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ABSTRACT OF THE THESIS

Degradation-aware Valuation and Sizing of Behind-the-Meter Battery Energy Storage
Systems for Commercial Customers

by

Zhenhai Zhang

Master of Science, Graduate Program in Electrical Engineering
University of California, Riverside, December 2018

Dr. Nanpeng Yu, Chairperson

The optimal dispatch, valuation, and sizing of behind-the-meter battery energy

storage systems are crucial in reducing the electricity bill for commercial customers. This

thesis develops a novel battery dispatch and valuation algorithm for commercial customers

which takes battery degradation into consideration. A battery sizing algorithm based on

heuristic optimization approach is also developed to determine the optimal power and energy

ratings of battery energy storage systems. Simulation studies are performed for commercial

customers with real-world smart meter data. The simulation results show that the proposed

degradation-aware battery dispatch and valuation algorithm produces significantly higher

net present value than that of the based model which does not explicitly consider degra-

dation in the optimization framework. The simulation results also show that the proposed

battery sizing optimization algorithm is capable of finding near-optimal battery energy and

power ratings for commercial customers.
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NOMENCLATURE

Decision Variables

dm(h): Hourly amount of power battery discharge on the customer side at hour h

in m-th month [kW].

cm(h): Hourly amount of power battery charge on the customer side at hour h in

m-th month [kW].

State Variables

Sm(h): Hourly battery state of charge at hour h in m-th month [kWh].

P (m): The maximum hourly load in m-th month after optimization [kWh].

Parameters

xm(h): The electric load at hour h in m-th month [kWh].

Xn
max(m): The minimum monthly peak load achieved with full battery usable

range in m-th month of n-th year[kWh].

Emax(n): Battery energy rating at the beginning of n-th year [kWh].

Pmax: Battery power rating [kW].

CE(h): The price of electricity for hour h under the time of use (TOU) rate

[$/kWh].

CD(m): The demand charge in m-th month [$/kW].

η: Round trip efficiency [%].

CI : Initial cost of the battery [$].

γ: Battery self discharge rate [%/hour].

ρ: Battery resistive loss factor [unitless].
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Toff (d): Length of off-peak hours on day d.

Ton(d): Length of on-peak hours on day d.

Lm(h): Difference between electric load and Xmin(m) on hour h of m-th month

[kWh].

Ld(~): Difference between electric load and Xmin(m) on hour ~ of d-th day [kWh].

Um(d): The lower bound of the battery usable range of d-th day in the m-th month

[%].

u0: The default lower bound of the usable range [%].

um(d): Hourly usable range lower bound decided after min-max optimization of

d-th day [%].

νd: Average discharge rate on a typical weekday. [kW]

νc: Average charge rate on a typical weekday. [kW]

α: Binary decision variable decided by the difference between ν and Ld(~).

M : A large enough parameter.

Sets

Mn: Set of all months of n-th year.

Hmn: Set of all hours in m-th month of n-th year.

Dmn: Set of all days in m-th month of n-th year.

Pmn: Set of hours whose peak exceeds Xmin(m) in m-th month.

P umn: Set of hours which um(d) is positive.

Hmn(1+): Set of hours that contains Hmn and augmented by one additional hour

after the last hour of each consecutive chain of hours of Hmn of n-th year.
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Index Variables

h: Hour.

~: Hour-of-day.

d: Day.

m: Month.

n: Year.
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Chapter 1

Introduction

As the penetration level of distributed renewable energy continues to increase,

battery energy storage systems (BESS) become more important in reducing the cost of

electricity for end-use customers and maintaining reliability in the distribution network.

High demand charges and the significance difference between on-peak and off-peak electric-

ity rates have incentivized many commercial customers to adopt BESS. However, excessive

cycling of BESS could cause premature failure. Hence, commercial customers need a BESS

dispatch and sizing optimization algorithm which considers the impacts of battery cycling

operations on its state-of-health. With the availability of granular smart meter data [1], the

BESS dispatch and sizing optimization algorithm can be easily adopted by the commercial

customers.

Batteries of BESS are made of stacked cells where-in energy exchange between

chemical energy and electricity energy. The primary characteristics of the batteries are: life

span (in terms of number of cycles), depth of discharge, energy rating, power rating, and
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self-discharge. So constructive among the features is the battery energy rating in terms of

long-term valuation for commercial customers. In this work, I mainly focus on optimizing

the battery size (e.g. energy rating) for commercial customer electricity bill reduction

purpose.

1.1 Commercial Customer Bill

As the demand prices charged by utility companies can be as high as 100 times of

energy prices, demand charge could account for more than 50% of the monthly electricity bill

of a commercial customer [2]. Thus the total cost of the bill can be significantly reduced by

discharging the battery during peak hours. An example of the electricity rate from Southern

California Edison(SCE) is shown in Fig. 1.1 [3].

Figure 1.1: Sample electricity rate for a commercial customer

The monthly electricity bill for customers is made up of 2 parts: energy charge and

demand charge (1.1). Where x is the electric load of the month, CE is the energy charge

price, P is the peak hourly power consumed in the month, and CD is the demand charge
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price of the month.

J = x · CE + P · CD (1.1)

Our main objective function is minimize the total cost during the overall bat-

tery life, I meed to obtain both the optimum battery dispatch and sizing for commercial

customers.

1.2 Literature Survey

The existing literature on battery dispatch and sizing optimization can be classified

into two groups. The first group determines the optimal dispatch and sizing of BESS by

only considering the peak load shaving application. In [2], a BESS dispatch and sizing

framework was developed for peak shaving. Dynamic programming is adopted to find the

optimal battery operation strategy. The optimal sizing is found by exhaustively searching

all possible BESS settings while assuming a fixed battery operation strategy. The state-

of-health of the BESS is evaluated by comparing the number of charge/discharge cycles

incurred and the maximum number of cycles. [4] presented a heuristic method to determine

the appropriate size of BESS. In this method, the battery is expected to shave all peaks that

exceed a pre-defined load threshold while having zero failure event. The lifetime valuation

of a BESS is conducted based on the simulation results from one-year battery operation

simulation.

The second group of literature considers energy arbitrage in addition to peak load

reduction when determining the size of BESS. The BESS sizing problem for commercial

buildings is solved by minimizing the building’s annual electricity cost [5]. The annualized
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BESS initial costs and a predetermined number of operation cycles are considered in the

optimization. [6], [7] present a similar formulation for commercial customers. They assume

that there is an approximately linear relationship between the depth of discharge and num-

ber of operation cycles. The battery simulation is conducted over an one-year horizon while

the battery lifetime is assumed to be 15 years.

Most of the existing literature on BESS valuation and sizing use highly simplified

battery degradation models. They either assume a fixed number of lifetime cycles or a

linear relationship between the depth of discharge and the number of operation cycles.

However, the degradation of BESS is a highly nonlinear function of the depth of discharge,

the current rate and the mean state-of-charge of the cycles. Hence, the existing methods

can not provide a reliable estimation for optimal sizes of BESS.

1.3 Our Contribution

In this thesis, I fill the knowledge gap by developing a degradation-aware BESS

dispatch optimization algorithm for commercial customers. The peak shaving and energy

arbitrage benefits of BESS are simultaneously modeled. The proposed algorithm minimizes

the electricity bill of commercial customers over the lifetime of BESS while explicitly consid-

ering degradation effects on battery. The proposed degradation-aware algorithm achieves

higher lifetime net present value for BESS by limiting the charging and discharging rates and

usable range of battery when BESS provide less valuable energy shifting service. This the-

sis also develops an optimal battery sizing algorithm based on heuristic optimization which

considers the nonlinear degradation effects of battery. The proposed algorithm is capable
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of finding near-optimal energy and power ratings of BESS for commercial customers.

The unique contributions of this thesis are as follows. First, this thesis proposes

a degradation-aware BESS dispatch optimization algorithm which can significantly reduce

the electricity bill for commercial customers. Second, this thesis develops a comprehensive

lifetime valuation framework for BESS. Third, I also developed a heuristic BESS sizing

algorithm which determines the optimal energy and power ratings of battery for commercial

customers.

The rest of this thesis is organized as follows. Chapter 2 presents the degradation-

aware BESS operation and valuation models. Chapter 3 describes the algorithm for solving

the BESS sizing problem. Chapter 4 presents the simulation results. Chapter 5 states the

conclusion.
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Chapter 2

Degradation-aware Battery Storage

System Operation and Valuation

In this chapter, I develop a methodology to perform lifetime valuation of battery

storage systems for commercial customers. A degradation-aware optimal operation strategy

is also developed to extract maximum value from the battery storage system.

2.1 BESS Lifetime Valuation Framework

The lifetime valuation framework of BESS is illustrated in Fig. 2.1. The valuation

framework starts in year 1, where the initial battery energy rating Emax(1) = E0. A battery

dispatch optimization engine then determines the optimal hourly dispatch schedules of BESS

in the next year. The state-of-charge (SoC) time series and charging cycles parameters are

then calculated for the corresponding year. The remaining battery useful life and energy

rating can then be estimated based on the battery charging cycles information. If the
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Figure 2.1: Battery lifetime valuation flow chart

remaining battery energy rating is less than 70% of its original energy rating, then the

battery has reached its end of life. Otherwise, the energy rating of the battery is updated

and the battery dispatch optimization is carried out for the next operating year. The

battery dispatch optimization algorithm and remaining energy rating calculation procedure

are covered in the following two subsections.

2.2 Battery Operation Optimization

In this section, I develop two battery operation optimization algorithms, the base

model and degradation-aware model. The based optimization model determines the optimal

battery operation schedule which maximizes the monthly electricity bill reduction without

considering the battery degradation effects. In contrast, the degradation-aware optimization

model imposes additional constraints on battery usable range and charging/discharging rate

to achieve higher electricity bill reduction for commercial customers over the life time of the
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battery energy storage systems. The details of the two optimization models are presented

below.

2.2.1 Base Optimization Model

The base battery operation optimization model selects the optimal hourly charging

and discharging schedules of battery energy storage systems which minimizes the monthly

electricity bill of commercial customers. The base optimization model does not explicitly

consider the impacts of charging and discharging activities on a battery energy storage

system’s health.

The problem formulation of the base optimization model is listed blow. The ob-

jective function (2.1) of the optimization problem is to minimize commercial customer’s

monthly electricity bill which consists of the energy charge and demand charge. The de-

cision variables are the hourly battery charing and discharging rates. The battery energy

storage systems’ operational constraints are modeled by (2.2)-(2.8).

min
cm(h),dm(h)

∑
h∈Hmn

{xm(h)− [dm(h)− cm(h)] · (1 hr.)}·

CE(h) + P (m) · CD(m), m ∈Mn (2.1)
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subject to:

Sm(h+ 1) = Sm(h) · (1− γ)− (dm(h)− cm(h)) · (1 hr.)

− (dm(h) + cm(h)) · (1 hr.) · (1−
√
κ), h ∈ Hmn (2.2)

0 ≤ Sm(h) ≤ Emax(n), h ∈ Hmn (2.3)

cm(h) · (1 hr.) ≤ Emax(n)− Sm(h), h ∈ Hmn (2.4)

dm(h) · (1 hr.) ≤ Sm(h), h ∈ Hmn (2.5)

0 ≤ dm(h) ≤ Pmax, h ∈ Hmn (2.6)

0 ≤ cm(h) ≤ Pmax, h ∈ Hmn (2.7)

xm(h)− (dm(h)− cm(h)) · (1 hr.) ≤ P (m), h ∈ Hmn (2.8)

where Hmn denotes the set of all hours in the mth month of the nth year. xm(h) is the

electric load of hour h in the mth month. dm(h) and cm(h) are the hourly battery discharge

and charge at hour h in the mth month. P (m) is the maximum load of the mth month.

CE(h) is the electricity price for hour h under the time of use (TOU) rate and CD(m) is the

demand charge of the mth month. Sm(h) stands for the battery state of charge at hour h of

the mth month. γ is the self discharge rate. κ is the battery round trip efficiency. Emax(n)

is the battery energy rating at the beginning of nth year. Pmax is the battery power rating.

Equation (2) is the update equation for the battery’s state of charge (SoC). (2.3)

ensures SoC is within the feasible range. Constraints (2.4)-(2.7) limit the battery SoC,

charging and discharging rates. Constraint (2.8) makes sure the hourly electric load never

exceeds the maximum load of the month.

The outputs of the above optimization problem are the hourly battery charging
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and discharging schedules under a battery energy storage system with a given energy and

power rating. It should be noted that the battery operation schedule generated from the

base optimization strategy minimizes the current month’s electricity bill without considering

the degradation effects and long-term value of the battery energy storage system.

2.2.2 Degradation-aware Optimization Model

The base optimization model does not limit the battery usable range or charg-

ing/discharging rate. This may lead to overused batteries with accelerated degradation. To

mitigate this problem, I develop a degradation-aware battery operation optimization model.

Recognizing that the majority of the electricity bill is demand charge for most commercial

customers, I propose to limit the battery usable range and charging/discharging rate based

on the customer’s daily electric demand level. On heavy loading days, the full capability

of batteries should be used to reduce the customers’ peak load and demand charge. On

non-heavy loading days, I should limit the charging and discharging rates and usable range

of the battery because the value provided by energy shifting service is not as high as that

of the peak reduction service. The heavy loading days and non-heavy loading are defined as

a function of the minimum achievable peak demand and battery usage index for peak load

reduction which are derived in the following sections.

Minimum Achievable Peak Demand and Battery Usage Index

The minimum achievable peak demand is defined as defined as the minimum cus-

tomer peak demand which can be achieved by operating the battery storage system. The

minimum achievable peak demand of year n month m, Xn
max(m), can be calculated by
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solving the following optimization problem.

min
cm(h),dm(h)

max
h∈Hmn

[xm(h)− (dm(h)− cm(h)) · (1 hr.)] (2.9)

subject to:

Constraints (2.2) - (2.8)

The battery usage index for peak load reduction is defined as:

µm(d) =

∑24
t=1 max{0, Ld(t)}(2−

√
κ)

Emax(n)
, d ∈ Dmn (2.10)

where Dmn is the set of all days in mth month of nth year. Lm(h) = xm(h) −

Xn
max(m) is defined as the difference between the customer’s original load xm(h) and mini-

mum achievable peak demand Xn
max(m). Ld(t) = Lm(h) for all hours h in month m, where

t = h mod 24 and d =
⌈
h
24

⌉
.

When the battery usage index for peak load reduction µm(d) ≥ 1, the full capacity

of the battery storage system has to be utilized for peak load reduction purpose. Hence,

µm(d) = 1 is used to separate heavy loading days and non-heavy loading days. When

µm(d) ≥ 1, i.e., during heavy loading days, I do not place additional operational constraints

on batteries expect (2.2)-(2.8). When µm(d) < 1, i.e., during non-heavy loading days,

additional constraints will be enforced to reduce the wear and tear of battery energy storage

systems. These additional battery usable range and charging/discharging rate constraints

are described below.
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Additional Battery Operational Constraints

On non-heavy loading days, additional battery operational constraints on battery.

SoC Sm(h) and charging/discharging rates cm(h), dm(h) are enforced to extend the battery

life.

Tighter battery SoC bounds are enforced as follows:

Um(d)Emax(n) ≤ Sm(h) ≤ (1− Um(d))Emax(n), h ∈ Hmn (2.11)

where the lower bound of the usable range Um(d) is determined by the following

equations:

um(d) =
1

2
[1− µm(d)] , d ∈ Dmn (2.12)

Um(d) = min{u0, um(d)}, d ∈ Dmn (2.13)

The lower bound of the usable range Um(d) equals the smaller of the default usable

range lower bound u0 and um(d) which is derived from the battery usage index for peak

load reduction µm(d). This constraint ensures that during peak hours of non-heavy loading

days, the battery will not discharge more power to reduce the hourly demand lower than

the achievable peak demand Xn
max(m) of the month.

Since the constraint (2.11) on SoC is tighter than that of base optimization model

(2.3), the charging/discharging rate constraints (2.4) and (2.5) should be tightened accord-

ingly:

cm(h) · (1 hr.) ≤ (1− Um(d))Emax(n)− Sm(h), h ∈ Hmn (2.14)

dm(h) · (1 hr.) ≤ Sm(h)− Um(d)Emax(n), h ∈ Hmn (2.15)
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To avoid high current rate in charging cycles, additional constraints on charg-

ing/discharging rates are imposed. First, I define the average charging νch and discharging

rates νdis on a typical weekday of non-heavy loading days as follows:

νch =
(1− 2Um(d))Emax(n)

Toff (d)
(2.16)

νdis =
(1− 2Um(d))Emax(n)

Ton(d)
(2.17)

where Pmn is the set of hours which requires a discharge rate exceeds the average discharge

rate to reduce the load level to minimum achievable peak demand. Toff and Ton denote

the length of off peak and on peak hours of day d.

The charging and discharging rates on hours excluding Pmn are limited as follows:

0 ≤ cm(h) ≤ min{Pmax, νch}, h ∈ Hmn \ Pmn (2.18)

0 ≤ dm(h) ≤ min{Pmax, νdis}, h ∈ Hmn \ Pmn (2.19)

(2.18) and (2.19) ensure that for hours that do not require fast discharging/charging,

the charge and discharge rates could smooth out over the entire on-peak/off-peak hours.

What remains to be considered are the charging/discharging rate constraints for

hours which require a discharge rate exceeds the average discharge rate. The constraints

for these hours Pmn can be described by an if-else statement below.

If Lm(h)−νdis ·(1 hr.) is positive, then the following equality constraint is required

to shave the load to exactly Xn
max(m).

dm(h) · (1 hr.)− xm(h) +Xn
max(m) ≤ 0, h ∈ Pmn (2.20)

If Lm(h)− νdis · (1 hr.) is non-positive, the above constraint does not need to be enforced.

13



By using the binary variable trick, the above if-else statement can be equivalently

represented by the following constraints:

Lm(h)− νdis · (1 hr.) < Mα, h ∈ Pmn (2.21)

dm(h) · (1 hr.)− xm(h) +Xn
max(m) ≤M(1− α),

h ∈ Pmn (2.22)

νdis · (1 hr.)− Lm(h) ≤M(1− α), h ∈ Pmn (2.23)

dm(h) · (1 hr.) ≥ −Mα, h ∈ Pmn (2.24)

In sum, on non-heavy loading days, the following constraints must be enforced in

the degradation-aware optimization model: (2.2), (2.11), (2.14)-(2.19), and (2.21)-(2.24).

Degradation-aware Optimization Model Summary

The degradation-aware optimization model is summarized as follows:

min
cm(h),dm(h),α

(2.1)

subject to:

non-heavy loading days : (2.2), (2.11), (2.14)-(2.19), (2.21)-(2.24)

heavy loading days : (2.2)-(2.8)

Note that the objective function of the degradation-aware optimization problem

is the same as that of base optimization model. The set of constraints enforced on heavy

loading days and non-heavy loading days are different.

14



2.3 Battery State-of-health Estimation

In general, the degradation of battery energy storage systems depend on four

factors: number of operating cycles, depth of discharge, current rate, and mean SoC of each

cycle. In order to accurately estimate the remaining capacity of the battery at the end

of each year, I adopt a semi-empirical battery degradation model presented in [8] . The

remaining battery capacity in the beginning of year (n+ 1) is given by

E(n+1)
max = r1e

−r2
∑n
η=1 degη + (1− r1)e

∑n
η=1−degη (2.25)

where r1 and r2 are two constants. The first term on the right-hand side (RHS)

stands for the degradation incurred with the solid electrolyte interphase (SEI) layer buildup.

The second term on RHS accounts for a slower degradation process due to ion loss. degη

is the battery degradation rate of ηth year. It can be estimated as a function of number

of operating cycles, depth of discharge, current rate, and mean SoC of each cycle as shown

in [9]. The rainflow-counting algorithm (RCA) [10] is applied to derive the battery cycle

parameters based on the battery SoC time series.
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Chapter 3

Battery Sizing Optimization

3.1 Genetic Algorithm Review

Genetic algorithm is a heuristic solution-search or optimization technique, orig-

inally motivated by the Darwinian principle of evolution through (genetic) selection. A

GA uses a highly abstract version of evolutionary processes to evolve solutions, then I can

find the optimal solutions. Each GA operates on a population of artificial chromosomes.

The chromosomes are usually represented by binary digits. Each chromosome represents a

solution to a problem and has a fitness, a real number which is a measure of how good a

solution it is to the particular problem.

Starting with a randomly generated population of chromosomes, a GA simulates a

process of fitness-based selection and recombination to produce a successor population–the

next generation. During recombination, parent chromosomes are selected and their genetic

material is recombined to produce child chromosomes. These then pass into the successor

population. As this process is iterated, a sequence of successive generations evolves and
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the average fitness of the chromosomes tends to increase until some stopping criterion is

reached. In this way, a GA evolves a best solution to a given problem.

3.2 Sizing Optimization Formulation

This section develops an algorithm to determine the optimal battery size for a

commercial customer. The goal of the battery sizing optimization is to select the best

energy and power rating for a battery which has the maximum net present value. The net

present value (NPV) of the battery can be calculated by subtracting the cost of the battery

from the sum of discounted reduction in electricity bill for a commercial customer over the

life time of the battery.

The battery sizing optimization problem is formulated as follows. The optimization

problem maximizes the NPV of the BESS. C0(E
0, Pmax) denotes the initial cost of the

battery. Cn is the reduction in electricity bill of the nth year for a commercial customer

with the help the battery. Cn includes the energy charge reduction and the demand charge

reduction components.

max
E0,Pmax

N∑
n=1

Cn
(1 + r)n

− C0(E
0, Pmax) (3.1)

17



Figure 3.1: General genetic algorithm flow chart
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subject to:

Cn =
∑
m

{
∑

h∈Hmn

[dmn(h)− cmn(h)]CE(h)

+ [ max
h∈Hmn

(xm(h)− P (m))] · CD(m)} (3.2)

(dmn(h), cmn(h))← fdispatch(Emax(n), Pmax) (3.3)

Emax(n)← fdeg(Emax(n− 1)), ∀n ≥ 2 (3.4)

Emax(1) = E0 (3.5)

where r is the discount rate. (3.3) and (3.4) correspond to the degradation-aware

battery operation optimization algorithm and the battery state-of-health estimation algo-

rithm, respectively. (3.5) defines the initial battery capacity.

The nonlinearity of the battery degradation estimation function makes the battery

sizing optimization problem a highly nonlinear one. Thus, I adopt the genetic algorithm

(GA) to search for the optimal battery energy and power ratings. The flow chart of the

genetic algorithm for battery sizing optimization is shown in Fig. 3.2.

The GA algorithm starts from a population of randomly generated individuals

with different battery energy rating E0 and power rating Pmax. Then the fitness function is

calculated for each of individual. In this case, the fitness function is the NPV of the BESS.

The next generation population is then generated by selecting individuals from the previous

generation with high fitness value and executing mutation and crossover operations. The

fitness function evaluation and population evaluation procedures are carried out iteratively

until a predefined termination criterion is met.
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Figure 3.2: Genetic algorithm flow chart for finding optimal battery sizing
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Chapter 4

Numerical Studies

In this chapter, numerical studies are carried out to validate the effectiveness of

our proposed degradation-aware battery operation optimization algorithm and the battery

sizing optimization algorithm. The simulation setup is presented in section 4.1. Section

4.2 compares the performance of two battery operation optimization algorithms: the base

optimization model and our proposed degradation-aware optimization model. Section 4.3

validates the applicability of the GA algorithm for selecting the optimal battery size. Two

commercial customers’ load profile used in the study are from Southern California. The

hourly load data recorded by smart meters are from 2015. To generate long-term electric

load time series for battery life-time evaluation, the original load data is repetitively used for

future years. The energy price paid by commercial customers are based on Southern Cali-

fornia Edison (SCE)’s general service rates for business customers. The electricity price for

on-peak, mid-peak and off-peak hours are 0.2974$/kWh, 0.0982$/kWh, and 0.05443$/kWh

respectively. The on-peak hours are from 12 PM to 18 PM. The off-peak hours are from
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23 PM to 8 AM. The rest of the hours are mid-peak. The demand charge for commercial

customers is 18.34$/kW. The power-based and energy based capital costs of the battery are

551$/kW and 614$/kWh [11]. The battery death line is assumed to be 70% of its initial

energy rating.

4.1 Effectiveness of the Degradation-aware Battery Opera-

tion Strategy

In order to demonstrate the advantage of the proposed degradation-aware battery

optimization model, we compare its performance with that of the base optimization model.

The testing battery is assumed to have an energy rating of E0 = 1.2 kWh and power rating

of Pmax = 0.6 kW respectively. The default lower bound of the usage range of the battery

is chosen as um(d) = 0. It means that the full usable range of the battery can be utilized

to reduce the commercial customer’s electric load. The hourly load profile of the sample

commercial customer 1 installed the BESS. The hourly load profile of the customer is shown

in Fig. 4.1.

Both the base optimization model and the degradation-aware optimization model

are used to determine the hourly charging/discharging schedules of the BESS on a yearly

basis. The lifetime valuation of the BESS are conducted according to the framework pre-

sented in Chapter 2. The energy ratings at the end of each year and the yearly battery

revenue under both operating optimization models are depicted in Fig. 4.2-4.3. As shown

in Fig. 4.2, the blue and green lines are the remaining battery energy curves for the base
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Figure 4.1: Load profile of sample customer 1

model and degradation-aware model, respectively. The red line is the death line (70% of

the initial battery capacity). When operated under the base optimization model and the

degradation-aware model, the usable life the battery are 11 years and 7 months and 14 years

and 2 months respectively. The proposed degradation-aware optimization model extends

the usable life of the battery by 3 years. In addition, the degradation-aware optimiza-

tion model led to a higher NPV for the BESS. The NPV of the battery operated under

the base optimization model is $1999.3, while the NPV of the battery operated under the

degradation-aware model is $2386.5. As shown in Fig. 4.3, although the based model yields

a slightly higher revenue than the degradation-aware model in the first 11 years, it failed to

let the battery generate any revenue in years 12 to 14. Hence, the simulation results show

that the degradation-aware model avoids deep cycles for energy shifting purposes which

leads to higher lifetime value than that of the base optimization model.

Based on Fig.4.2-4.3, I made the following suggestions for the commercial cus-

tomers:
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Figure 4.2: Yearly energy rating of the battery under the two operating strategies

Figure 4.3: Yearly net revenue of the two battery operating strategies
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• The battery should avoid full cycle working state as deep depth of discharge will cause a

larger degradation rate each year, which reduces the final NPV from BESS;

• The commercial customers should make full use of the length of on-peak and off-peak

hours to smooth the current rate. Charging or discharging too fast will also decrease the

length of battery life, leading to less NPV from BESS.

4.2 Battery Sizing Optimization

The effectiveness of the proposed GA based battery sizing optimization algorithm

is validated through a comparison with the exhaustive grid search approach. The validation

is carried out through a case study on another sample commercial customer in Southern

California Edison. The hourly load profile of the customer is shown in Fig. 4.4.

Figure 4.4: Load profile of sample customer 2

The genetic algorithm setup are as follows. The number of individuals in each

generation is set at 20. The generation gap and the mutation rate are chosen to be 0.9 and

0.05 respectively. The energy ratings of the batteries in the first generation are sampled
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from a uniform distribution U(0.5, 5) kWh. The number of working hours of the batteries

in the first generation are sampled from a uniform distribution U(1, 4) hours.The default

battery usable range is set to be in the range of 10%-90%. The initial cost of the battery

is the same as the setup shown from the start of this chapter [11]. Eight bits of binary

numbers are used to represent the energy rating and working hours. The program will stop

when the total 100 generations of GA have been run or the standard deviation of the 20

individuals in one generation is less than $100.

The optimal energy and power ratings found by the GA are 2.83 kWh and 0.98 kW

(2.87 working hours). With the degradation-aware optimization, this battery is expected

to last 16 years and 6 months and has a lifetime NPV of $1743.45.

To validate the optimality of battery setting found by the GA, a grid search is

conducted with 56 different battery sizes for sample customer 2. In the grid search, 8

different values for energy ratings equally spaced between 0.5 kWh and 4 kWh and 7 different

values for the number of working hours of a battery equally spaced between 1 hour and 4

hours are selected. Under each battery sizing, a lifetime battery valuation is conducted with

the degradation-aware optimization algorithm. The resulting NPVs of all battery sizing and

the NPV surface are shown in Fig. 4.5. The red point represents the optimal battery sizing

solution found by the GA. The best energy and power rating pair found by the grid search

are 3 kWh and 1 kW (3 working hours) which has a NPV of $1650.91 with a 16 years and 4

months battery life. The battery energy and power ratings found by the GA increases the

NPV of the exhaustive grid search solution by 5.6%.

26



Figure 4.5: NPV of BESS with different sizing configurations for sample customer 2
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Chapter 5

Conclusions

To improve the profitability of BESS, this thesis develops an innovative degradation-

aware dispatch optimization algorithm. The proposed method explicitly considers the bat-

tery degradation effects and limits the charging/discharging rates when it provides less

valuable energy shifting service. A comprehensive battery lifetime valuation framework

is built on top of the degradation-aware dispatch optimization algorithm to estimate the

NPV of BESS. At last, a optimal battery sizing algorithm is developed based on the heuris-

tic optimization approach. Numerical studies based on real-world smart meter data from

commercial customers in Southern California are carried out to validate the proposed algo-

rithms and methods. The simulation results show that compared to the based optimization

algorithm, the degradation-aware dispatch optimization algorithm increases the NPV of the

battery by almost 20%. The simulation results also show that the proposed GA based bat-

tery sizing algorithm can find near-optimal battery energy and power ratings for commercial

customers.
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