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Highlights

• A novel 3D BEM for polycrystalline inter and transgranular cracking competition.
• Inter and transgranular cracking/competition is studied by distinct cohesive laws.
• Cleavage planes nucleation in the grains is based on lattice structure and strength.
• The polycrystalline problem is formulated in terms of intergranular variables only.
• The method allows a reduction of DoFs, appealing for multiscale analysis.

Abstract

In this work, a grain boundary formulation for intergranular and transgranular micro-cracking in three-dimensional polycrys-
talline aggregates is presented. The formulation is based on the displacement and stress boundary integral equations of solid
mechanics and it has the advantage of expressing the polycrystalline problem in terms of grain boundary variables only. The
individual grains within the polycrystalline morphology are modelled as generally anisotropic linear elastic domains with random
spatial orientation. Transgranular micro-cracking is assumed to occur along specific cleavage planes, whose orientation in space
within the grains depend upon the crystallographic lattice. Both intergranular and transgranular micro-cracking are modelled using
suitably defined cohesive laws, whose parameters characterise the behaviour of the two mechanisms. The algorithm developed
to track the inter/transgranular micro-cracking history is presented and discussed. Several numerical tests involving pseudo-3D
and fully 3D morphologies are performed and analysed. The presented numerical results show that the developed formulation is
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capable of tracking the initiation and evolution of both intergranular and transgranular cracking as well as their competition, thus
providing a useful tool for the study of damage micro-mechanics.
Published by Elsevier B.V.

Keywords: Polycrystalline materials; Transgranular cracking; Intergranular cracking; Micro-mechanics; Cohesive zone modelling; Boundary
element method

1. Introduction

In the last few decades, thanks to remarkable advancements in microscopy technologies and high performance
computing (HPC), much interest and research have been focused on the study of materials at microscopic scales.
Such interest is motivated by various considerations: (a) macroscopic properties of inherently heterogeneous materials
naturally depend on the features and interactions of elementary building blocks, or constituents; (b) constitutive
phenomenological models may sometimes be overly simplistic or inadequate to represent complex material
behaviours, especially when phenomena such as damage nucleation and evolution or phase transformations are present
in the considered loading conditions; (c) the knowledge and control of microscopic features may help manufacture
materials with enhanced properties.

Such motivations are expressed in the faceted body of investigations addressed at unveiling the so called structure–
property link for different classes of materials. In such context, computational materials modelling has been assuming
increasing importance and the development of more powerful and accessible computational tools and facilities has
allowed the inclusion, in various formulations, of details of ever increasing complexity with a clear tendency towards
the development of as realistic as possible virtual models. As a consequence, multi-scale materials modelling, which
aims at bridging different material scales, is today an established scientific paradigm [1].

Polycrystalline materials, which include the majority of metals and ceramics, with several engineering applications,
may exemplify the trends sketched above. Polycrystalline materials have been intensely investigated and an increasing
level of realism in their virtual modelling has materialised in the transition from two-dimensional (2D) to three-
dimensional (3D) models [2], in the representation of more realistic grain morphologies [3], made possible by the use
of 3D X-ray diffraction micro-tomography [4], in the inclusion of more sophisticated constitutive behaviour for the
grains [5,6] and more sophisticated damage and failure mechanisms [7].

The present paper focuses on modelling of intergranular and transgranular micro-cracking, which represent two
of the main failure mechanisms in brittle polycrystalline materials. While intergranular cracking denotes the failure
of interfaces between contiguous grains, transgranular cracking refers to the failure of individual bulk grains along
specific crystallographic planes. The occurrence of the two cracking modes is affected by several factors such as
crystallographic lattice, temperature and the presence of an aggressive environment [8,9]. The crystallographic lattice
plays a key role in determining a grain’s susceptibility to specific deformation and failure mechanisms. As an example,
body-centred cubic (BCC) and hexagonal close packed (HCP) crystals usually show ductile-to-brittle transition at
decreasing temperatures [10–12], with inter- and transgranular cracking resulting from the limited number of slip
systems in these crystal lattices at low temperatures. On the other hand, although face-centred cubic (FCC) lattices
generally favour ductile deformation over a wide range of temperatures as consequence of the large number of slip
systems, the action of aggressive environments is well-known to induce grain boundary embrittlement and therefore
intergranular and transgranular fracture in naturally ductile materials [13–15]. At room temperature, HPC ceramics,
such as 6H silicon carbide (SiC), exhibit inter- and transgranular brittle fracture [16].

Several experimental and numerical studies have been devoted to understanding the complex interaction between
inter- and transgranular cracking and their relationship with the morphological, physical and chemical properties of
the polycrystalline microstructure. Due to its versatility, several computational studies have been performed within
the framework of the finite element method (FEM), employing cohesive zone modelling to capture the damage and
fracture propagation in polycrystalline materials exhibiting different constitutive behaviours and subjected to different
environmental and loading conditions [17–21].

While in several studies cohesive elements have been extensively used around all the finite elements, aiming at
capturing as general as possible crack paths at the expenses of computational effectiveness, Kraft and Molinari [22]
developed a 2D FE model in which cohesive interfaces are selectively introduced on-the-fly along specific
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crystallographic planes within the crystals, based on a suitable threshold condition on crystallographically resolved
stresses, with suitable morphology remeshing.

Transgranular polycrystalline fracture has also been studied using models based on different approaches such as
the extended finite element method [23–25], which allows for general crack propagation with limited remeshing only,
peridynamics [26] or non-local lattice particle method [27]. Recently, Geraci and Aliabadi [28] presented an integral
formulation based on the dual boundary element method and the cohesive zone approach for inter- and transgranular
cracking in 2D polycrystalline aggregates.

While several 2D models are present in the literature, few 3D models accounting for the interplay or competition
between inter- and transgranular polycrystalline cracking mechanisms have been developed, due to increased
geometrical and mechanical complexity and much higher computational requirements. However, the combined effect
of inter- and transgranular cracking is an inherently three-dimensional phenomenon, due to the crucial role played by
the random crystallographic orientation and therefore the potential cleavage planes within polycrystalline aggregates.
Furthermore, as pointed out by some researchers [10–12], 2D model may not be able to fully capture the role of grain
boundary fracture in accommodating transgranular crack propagation through misaligned adjacent grains.

Two- and three-dimensional polycrystalline morphologies with inter and transgranular cracking and different
constitutive behaviours have been recently studied by some authors using the phase field method [29–34], which offers
the advantage of modelling, with relative versatility, the evolution of interfaces representing phase transformations
fronts and/or cracks within the aggregate. Three-dimensional modelling of polycrystalline cleavage by cellular
automata has also been proposed [35,36].

In this work, the boundary element method is combined with a cohesive zone approach for the study of three-
dimensional polycrystalline morphologies undergoing both inter- and trans-granular cracking. To the best of the
authors’ knowledge, this is the first time a boundary element formulation has been employed to simultaneously address
inter and trans-granular cracking within three-dimensional anisotropic crystal aggregates. The boundary element
method has been successfully used to study intergranular failure of 2D [37] and 3D [38–41] polycrystalline materials
at the grain scale; the above grain-scale intergranular models have also been successfully employed in a multi-scale
framework [42,43] for capturing material degradation initiation and evolution at an engineering component level. A
2D model for inter- and transgranular micro-cracking has been recently presented by Geraci and Aliabadi [28]. The
boundary element approach allows expressing the polycrystalline problem in terms of grain boundary variables only,
thus facilitating the employment of cohesive laws. Here, a new numerical scheme is developed to capture the inter-
and transgranular crack propagation in fully 3D polycrystalline materials. The paper is organised as follows: Section 2
presents, after briefly recalling the polycrystalline governing boundary integral equations, the cohesive zone approach
employed in this work to model the competition between the inter- and transgranular cracking mechanisms; Section 3
discusses the numerical discretisation of the boundary integral equations and the solution of the system of equations
of the entire aggregate. Particular emphasis is given to the proposed algorithm to track the nucleation of transgranular
micro-cracks within the considered polycrystalline morphologies; Section 4 presents the numerical results of inter-
and transgranular micro-cracking in pseudo 3D and fully 3D polycrystalline morphologies; Section 5 discusses some
directions for further research while some conclusions are drawn in Section 6.

2. Grain boundary formulation for polycrystalline microstructures

The features of the grain boundary formulation for intergranular and transgranular micro-cracking in 3D
polycrystalline materials are presented in this section.

2.1. Microstructure generation

A polycrystalline microstructure is an aggregate of randomly oriented crystals characterised by their shape,
orientation and generally anisotropic properties. The artificial microstructures analysed in this study are represented
as 3D Voronoi tessellations, which have been extensively used in the literature as they may satisfactorily reproduce
the main statistical features of real polycrystalline aggregates [44–48].

Voronoi tessellations can be generated using open source software packages such as Voro++ [49] (http://math.
lbl.gov/voro++/) or Neper [48] (http://neper.sourceforge.net/); in the present work, Voro++ has been employed both
to generate the artificial microstructure and to handle the introduction of transgranular interfaces. As an example,
Fig. 1(a) shows a 100-grain hardcore Voronoi tessellation within a cubic box.
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(a) (b)

Fig. 1. (a) 100-grain polycrystalline aggregate generated by 100 seeds; (b) Representation of an individual grain highlighting one of its faces in
dark green with the attached local reference system x̃1 -̃x2–x̃3. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

A tessellation is a collection of Ng grains. The volume occupied by the generic grain g, with g = 1, . . . , Ng , is
denoted by V g . Since Voronoi grains are convex polyhedrons bounded by flat convex polygonal faces, the generic

grain boundary is represented as Sg
=

⋃N g
f

f =1 F g f , being F g f the generic f th face and N g
f the number of faces of the

grain g. Two neighbouring grains share an interface, or grain boundary, which is characterised by its own mechanical
properties, generally different from those of the two adjacent grains.

Within the polycrystalline microstructure, each grain is characterised by the random orientation of its lattice,
which determines its anisotropic mechanical behaviour and the inherently anisotropic features of the cleavage failure
mechanisms. In this study, a generic grain g is thus considered as an anisotropic elastic domain, whose constitutive
behaviour is expressed by σ

g
i j = cg

i jklε
g
kl , where σ

g
i j and ε

g
i j are components of the second-order stress and strain

tensors, respectively, and cg
i jkl are components of the fourth-order elasticity tensor, i, j, k, l = 1, 2, 3 and repeated

subscripts imply summation.
By virtue of the integral representation, Section 2.2, the response of each grain can be written in terms of

displacements ug
i and tractions t g

i on its boundary Sg .

2.2. Boundary integral equations

The displacement boundary integral equations (BIE) governing the behaviour of a generic grain g within the
aggregate are

c̃g
i j (y)̃ug

j (y) + −

∫
Sg

T̃ g
i j (x, y)̃ug

j (x)dS(x) =

∫
Sg

Ũ g
i j (x, y)̃t g

j (x)dS(x), (1)

where y and x ∈ Sg represent the collocation and integration points, respectively, and c̃g
i j (y)̃ug

j (y) denote the free
terms stemming from the boundary limiting process [50,51].

At any internal point y ∈ V g of the grain g, the stress tensor σ
g
i j (y) can be computed by suitably taking the

derivatives of Eq. (1) with respect to the components of y and using the constitutive relations σ
g
i j = cg

i jklε
g
kl . The

following stress integral equations are obtained:

σ
g
i j (y) +

∫
Sg

T̃ g
i jk(x, y)̃ug

k (x)dS(x) =

∫
Sg

Ũ g
i jk(x, y)̃t g

k (x)dS(x). (2)

In Eqs. (1)–(2), the tilde (̃ · ) represents components expressed in a surface local reference system. In particular,
ũg

i and t̃ g
i represent the boundary displacements and tractions, respectively, expressed in a grain-face-attached local

reference system; as an example, the local reference system attached to the f th face of one grain of the tessellation
of Fig. 1(a) is showed in Fig. 1(b), where the plane of the interface is indicated by x̃1–x̃2 and the normal direction is
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indicated by x̃3. Denoting with Rg f
i j (x) the transformation matrix that links the global reference system to the local

reference system of the f th face of the generic grain g at the point x, the local displacements ũg
i (x) and tractions t̃ g

i (x)
are obtained as

ũg
i (x) = Rg f

i j (x)ug
j (x), t̃ g

i (x) = Rg f
i j (x)t g

j (x). (3)

The kernels Ũ g
i j (x, y), T̃ g

i j (x, y), Ũ g
i jk(x, y) and T̃ g

i jk(x, y) can then be written as

Ũ g
i j (x, y) = U g

ik(x, y)Rg f
jk (x), T̃ g

i j (x, y) = T g
ik(x, y)Rg f

jk (x),

Ũ g
i jk(x, y) = U g

i jl(x, y)Rg f
kl (x), T̃ g

i jk(x, y) = T g
i jl(x, y)Rg f

kl (x),
(4)

where U g
i j (x, y), T g

i j (x, y), U g
i jk(x, y) and T g

i jk(x, y) are obtained from the Green’s functions of the general anisotropic
elastic problem and given in Appendix for the sake of completeness. Similarly, the coefficients c̃g

i j (y) of the free terms
are given by c̃g

i j (y) = cg
ik(y)Rg f

jk (y) where cg
i j (y) =

1
2δi j for all points y ∈ Sg on a smooth surface neighbourhood.

2.3. Intergranular and transgranular cracking modelling

Although intergranular and transgranular cracking are two physically different processes, in the present framework
they are modelled employing analogous cohesive laws with different parameters, to account for the different
energetic features of the two mechanisms. Cohesive zone modelling [52–55] has been widely used in finite element
frameworks [3,56–58] as well as boundary element studies [37,39,40] to model fracture problems.

2.3.1. Intergranular and transgranular failure modes
Intergranular failures occur along the interfaces between contiguous grains, which are generated with the

polycrystalline morphology and identify natural sites of crack initiation. Such interfaces are retained during the
loading history, even if no intergranular cracking initiates and in general their properties may vary within the aggregate,
i.e. the interface between two generic grains a and b may differ from the interface between any other couple of grains
c and d.

Transgranular failures, on the contrary, occur within the grains, over planes whose position and orientation in space
are not a priori known. More specifically, different potential cleavage planes are uniquely associated with the grain
crystallographic lattice; however, a cleavage plane becomes active, thus evolving into a transgranular crack surface,
only if the corresponding resolved tractions fulfil a defined threshold condition, as given by Eq. (7). In this case, a new
flat cracking surface is introduced within the grain, thus forming a new interface whose further evolution is governed
by transgranular cohesive parameters. In this work, it is assumed that, once started, transgranular failure evolves over
a surface whose envelope lies over a plane; this assumption is justified by experimental observations on several classes
of metallic [12,59–61] and ceramic materials [62].

It is worth noting that, once the damaging process is initiated, intergranular and transgranular cracks are
analogously treated from the algorithmic/computational point of view, differing only for the values of the cohesive
parameters. For the sake of clarity, in this section, the grain boundary quantities referring to an interface Igh between
two different contiguous grains g and h are denoted by the superscript gh. On the other hand, the quantities relating to
a cleavage plane within the grain g are denoted by the superscript g only, since they refer to the properties of the bulk
grain g. As an example, Fig. 2(a) shows a grain boundary interface between two adjacent grains, whereas Fig. 2(b)
shows a potential transgranular interface identified by a specific crystallographic plane passing through the point y
within a bulk grain.

2.3.2. Crack initiation criteria
In the intergranular case, the damage initiation is naturally expressed in terms of intergranular tractions. Damage

is initiated at the interface Igh when

τ gh
e =

√⟨
τ

gh
n

⟩2
+

(
βgh

αgh
τ

gh
s

)2

> T gh
max, (5)

where τ
gh
e is an effective intergranular traction [37,39], τ

gh
s =

√
(̃t gh

1 )2 + (̃t gh
2 )2 is the traction along the sliding

direction, τn = t̃ gh
3 is the traction along the normal direction and T gh

max is the intergranular cohesive strength, which
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(a) (b)

Fig. 2. (a) Detail of two contiguous grains of the tessellation of Fig. 1(a) showing their shared interface, which is highlighted with dark green; (b)
Potential cleavage plane (in dark green) passing through the point y. The local reference system of the cleavage plane is denoted by the unit normal
m and by two mutually orthogonal unit vectors p and q. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

may assume different values over different interfaces. αgh and βgh are cohesive parameters weighting the relative
influence of mode I and II cracking and are also used in the cohesive laws given in Eqs. (9)–(10).

In the transgranular case, a similar initiation threshold is defined with reference to the potential cleavage planes
passing through the control points scattered within the grain volume. In particular, for a generic control point y ∈ V g ,
the stress tensor σ

g
i j (y) is computed by using the stress boundary integral equation, Eq. (2), and it is projected onto

the potential cleavage planes to define the normal τ
g
n and tangential τ

g
s =

√
(τ g

p )2 + (τ g
q )2 tractions, with

τ g
n = mg

i σ
g
i j m

g
j , τ g

p = pg
i σ

g
i j m

g
j , τ g

q = qg
i σ

g
i j m

g
j , (6)

where mg
i is the unit normal associated with the potential cleavage plane and pg

i and qg
i are two mutually orthogonal

directions lying on the plane itself, as shown in Fig. 2(b); These resolved tractions then enter the definition of the
effective traction τ

g
e used in the threshold criterion

τ g
e =

√⟨
τ

g
n
⟩2

+

(
βg

αg
τ

g
s

)2

> T g
max, (7)

where αg and βg are the values of the cohesive law coefficients characterising the cohesive behaviour of the
transgranular cracks and T g

max is the cleavage plane strength, which may assume different values for cleavage with
different lattice orientations. At a specific load increment, the values of the effective stress τ

g
e are computed for each

potential cleavage plane at each control point and Eq. (7) is assessed; in this way, the most loaded cleavage system
is identified and a transgranular cohesive interface is introduced into the grain as a flat surface extending up to the
boundaries of the grain.

2.3.3. Cohesive traction–separation laws
When damage is initiated, a strong discontinuity is introduced in the model and extrinsic cohesive laws [54,55] of

the form

t̃ x
i = Ci j (d∗) δũ x

j (i = 1, 2, 3) (8)

are used to link the boundary traction components t̃ x
i with the boundary displacements jump δũ x

i across the
discontinuity where, consistently with the notation introduced in Eqs. (1)–(2) and Section 2.3.1, the tilde (̃ · ) denotes
quantities expressed in the local reference systems and x = gh or x = g, depending on whether an intergranular or
transgranular discontinuities are being considered.
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The constitutive constants Ci j (d∗) are given as a function of an irreversible damage parameter d∗
= maxHd {d} ∈

[0, 1] where Hd is the load history and d is a dimensionless effective opening displacement defined as

d =

√⟨
δũn

δucr
n

⟩2

+

(
β

δũs

δucr
s

)2

, (9)

where δũs =

√
δũ2

1 + δũ2
2 and δũn = δũ3 are the sliding and normal displacement jumps, respectively, δucr

s and δucr
n

are the corresponding critical values at which pure interface opening or pure interface sliding failure occurs, β is a
coefficient weighing the normal and sliding modes and ⟨·⟩ = max(0, ·) are Macauley brackets.

Assuming no coupling between normal opening and relative sliding and isotropic behaviour with respect to sliding
over the discontinuity surface, the constants Ci j (d∗) can be written as Ci j (d∗) = diag{Cs(d∗), Cs(d∗), Cn(d∗)},
where [39]

Cs(d∗) = α
Tmax

δucr
s

1 − d∗

d∗
, Cn(d∗) =

Tmax

δucr
n

1 − d∗

d∗
, (10)

where α is a constant chosen so as to ensure a desired ratio between mode II and mode I fracture energies G I I /G I .
The cohesive law is fully defined by the cohesive strength Tmax, the fracture energy G and the relative contribution
between opening and sliding failure modes. It is worth noting that as long as the interface remains pristine with d∗

= 0,
Eqs. (8) simply enforce zero displacement jumps, δũx

i = 0, and traction equilibrium. The interested reader is referred
to Refs. [39,40] for further details about the considered traction–separation law in the context of the grain boundary
formulation for polycrystalline mechanics.

It is noted here that both displacement jumps and tractions directly enter the formulation as primary variables
whose values are determined coupling the displacements boundary integral equations (1), written for each grain of the
aggregate, with the interface equations.

2.3.4. Inter/transgranular mode competition
The competition between the inter- and transgranular modes of failure in polycrystalline materials is modelled

by considering suitable sets of parameters entering the corresponding cohesive laws. Here it is assumed that the
coefficients α and β and the ratio G I I /G I do not differ between the two mechanisms, i.e. αgh

= αg
= α,

βgh
= βg

= β and Ggh
I I /Ggh

I = Gg
I I /Gg

I ∀g = 1, . . . , Ng and ∀gh = 1, . . . , Ni , being Ng the number of grains and
Ni the number of grain boundary interfaces. However, different ratios between the mode I fracture energy Ggh

I of the
grain boundaries and the mode I fracture energy Gg

I of the cleavage planes are considered.
More specifically, considering that the work of separation can be written using the relation G I = Tmaxδucr

n /2,
it is observed that the ratio γG ≡ Gg

I /Ggh
I between the two aforementioned fracture energies can be modified by

changing Tmax and/or δucr
n . In this work, to scale the fracture energy Gg

I of the factor γG , i.e. Gg
I = γG Ggh

I , it is
assumed that both the interface strength Tmax and the critical displacement δucr

n in mode I are scaled by the same
amount, i.e. T g

max =
√

γG · T gh
max and δucr,g

n =
√

γG · δucr,gh
n . In the same way, it is possible to verify that the critical

displacement δucr
s in mode II is scaled by

√
γG , i.e. δucr,g

s =
√

γG · δucr,gh
s .

This is just a particular choice for weighting the two failure mechanisms in order to perform some systematic
parametric analysis, but other choices are possible; indeed, the model allows selecting completely unrelated cohesive
laws for modelling the two mechanisms. The effect of such a selection of the parameter γG on the cohesive law is
represented in Fig. 3. Fig. 3(a) represents the tangential component τs as a function of (βδus/δucr

s ) and (δun/δucr
n )

whereas Fig. 3(b) represents the normal component τn as a function of (βδus/δucr
s ) and (δun/δucr

n ) obtained using
Eqs. (8) and (10). In the figures, the red surfaces represent a reference cohesive law, e.g. that associated with the
behaviour of the grain boundaries, whereas the blue surfaces represent a scaled cohesive law with γG < 1.

3. Numerical discretisation

Polycrystalline inter- and transgranular micro-cracking is numerically studied discretising Eqs. (1)–(2). The
boundary Sg of the generic grain g is subdivided into non-overlapping elements according to the meshing strategy
developed in Ref. [40], where triangular and quadrangular, continuous and semi-discontinuous elements were used
to reduce the computational cost of the polycrystalline problems. The mesh size sms of the surface mesh is chosen
so that the average element length le is much smaller than the cohesive zone size Lcz , which can be estimated in
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(a) (b)

Fig. 3. Schematic representation of the (a) tangential and (b) normal components of the two cohesive laws used to model inter- and transgranular
cracking. The red surfaces represent a reference cohesive law, whereas the blue surfaces represent a scaled cohesive law with γG < 1. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(a) (b)

Fig. 4. (a) Mixed triangular/quadrangular surface mesh of the polycrystalline aggregate shown in Fig. 1(a). (b) Detail of the surface mesh of the
grains shown in Fig. 2. The small dots in the figures denote the position of the collocation nodes.

terms of the material fracture toughness and the interface strength [57,58,63]. Fig. 4(a) shows the surface mesh of the
polycrystalline morphology in Figs. 1(a) and 4(b) shows the surface mesh of the two grains of Fig. 1. In the figures,
the small dots denote the collocation points.

The discrete algebraic version of the displacement and stress boundary integral equations is built using the assembly
techniques of the standard boundary element method [51]. The boundary displacements ui and tractions ti are
approximated over each grain boundary mesh element using linear triangular and quadrangular shape functions in
conjunction with element’s nodal values. The displacement BIEs (1) are then written for every collocation point y of
the boundary mesh of each grain and are numerically integrated leading to a linear system of the form

HgUg
= GgTg, (11)

where the matrices Hg and Gg are obtained by integrating the product of the kernels T g
i j and U g

i j , respectively, by the
shape functions and the Jacobian over the surface mesh of the grain g, and the vectors Ug and Tg collect the nodal
values of the boundary displacements and tractions, respectively.

Unlike the displacement BIE, which are evaluated on the boundary of the grains, the stress boundary integral
equations (2) are evaluated at selected internal control points. In the simplest case, the control point can be chosen
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(a) (b) (c)

Fig. 5. Distribution of the control points (denoted by black dots) used to compute the stress tensor σi j inside a generic grain: (a) in this case, the
centroid of the grain is chosen as control point; (b) , (c) distribution of the control points for two different values of the volume mesh size vms .

as coincident with the centroid of the grain as shown in Fig. 5(a). On the other hand, the control points can also be
obtained by generating a volume tetrahedral mesh of each grain and then selecting the centroids of the tetrahedrons.
The size of the mesh is controlled by an average volume mesh size vms , which can be adjusted independently of the
average surface mesh size. Fig. 5(b) and 5(c) show two different sets of control points for two different values of the
volume mesh size vms . In the figures, the control points are indicated by the black dots.

Given the position of the volume control points, the stress tensor inside each grain is expressed as a function of the
boundary displacements and tractions by means of the following discretised version of Eq. (2):

Σg
= Gg

σ Tg
− Hg

σ Ug, (12)

where the matrices Hg
σ and Gg

σ are obtained by integrating the product of the shape functions, the Jacobians and the
kernels T g

i jk and U g
i jk , respectively, over the surface mesh of the grain g, and the vector Σg collects the components of

the stress tensor σ
g
i j at the volume control points. It is worth noting that, if ng

v is the number of control points for the
grain g and the stress tensor is represented in Voigt notation, the matrices Hg

σ and Gg
σ have 6ng

c rows and 3ng
s columns,

being ng
s the number of collocation points of the grain g.

3.1. Boundary conditions

Eq. (11) is reordered according to the unknown and known values of grain boundary displacements and
tractions [38–40]. The known values are given by the boundary conditions that are enforced over the external faces
of the aggregate and are usually expressed as a function of a load factor λ governing the loading history. Eq. (11) can
then be rewritten as

AgXg
= CgYg(λ), (13)

where Xg and Yg collect the unknown and known values, respectively, of the boundary displacements and tractions of
the grain g and the matrices Ag and Cg collect suitably reordered columns from the matrices Hg and Gg .

3.2. Polycrystalline system assembly

The overall system of the polycrystalline aggregate is obtained by writing Eq. (13) for each grain of the aggregate
and enforcing the interface equations at the grain boundaries. The resulting system can be written as [40]

M(X, λ,H) =

{
AX − B(λ)

I(X, H)

}
= 0, (14)

where

A =

⎡⎢⎢⎢⎣
A1 0 · · · 0
0 A2

· · · 0
...

...
. . .

...

0 0 . . . ANg

⎤⎥⎥⎥⎦ , B =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C1Y1

C2Y2

...

CNg YNg

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , X =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X1

X2

...

XNg

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (15)
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(a) (b) (c)

Fig. 6. (a) Boundary mesh of a grain at the point of undergoing cleavage cracking; (b) cleavage plane (in darker green) that needs to be introduced
into the grain; (c) mesh of the two child grains originated from the grain in figure (a). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

and I(X, H) implements the interface equations, including continuity, cohesive, frictional contact intergranular
equations [39], which generally involve the grain boundaries displacements and tractions and depend on the loading
history H.

3.3. Polycrystalline system solution

The system of equations given in (14) must be solved at each load step of the loading history. However, unlike the
previous studies [39,40] on the intergranular fracture of polycrystalline materials, at each load step the occurrence of
transgranular cracking is considered. The algorithm for inter- and transgranular cracking in polycrystalline materials
is detailed in the following section.

3.3.1. Representation of the polycrystalline morphology
The polycrystalline morphology is computed using the Voro++ software library. Voro++ stores each Voronoi cell

as an irregular convex polyhedron, each with a unique numerical ID, and containing information about vertex positions
and edges. In addition, each face stores the ID of the neighbouring grain that it touches.

When transgranular cracking occurs it is necessary to split a grain into two. As an example, Fig. 6(a) shows a grain
and its boundary mesh, and Fig. 6(b) shows a cleavage plane through the grain. The Voro++ library has a standard
function that can recompute a polyhedron after intersection with a half-space. To split the grain, it is copied into two,
and half-space intersections with opposite signs are applied to the two copies. After recomputing boundary meshes
for the new grain shapes, this results in Fig. 6(c).

In addition, for each grain face that was split in two, the corresponding face of the neighbouring grain is split into
two faces by introducing an extra edge across it. The neighbour ID information for the two new faces is updated
to reference the IDs of the two new split grains. The Voro++ library was extended to perform this operation. The
extension also works when a grain is successively split multiple times, which requires multiple new edges to be
introduced in the neighbouring grain faces.

3.3.2. Algorithm for inter- and transgranular cracking
Fig. 7 schematises the algorithm used in the present work to address inter- and transgranular cracking in

polycrystalline materials. At the beginning of the analysis, the load factor λ is initialised to 0, the load step counter
n is initialised to 1 and the remesh Boolean variable is initialised to false. The polycrystalline morphology is then
generated and the properties of the constituent grains and grain boundaries are loaded. The algorithm then enters the
incremental loop that is governed by the counter n and can be described by the following steps:

1. At the beginning of the load step n, the load factor is incremented with the increment ∆λn chosen based on the
number of iterations needed to reach convergence at the previous load step as in [39]. Moreover, the increment
∆λn is always bounded by a lower increment ∆λmin, which is chosen to avoid stagnation of the solution and on
the basis of the final value λ f of the load factor.
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Fig. 7. Flow chart of the algorithm for inter- and transgranular cracking.

2. If the analysis has just started, i.e. n = 1, or the remesh is true, the aggregate is discretised, the boundary
element matrices appearing in Eqs. (13) and (12) are computed and stored, the overall element system given in
(14) is then assembled and the remesh variable is set to false. It is worth noting that if the algorithm reaches
this step after trans-granular cracking has occurred, the previously computed boundary element matrices are
discarded and the last computed solution is mapped onto the new mesh.

3. At the nth load step, the system of equation M(Xn, λn, H) = 0, see Eq. (14), is solved [40]. The equilibrium
solution Xn is obtained by employing the Newton–Raphson algorithm. It is worth noting the system of equations
given in (14) consists of a set of linear equations and a set of nonlinear equations represented by AX −B(λ) = 0
and I(X, H) = 0, respectively. As a consequence, the part of the Jacobian matrix of the system corresponding
to the linear set of equations is computed at the beginning of the analysis and kept fixed during the Newton–
Raphson search for the solution. On the other hand, the part of the Jacobian matrix of the system corresponding
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to the nonlinear set of equations, i.e. the interface equations, are updated at each iteration of the Newton–
Raphson algorithm on the basis of the interface status. In fact, during the Newton–Raphson search for the
solution, the consistency of the grains interfaces and their status, i.e. continuity, cohesive and/or frictional
contact, is checked according to the procedure described in Ref. [39].
Furthermore, since the Jacobian of the system is highly sparse, the library PARDISO [64–66] (http://www.
pardiso-project.org) combining both direct and iterative solution methods is used as a solver. In particular,
upon noting that between successive loading steps and/or Newton–Raphson iterations the changes in the
Jacobian matrix might be small, the LU factorisation at one step might be used for preconditioning the iterative
solution of the subsequent system of equations. In case that the iteration convergence is not reached, the solver
automatically switches to the direct numerical factorisation.

4. The values of the stress tensor σ
g
i j at the control points of each grain of the aggregate is computed by means of

Eq. (12) and the possible occurrence of transgranular cracking is then checked by comparing the local resolved
cleavage stress τ

g
e , computed using Eq. (7), with the local threshold value T g

max.
5. If the cleavage threshold is overcome, a new cohesive interface must be introduced following the procedure

described in Section 3.3.1. It is worth noting that the transgranular threshold condition may be achieved at
multiple points within the morphology. However, since such a solution represents a temporary solution that
must be recomputed, only one transgranular interface is introduced. Such interface is that corresponding to
the highest value of the difference between the local resolved cleavage stress τ

g
e and the threshold value T g

max.
The cohesive properties are those corresponding to transgranular cracks and are in general different from the
cohesive properties at the grain boundaries. The cleavage of the grain and the recomputation of the boundary
meshes are performed as in Section 3.3.1. At this point, the morphology has been modified and the boolean
variable remesh is set to true. The flow goes back to step 2 in order to find the equilibrium solution of the new
aggregate for the same load factor λn .
It is worth noting that the algorithm keeps adding transgranular interfaces as long as the local value of the local
resolved cleavage stress τ

g
e is above T g

max. The next loading step is considered when the condition τ
g
e < T g

max is
fulfilled at all the control points of the morphology.

6. If no transgranular cracks are introduced, the current load factor λn is compared to the final load factor λ f and
either the next load step is considered or the analysis is terminated.

4. Computational tests

In this study, polycrystalline SiC aggregates with hexagonal crystal lattice are considered. For hexagonal 6H
SiC polytypes, the preferred cleavage plane is the basal plane [31] identified by (0001) Miller indices. The elastic
properties of the crystals and the cohesive properties of the grain boundaries and the cleavage planes are listed in
Table 1. In the table, the fracture toughness ratio γG is varied during the analyses to weigh the effect of inter- and
transgranular failure mechanisms in polycrystalline SiC aggregates.

In this section, two sets of tests are discussed. First, the consistency of the proposed numerical scheme is assessed
by studying the inter- and transgranular response of pseudo-3D morphologies with columnar grains. Then, the scheme
is employed to investigate the inter- and transgranular response of fully 3D morphologies under different loading
conditions and different values of the fracture toughness ratio γG .

4.1. Pseudo-3D (columnar) morphologies

Fig. 8 shows a pseudo-3D 50-grain morphology with ASTM grain size G = 12, subject to tensile strain and in
presence of an initial crack originating on the left wall of the aggregate. A uniform displacement u3 = λ/2 and
u3 = −λ/2 is prescribed on the top and bottom faces whereas on the lateral surfaces the boundary conditions are set
to ui ni = 0 being ni the unit normal of the surfaces. No shear traction act on the external walls. For this set of tests, the
morphology shown in Fig. 8 has been meshed using three different mesh sizes sms shown in Fig. 9. Following [38], the
surface mesh size sms is controlled by means of a density mesh parameter dm defined in terms of the average length of
the grain edges. Fig. 9 also shows the position of the volume control points computed as the centroids of a tetrahedral
volume mesh with a volume mesh size equal to vms = 2 µm.
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Table 1
Elastic and cohesive properties of SiC polycrystalline aggregates.

Domain Property Component Value

Bulk crystals

Elastic constants [109 N/m2]

c1111, c2222 502
c3333 565
c1122 95
c1133, c2233 96
c2323, c1313 169
c1212 (c1111 − c1122)/2

Grain boundaries Interface strength [MPa] T gh
max 500

Cohesive law constants [–]
αgh 1
βgh

√
2

Critical displacements jumps [µm]
δucr,gh

n 7.8089 · 10−2

δucr,gh
s 1.5618 · 10−1

Cleavage planes Interfacestrength [MPa] T g
max

√
γG · T gh

max

Cohesive law constants [–]
αg αgh

βg βgh

Critical displacements jumps [µm]
δucr,g

n
√

γG · δucr,gh
n

δucr,g
s

√
γG · δucr,gh

s

Fig. 8. 50-grain pseudo-3D (columnar) morphology with ASTM grain size G = 12 subject to prescribed values of vertical displacements u3 on
top and bottom faces. The colourmap indicates the orientation of the grains with respect to the loading x2 axis. The initial crack on the left face of
the aggregate is circled and highlighted in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

In this set of pseudo-3D tests, the fracture toughness ratio γG is set to γG = 1/4. Fig. 10 shows the curves of
macroscopic stress Σ33 versus load factor λ for the different mesh sizes. The figures show that the macroscopic
curves satisfactorily overlap and the difference in the maximum computed stress of the two fine meshes is around 2%.
Moreover, the three different meshes predict the same micro-crack pattern, which is shown in Fig. 11 for different
values of the load factor. More specifically, Fig. 11(a) shows the occurrence of the first transgranular crack at the tip
of the pre-existing crack; Fig. 11(b) and 11(c) show the crack pattern at two consecutive load steps; Fig. 11(b) shows
the damage distribution at the maximum value of the computed macroscopic stress Σ33 whereas, as softening initiates,
it is interesting to note that the next equilibrium condition is found after the transgranular crack propagates through
three consecutive grains; Fig. 11(d) shows how the crack switches from transgranular to intergranular mode due to the
local orientation of the grains, see Fig. 8; eventually, Fig. 11(e) shows the fully developed crack path.
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(a) (b) (c)

Fig. 9. Three different meshes of the morphology shown in Fig. 8: (a) sms = 4 µm, (b) sms = 2 µm, (c) sms = 1 µm.

Fig. 10. Macroscopic stress averages Σ33 as a function of the load factor λ and the different mesh sizes.

The fully developed crack path is also shown in Fig. 12(a), where the grains are coloured according to their
susceptibility to transgranular cracking. Such transgranular susceptibility index is computed using the relation

T G(θ ) =

⏐⏐⏐⏐θ − π/2
π/2

⏐⏐⏐⏐ , (16)

where θ −π/2 represents the difference between the local grain orientation θ and the loading direction π/2. Similarly,
Fig. 12(b) shows the effect of changing the orientation of one grain on the final crack pattern. In particular, changing
the orientation of the grain circled in Fig. 12 has the effect of impeding the transgranular crack propagation and it
modified the final crack pattern.

4.2. 3D morphologies

The first set of tests are carried out to assess the effect of the mesh size on the inter- and transgranular crack
propagation in fully 3D polycrystalline morphologies. Fig. 13(a) shows a 3D 50-grain cubic morphology with ASTM
grain size G = 12 subject to tensile strain and in presence of an initial crack, which is highlighted in red in the figure.
Similarly to the pseudo-3D tests, a uniform displacement u3 = λ/2 and u3 = −λ/2 is prescribed on the top and
bottom faces whereas, on the lateral surfaces, the boundary conditions are set to ui ni = 0. The external shear traction
are zero everywhere.

The three different meshes and the volume control points are reported in Fig. 13(b)–(c). The fracture toughness
ratio γG is set to γG = 1/4. Fig. 14(a) shows the curves of macroscopic stress Σ33 as a function of the load factor
λ and the different mesh sizes. The figure shows that the macroscopic curves corresponding to sms = 3 µm and
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Fig. 11. Micro-cracking patterns of the 50-grain morphology shown in Fig. 8 at different values of the load factor λ. The colourmap denotes the
damage level of the inter- and transgranular interfaces. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

sms = 2 µm satisfactorily overlap. The crack pattern at the last computed step is shown in Fig. 14(b) in which, once
again, the grains are coloured according to their susceptibility to transgranular cracking. In this case, the angle θ

used to compute transgranular susceptibility index T G(θ ) is the second angle of the three Euler angles defining the
grains’ orientation according to the ZXZ convention. The mesh size sms = 3 µm is then used to perform the tests
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Fig. 12. (a) Fully developed micro-cracking pattern in the 50-grain morphology in Fig. 8; (b) Final micro-cracking pattern of the 50-grain
morphology shown in Fig. 8; the circled grain has been rotated to impede the transgranular crack propagation and modify the final crack pattern.
The colourmap indicates the grain susceptibility to transgranular cracking. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

that are discussed next, as it represents a satisfactory tradeoff between solution accuracy and number of degrees of
freedom.

The same test is then performed on a 100-grain morphology with ASTM grain size G = 12 with a pre-existing
crack. The morphology, the initial crack and the prescribed boundary conditions are reported in Fig. 15(a). In order to
investigate the effect of the fracture toughness ratio γG on the macroscopic stress curve, on the micro-crack patterns
and micro-damage distribution, the micro-cracking response is computed for two values of the fracture toughness
ratio, namely γG = 1/4 and γG = 1.

Fig. 15(b) shows the macroscopic stress response as a function of the load factor λ and the two values of the fracture
toughness ratio γG . As expected, the fracture toughness ratio γG strongly influences the macroscopic stress curve by
inducing a drop of the maximum macroscopic stress as it decreases. Fig. 16 reports the cracked morphology for the
two considered cases at different levels of the load factor λ. More specifically, Fig. 16(a) corresponds to γG = 1/4
whereas Fig. 16(b) corresponds to γG = 1. In both figures, the left column shows an external view of the morphology
at the selected values of the load factor, whereas the right column shows a cut-out view of the morphology at the same
load steps, which better highlights the micro-crack propagation through the morphology. In fact, upon colouring the
grains according to their susceptibility to transgranular cracking and comparing the internal and the external views, it
is observed that the crack propagates as intergranular along the grain boundaries of those grains that are not favourably
oriented and as transgranular through those grains that are more susceptible to cleavage micro-cracking.

What discussed above is common between the analyses corresponding to γG = 1/4 and γG = 1. The main
difference between the two analyses can be found in the crack patterns and in particular in the damage distribution.
In fact, by looking at the first row of Fig. 16(a), (b) and Fig. 17(a), (b), it is possible to see that, for the same load
factor, in the morphology with γG = 1/4 the damage has already developed and two transgranular cracks have been
introduced whereas, besides the area close to the initial crack tip, the morphology with γG = 1 is almost damage-free.

As soon as the load factor reaches the value λ = 0.0350, corresponding to the maximum level of macroscopic stress
obtained with γG = 1 in Fig. 15(b) and corresponding to the second row of Fig. 16(a), (b) and Fig. 17(a), (b), the crack
has fully propagated through the morphology for both values of γG . However, for γG = 1/4 the grains that favour the
transgranular cracking get cut just one time, whereas for γG = 1 the same grains are cut multiple times. This is due
to the morphological constraints of the internal grains in combination with the higher level of stress that needs to be
reached in order to induce transgranular damage when γG = 1. Moreover, it is interesting to note that, in Fig. 17(a),
the transgranular cracks can be easily distinguished from the intergranular cracks by their higher level of damage for
the same load factor as they can withstand a lower level of stress. On the other hand, the damage distribution shown
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(a) (b)

(c) (d)

Fig. 13. (a) 50-grain fully 3D polycrystalline morphology with ASTM grain size G = 12 subject to prescribed values of vertical displacements u3
on top and bottom faces. The morphology is also subject to presence of a pre-existing intergranular crack that is highlighted in the figure as a red
surface. (b)–(d) Three different meshes of the morphology of Fig. 13(a): (b) sms = 4 µm, (c) sms = 3 µm, (d) sms = 2 µm. In the figures, the black
dots denote the volume control points. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 14. (a) Macroscopic stress average Σ33 as a function of the load factor λ and the different mesh sizes; (b) Final micro-cracking pattern. The
colourmap indicates the grain susceptibility to transgranular cracking. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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(a) (b)

Fig. 15. (a) 100-grain fully 3D polycrystalline morphology with ASTM grain size G = 12 subject to prescribed value of vertical displacements
u3 on top and bottom faces. The morphology is also subject to presence of a pre-existing intergranular crack that is indicated in the figure by a
red surface. (b) Macroscopic stress average Σ33 as a function of the load factor λ and two different values of the fracture toughness ratio γG . (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(a) rG = 1/4. (b) rG = 1.

Fig. 16. Micro-cracking patterns of the 100-grain morphology shown in Fig. 15(a) at different values of the load factor λ. (a) γG = 1/4 and (b)
γG = 1. In both figures, the left column corresponds to an external view of the morphology whereas the right column corresponds to a cut-out
view of the morphology showing the transgranular crack envelope. The colourmap indicates the grain susceptibility to transgranular cracking. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

in Fig. 17(b) is almost uniform among the inter- and transgranular cracks. At this point, the softening has initiated and

the damage accumulates over a crack envelope that is well defined.
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(a) rG = 1/4. (b) rG = 1.

Fig. 17. Damage patterns of the 100-grain morphology shown in Fig. 15(a) at different values of the load factor λ, for fracture toughness ratios
of (a) γG = 1/4 and (b) γG = 1. The colourmap denotes the damage level of the inter- and transgranular interfaces. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

In the last set of tests, 100-grain 3D cubic morphologies are subject to micro-cracking without pre-existing
damage/crack. The boundary conditions are the same as those in the previous 3D tests, i.e. the morphologies are
subject to prescribed value of vertical displacement u3 on the top and bottom faces of the aggregates, see Fig. 18(a)
whereas, on the lateral faces, the normal displacement is set to zero; along the remaining directions, the faces of
the aggregates are traction-free. Fig. 18(b) shows the macroscopic stress Σ33 as a function of the load factor λ for
four different polycrystalline morphologies and for a value of the fracture toughness ratio γG = 1. The four cracked
morphologies at a load factor λ = 0.08 are shown in Fig. 19. The morphologies are coloured according to the
grains’ susceptibility to transgranular cracking and it can be noted that some suitably oriented grains experience
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(a) (b)

Fig. 18. (a) 100-grain fully 3D polycrystalline morphology with ASTM grain size G = 12 subject to prescribed values of vertical displacements
u3 on top and bottom faces. (b) Macroscopic stress average Σ33 of the four considered morphologies as a function of the load factor λ.

transgranular cracking during the loading history. However, those micro-cracks do not lead to the generation of the
macro-crack of the whole morphology. In fact, the crack pattern of the morphology shown in Fig. 19(a) consists of
intergranular micro-cracks only, whereas the damage crack patterns of the morphologies shown in Fig. 19(b), 19(c)
and 19(d) are shown in Fig. 20(b), 20(c) and 20(d), respectively. In Fig. 20, the hatched transgranular interfaces are
those participating in the generation of the macroscopic crack of the entire morphology. Consistently with the damage
distribution reported in Fig. 17(b), the damage level of the morphologies shown in Fig. 20 is almost uniform among
inter- and transgranular cracks and mainly depends on the relative orientation between the loading direction and the
cracked interfaces.

The same tests have been performed on the morphology shown in Fig. 18(a) for different values of the fracture
toughness ratio γG , namely γG = ∞, γG = 1 and γG = 1/4. Fig. 21 shows the macroscopic stress Σ33 as a function
of the load factor λ and the selected values of γG . The macroscopic stress curve obtained with γG = ∞ coincides
to a purely intergranular failure and the corresponding damage crack pattern is shown in Fig. 22(a). It is interesting
to note that the peak value of the macroscopic stress Σ33 does not considerably change between the macro curves
corresponding γG = ∞ and γG = 1. This is an expected result within the proposed model since, for γG = 1, the
cleavage planes represent additional and potential fracture surfaces that do not differ from the grain boundaries in
terms of fracture behaviour. On the other hand, reducing the value of γG forces the activation of more transgranular
surfaces, which fail at a lower level of stress thus inducing a lower peak value in the macroscopic stress Σ33. Reducing
the value of γG also influences the damage crack patterns of the considered morphology. Figs. 22(b) and 22(c) show
the damage crack patterns at a load factor λ = 0.08. Once again, the transgranular cracks are hatched and it is possible
to notice that the number of transgranular cracks corresponding to γG = 1/4 is higher than the number of transgranular
cracks corresponding to γG = 1.

4.3. Grain boundary accommodation

To conclude the results section, it is worth noting that the developed model naturally captures the grain
boundary accommodation mechanism, which is a typical phenomenon experimentally observed in the fracture
surfaces of polycrystalline aggregates undergoing inter- and transgranular failure [10–12]. The grain boundary
accommodation refers to the initiation and evolution of intergranular damage accompanying the grain-to-grain
migration of transgranular cracking over contiguous grains with misaligned crystallographic cleavage systems.
From a computational point of view, this mechanism can only be captured by a fully 3D model, as simple 2D
models may allow for purely transgranular crack propagation through generally misaligned grains. Within the
developed framework, the grain boundary accommodation mechanism naturally occurs in all the presented results,
see e.g. Figs. 16, 20 and 22.



188 V. Gulizzi et al. / Comput. Methods Appl. Mech. Engrg. 329 (2018) 168–194

Fig. 19. Micro-cracking patterns of the four considered 100-grain morphologies at the load factor λ = 0.08. The colourmap indicates the grain
susceptibility to transgranular cracking. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

5. Discussion and further developments

Several modelling and computational aspects have been addressed in the present work.
The polycrystalline morphologies are generated using the Voronoi tessellation algorithm through the software

library Voro++ [49]. The inherent statistical variability of polycrystalline morphologies poses a considerable challenge
to the generality and robustness of the splitting/remeshing algorithm. Voro++ has been purposely modified to split
and remesh the grains undergoing transgranular failure and the developed algorithm has proved satisfactorily effective
and robust.

A development of the proposed model could involve the use of more realistic micro-morphologies, e.g. provided by
experimental observations, similar to those used by other authors [3]. The use of more realistic grain representations
is possible within the present framework, but it would require a more complex data structure to handle morphology.
Moreover, the grains are here modelled as generally anisotropic linear elastic domains: further studies could include
the combination of inter and transgranular cracking with other deformation and damage mechanisms such as crystals
plasticity [32] or stress corrosion cracking [3,18].
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Fig. 20. Figs. (b), (c) and (d) show the damage crack patterns of the morphologies shown in Fig. 19(b), 19(c) and 19(d), respectively. The images
on the right show the top view of the damage crack patterns of the figures on the left. In the figures, the transgranular cracks hatched. The colourmap
denotes the damage level of the inter- and transgranular interfaces. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

The presented results show that the proposed scheme is able to account for the competition between intergranular
and transgranular failure mechanisms and naturally captures and reproduces the grain boundary accommodation
occurring in presence of transgranular micro-cracking within polycrystalline aggregates. Additionally, the results show
that, by suitably tuning the values of the parameters governing the two fracture mechanisms, it is possible to represent
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Fig. 21. Macroscopic stress average Σ33 of the morphology shown in Fig. 18(a) as a function of the load factor λ and for different values of the
fracture toughness ratio γG .

different cracking scenarios in terms of inter/transgranular micro-cracking ratios. However a study of the statistical
representativity of the micro-cracking response of polycrystalline aggregates subject to inter- and transgranular
cracking goes beyond the scope of this paper and a more rigorous investigation of the effects of the micro-mechanics
parameters on the averaged macroscopic variables is left for further investigation. To this purpose, the development of
computation strategies enabling the analysis of higher numbers of grains could be of relevant interest; the use of fast
iterative solvers in conjunction with special matrix formats, i.e. fast multipoles [67] or hierarchical matrices [68–70],
could enhance the storage memory and computational time requirements of the implementation.

6. Conclusions

A numerical formulation for intergranular and transgranular micro-cracking in fully 3D polycrystalline materials
has been developed, implemented and tested. The competition between inter- and transgranular cracking in three-
dimensional anisotropic crystal aggregates has been modelled for the first time in a cohesive grain-boundary
framework. Transgranular failure is captured by computing the stress in the interior of the grains and by introducing
cohesive cleavage interfaces within the failing grains according to a specific threshold condition. A robust remeshing
strategy, taking into account the statistical variability of the polycrystalline morphology, has been developed and
implemented, to handle the transgranular grains splitting and propagation. The competition between inter- and
transgranular failures has been investigated by varying the fracture energy ratio between the two mechanisms and
exploring the effect on both the macro-stress strain curves and the micro-cracking envelope. It has also been shown
that the model naturally captures the intergranular grain boundary accommodation to transgranular fracture, which
is a phenomenon typically observed in polycrystalline aggregates subjected to inter- and transgranular fracture.
The method expresses the polycrystalline problem in terms of grain boundary variables only, thus reducing the
computational cost of the simulations. The developed formulation and the implemented code may offer a valuable
tool in the study of polycrystalline micro-mechanics.
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Appendix. Anisotropic Green’s functions

The 3D Green’s functions G i j (x, y) for anisotropic elasticity are obtained as the solutions of the following problem

cik jl
∂2G pj

∂xk∂xl
(x, y) + δpiδ(x − y) = 0 (A.1)



V. Gulizzi et al. / Comput. Methods Appl. Mech. Engrg. 329 (2018) 168–194 191

Fig. 22. Damage crack patterns of the morphology shown in Fig. 18(a) for fracture toughness ratios of (a) γG = ∞, (b) γG = 1, and (c) γG = 1/4.
The images on the right show the top view of the damage crack patterns of the figures on the left. In the figures, the transgranular cracks are
hatched. The colourmap denotes the damage level of the inter- and transgranular interfaces. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

where y and x denote the collocation and observation points, respectively, ci jkl is the anisotropic fourth-order elasticity
tensor, δpi denotes the Kronecker delta and δ(x − y) the Dirac delta function. By applying the Fourier transform with
respect to the variable x to Eq. (A.1) and following the approach proposed in Ref. [71], the Green’s functions G i j (x, y)
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and their derivatives can be obtained in terms of spherical harmonics using

∂ (I )G i j

∂r (α1)
1 ∂r (α2)

2 ∂r (α3)
3

(r) =
1

4πr I+1

∞∑
ℓ∈L

P I
ℓ (0)

ℓ∑
m=−ℓ

G̃ℓ,m
i j,(α1,α2,α3)Y

m
ℓ (r̂), (A.2)

where r ≡ x − y, r =
√

rkrk , r̂ = r/r ; I = α1 + α2 + α3 denotes the order of derivation and L is the set of positive
even (odd) integers when I is even (odd). P I

ℓ (0) is the ℓth associated Legendre polynomials of degree I evaluated at 0
and Y m

ℓ (r̂) is the spherical harmonic of order ℓ and degree m. The coefficients G̃ℓ,m
i j,(α1,α2,α3) of the series are computed

using the integral over the unit sphere S1,

G̃ℓ,m
i j,(α1,α2,α3) =

∫
S1

(ξ̂1)α1 (ξ̂2)α2 (ξ̂3)α3 G̃ i j (ξ̂ )Ȳ m
ℓ (ξ̂ )dS(ξ̂ ), (A.3)

where G̃ i j (ξ ) =
[
cik jlξkξl

]−1 and Ȳ m
ℓ the complex conjugate of Y m

ℓ . The reader is referred to Ref. [71] for further
details about the spherical harmonics expansions of the fundamental solutions.

The kernels Ui j (x, y), Ti j (x, y), Ui jk(x, y) and Ti jk(x, y) appearing in Eqs. (1) and (2) are then computed as [41]

Ui j (x, y) = G i j (x, y), Ti j (x, y) = nk(x)c jkpq
∂G i p

∂xq
(x, y), (A.4a)

Ui jk(x, y) = ci j pq
G pk

∂yq
(x, y), Ti jk(x, y) = nl(x)ci jrscklpq

∂2Grs

∂xq∂ys
(x, y), (A.4b)

where n(x) = {ni (x)} is the outward unit vector normal to the boundary at the point x.
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