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Abstract

Antificial grammar learning provides a principled
experimental framework to investigate the roles of similarity
and rule-induction mechanisms in category generalisation.
Past attempts to disentangle these two mechanisms may be
criticised for employing insensitive measures of similarity
with little theoretical or empirical motivation, for failing to
achieve independent measures of the effects of similarity and
rule-induction components, and, with several notable
exceptions, for confining stimuli to the domain of letter
strings. The present work reports on two studies of artificial
grammar learning using a standard grammar to arrange nested
geometric shapes (Expenment 1) and angles between
connected lines (Experiment 2). Grammaticality judgements
for novel items are significantly above chance in both
experiments. Similarity judgements for pairs of stimuli are
used as the basis for modelling grammaticality judgements,
using an exemplar-based model of categorisation. We test for
independent contributions of similarity and rule-induction
mechanisms by fitting nested regression models. Similarity is
significant in accounting for grammaticality judgements in
both experiments. Rule-induction has an additional,
independent effect in Experiment 2, but not in Experiment 1.
We discuss the implications of these results and their
relationship to previous studies.

Introduction

Having seen a few instances from a given category, we
readily generalise our experience to classify new instances
as likely or unlikely to be members of the same category.
This sort of inductive inference has been a puzzle for
philosophers and psychologists alike, in part because there is
no logically ideal inference algorithm to use as a benchmark
for human performance (Goodman, 1954; Watanabe, 1985).
Two broad classes of knowledge have been hypothesised to
explain generalisation behaviour: memory of specific
instances or exemplars, and summary information abstracted
or compiled across relevant instances (cf. Brooks & Vokey,
1991; Hahn, 1996; Hahn & Chater, 1998). Knowledge of
exemplars could be generalised by comparing a new
instance with memory traces of previous instances, and
classifying the new instance according to its similarity with
old instances. Summary knowledge, on the other hand,
might take the form of classification rules induced from
previous instances (e.g. a generative grammar, OF necessary
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and sufficient conditions on category membership), a single
prototype representing the most typical case, or statistical
profiles of instance parts. A fundamental question in
cognitive psychology is whether productive use of
knowledge involves summary data, or reference to memories
of specific instances. For convenience, we will refer to
summary knowledge as rules, though we emphasise our
intention merely to contrast an exemplar-based account of
generalisation with other accounts based on summary data of
any sort.

Reber (1967) showed that after studying a set of strings
generated by an artificial grammar, participants could
discriminate between new strings that complied with the
rules of the grammar and strings that violated those rules.
Reber suggested that participants were learning about the
abstract rule structure of the grammar that was used to
generate the grammatical strings. But is an abstract
representation of the grammar required to achieve above
chance performance on such artificial grammar learning
(AGL) tasks? Dulany, Carlson, and Dewey (1984, 1985)
argued that participants acquire “correlated grammars,” that
is a set of “microrules” which approximate the true
grammar, but might at the same time include
unrepresentative or even wrong rules. Dulany et al.’s theory
can be seen as a rule-based account of AGL, though the
knowledge acquired according to this account is fragmentary
in nature. Perruchet and Pacteau also suggested that
participants acquire fragmentary knowledge, though instead
of microrules Perruchet and Pacteau suggest that
participants learn which bigram fragments occur in the
training set (Perruchet & Pacteau, 1990; Perruchet, 1994;
Perruchet, Gallego, & Pacteau, 1992). They showed that
participants were more likely to make errors with strings that
contained legal bigrams in illegal positions compared to
strings that contained illegal bigrams (though cf. Gomez &
Schvaneveldt, 1994; Redington, 1996).

Vokey and Brooks (1992, 1994; Brooks, 1978; Brooks &
Vokey, 1991) proposed that grammaticality decisions are
driven not by adherence to the rule-structure of the finite
state language employed, but by the similarity of a test item
to the training items. Vokey and Brooks measured similarity
by counting the number of letters different between two
strings. They reported significant effects of both
grammaticality and similarity, that is, items were more likely
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to be endorsed as grammatical if they were actually
grammatical, but also if they were more similar to the
training items. Instead of counting shared letters, Knowlton
and Squire (1996, Exp.1) assessed similarity by calculating
“chunk strengths” (Servan-Schreiber & Anderson, 1990,
also Servan-Schreiber, 1991), which measure
bigram/trigram overlap between test and training items.
Knowlton and Squire argued that if similarity and
grammaticality are both significant in predicting
participants’ grammaticality judgements, both rule-based
and exemplar-based learning must be taking place. One
weakness in their argument is that their measure of similarity
is simply assumed a priori, not grounded empirically in the
perceptual similarity of their stimuli. Unless the model of
similarity rests on firm footings it is a poor benchmark
against which to assess the relative contributions of
similarity and rules. Some alternative measure of similarity
can always be devised which accounts for grammaticality
judgements without appealing to additional knowledge of
grammatical rules (cf. Redington, 1996). Redington (1997),
for example, showed that a single fragment-based procedure
can account for both the similarity and the grammaticality
results of Knowlton and Squire (1996). Finally, the
statistical analysis employed by Knowlton and Squire does
not unambiguously support the conclusion that both rule-
based and exemplar-based learning took place, because it
fails to unconfound the partially correlated factors of
similarity and grammaticality.

In this work we assess the effects of similarity empirically
in terms of ratings on the items involved in an AGL task. To
facilitate comparison with other studies, our stimuli are
derived by applying simple mappings to the stimuli used by
Knowlton and Squire (1996). The mappings produce
abstract visual figures, while preserving the grammatical
structure of the original stimuli. The move away from letter
strings emphasises the fact that the type of learning seen in
AGL tasks is by no means confined to tasks involving letter
strings (cf. Pothos & Chater, 1997). Also, we hoped that
using abstract visual figures would provide a more natural
set of stimuli for eliciting similarity judgements. Similarity
ratings were used to derive a spatial representation of these
items through a multidimensional scaling (MDS) procedure,
based on Shepard’'s theory of psychological spaces
(Shepard, 1980, 1987; Nosofsky, 1992). In this way,
instances are encoded in a multidimensional space which
preserves the relative similarities between items.
Classification performance is modelled using the generalised
context model of categorisation (GCM) to fit instances in
the psychological space to grammaticality endorsements
(Medin & Schaffer, 1978; Medin, 1986; Nosofsky, 1991,
1990, 1989, 1988a, 1988b). The GCM assumes that new
instances are classified depending on how similar they are to
previous instances of various categories.

Our choice of the GCM was motivated by general
theoretical considerations. The model has provided excellent
fits in a variety of studies comparing it with other models
(Nosofsky, 1991, 1990, 1989, 1988a, 1988b). Also, since
the GCM is equivalent to a non-parametric optimal
classification boundary estimator, if similarity to training
items had any influence on classification, GCM would be
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able to identify it (Ashby & Alfonso-Reese, 1995; McKinley
& Nosofsky, 1995).

Experiment 1

Participants

All 16 participants except one were University of Oxford
students who received five pounds for taking part in the
study. The experiment lasted for approximately an hour and
fifteen minutes.

Materials

The artificial grammar was identical to the one used by
Knowlton and Squire (1996; Exp.1), and is shown in Figure
I. The 23 training strings and 32 test items were constructed
by mapping the letters in Knowlton and Squire’s material,
V, X, J, and T, to a circle, a hexagon, a square, and a
diamond, respectively (for an example, see Figure 2).
Geometric shapes corresponding to later letters within a
string enclosed shapes corresponding to earlier letters.

Figure 1: The finite state language (Knowlton & Squire,
1996; Exp.1).

Figure 2: Sample stimulus used in Experiment 1,
corresponding to the string VITVTV.

Procedure

In the first part of the experiment participants viewed the
training items on a computer screen for five seconds each.
The entire set of training items was presented three times in
different random orders.



After the end of the training session, participants were
told that the order of the geometric figures in the training
items had been determined by a complex set of rules.
Participants were asked to classify new items according to
whether each item was consistent (grammatical) or
inconsistent (ungrammatical) with the rules. The test
presented the 32 test items twice in different random orders.
No feedback was provided.

In the third part of the study, participants rated the
similarity between pairs of stimulus items, on a scale from |
to 9 (Shin & Nosofsky, 1992). Each trial involved a central
fixation point for 250 ms, followed by one item, then
another fixation point, a 250 ms blank, and the second item
in the pair. After presentation of the second item, the ratings
scale appeared on the screen, and the next trial was initiated
as soon as a response was given. Items were displayed for
one and a half seconds. Each participant rated a fourth of the
possible pairs of items. The set of pairs was presented twice
in different random orders, creating about 700 trials for each
participant in this part of the study.

Results

On the classification test, participants correctly classified
56% of test items as grammatical or ungrammatical (MSE =
1.54%). This level of performance is similar to previous
studies, and is significantly better than chance, t(15) = 35.9,
p < .0005.

Similarity ratings were averaged and transformed to form
a single dissimilarity matrix. Multidimensional scaling was
used to derive a spatial representation of the stimuli which
preserved the basic structure of the dissimilarity matrix. The
optimal spatial configuration involved a 3D space with a
Euclidean distance metric (r = 2) (cf. Shepard, Romney, &
Nerlove, 1972). The stress of this configuration was 0.18,
representing a reasonable fit (zero stress represents a perfect
fit; cf. Kruskal, 1964; Krzanowski, 1993).

We used non-linear regression to fit items in the
psychological space to participants’ grammaticality
endorsements, using the GCM model described by
Equations (1-3) (cf. Nosofsky, 1989, 1992). Since AGL
tasks, including the present one, involve training with
grammatical items, but not with ungrammatical items,
Equation (1) represents a reduced version of the GCM
which compares each item to old items from only a single
category.

P(RIS)=bY s, (1)
JeG,
_‘.dﬂ
gy =€ (2)
dim Ifr
d; = |:E_: w,lx, —ijlrJ (3)
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According to this model, the probability that a test item
will be classified as grammatical is determined by adding up
the similarity of the test item to each training item.
Similarities between items, s; are computed from the
distances, d;, between items in psychological space. p
distinguishes between possible forms of the function relating
similarities to istances (usually Gaussian or exponential).
The free parameters of the model are b, ¢ , and the
dimension weights, w,(which are constrained to sum to 1).
The best fit was obtained with an exponential function
relating distance to similarity (i.e. p = 1), with an R? value of
0.42. This is a measure of the variance accounted for by a
similarity-only model, with no provision for additional rule-
based knowledge.

The extent to which the GCM fits grammaticality
endorsements reveals how well similarity effects capture
classification performance. Tests for similarity and rule-
based knowledge proceeded in two stages. The first stage
followed the analysis of Knowlton and Squire (1996),
except that where Knowlton and Squire measured similarity
by counting the number of bigrams and trigrams shared
between test and training items, we used GCM-derived
values of similarity. Grammatical and ungrammatical test
items were split into high- and low-similarity subsets, cutting
at the median similarity values of each group. Mean
similarity values for the high- and low-similarity groups
were significantly different, for both grammatical and for
ungrammatical items, t(14) > 5.5, p < .0005 for both. There
was no significant difference in similarity values for
grammatical and ungrammatical items within either the high
similarity or the low similarity groups, t(14) < 1.9, p > .05
for both. A two-way ANOVA on grammaticality
endorsement rates showed main effects of both
grammaticality, F(1,15) = 14.88, p = .002, and similarity,
F(1,15) = 30.13, p < .0005. The interaction term just missed
significance, F(1,15) = 3.65, p = .076. These results show
that participants were more likely to endorse an item as
grammatical if it was more similar to training items, but also
if 1t actually complied to the rules of the grammar used.
These findings are in accord with existing experimental
work (Knowlton & Squire, 1996; Brooks & Vokey, 1991),
but they do not necessarily mean both rule-based and
exemplar-based learning is taking place. Despite Knowlton
and Squire’s efforts to design stimuli in which
grammaticality and similarity are dissociated, there remains
a small correlation between similarity and grammaticality.
This correlation confounds the interpretation of the ANOVA
results, even though the correlation between similarity and
grammaticality is non-significant, 0.25, p > .15. What we
really want to know is, given the GCM model of similarity,
is there any evidence that participants also employed some
other knowledge when making grammaticality judgements?

To test whether there were effects of grammaticality that
could not be accounted for by similarity and vice versa, we
ran several regression analyses with grammaticality



endorsements as the dependent variable. Similarity was
modelled by the GCM model above, which included four
parameters (b, ¢, and two dimension weights). Rule-based
knowledge of grammaticality was modelled with a simple
additive term indicating whether each item really was or was
not grammatical. Regressions minimised R%. Comparisons
between models are based on F-change statistics (Howell,
1996).

Table 1 presents statistics for regression models involving
similarity, grammaticality, or both, and also presents
statistics for comparisons between nested models. These
comparisons test whether the addition of a factor makes a
significant improvement to a simpler model. The main
finding is that grammaticality contributes nothing over and
above the contribution of similarity, but the reverse is not
true. The simplest interpretation is that grammaticality
judgements in this study were based on the similarity of test
items to training items, and that participants extracted no
additional knowledge of the abstract grammar underlying
the training stimuli. The failure to confirm an independent
contribution of grammaticality in the regression analysis
highlights a shortcoming of the more usual ANOVA
analysis, which fails to unconfound factors which are
partially correlated (cf. Bogartz, Shinskey, & Speaker,
1997).

Experiment 2

Participants
Sixteen University of Oxford students took part in the study.

Materials

The artificial grammar was identical to the one used in
Experiment 1, but here the training and test strings were
mapped to angles between connected lines to produce
stimuli like that shown in Figure 3. The letters in Knowlton
and Squire’s material, VXJT, were identified with the angles

Table 1: Regression Analysis for Variables Predicting
Grammaticality Endorsements in Experiment 1.

Model(s) R df R*-Ch df-Ch F-Ch p-Ch
Sim Only 0.42 4 0.42 3 6.25 .002~*
Gram Only 0.10 2 0.10 1 3.05 .09
Sim+Gram 0.44 5 0.02 1 0.79 .38
Gram+Sim 0.44 5 0.34 3 5.01 .01 #

Ch statistics for simple models reflect improvement
over the null model with a single parameter for mean
endorsement rate. Ch statistics for combined models
reflect the improvement achieved by adding a second
factor to a simpler model including only the first factor.

* A significant p-ch value means the more complex
model is significantly better than the simpler model.

75°, 150°, 225°, and 300°, respectively. Unlike previous
AGL studies, the visual parts of these stimulus items were
context-dependent, in that the angle of each line segment
was determined relative to the angle of the previous
segment.

Figure 3: Sample stimulus for Experiment 2,
corresponding to the string VXJTI.

Procedure

The procedure was identical to that of Experiment 1 except
that the instructions were modified as appropriate for the
different stimuli. Also, there was no central fixation point
between stimuli.

Results
Analysis proceeded as in Experiment 1. On the classification
test, participants correctly classified 55.29% of test items as
grammatical or ungrammatical (MSE = 1.57%), which is
significantly better than chance performance, t(15) = 35.2, p
< .0005. The level of performance on Experiment 2 was not
different from that for Experiment 1, t(30) =0.3, p > .75.
The best fit for the GCM was obtained with a city block
distance metric and an exponential function relating distance
to similarity. This combination of parameters produced an
MDS stress value of 0.20 and a GCM R” value of 0.55.
Again, grammatical and ungrammatical test items were
split at the median GCM similarity values within each
group. Mean similarity values for the high- and low-
similarity groups were significantly different, for both
grammatical and for ungrammatical items, t(14) > 4.5, p <
.0005 for both. There was no significant difference between
grammatical and ungrammatical items within either the high
similarity or the low similarity group, t(14) < 0.9, p > .35 for
both. A two-way ANOVA on grammaticality endorsement
rates showed main effects of both grammaticality, F(1,15) =
11.5, p < .005, and similarity, F(1,15) = 104, p < .0005.
There was no significant interaction, F(1,15) = 1.45, p =
.248. As in Experiment 1, participants were more likely to
endorse an item as grammatical if it was more similar to
training items, but also if it actually complied to the rules of
the grammar used.



Regression  models were fit to  grammaticality
endorsements rates to test whether there were effects of
grammaticality that could not be accounted for by similarity
and vice versa. Regression results are summarised in Table
2. In this study, unlike Experiment 1, similarity on its own
does not account for grammaticality judgements. The best
model includes both similarity and grammaticality, and
removal of either factor results in a significantly worse
model. The significance of both factors suggests that
grammaticality endorsements were based on a combination
of similarity to training items and some other rule-based
knowledge extracted from the training items. Alternatively,
it is always possible that grammaticality judgements were
based on some other (unknown) single knowledge
representation which is partially correlated with both GCM
similarity and with actual grammaticality, but this hypothesis
can be evaluated only with respect to a particular theory of
what that knowledge representation might be.

Discussion

Classification of novel items in two studies was largely
predictable on the basis of similarity between test and
training items. We employed an independently-motivated
exemplar model of categorisation in conjunction with
empirical similarity data, avoiding criticisms levelled at ad
hoc models of similarity. In Experiment 2, but not in
Experiment 1, similarity alone was not sufficient to account
for generalisation performance. This suggests either that
summary knowledge (e.g. rules) plays a role in some
generalisation tasks but not in others. The finding of
independent effects of both similarity and grammaticality in
Experiment 2, in an analysis which statistically unconfounds
the two factors, confirms a rule-based component of
knowledge underlying generalisation in at least some AGL
tasks. Our two studies were identical except for the visual
form of the stimuli, suggesting that the relative contributions
of similarity and rule-based knowledge can vary with
specific stimulus attributes.

The failure in Experiment 1 to find independent effects of
grammaticality over and above the effect accounted for by
similarity highlights a shortcoming of ANOVA. Conclusions
of previous studies finding main effects of both similarity
and grammaticality are confounded by non-zero correlations
between the two factors. This confound was avoided in our
analysis by comparing nested regression models in order to

Table 2: Regression Analysis for Variables Predicting
Grammaticality Endorsements in Experiment 2.

Model(s) R° df R-Ch df-Ch F-Ch p-Ch
Sim Only 0.59 4 0.59 312.66 .000*
GramOnly 0.08 2 0.08 1 2.40 .13

Sim+Gram 0.70 5 0.10 1 8.42 .008*
Gram +Sim 0.70 5 0.62 316.91 .000*

See legend for Table 1.
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test effects of one factor over and above effects accounted
for by the other factor.
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