmol, 1 equiv) and Et3N (1.3 mL, 

9.17 mmol, 2 equiv), DMAP (56 mg, 0.45 mmol, 0.1 equiv) and THF (15 mL) were added 

sequentially under argon. The solution was cooled to 0 °C and benzoyl chloride (1.1 mL, 

9.17 mmol, 2 equiv) was added dropwise. The cloudy suspension was stirred while warming to rt 

over 18 h. After this time, the reaction mixture was cooled to 0 °C and quenched with saturated 

aqueous NH4Cl solution (10 mL). The contents of the flask were transferred to a separatory 

funnel, diluted with Et2O (50 mL) and the layers separated. The organic layer was washed with 

saturated aqueous NH4Cl solution (3 x 40 mL), aqueous 1 N NaOH (3 x 40 mL), and brine (2 x 

40 mL). The organic layer was dried over MgSO4, filtered and concentrated under reduced 

pressure. The crude residue was purified by silica gel chromatography (10-20% EtOAc/hexanes) 

to provide 49a (862 mg, 4.04 mmol, 88%) as a colorless oil that solidified after storage at –20 
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°C. Rf 0.14 (10% EtOAc/hexanes); 1H NMR (500 MHz, CDCl3): δ 8.04 (d, J = 7.9, 2H), 7.57 (t, 

J = 7.9, 1 H), 7.44 (t, J= 7.9, 2H), 7.03–7.00 (m, 1H), 6.08–6.04 (m, 1H), 2.81–2.73 (m, 1H), 

2.64–2.56 (m, 2H), 2.09–2.02 (m, 1H); 13C NMR (125 MHz, CDCl3): δ 165.8, 154.3, 133.3, 

129.7, 129.5, 128.4, 115.1, 114.9, 79.3, 32.1, 30.6; IR (thin film): 3069, 2950, 2226, 1972, 1915, 

1720 cm-1; HRMS-ESI (m/z) [M + Na]+ calculated for C13H11NO2Na 236.0687, found 236.0678.  

Preparation of reductive-coupling product 50. A 1-dram vial was charged with oxalate 3a 

(100 mg, 0.30 mmol, 1.5 equiv), Ru(bpy)3(PF6)2 (3 mg, 3.0 μmol, 0.015 equiv), Hantzsch ester 4 

(76 mg, 0.30 mmol, 1.5 equiv), i-Pr2NEt•HBF4 (44 mg, 0.20 mmol, 1 equiv) and a magnetic stir 

bar under argon. After sequential addition of CH2Cl2 (1 mL, sparged with Ar for 5 min), THF 

(1 mL, sparged with Ar for 5 min), and acceptor 49a (43 mg, 0.20 mmol, 1 equiv), the vial was 

capped and placed in the center of a 30 cm loop of blue LEDs. The reaction mixture was stirred 

for 18 h, after which time it was diluted with Et2O (30 mL) and transferred to a separatory 

funnel. The ether layer was washed with aqueous 4 N HCl (4 x 20 mL) and aqueous 2 N NaOH 

(3 x 20 mL) and was dried over MgSO4. The organic layer was filtered and concentrated under 

reduced pressure. The crude residue was subjected to silica gel chromatography (4% 

acetone/hexanes) to provide 50 (34 mg, 0.11 mmol, 55%, dr 8:2:1:1) as a colorless oil.  

Data for 50 (major diastereomer, 8:2:1:1): Rf 0.40 (10% EtOAc/hexanes); 1H NMR (600 MHz, 

CDCl3): δ 8.10 (d, J = 8.0, 2 H), 7.58 (t, J  = 7.4, 1 H), 7.45 (t, J = 8.0, 2H), 5.30 (app. q, J = 7.6, 

1H), 3.42–3.39 (m, 1H), 2.31–2.24 (m, 1H), 2.10–1.96 (m, 3H), 1.82–1.76 (m, 1H), 1.60–1.55 

(m, 2H), 1.53–1.45 (m, 6H), 1.31–1.22 (m, 2H), 1.14 (s, 3H); 13C NMR (125 MHz, CDCl3): δ 

166.2, 133.5, 130.0, 129.6, 128.6, 118.6, 74.4, 37.01, 37.0, 35.3, 34.5, 28.2, 26.2, 21.9, 21.62, 

21.61; IR (thin film): 2925, 2853, 1722, 1271 cm-1; HRMS-ESI (m/z) [M + Na]+ calculated for 

C20H25NO2Na 334.1783, found 334.1789.   
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Data for 50 (minor diastereomer, 8:2:1:1): Rf 0.44 (10% EtOAc/hexanes); 1H NMR (600 MHz, 

CDCl3): δ 8.00 (d, J = 8.1, 2H), 7.6 (t, J = 7.6, 1H), 7.46 (t, J = 7.6, 2H), 5.52–5.50 (m, 1H), 

3.08–3.05 (m, 1H), 2.53–2.46 (m, 1H), 2.25–2.19 (m, 1H), 1.96–1.78 (m, 3H), 1.60–1.45 (m, 

8H), 1.34–1.23 (m, 2H), 1.13 (s, 3H); 13C NMR (125 MHz, CDCl3): δ 165.6, 133.5, 129.8, 

129.7, 128.6, 119.9, 78.5, 37.5, 37.1, 36.9, 34.1, 30.6, 26.3, 23.1, 22.0, 21.7. 

5-Bromocyclopent-1-enecarbonitrile (49b). A round-bottom flask was charged with 5-

hydroxycyclopent1-ene 1-carbonitrile47 (500 mg, 4.58 mmol, 1 equiv) and Et2O (20 mL) and 

CBr4 (3.04 g, 9.17 mmol, 2 equiv) were added sequentially under argon. The solution was cooled 

to 0 °C and PPh3 (2.40 g, 9.17 mmol, 2 equiv) was added in one portion. The resulting 

heterogeneous mixture was warmed to rt and stirred for 2 h. After this time, the reaction mixture 

was filtered through a plug of Celite and the filtrate was concentrated under reduced pressure. 

The crude residue was purified by silica gel chromatography (10-15% EtOAc/hexanes) to yield 

49b (481 mg, 2.81 mmol, 61%) as a colorless oil. Rf 0.26 (10% EtOAc/hexanes); 1H NMR 

(500 MHz, CDCl3): δ 6.87–6.82 (m, 1H), 5.09–5.04 (m, 1H), 2.86–2.75 (m, 1H), 2.63–2.52 (m, 

2H), 2.50–2.42 (m, 1H); 13C NMR (125 MHz, CDCl3): δ 151.9, 119.1, 114.7, 53.1, 35.5, 32.3; 

IR (thin film): 2927, 2227, 1607, 1189, 1010 cm-1; HRMS-ESI (m/z) [M + Na]+ calculated for 

C6H6BrNNa 193.9581, found 193.9582. 

Preparation of allylated product 51. A 1-dram vial was charged with oxalate 3a (100 mg, 

0.30 mmol, 1.5 equiv), Ru(bpy)3(PF6)2 (3 mg, 3.0 μmol, 0.015 equiv), Hantzsch ester 4 (76 mg, 

0.30 mmol, 1.5 equiv), i-Pr2NEt•HBF4 (44 mg, 0.20 mmol, 1 equiv) and a magnetic stir bar 

under argon. After sequential addition of CH2Cl2 (1 mL, sparged with Ar for 5 min), THF (1 mL, 

sparged with Ar for 5 min), and acceptor 49b (43 mg, 0.20 mmol, 1 equiv), the vial was capped 

and placed in the center of a 30 cm loop of blue LEDs. The reaction mixture was stirred for 18 h, 
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after which time it was concentrated under reduced pressure. The crude residue was subjected to 

silica gel chromatography (4% acetone/hexanes) to provide 51 (22 mg, 0.11 mmol, 57%) as a 

colorless oil: Rf 0.47 (10% EtOAc/hexanes); 1H NMR (500 MHz, CDCl3): δ 6.79–6.76 (m, 1H), 

2.89–2.83 (m, 1H), 2.50–2.34 (m, 2H), 2.01–1.92 (m, 1H), 1.87–1.79 (m, 1H), 1.64–1.38 (m, 

7H), 1.36–1.18 (m, 3H), 0.88 (s, 3H);13C NMR (125 MHz, CDCl3): δ 152.4, 118.7, 116.7, 36.7, 

36.1, 36.0, 33.0, 26.3, 25.2, 22.0, 21.8 ; IR (thin film): 2926, 2853, 2215, 1459 cm-1; HRMS-ESI 

(m/z) [M + Na]+ calculated for C13H19NNa 212.1415, found 212.1405. 
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