
UC Davis
UC Davis Previously Published Works

Title
Monocular enucleation alters retinal waves in the surviving eye

Permalink
https://escholarship.org/uc/item/69r1z3p4

Journal
Neural Development, 13(1)

ISSN
1749-8104

Authors
Failor, Samuel Wilson
Ng, Arash
Cheng, Hwai-Jong

Publication Date
2018-12-01

DOI
10.1186/s13064-018-0101-1
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/69r1z3p4
https://escholarship.org
http://www.cdlib.org/


RESEARCH ARTICLE Open Access

Monocular enucleation alters retinal waves
in the surviving eye
Samuel Wilson Failor1,4*, Arash Ng1 and Hwai-Jong Cheng1,2,3*

Abstract

Background: Activity in neurons drives afferent competition that is critical for the refinement of nascent neural
circuits. In ferrets, when an eye is lost in early development, surviving retinogeniculate afferents from the spared
eye spread across the thalamus in a manner that is dependent on spontaneous retinal activity. However, how this
spontaneous activity, also known as retinal waves, might dynamically regulate afferent terminal targeting remains
unknown.

Methods: We recorded retinal waves from retinae ex vivo using multi-electrode arrays. Retinae came from ferrets
who were binocular or who had one eye surgically removed at birth. Linear mixed effects models were used to
investigate the effects of early monocular enucleation on retinal wave activity.

Results: When an eye is removed at birth, spontaneous bursts of action potentials by retinal ganglion cells (RGCs)
in the surviving eye are shorter in duration. The shortening of RGC burst duration results in decreased pairwise RGC
correlations across the retina and is associated with the retinal wave-dependent spread of retinogeniculate afferents
previously reported in enucleates.

Conclusion: Our findings show that removal of the competing eye modulates retinal waves and could underlie the
dynamic regulation of competition-based refinement during retinogeniculate development.

Background
Developing nascent neural circuitry undergoes modifications
in an activity-dependent manner [1–6]. Neural activity that
is essential for early stages of visual system development
originates from spontaneous processes [1, 4–6] and appears
to facilitate circuit refinement by driving Hebbian-like
competition for synaptic partners between innervating
neurons [7–9]. This activity-dependent refinement results in
the precise mapping of sensory areas, for example by estab-
lishing eye-specific laminae and fine-scale retinotopy across
visual areas [1, 4].
Patterned spontaneous retinal activity (i.e. retinal waves)

occurs primarily during periods of functional blindness
[10–13] and is characterized by periodically occurring
domains of retinal ganglion cell (RGC) activity that slowly
propagate across the retina in a wave-like fashion. This
spatiotemporal feature of retinal waves leads to a high
level of correlated activity between neighboring RGCs and

very little correlated activity between RGCs that are
distant from each other. Retinal waves have been
shown to play a critical role in the establishment of
eye-specific laminae in the dorsal lateral geniculate
nucleus (dLGN) [7, 8, 14–20], as well as fine-scale
retinotopy [8, 21] and receptive field size [8, 22, 23]
in the dLGN and superior colliculus. For example,
when an eye is lost early in development, retinogen-
iculate afferents from the surviving eye spread
across the dLGN in a retinal wave-dependent man-
ner [8]. This study demonstrated that retinal waves
drive both inter-eye [7] and intra-eye competition
for synaptic space in the dLGN. However, it remains
unclear how retinal waves might facilitate retinogen-
iculate expansion. One possibility is that the loss of
the competing eye alters retinal waves to guide this
process.
Here we show that in ferrets when we surgically re-

move a competing eye, retinal waves in the surviving eye
were altered. Primarily, retinal wave associated bursts of
action potentials by retinal ganglion cells in the surviv-
ing eye were shorter as were the number of spikes
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contained in these bursts. The shortening of bursts also
decreased levels of pairwise RGC correlation. Thus, a
significant reduction in levels of correlated RGC activity
during retinal waves is associated with removal of the
competing eye.
Based on these data, we propose a model where the pres-

ence of the competing eye reduces intra-eye competition for
synaptic space in the dLGN by increasing correlated RGC
activity, which facilitates the formation of eye-specific lam-
inae during inter-eye competition. Conversely, the absence
of the competing eye promotes the expansion of retinogen-
iculate laminae by reducing pairwise RGC correlations and
increasing intra-eye competition. In this way, adjustments to
the duration of RGC bursts during retinal waves could
dynamically optimise competition-based retinogeniculate re-
finement during the establishment of eye-specific laminae.

Methods
Animals
Time-pregnant fitch-coat ferrets were received at mid to
late gestation, giving birth 2–3 weeks later (Marshall
BioResources, NY, USA; RRID:SCR_015489). Food and
water were provided ad libitum. All procedures were
authorized by the University of California, Davis
(RRID:SCR_012713) Institutional Animal Care and Use
Committee (IACUC) and performed in accordance with
national and international standards for humane animal
research as set forth by the National Institutes of Health
(RRID:SCR_011417), Institute of Laboratory Animal Re-
search (RRID:SCR_006872), USDA (RRID:SCR_011486),
and Assessment and Accreditation of Laboratory Animal
Care, International (RRID:SCR_015496).

Monocular enucleation
Neonatal ferrets of either sex were anesthetized with iso-
flurane at P1. After topical lidocaine was applied, the eyelids
of one eye were separated, and the muscles and connective
tissue of the eyeball were blunt dissected. Hemostats were
used to clamp the optic nerve after which it was severed
and the eyeball removed. Antibiotic ointment was applied
to the orbit, and sterile gelfoam was inserted to stem any
subsequent bleeding. A liquid suture was applied to seal the
eyelids. Before the animal fully awakened a single dose of
buprenex was administered intramuscularly (0.02 mg/kg)
as a postoperative analgesic. The monocular enucleation
procedure typically took under 5 min. Age-matched litter-
mates served as controls.

Multielectrode array recordings
Ferrets were euthanized with a lethal dose of pentobarbital
(0.1–0.2 ml) via an inter-peritoneal injection. An eye was
enucleated, and the retina was removed and stored in ice-
cold buffered and oxygenated media (M7278, Sigma-
Aldrich, USA; RRID:SCR_008988). A piece of the retina was

placed RGC side down onto a 60-channel MEA
(MEA2100 System, Multi-Channel Systems, Germany;
RRID:SCR_014809), and held in place with a piece of dia-
lysis membrane (Spectrapore 132,130, Spectrum Labs,
USA; RRID:SCR_015488). The tissue was superfused with
buffered media at 1–2 ml/min at 34 or 37 °C. The array
electrodes were 30 μm in diameter and arranged in an 8 ×
8 rectilinear grid with an interelectrode spacing of
200 μm. At this distance, the signal for a given cell ap-
peared on only one electrode, so each isolated cell was
assigned the spatial coordinates of the electrode on which
it was recorded. Analog data were acquired at 20 kHz per
channel simultaneously from each electrode. After the ret-
ina had been placed on the MEA, the tissue was allowed
to acclimate for at least 45 min. When retinal waves ap-
peared stable, recordings were performed for 20 min.

Spike identification
Raw data were digitally filtered with a 125-Hz high-pass
filter (four-pole Butterworth) for sorting spike events. A
threshold of six STD was set for each channel and 1 ms
of data before, and 4 ms after a threshold-crossing event
were stored for each negative-slope event. These candi-
date spike waveforms were then sorted with Offline
Sorter (Plexon, USA; RRID:SCR_000012) using the first
three principal components of the spike waveforms. Co-
incident events within 0.5 ms of each other that were
detected on at least 90% of the channels were attributed
to perfusion noise and removed. Clusters were first iden-
tified using an EM cluster algorithm [24] then manually
edited for clustering errors. Typically, each electrode re-
corded the activity of one to three cells.

Analysis of RGC burst properties
RGC bursts were identified as previously described [25].
All burst analyses were carried out using custom scripts
written in Matlab (Mathworks, USA; RRID:SCR_001622).
The beginning of a burst was defined as the point in an
RGC spike train when the inter-spike interval (ISI) was
less than 0.1 s. Subsequent spikes with ISIs less than 1 s
were included in the burst, whereas an ISI of greater than
1 s denoted the end of the burst. If two bursts occurred
within 5 s of each other, they were merged.
The properties of bursts identified by this algorithm

were then averaged for each cell. Firing rate, burst dur-
ation, the number of spikes within a burst, the percentage
of spikes within bursts, burst frequency, burst ISI, the per-
centage of burst time above 10 spikes/s, the percentage of
bursts in waves, and bursts per wave were all quantified.

Analysis of wave properties
Retinal waves were identified in a similar way to that previ-
ously described [26]. All wave analyses were carried out
using custom scripts written in Matlab (Mathworks, USA;
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RRID:SCR_001622). MEA recordings were divided into 1 s
time bins. The beginning of a retinal wave was defined as
the time bin when greater than 5% of all cells were bursting
and considered over when less than 2.5% were bursting.
The position of a wave over time was the center of mass

of the cells participating in the wave in each time bin.
Wave speed was defined as the average change in wave
position over time. Wave spread was defined as the aver-
age percentage of new electrodes that detected bursting
cells in each time bin. Waves that lasted for less than 3 s
were not included in analyses of wave speed or spread.
The size of a wave was defined as the average percent-

age of electrodes that detected bursting cells across the
duration of a wave.

Correlation analysis
Correlation analyses were carried out using custom
scripts written in Matlab (Mathworks, USA;
RRID:SCR_001622). Pairwise correlations between RGC
spike trains were measured by calculating the spike time
tiling coefficient [27] (STTC), which is bounded and in-
sensitive to firing rate. STTC is defined as

STTC ¼ 1
2

PA−TB

1−PaTB
þ PB−TA

1−PBTA

� �

where TA is the total recording time that lies within ±Δt
of any spike from cell A. TB is calculated similarly for
cell B. PA is the proportion of spikes from cell A which
lie within ±Δt of any spike from cell B. PB is calculated
similarly for cell B. For our calculations Δt was defined
as 0.1 s. STTC is 1 with autocorrelation and − 1 when
PA = 0 and TB = 1.

Statistical analysis
All statistical analyses were carried out in Matlab (Math-
works, USA; RRID:SCR_001622). The sample sizes re-
quired for this study were estimated based on previous
studies [22, 26]. For descriptive statistics, we used mean ±
STD, or mean ± SEM where indicated. For box plots, the
height of the boxes extended between the 25th and the
75th percentiles of the data. The horizontal bar and cross
mark signified the median and mean, respectively. For plot-
ting, outliers were defined as data points 1.5 times higher
than or 1.5 times lower than the interquartile range and
were shown as circles. The box plot whiskers extended to
the most extreme data points that were not considered
outliers. Outliers were not excluded from analyses. We
considered P values less than 0.05 as significant. Signifi-
cance values for comparisons of burst property means
were calculated by fitting hierarchical linear mixed-effects
models to cell data where the condition (monocular or bin-
ocular) and recording temperature (34 or 37 °C) were the
fixed-effects, and recording/retina was the random-effect

to correct for the non-independence of recorded cells. Sig-
nificance values for comparisons of wave properties were
also calculated by fitting linear mixed effects models as de-
scribed above, except when comparing wave frequencies
where the model only included terms for condition and
temperature. In cases where samples were lognormal, we
carried out a log transformation to bring samples to a nor-
mal distribution. In other cases, sample distributions had
downward skews and were transformed with the exponen-
tial function. Comparing STTC values between enucleation
conditions was similarly carried out using a hierarchical
linear-mixed effects model where condition and
temperature were fixed-effects, RGC pair distance was a
covariate, and recording/retina was a random effect. STTC
values were averaged for all RGC pairs by distance for each
retina, resulting in a single value for each unique RGC pair
distance. Before fitting the model, distance values were log
transformed to improve linearity as shown in Fig. 6. All fig-
ures display data in their transformed state.

Results
Monocular enucleation has multiple effects on retinal waves
To investigate changes in the properties of retinal waves
following the removal of a competing eye, we surgically
removed one eye from newborn ferrets 1 day after birth
(P1). Retinae were dissected away from the eyes of bin-
ocular and monocular ferrets between P5 and P6 and
placed RGC layer side down on a 60-channel multielec-
trode array to record retinal wave activity ex vivo
(Fig. 1a). We chose this time point as it has been previ-
ously shown that the expansion of the ipsilateral projec-
tion is retinal wave-dependent between P5 and P10 [8].
The waves recorded from the retinae of monocular and

binocular ferrets appeared at first glance to be qualitatively
similar (Fig. 1b). However, with further analysis, it was found
that retinal waves were notably different in several ways fol-
lowing early monocular enucleation. The largest and most
significant effects observed were those on RGC burst dur-
ation and the number of spikes within a burst (Fig. 1d-e).
Compared to retinae from binocular ferrets, those from
enucleates had RGCs whose bursts of action potentials were
approximately 30% shorter in duration (binocular, 2.39
± 1.32 s; monocular, 1.67 ± 0.99 s; mean ± STD; binocular,
N = 1178 cells, 13 retinae; monocular, N = 1001 cells, 11 ret-
inae; T(2168) = 4.91, P = 9.9609 × 10− 7, linear mixed-effects
model with log transformation) (Fig. 1d). The reduction in
burst duration was for the most part consistent across ret-
inae recorded at temperatures of either 34 °C (binocular,
2.76 ± 1.42; monocular, 1.82 ± 0.91; mean ± STD; binocular,
N = 731, 7 retinae; monocular, N = 592, 6 retinae; T(1317) =
3.90, P = 9.952 × 10− 5, linear mixed-effects model with log
transformation) or 37 °C (binocular, 1.79 ± 0.83; monocular,
1.46 ± 1.07; mean ± STD; binocular, N = 447, 6 retinae; mon-
ocular, N = 409, 5 retinae; T(850) = 3.37, P = 0.00078, linear
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mixed-effects model with log transformation) (Fig. g-h). The
impact on burst duration due to enucleation lead to the
number of spikes within a burst to be reduced by approxi-
mately 25% (binocular, 60.16 ± 53.26; monocular, 44.87 ±
39.82; mean ± STD; binocular, N = 1178 cells, 13 retinae;
monocular, N = 1001 cells, 11 retinae; T(2168) = 2.92, P =
0.00357, linear mixed-effects model with log transformation)
(Fig. 1e). As expected, given that fewer spikes were
contained within bursts, the overall firing rate of RGCs was
reduced with enucleation (binocular, 1.19 ± 1.19 spikes/s;
monocular, 0.86 ± 0.84 spikes/s; mean ± STD; binocular,

N = 1178 cells, 13 retinae; monocular, N = 1001 cells, 11 ret-
inae; T(2176) = 2.49, P = 0.0128, linear mixed-effects model
with log transformation) (Fig. 1f).
In most other ways retinal waves were generally un-

affected by monocular enucleation. Bursts occurred at the
same frequency in both conditions (binocular, 1.02 ± 0.56;
monocular, 0.96 ± 0.52; mean ± STD; binocular, N = 1178
cells, 13 retinae; monocular, N = 1001 cells, 11 retinae;
T(2168) = 1.36, P = 0.174, linear mixed-effects model with
log transformation) (Fig. 2a), and the vast majority of
RGC spikes were contained within bursts, although this
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was slightly less so for the monocular condition (binocular,
0.900 ± 0.155 proportion of spikes in bursts; monocular,
0.862 ± 0.186 proportion of spikes in bursts; mean ± STD;
binocular, N = 1178 cells, 13 retinae; monocular, N = 1001
cells, 11 retinae; T(2168) = 5.44, P = 5.814 × 10− 8, linear
mixed-effects model with exponential transformation)
(Fig. 2b). Bursts occurred almost exclusively during waves
regardless of condition (binocular, 0.978 ± 0.068 proportion
of bursts in waves; monocular, 0.975 ± 0.057 proportion of
bursts in waves; mean ± STD; binocular, N = 1178 cells, 13
retinae; monocular, N = 1001 cells, 11 retinae; T(2168) =
1.74, P = 0.0814, linear mixed-effects model with exponen-
tial transformation) (Fig. 2c) but for the monocular condi-
tion, the number of bursts per wave per cell was slightly
reduced (binocular, 0.467 ± 0.191; monocular, 0.371 ± 0.159;
mean ± STD; binocular, N = 1178 cells, 13 retinae; monocu-
lar, N = 935 cells, 11 retinae; T(2168) = 2.66, P = 0.00777, lin-
ear mixed-effects model) (Fig. 2d). Additionally, the burst
ISI (binocular, 0.086 ± 0.062 s; monocular, 0.078 ± 0.055 s;
mean ± STD; binocular, N = 1178 cells, 13 retinae; monocu-
lar, N = 1001 cells, 11 retinae; T(2168) = 0.98, P = 0.327, lin-
ear mixed-effects model with log transformation) (Fig. 2e)
and the proportion of burst time above 10 spikes/s (binocu-
lar, 0.512 ± 0.217; monocular, 0.557 ± 0.213; mean ± STD;
binocular, N = 1178 cells, 13 retinae; monocular N = 935
cells, 11 retinae; T(2168) = 1.78, P = 0.0747, linear mixed-
effects model) (Fig. 2f) were unchanged with enucleation,
further confirming that the reduction in the number of
spikes in a burst was due to shorter burst durations. When
analyses were constrained to only wave associated bursts,
the differences between conditions were consistent with our
general findings (Fig. 3a-d).
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Other observed effects on burst properties due to
enucleation were unique to non-wave bursts, which
were very rare in both conditions (Fig. 2c). Non-wave
bursts, like wave bursts, were shorter in duration in the
monocular condition (binocular, 1.46 ± 1.11 s; monocu-
lar, 1.26 ± 1.52 s; mean ± STD; binocular, N = 245 cells,
13 retinae. Monocular, N = 272 cells, 11 retinae; T(514)
= 3.35, P = 0.00086, linear mixed-effects model with log
transformation) (Fig. 4a), but had shorter burst ISIs
(binocular, 0.137 ± 0.117 s; monocular, 0.098 ± 0.093 s;
mean ± STD; binocular, N = 245 cells, 13 retinae.
Monocular, N = 272 cells, 11 retinae; T(514) = 5.04,

P = 6.534 × 10− 7, linear mixed-effects model with log
transformation) (Fig. 4c) and spent a larger proportion
of time firing at rates above 10 spikes/s (binocular,
0.390 ± 0.291; monocular, 0.527 ± 0.290; mean ± STD;
binocular, N = 245 cells, 13 retinae. Monocular, N = 272
cells, 11 retinae; T(514) = 5.65, P = 3.298 × 10− 8, linear
mixed-effects model) (Fig. 4d). These combined effects
resulted in non-wave bursts containing a similar num-
ber of spikes in both conditions (binocular, 20.02 ±
22.20; monocular, 24.63 ± 26.32; mean ± STD; binocular,
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= P < 0.0001
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N = 245 cells, 13 retinae. Monocular, N = 272 cells, 11
retinae; T(514) = 1.08, P = 0.282, linear-mixed effects
model with log transformation) (Fig. 4b).
Lastly, we found small but significant effects on retinal

wave size (binocular, 0.275 ± 0.158 proportion of electrodes
active; monocular, 0.224 ± 0.130 proportion of electrodes
active; mean ± STD; binocular, N = 495 waves, 13 retinae.
Monocular, N = 485 waves, 11 retinae; T(977) = 2.58, P =
0.00999, linear mixed-effects model) (Fig. 5c) and speed
(binocular, 167.67 ± 77.63 μm/s; monocular, 199.39 ±
83.63 μm/s; mean ± STD; binocular, N = 449 waves, 13 ret-
inae. Monocular, N = 409 waves, 11 retinae; T(855) = 2.22,
P = 0.0267, linear mixed-effects model) (Fig. 5d). However,
the rate that waves spread to new electrodes was unchanged
with enucleation (binocular, 0.060 ± 0.042 proportion of new
electrodes active/s; monocular, 0.065 ± 0.045 proportion of
new electrodes active/s; mean ± STD; binocular, N = 449
waves, 13 retinae. Monocular, N = 409 waves, 11 retinae;
T(855) = 0.821, P = 0.412, linear mixed-effects model)
(Fig. 5e). Wave frequency was not significantly different with
enucleation (binocular, 2.53 ± 1.26; monocular, 2.86 ± 1.64;
mean ± STD; binocular, N = 13 retinae; monocular, N = 11
retinae; T(21) = 1.216, P = 0.237, linear-mixed effects model)
(Fig. 5f). However, there was a shortening of wave duration
(binocular, 5.79 ± 3.15 s; monocular, 5.07 ± 7.60 s; mean ±
STD; binocular, N = 495 waves, 13 retinae. Monocular, N =
485 waves, 11 retinae; T(977) = 5.744, P = 1.233 × 10− 8, lin-
ear mixed-effects model with log transformation) (Fig. 5g)
consistent with the shortening of RGC burst duration.

Shortening RGC burst duration reduces pairwise RGC
correlation levels
The effects on RGC bursts were intriguing, as bursts ap-
pear to play a critical role in retinofugal refinement [9,
17, 28, 29]. Due to the spatiotemporal properties of ret-
inal waves, the bursting activity of neighboring RGCs is
highly correlated but is largely uncorrelated between
pairs of RGCs that are distant from each other [26, 30].
A large body of work has supported the hypothesis that
correlated activity is critical for retinotopic refinement of
RGC afferent terminals within the dLGN and superior
colliculus [9, 26, 28, 31]. If the duration of bursts is
shortened, the pairwise correlation between RGCs with
offset burst times, as is the case during propagating
waves, should be reduced (Fig. 6a).
Based on the hypothesis that a shortening of burst

duration should reduce pairwise correlation levels be-
tween RGCs during waves (Fig. 6a), we carried out add-
itional measurements to determine if levels of correlated
activity decreased with enucleation. To quantify pairwise
RGC correlations we calculated the “spike time tiling co-
efficient” (STTC) [27], which is a pairwise correlation
measure that is bounded and insensitive to firing rate.
Retinae from enucleates and binocular ferrets showed

pairwise RGC correlations that fell as a function of the
distance between cell pairs consistent with what has
been previously described [30] (Fig. 6b). However, as
predicted, levels of correlated RGC activity during waves
were reduced across RGC pair distances for retinae from
enucleates (binocular, N = 401 distances, 13 retinae;
monocular, N = 341 distances, 11 retinae; T(738) = 2.85,
P = 0.00452, linear mixed-effects model) (Fig. 6c).
The number of spikes within bursts and non-wave burst

properties between retinae from binocular and monocular
ferrets were different as described above. Although spikes
outside bursts and non-wave bursts were rare, it may be
the case that they had an impact on overall levels of corre-
lated activity. For non-wave associated activity, pairwise
RGC correlation levels were not significantly different be-
tween conditions (binocular, N = 401 distances, 13 retinae;
monocular, N = 341 distances, 11 retinae; T(738) = 1.02,
P = 0.310, linear-mixed effects model) (Fig. 7b and d).
However, when correlation levels were measured for all
recorded RGC activity, a difference between conditions
was still found (binocular, N = 401 distances, 13 retinae;
monocular, N = 341 distances, 11 retinae; T(738) = 2.56,
P = 0.0106, linear mixed-effects model) (Fig. 7a and c) in-
dicating that correlation levels are predominately deter-
mined by the properties of wave bursts.

Discussion
We have previously shown that retinal waves are critical
for the targeting of retinogeniculate afferents following the
removal of competing inputs to the dLGN [8]. While this
work demonstrated that aspects of afferent terminal tar-
geting during retinogeniculate refinement are retinal
wave-dependent, it remained unclear what retinal wave
properties might be necessary for this process. This study
aimed to elucidate what retinal wave properties could dy-
namically guide afferent terminal targeting when an eye is
lost. We show that the removal of the competing eye al-
ters the duration of retinal wave associated RGC bursts,
which has impacts on RGC correlation. Since studies have
shown that correlation plays a critical role in retinogenicu-
late refinement, our finding is consistent with the hypoth-
esis that retinal wave activity can dynamically guide
retinogeniculate refinement while taking into consider-
ation the presence of inter-eye competition.
We should note that since monocular enucleation is

the complete removal of an organ, there is essentially no
sham surgery that can fully replicate its potential side ef-
fects. Thus, our study cannot authoritatively rule out ef-
fects on retinal waves due to stress the ferrets may have
experienced due to the monocular enucleation proced-
ure. However, there is data to suggest that noxious stim-
uli at this age are unlikely to have large impacts on the
brain. Studies have shown that newborn mammals that
undergo extended periods of brain development ex utero
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are hyporesponsive to noxious stimuli in the first two
postnatal weeks [32]. Additionally, we found that new-
born ferrets that underwent the short enucleation pro-
cedure healed quickly and did not display any
developmental stunting or signs of distress. Ultimately,
future experiments utilizing more targeted interventions
are required to elucidate further how monocular enucle-
ation affects retinal wave activity.

The role of burst duration and RGC correlation
RGC bursts are important for refinement of the retino-
geniculate pathway [4, 9, 17, 28, 29]. Thus, the changes in
RGC burst duration following monocular enucleation
(Fig. 1) may indicate a role of the competing eye in influ-
encing the refinement of the retinogeniculate pathway of
the other. Additionally, we found that RGC burst duration
scales RGC correlation (Fig. 6). Removal of an eye thus re-
sults in reductions in correlation level that are associated
with the expansive targeting seen in the dLGN following
monocular enucleation [8]. Since a large body of experi-
mental and theoretical work has supported a role for pair-
wise RGC correlations in retinogeniculate refinement [8,
9, 18, 26, 28, 31, 33, 34], we believe this finding is unlikely
to be coincidental. Based on the evidence that afferent ter-
minal targeting is guided by competition [8], we propose a
model where RGC burst duration scales RGC correlation
to dynamically guide afferent targeting within the dLGN
during visual system development:
In binocular ferrets, RGC burst duration is longer,

which results in higher pairwise RGC correlation levels
within an eye. Higher RGC correlation levels decrease
intra-eye competition, which in the context of inter-eye
competition between ipsilateral and contralateral inputs,
is optimal for establishing eye-specific laminae (Fig. 8a
and e). Conversely, in monocular ferrets, burst durations
are shorter, RGC correlations are reduced, and intra-eye
competition is increased. Increasing intra-eye competi-
tion facilitates the spread of afferents resulting in
expanded ipsilateral laminae, thus utilizing more
synaptic space within the dLGN when contralateral
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afferents from the competing eye are absent (Fig. 8b and
f). Previous studies have effectively blocked retinal waves
(i.e., spatiotemporal correlations) in ferrets by decorrelating
the activity of neighboring RGCs with the cholinergic agon-
ist epibatidine (EPI) [7, 8, 35]. Blocking retinal waves with
EPI in binocular ferrets disrupts eye-specific segregation and
lamination, and in enucleates, the lamination and expansion
of retinogeniculate projections, resulting in ipsilateral projec-
tions of approximately the same size in binocular and mon-
ocular ferrets [8] (Fig. 8c-d). Thus, blocking retinal waves
with EPI results in abnormal afferent competition in both
the binocular and monocular condition, causing randomized
afferent terminal targeting that is no longer being effectively
guided by intra-eye and inter-eye competition (Fig. 8g-h).
Consistent with our model, the importance of low intra-

eye competition for eye-specific segregation in binocular
ferrets was recently demonstrated [36]. In this study, we
used an immunotoxin to ablate starburst amacrine cells
(SACs) that are responsible for retinal wave generation.
This SAC ablation resulted in a reduction of RGC correl-
ation similar to that seen following monocular enucleation,

with fewer SACs leading to less RGC correlation. In bin-
ocular ferrets where laminae appeared normal, SAC abla-
tion levels were symmetric across eyes. However, in ferrets
where one eye’s retinogeniculate projection was larger,
SAC ablation was lower in that eye (i.e., SAC ablation was
asymmetric). This result demonstrated that when intra-eye
competition is increased in one eye relative to the other
due to asymmetric SAC ablation, the eye with increased
intra-eye competition (less RGC correlation) is hindered in
its ability to compete for synaptic space in the dLGN and
loses territory to the eye with lower intra-eye competition
(more RGC correlation). Similarly, recent studies in mice
have used transgenic lines to investigate the role of retinal
wave size in retinogeniculate refinement. In two different
transgenic mouse lines, neighboring RGC correlation levels
were reduced but not eliminated [33, 34]. Consistent with
our model, these studies showed that reduced RGC correl-
ation disrupted eye-specific segregation [33, 34] and re-
sulted in an expanded ipsilateral projection in binocular
transgenic mice [33]. Additionally, in transgenic enucleates
where competing contralateral inputs were absent, fine-
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scale retinogeniculate refinement appeared normal [33].
We must note, however, that while the above studies dem-
onstrated the importance high RGC correlation levels for
the establishment of eye-specific laminae, the nature of the
effects for ferrets and mice were different. In ferrets,
moderate increases in relative intra-eye competition shrank
eye-specific laminae and had minor effects on eye-specific
segregation [36], while in transgenic mice ipsilateral projec-
tion size increased for both eyes and eye-specific segrega-
tion was disrupted [33, 34]. The difference can be explained
by the high levels of RGC correlation found in ferrets rela-
tive to mice [35]. The reduction to the mouse’s already rela-
tively low RGC correlation levels in the above transgenic

lines may have prevented effective inter-eye competition
[33, 34] and resulted in expanded ipsilateral projections
[33] like observed in monocular ferrets where no inter-eye
competition is present [8, 37], or in binocular ferrets when
EPI treatment completely blocks retinal waves [7, 8].
Surprisingly, bursts that occurred outside of waves

were affected differently by monocular enucleation. For
non-wave bursts, burst ISIs were shorter and the
percentage of burst time above 10 spikes/s was greater
(Fig. 4). However, it is important to note that non-wave
bursts made up less than 3% of all bursts in either condi-
tion (Fig. 2) and do not appear to have any significant
impact on overall levels of pairwise RGC correlation
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(Fig. 7). For these reasons, the observed changes to
non-wave burst properties are unlikely to be related
to the altered retinogeniculate refinement in enucle-
ates. It is hard to speculate on why these effects are
observed for non-wave bursts and not wave bursts,
but after additional studies are carried out, it may
prove valuable in understanding the neurobiological
mechanisms by which monocular enucleation alters
burst properties.

A signal for the presence of the competing eye?
Removing an eye alters retinal waves in the one that is
spared. However, this study is unable to elucidate the
neurobiological mechanism underlying such effects. It is
important to note that we observe differences in retinal
waves due to monocular enucleation ex vivo, indicating
that the competing eye must be inducing relatively long-
lasting effects in the opposing retina. One candidate
mechanism is inputs from the competing eye onto neu-
romodulator releasing amacrine cells, which modify syn-
aptic connectivity or other cell membrane properties
[38]. Retino-retinal projecting retinal ganglion cells
(rrRGCs) have been identified in several vertebrate spe-
cies [39–41] and are greatest in number during early
visual system development in rodents [39]. While a dir-
ect projection between the retinae to signal the presence
of a competing eye is perhaps the most parsimonious ex-
planation for the effects on retinal waves reported here,
there is no direct evidence that rrRGCs modulate retinal
wave activity. Future experiments to target these cells
carefully, with either ablation or silencing, will be neces-
sary to understand their role, if any, in visual system
development.

Conclusion
Our results demonstrate a novel phenomenon whereby
the removal of a competing region of the central ner-
vous system influences the patterned spontaneous neural
activity of another. When the competing eye is absent, it
shortens the RGC burst duration of the surviving eye.
This effect on RGC burst duration scales the levels of
RGC correlation in the developing retina, and reduced
correlation levels coincide with the retinal wave-
dependent spread of the retinogeniculate projection fol-
lowing the loss of an eye. Based on these novel findings
and their association with the retinal-wave-dependent
anatomical remodeling found in enucleates, we propose
the hypothesis that the presence or absence of the com-
peting eye dynamically scales afferent competition to
guide retinogeniculate refinement during visual system
development.
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