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Uniform high-frequency description of singly, doubly, and vertex 

diffracted rays for a plane angular sector 

F. Capolino and S. Maci

Department of Electronic Engineering 
University of Florence 
Via Santa Marta 3, 50139 Florence, Italy 

Abstract-A high-frequency analysis of the scattered field at a plane angular sector is 
presented, for the scalar case in which hard boundary conditions are imposed on the 
two faces. In this formulation, the ordinary UTD field is augmented by uniform vertex 
diffraction contributions that provide the compensation of the UTD ray field when the 
first order diffraction points disappear from the tip. Furthermore, an expression of the 
doubly diffracted rays from the two edges is derived, that provides a uniform description 
of the total field at the ordinary double diffraction transition regions, including their 
possible overlapping. Moreover, a new transition function is introduced, which uniformly 
describes the transition field between doubly diffracted and vertex rays, that occurs when 
the double diffraction points merge in the tip. In spite of the complication of the physical 
mechanism, the final solution is simple and easy to implement. 

I. INTRODUCTION

Within the framework of the Geometrical Theory of Diffraction (GTD) [1] and its

uniform extension (UTD) [2], an important canonical problem is that of a corner
at the interconnection of two straight edges, joined by a plane angular sector. 
For most practical purposes, the need of a vertex diffraction coefficient for this 

problem in the UTD scheme mainly arises when the leading edge diffracted field 

experiences a discontinuity, as it does when the diffraction point disappears from 
an edge or changes abruptly its location from one edge to the other. An even 
more serious impairment is encountered in applying GTD to RCS calculations, 
due to the fact that the leading edge contributions are restricted to lying on the 

pertinent diffraction cones. 
The canonical problem of the plane angular sector was solved by Satterwhite 

and Kouyoumjian [3,4], but the series expansion of the solution is hard to com- 

pute and not well-suited for a practical asymptotic evaluation. Most of the litera- 
ture on this topic presents formulations based on numerical or hybrid techniques 

[5-7] or on approximate, high-frequency methods [8-13]. In particular, a heuristic
corner diffraction coefficient was conjectured in [8]; however, although it provided

surprisingly good results in certain specific examples, its general applicability may 
be questionable [9]. First order vertex diffraction coefficients were presented in

[10], which are formulated in order to compensate the UTD discontinuity, and 
do not include second order interaction between edges. A spectral approach has 
been developed by Ivrissimtzis and Marhefka in [1 1] by introducing the interaction
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between the edges in the physical theory of diffraction (PTD) framework. 

Recently, vertex diffraction coefficients have been derived in the plane-wave 
far-field regime by using the induction theorem [12]. These coefficients account 
for second order interactions between the two edges and provide the physical prop- 
erties to satisfy reciprocity; anyway, they are derived in the plane wave-far field 

limit, so that they are cast in nonuniform expressions that exhibit the expected 
singularities at the caustics of single and doubly diffracted rays. The same for- 
mulation has been used in [13] for deriving a uniform solution to apply at a finite 
distance from the tip. There, the scalar problem of the plane angular sector with 
soft boundary conditions (BCs) was treated; the double diffraction contributions 
were neglected, since they are of higher asymptotic order with respect to the tip 
contribution. 

In this paper, an asymptotic solution for hard BCs is presented, which is based 
on the application of a spectral synthesis [14-18] to the formulation presented
in [12]. The asymptotic treatment of the hard plane angular sector up to k-1

asymptotic order is more elaborate than the corresponding soft problem. Indeed, 
in this case the doubly diffracted rays have the same k-1 asymptotic order of 
the vertex ray, so that they should be necessarily included in a rigorous analysis. 
In this paper, expressions of both the doubly diffracted and the vertex rays are 

derived, and a transition function for describing the transition region between 
them is introduced. Together with the formulation for the soft case previously 
presented [13], this provides the basic step for finding a uniform solution for the

electromagnetic case. 
This paper is structured as follows. In Sect. 2, the nonuniform formulation 

presented in [12] is summarized for the hard case; furthermore, a particular de- 

composition of this solution is introduced, that is useful for the final uniform 

asymptotic evaluation. In Sect. 3, a double integral describing the near field of 
the plane angular sector is derived by spectral synthesis. This integral is asymp- 
totically evaluated in Sect. 4. The asymptotic solution has been derived in such 
a way that the first and the second order GTD ray field structure is easily rec- 

ognizable far from the transition regions. This provides physical insight into the 
diffraction mechanism and gives simplicity to the solution. 

Three different transition functions are defined in the high-frequency formula- 

tion ; these involve special canonical functions very simple to calculate. In partic- 
ular, the vertex contribution is multiplied by the same transition function intro- 
duced in [10] and used in [13] for the soft case. It involves the generalized Fresnel

integral. The same transition function is also used, by introducing different ar- 

guments, to treat the double diffraction transition mechanism. F?,trthermore, a 
new transition function that involves cylinder parabolic functions is defined to 
describe the second order transition mechanisms.. 

In Sect. 5, numerical examples are shown to demonstrate the effectiveness of 
this solution. 
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II. PLANE-WAVE FAR-FIELD SOLUTION

The geometry at a vertex interconnecting the two edges of a plane angular sector is
shown in Fig. 1, in which S2 denotes the angle between the two edges. The scalar 
case is considered, in which hard boundary conditions are imposed on the faces. A 

plane wave illumination is assumed, coming from the direction (13:, (i = 1, 2),
in which Oi' denotes the angle between the direction of incidence and the i -th

edge, and 0' is the aspect of incidence in the plane transverse with respect to
the i -th edge; this latter is measured starting from the common face (Fig. la).
Spherical coordinate systems (r, (3i, Øi) are defined at each edge i = 1, 2, with
their origin at the tip (Fig. 1b).

Figure 1. Coordinate systems at edges 1 and 2: (a) incidence aspects; (b) 
observation aspects. 

The plane angular sector, joining edges 1 and 2, is thought of as the intersection 
of two half-planes with overlapping 0 and 27r faces. The plane-wave far field 
solution presented in [12] is constructed as the superposition of two analogous 
mechanisms; a field contribution emanating from edge 2 when it is illuminated by
the field from edge 1 and that from 1 when it is illuminated by 2 
The procedure [12] for deriving a solution for consists of three basic steps 
that are summarized hereinafter: a) first, the total field scattered from edge 1 is
used to find a plane wave spectral representation of the field which illuminates 

edge 2, and the field that effectively impinges on half-plane 2 is represented as 
the superposition of the two spectral contributions that define the incident field 
at the upper (0) and the lower (27r) face of half-plane 2, respectively; b) next,
according to the induction theorem, each plane wave of the incident field spectral 
representation is used to define a current distribution on the two faces of the 

plane angular sector; it is assumed that the pertinent Green's function, is dictated 
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by edge 2; c) then, .by spectral synthesis, an integral representation is obtained, 
which is calculated by its residue contribution. This provides a closed-form, plane- 

wave/far-field solution for mechanism 21 1

where the far field pattern D21 is expressed by 

In (1), the zero-phase of the incident plane wave is assumed to be at the tip. It
is worth noting that D21 shows the symmetry property 

with respect to the direction of incidence and that of observation 
This property, which follows from the identity sin,31 sin a21 = sin 132 sin 021, em- 

phasizes that this solution explicitly satisfies reciprocity. 
The field 'l/J21oo represents a global contribution of the entire, infinite structure, 

in the extreme far zone. Explicit ray-contributions cannot be present in the plane- 

wave/far-field limit. Indeed, since the canonical structure exhibits straight edges, 
the GTD ray-field contributions are zero everywhere, except for the cone flj = 13: '
where a caustic occurs due to the coherence of infinite diffracted rays. Analogously, 
the doubly diffracted rays are restricted to lie on the cone fl2 where a 
caustic of doubly diffracted rays occurs in the far region. Also, due to the flatness 
of the face, GO reflected rays are restricted to the specular direction, that is a 
caustic of the same rays. 

Since 'l/J21oo is a global contribution, it should inherently contain information 
on GO, first order and one of the two second order diffraction mechanisms (in 
particular, that mechanism relevant to the field that diffracts first at edge 1 and 
next at edge 2). These information are contained in the singularities of
that occur at {3i and at fl2 = Q. These singularities are clearly ex- 

pressed in the following decomposition, that can be obtained by means of algebraic 
manipulations on Eq. (2): 
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in which 

The various symbols are listed below: 

where the upper (lower) sign applies to < 7r (> 7r) in (17) and to 4>2 (02 >

7r) in (18), respectively. In the above equations, a21 and Q21 have been obtained

by the inversion of Eqs. (3) and (4) on the locus (-joo, 7r +j oo) . This corresponds
to take the negative imaginary part of the square roots in (10)-(16) for negative
values of their arguments. The decomposition in Eq. (7) allows the separation of

singularities of different nature. In particular, in D21 the first order diffraction

caustic singularities occur at the cone ¡3i = ,Q2 and in D2,, a square-root type

singularity occurs at the cone fl2 = 0' - P. For reasons that will be clarified in

the following, the cones defined by {3i = 13: and {32 are denoted by the

first and the second order shadow boundary cone (SBC), respectively. 
When the far field pattern in (2) is used for the spectral synthesis procedure 

that defines the field at finite distance, the above singularities become poles and 

branch-point, respectively. From these spectral singularities arises contributions 
that will be interpreted as singly and doubly diffracted rays, respectively. 
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III. SPECTRAL SYNTHESIS

The plane-wave far field solution is used to construct, via spectral synthesis, an 

integral representation which is valid for source or observation point at finite 
distance from the vertex. To this end, let us first assume that the plane angular 
sector is illuminated by a spherical-wave point source located at P' z (r', 4>i) .
The scalar field of this source can be represented as a superposition of spectral 

plane-waves; i.e., 

Both the contours and Co, are defined along (- joo, 7r + joo). The first ex- 

ponential term represents a spectral plane wave coming from a direction (0', 
Each plane wave of the spectrum in Eq. (19) is now used to illuminate the plane 
angular sector. By spectral synthesis, the far-field pattern P21 ({32, 4>2) (normal- 
ized with respect to exp(-jkr)/(47rr) ) due to an incident spherical wave from the

point source at P', is obtained by replacing the first exponential term in (19) by the 

analytical continuation of the far-field pattern for complex 
incident angles i.e., 

Since our solution explicitly satisfies reciprocity, a similar integral representa- 
tion can also be used for describing the field at a point P - (r, (32, §2) placed 
at finite distance from the vertex, when it is illuminated by a plane wave coming 
from ({3i, 01). To this end, the formal substitution

can be used, thus leading to the near field expression 

in which, for convenience, the integration variables are now indicated by a2 and 

02, and the decomposition in Eq. (7) has been used. In the following, explicit
reference to the plane/wave - near field expression (23) will be made. Anyway,
the final high-frequency closed-form solution of (23) that will be presented in the

following sections can be easily reconverted into the corresponding near source far 
field by re-using the transformation (22).
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IV. HIGH-FREQUENCY SOLUTION 

To provide physical insight into the complex diffraction mechanism, the expected 

ray field contributions at finite distance r from the vertex are now discussed. 

These contributions are represented in Fig. 2. A reflected GO ray field originates 
at the specular point Q. The dominant UTD diffraction contributions V)d 1 and V)d 2
from edges 1 and 2 arise from Q' and Q2 , respectively. Furthermore, a contri- 

bution 'l/Jv arises from vertex V and a double diffraction (DD) contribution odd
arises from a point Q" 2 on edge 2 after diffracting at the point Q1 on edge 1.

The other double diffraction term odd from edge 1 after the diffraction at edge
2 is not depicted for avoiding to overcrowd the figure. The first order diffrac- 

tion contributions Qf (i = 1, 2) or the DD contribution are discontinuous when

the observation point P moves in such a way that Q' or disappears from

V, respectively. This occurs when P crosses the first and second order SBC, re- 

spectively. This discontinuity should be compensated by the vertex contribution

0'. This latter asymptotically decays as (kr)-1 ; this is due to the fact that the

flux of scattered energy through a spherical surface centered at the tip must keep
constant for any radius of the same surface. In the transition

region 
where the 

vertex contribution 0' should compensate the discontinuity of -(Pi , namely close

to first order SBC ¡3i it should become of order (kr)/ like 'l/Jf. When

the reflection point is close to the tip, it should become of order (kr)o, as the

reflected ray field. 

Figure 2. Ray contributions at a plane angular sector; (a) GO and singly
diffracted rays; (b) doubly diffracted and vertex rays.

At variance, the asymptotic behavior of the DD contribution 'lj;qf depends on

the kind of BCs that are imposed on the plane angular sector. For soft BCs,

only the derivative of od is discontinuous when 02 = 7r or 0' = 7r so that Odd
is a slope contribution that decays as (kr)-2 . Then, it is of higher asymptotic
order with respect to the vertex contribution and it can be neglected in a second
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order analysis, as done in [13]. On the other hand, for the hard case we are

presently concerned with, decays as (kr)-1 , and it should compensate for

the discontinuities of V)d 1 when the observation point or the incidence direction
crosses the plane of the angular sector (02 or 0' = 7r, respectively). Thus,
this contribution should become (kr)-1/2 for 02 = 7r (0' = 7 ) and (kr)° when

simultaneously 02 = 7r and 0' = 7r. It has an asymptotic behavior of the same
order as that of the vertex contribution, and it must be included in a rigorous 
asymptotic analysis. 

All the contributions described above arise from the asymptotic evaluation of 
the integral representation in (23). In particular, the integrand exhibits poles 
and branch-point singularities that yield the dominant UTD field and the DD 
contributions. Furthermore, it exhibits a saddle point at (0:2 = 02, 02 = 132)'
From the nature of the spectral formulation itself, the nonuniform asymptotic 
evaluation at this saddle point recovers the nonuniform vertex contribution in 

Eq. (1). 
The nature of the singularities that appears in D21 and D21 suggests a sepa- 

rate treatment of the two relevant terms. In the following subsections, the second 
order (vertex and DD) contributions will be derived from the spectral integration. 
First (Sect. 4.1), the transition field that occurs when the reflection and/or first- 
order diffraction points merge in the tip is treated; this field is found to be the 
sum of the GO rays, the ordinary UTD singly diffracted rays, and a vertex ray, all 

arising from the term D' 21 . Second (Sect. 4.2), a DD contribution and another 
vertex contribution are derived from the integral relevant to It is shown 
that this additional vertex ray-contribution provides the uniform description of 
the transition field that occurs when the DD points merge at the tip. Third (Sect. 
4.3), a proper asymptotic evaluation of the DD contribution is derived to provide 
the uniform description of the transition field at the ordinary DD transition re- 

gions relevant to the skewed edges configurations. Finally (Sect. 4.4), the total 

ray field structure is summarized. 

4.1. Transition Among GO, Singly Diffracted, and Vertex Rays 

Consider the term in (23); its integrand does not contain any branch-point 
singularities at the denominator, so that its uniform asymptotic evaluation at the 
saddle point can be treated with the same method as that presented in [10] and
used in [13] for soft BCs. This yields 

'l/Ji and 'l/Jr are the incident and reflected plane waves, are the UTD diffraction 
contribution from the two edges, 
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in which U(z) is the Heaviside unit step function, and

where T is the generalized transition function (GTF), first introduced in [10], that
is defined in terms of the generalized Fresnel integral. The complete definition of 
this function is given in [13], and reported here for convenience:

in which the arguments are

the function G in (29) is the generalized Fresnel integral 

The GTF in (29), reduces to unity for large kr, namely at a far-field distance
from the vertex, as usually happens in the standard UTD transition function. 
In [13], a simple algorithm is suggested for calculating the generalized Fresnel

integral. This algorithm reduces to combinations of ordinary Fresnel integrals. 
As discussed in [13] for the soft case, the term in (25) provides by itself the

compensation of the GO and the leading UTD ray contributions. When the 
observation point crosses the first order SBCs ({3i = (3:), the first order diffraction

point on the i -th edge disappears from the tip and a discontinuity occurs in 
the dominant asymptotic contribution. This discontinuity is described by the 
unit step function in (26). The peculiarity of the GTF is that of changing the

spreading factor of together with the observation point. Close to a SBC, one 
of the parameters bi vanishes and the GTF provides a cylindrical spreading factor 
in 0" that allows the proper compensation of the discontinuities of the singly 
diffracted contributions. When the observation point approaches the intersection 
between the two SBCs associated with the two edges, also the GO contribution

disappears. In this case, both the parameters bi and 8i vanish and the GTF 

produces a plane wave, unit spreading factor, that provides the compensation of 
the GO discontinuity. 

In the next subsections, it will be shown that the asymptotic treatment of the
term D21 provides a further vertex contribution and a doubly diffracted (DD)
field contribution. 
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4.2. Transition Among Doubly Diffracted and Vertex Rays. 

In order to evaluate the contribution in (23), let us first suppose that both
the observation point and the incidence direction are far from grazing. In such 
a case the unique singularity that has to be accounted for is the branch point
associated to d21(92) in the 62 plane. After rewriting the exponential term as 

the integral in a2 can be simply evaluated by its stationary phase contribution 
at a2 = 02 so that

where P21 (62) is a regular function of its argument close to 62 = 3' - S2 . The

integrand in (35) shows a branch point at 62 = due to the term < 
defined in Eq. (10); as shown in Fig. 3, the branch cut is chosen in such a way 

that Im 
0) 

> 0 in the top Rieman sheet. 

The integral in (35) is now asymptotically evaluated. To this end, consider 
first the case 132 < S2 , in which one expects to find a DD contribution for 
the mechanism 21, since the two diffraction points Q1 and Q2 (see Fig. 3a)
are located on the real edges. The contour is deformed into a steepest descent 

path (SDP) Ve2 through the point 02 = fl2 on the top Rieman sheet. In this

deformation, an integration on the contour Dg2 along the branch cut has to

be included, which is asymptotically dominated by the branch point 0 

(Fig. 3a). The two integrands along the SDP and around the branch cut are

interpreted as a vertex and the DD contribution, respectively. 
When fl2 > (Fig. 3b), the original contour is deformed into the SDP 

V 2 through 92 = /32 . This SDP runs on the bottom and top Rieman sheets

for ImB2 > 0 and Im92 < 0, respectively. In such a way, the integral around 
the branch cut does not need to be included. This is consistent with the physical 
mechanism, since the DD contribution does not exist when fl2 > S2 . 

Finally, for all values of in (35) can be rewritten as 

where Lg2 denotes both
V 2 

or Do and the +(-) sign apply to fl2

(/?2 < S2) ; furthermore 

in which U(z) is the Heaviside unit step function. The asymptotic evaluation of
the two integrals in (36) is performed by mapping the 82 plane into the z plane,
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which is defined by the transformation in Eqs. (56) and (57) of Appendix A. The

topology of this plane is shown in Fig. 4. In the same appendix it is shown that

Furthermore, new transition functions are introduced, that are defined as 

in which the upper (lower) sign applies to /32 > - S2 ()32 < - 0) , and

respectively, where 

where the phase 4)(x) of z is such that -7r < 7r and is the 

cylinder parabolic function defined in Appendix A. A simple algorithm for the 
numerical implementation is also suggested in the same appendix. The function 

is defined in such a way that W21 and W2 d become unity for a large
argument, namely far from the second order SBCs. 

Consider the transition region close to the direction 62 Q - In this case, 
the two second order diffraction points merge each other and z21 in (45) tends 
to vanish so that both W21 and W2 d vanish. At the same time, the square-root

type singularity within the multiplying coefficients and provides both 
the contributions in (40a) and (40b) to be finite, in such a way that the sum
of the two contributions is continuous during the transition. In order to better 
understand the actual compensation mechanism of the two contributions and to 

provide a guideline to the implementation, the continuity of is demonstrated 
in Appendix B, where the explicit expression at /32 - SZ is also reported.
From this expression it is seen that the transition field on the second order SBC 
is of asymptotic order (kr) -3/4 at variance with the normal behavior (kr)-l of 

V)21
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Figure 3. Topology of the complex 02 plane; observation point inside (a)
and outside (b) second order SBC. Contours V 2

and D 02 are

relevant to vertex and double diffraction contribution, respec- 
tively. The top Rieman sheet corresponds to 

Im 
[ cos 02 - 0) 

> 0 ; the dashed portion of
V 2 

runs on the bottom Rieman sheet. 
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4.3. Transition Among GO, Singly and Doubly Diffracted Rays 

The formulation in (40b) is nonuniform when 0' = 7r and 02 = Jr , namely does
not provide the proper compensation of the jump discontinuity of the first order 
UTD contributions when the observation point and/or the incidence direction 
cross the plane of the angular sector. In order to provide a uniform solution also 
at these grazing aspects, another transition function should be introduced. This 
is derived with the same technique as that used for obtaining (25). In particular,
in applying this technique, the observation point is supposed to be far from the 
second order SBC fl2 - Q, so that the two diffraction points are far from 
the vertex. In such a way, the contribution in Eq. (40a, b) modifies as

in which T, and 6- are the same as that in (29), (30) and (32), respectively, 
the upper (lower) sign applies to Oi < and 

The new transition function r1t becomes unity for large q21 and '721' so that
the DD contribution in (47b) is essentially the same as that in (40b) for q,i and
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02 far from 7r and for observation point far from the second order SBC. Also,
the transition function T2i is very similar to that in (28), except for the fact that

bi take the place of 6j . Then becomes unity far from the first order SBC 
and vanishes on these cones. 

The double diffraction term provides continuity to the first order diffrac- 
tion contributions when the observation point and/or the incidence direction cross
the plane of the angular sector. The compensation mechanism is ensured by the 
GTF pdd whose arguments q21 and vanish at 02 and 01 = 7r, re- 

spectively. Again, changes the spreading factor of the DD contribution from 

spherical to cylindrical; when both 02 and 0' approach 7r, all the arguments of
the GTF vanish, thus providing a unit, plane wave spreading factor that provides
the compensation of the GO discontinuity. 

The term vanishes at the first order SBC, owing to the absence of sin- 

gularity in the multiplying factor Qv" , so that its contribution is not actively 
involved in the transition mechanism described in Sect. 4.1. Its presence is only 
relevant to the transition at the second order SBC, which is discussed in Sect. 4.2. 

Before proceeding further, let us compare the expression of 0"' and in

(40) and that in (47). The first expressions are valid far from grazing aspects
(both 0' and far from 7r), while the second are valid far from the second 
order SBC (,Q2 far from S2 ). Since the new transition functions that are 
introduced in (43) and (44) reduce to unity far from the above regions, a more 

complete expression of and is suggested 

in which the simple product of the two transition functions which are introduced 

separately is applied to the final solution. For those aspects where the tran- 
sition regions of a different kind overlap, the asymptotic expressions (52) are 
not rigorous. This happens, for example, when the first and the second or- 
der SBCs merge = 7r and fl2 where they intersect 

02 = 7r, 132 = = Anyway, for 132 = q21 and tend to 61 
and b2 , respectively, so that pdd tends to T2i and the continuity of + Odd
described in the previous subsection is preserved also in these pathological cir- 
cumstances. Consequently, even though the composition of the two transition 
functions adopted in (52) is not based on a solid ground, it results applicable
for all the observation aspects, as shown in the numerical examples presented in 
Sect. 5. 

4.4. Total Ray Field 

To complete the response of the scattered field from the plane angular sector, 
the DD contribution from the opposite interaction mechanism 12 should be added, 
namely the field contribution excited by edge 1 that diffracts at edge 2. This 
mechanism can be treated by the same formulation presented so far, except for 
the fact that only the contribution 'l/Jr2 has to be accounted for, since the vertex
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contribution I 
provides itself the right compensation of the GO and of the 

singly diffracted rays discontinuities. Finally, the total asymptotic field 0 is 

represented as 

where 0' and 0' are the incident and reflected plane waves, respectively, is 
the first order UTD diffraction coefficient at the nh edge, Odd are the double
diffraction contributions from the two analogous mechanisms 12 and 21, and 

is the complete vertex diffraction contribution. All the contributions labeled by 
12 can be obtained from those 21 defined in the previous paragraphs by using the
formal substitution 1 5 2 inside each formula. Furthermore, and are 
obtained from (52), is defined in (26) and and are obtained from 

(27) and (38). It is worth noting that due to symmetry properties of the GTF,
T12 = T21.

To obtain a more symmetrical definition of the vertex contribution, the term 
in (25) can be replaced by

This change is not suggested by the need to enforce reciprocity, since (25) is recip- 
rocal itself, but it seems to provide a result more close to the physical response, 
since it avoids privileging edge 1 with respect to edge 2. Anyway, we have found 
that the above mentioned change does not give significant differences from the 
numerical point of view. 

V. NUMERICAL EXAMPLES

The following numerical examples are devoted to demonstrate the effectiveness of 
the formulation in the various transition regions discussed in Sects. 4.1-4.3. For 
the sake of convenience, the formulas that have been implemented are labeled as 
follows 

Figure 5 shows the amplitude of the scattered field at a distance r = 2A from
the tip of an S2 = 90° plane angular sector; the plane wave is incident from

= 120°, = 30° (corresponding to (3? = 138°, = 40° ). The scan plane
(02 = 170°, /32 from 0 to 180° ) and the SBCs are depicted in the inset of the
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same figure. In particular, the first order SBCs are for fl2 = 138° and 131 = 120°
and the second order SBCs for fl2 = 30° and 131 = 48°. Dashed, dotted and
continuous lines represent UTD-R, VF and SF, respectively. The UTD-R curve is 
first discontinuous at /32 = 31° when the observation point P passes through the
first order SBCs of edge 1; after, only the reflected field occurs until )32 = 138°,
where the first order SBC of edge 2 is crossed; proceeding further, the UTD-R 

abruptly vanishes, and at 150° appears again, when the second intersection with 
the first order SBC of edge 1 occurs. The VF shows discontinuity at the same 
SBCs that compensate those of the UTD-R curve. It is worth noting that the 
total field is well-behaved even though the two transition regions close to 138°, 
and 151° overlap (by the way, this partial overlapping is due to the fact that the 
observation point passes close to the specular direction, which corresponds to the 
intersection of the two first order SBCs; here the reflection point and the first order 
diffraction points merge in the tip). The smooth curve of the SF demonstrates 
the effectiveness of the function T mn in describing the transition field also when 
all its arguments vanishes. 

Figure 5. Amplitude of diffraction contributions versus fl2 ( r = =

90°, = 120°, 0' = 30°, 02 = 170° ); the first order SBCs are
at fl2 = 138° and fli = 120° ; the second order SBCs are at

fl2 = 30° and ?31 = 48° ; SF (continuous line), UTD-R (dashed
line), DDF (dash-dotted line), VF (dotted line).
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Figure 6. Amplitude of diffraction contributions versus 02 ( r = 1.5A,
S2 = 60°, = = 120°, 02 = 40° ); SF (continuous
line), UTD-R (dashed line), DDF (dash-dotted line), VF (dotted 
line). 

The scan plane in Fig. 6 is chosen to check the effectiveness of the transition 
function Tdd This figure shows the amplitude of SF (continuous line), UTD-R

(dashed line), DDF (dash-dotted line), versus 02 at a distance r = 1.5A for a

plane wave incident from = 140°, 0' = 120°, fl2 = 40° on a hard plane angular
sector with S2 = 60° . As expected, the field predicted by UTD-R does not vanish
at grazing aspects, thus showing here a phase jump of 180° . The introduction of 
DDF provides the amplitude of SF to be more close to zero, value at which the 

physical response should be. The incorrect residual field at grazing in the SF plot 
(-22 dB) is due to the absence of the higher order diffraction contributions. 

The amplitudes of various diffraction contributions versus ,32 at r = 2A in
the scan plane = 150° are plotted in Figs. 7(a-b). In this case, the incidence

aspects are = 140°, 0' = 30° and the angle of the plane angular sector is
rather small ( S2 = 45° ). The observation point crosses the first order SBC at

,62 = 104°, fl2 = 159° , and ?2 = 172° , while the second order SBCs at 132 = 76°
and fl2 = 95° .
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Figure 7. Amplitude of diffraction contributions versus /32 ( r = 2A, S2 =

45°, = = 30°, q,2 = 150° ); the first order SBCs
are at {32 = 160° and fli = 140° ; the second order SBCs are
at fl2 = 95° and {31 = 114° ; (a) SF (continuous line), UTD- 
R (dashed line), DDF (dash-dotted line), VF (dotted line); (b)
VF" (dotted line), DDF (dash- dotted line) DDF+VF" (dotted
line). 
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In Fig. 7a the relevance of DDF (dash-dotted) is noticeable in the region 0 <

fl2 < 45° , so that UTD-R (dashed) is significantly corrected. Again, the first order 
transition fields are described with the proper continuity by VF (short dashed),
so that SF (continuous) exhibits the desirable smooth behavior. 

In order to show the effectiveness of the second order transition field described 
in Sect. 4.2, the contributions VF" (short dashed), DDF (dash-dotted), and
VF" +DDF (continuous) are plotted in Fig. 7b. The description of the transition
field between vertex and DD rays is quite satisfactory. It is also worth noting that, 
in this case, the observation point is also close to a first order SBC (132 = 33° ), so
that the above transition region overlaps with the transition region between ver- 
tex and the leading diffracted rays. This result confirms what was mentioned at 
the end of Sect. 4.3, thus providing a partial numerical validation of the product 
between the two transition functions used in Eqs. (52). It is also worth noting 
that a small glitch occurs at 76° , owing to the absence of the higher order (slope)
contributions in the asymptotic expansion. 

VI. CONCLUDING REMARKS

A uniform solution for the field produced by a plane wave at a hard, plane angular 
sector has been formulated. This solution is expressed in terms of a) the standard
GO plus the UTD leading rays; b) a vertex contribution, that provides the uniform 

description of the ray-field when the reflection and/or leading diffraction points 
merge in the tip; c) a double diffraction contribution, that uniformly compensates 
the discontinuity of the singly diffracted rays at the ordinary double diffraction 
transition regions, including the possible overlapping of them; d) a further vertex 

ray, that provides a uniform description of the field at the transition region in 
which double diffraction points merge at the tip. The mechanism b) is treated by
the same transition function introduced in [10] and used in a previous work [13]
for the soft case. The same transition function with different arguments, is also 
used to treat the the double diffraction transition mechanism c). Furthermore, 
a new transition function that involves cylinder parabolic functions is introduced
to describe the transition mechanism 

Despite the conceptual difficulty of the physical mechanism, the solution is 

quite simple, since it is structured in such a way to recover the ordinary singly 
and doubly diffracted GTD rays far from the transition regions. Furthermore, the

various transition functions of the formulation are easy to implement. 

Together with the soft problem previously treated [13], this hard case provides
the basic step to study the more general electromagnetic problem. 
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APPENDIX A 

To give a uniform evaluation of the integrals in (37), the change of variable

is introduced, so that 

in which z21 is defined in (45). The topology of the z plane is depicted in

Fig.4. The mapping (29) transforms the saddle point 02 = /32 into the saddle

point z = z21 and the branch point 02 = into the branch point z = 0.

Furthermore, the contours 
Y 2 

and Dg2 are mapped into (through z = z21 )
and Dz (through z = 0), respectively. The asymptotic evaluation is performed
by multiplying and dividing the integrand by and by evaluating the slowly 
varying part of the integrand at the relevant critical point, namely z = z21 and
z = 0 for and Dz, respectively. This leads to

It is worth noting that the evaluation of the regular, slowly varying part of the 

integrand of (37) at the two separated points z = 0 and z = z21 , allows the

asymptotic evaluation to be provided by the asymptotic structure of the doubly 
diffracted plus vertex rays far out from the transition regions. This is the reason 

why this technique has been preferred to a more conventional [19-20] asymptotic
evaluation in which the regular part of the integrand is evaluated at the same 

point for the two contributions. The integrals in (59) are simply expressed in
terms of the canonical cylinder parabolic function D - 1 (x) of defined 
as 

where the extremes of the integrations denote the choice of the branch cut in 
the integrand, that goes from 0 to 00 , following the definition given in [19, Eqs. 

9.4.27-28] . Alternative, integral representations of the same function are 
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that can be obtained directly from (61) by using a simple change of variable, and

[19, Eqs. 9.4.-29] 

By using (61)-(63) it is straightforward to obtain 

After a proper normalization, expressions (58), (60) and (64) leads to (40-44). For 
small values of its argument < 2.5 ), the function in (61-63) can be calculated

by [21, Eq. 13.6.36, pag. 510] 

in which M(a, b, y) is the Kummer's function defined in [21, Eq. 13.1.2, pag. 504],
in which the first N terms, in which N = int(22.6Ixl) , and simply expressed in
terms of fast convergent power expansion. For higher values of its argument 

(Ixl > 2'5 ), - 

APPENDIX B 

In this appendix, the continuity of the field 021 in Eq. (39) for small value of

is demonstrated. From (40)-(46) it is straightforward to obtain thai 

where the upper (lower) sign, and the upper (lower) value into square brackets
denote positive (negative) values of E in the relevant limit, respectively, and 
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The constant assumes the value 1.216... The terms into parentheses 

in (68) and (69) represent the limit of the transition functions W21 and
defined in (43) and (44), respectively. Then 

where the upper (lower) term is relevant to the upper (lower) sign. By observing 
that = ej7r/4, the two limits are equal to each other,
so that 

The existence of this limit confirms that the is continuous across the second 
order SBC. 
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