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ABSTRACT OF THE THESIS

Probability-Based Classifier Combination

by

Fan Zhang

Master of Science in Statistics

University of California, Los Angeles, 2017

Professor Qing Zhou, Chair

Classifier combination is an effective and popular method to improve the predictive per-

formance of classification models. It has been employed in various fields, including pattern

recognition and biometrics. This thesis proposes a novel classifier combination method based

on the uniformness, a statistical measurement of the predicted probabilities of base classi-

fiers. By choosing different measurement functions, three combination schemes are explored.

The new method is designed to achieve improved accuracy and efficiency on the classifica-

tion. It is tested on a real multi-class classification problem of plant species using leaf image

features, which proves the advantage and robustness of this combination method.
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CHAPTER 1

Introduction

The goal of training a classifier is to accurately predict the class label of novel input pat-

terns, which means the classifier generalizes [2]. People usually train multiple classifiers for

a real problem and select the model which generalizes best according to specific test data.

However, this neglects the information provided by other classifiers at the risk of choosing

a poor model for the beforehand unseen inputs, since each classifier has its own assump-

tions and different decision boundaries which may not be completely covered in the given

test data. A set of different classifiers with a good performance on a validation/testing set

may, however, have a different generalization behavior. Consequently, it is difficult to know

which one is better for the real prediction situation. Instead of relying on a single model,

combining classifiers enables one to utilize information from various models to improve the

classification performance. Such combined classification model tends to be robust and often

outperforms the individual classifiers which are combined as the base models. Classifier com-

bination has been widely applied to the fields of optical character recognition and biometrics.

Instead of ensemble algorithms, this thesis focuses on combining heterogeneous classifiers.

The advantage is that one can tackle the problem from various perspectives, rather than

stick to a single approach. Ideally, the expertises of the specialized classifiers do not overlap.

Complementary classifiers make it possible to model functions that a single algorithm alone

cannot. For example, linear discriminant classifiers cannot model curves, but using various

kernels in SVMs can model nonlinear boundaries that are closer to the optimal one. On the

other hand, each classification model has its own assumptions which may not be perfectly

consistent with the dataset. By combining a range of models, the bias resulting from a
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specific unrealistic assumption can be diluted.

The output of a classifier usually is a vector of dimension C, where C is the number of

classes. The classifier combination is to use such C-dim vectors from M individual classi-

fiers to generate the final result in the form of a C-dim vector [1]. Therefore, the classifier

combination scheme is de facto a secondary classification model, using the outputs of vari-

ous classifiers as the input. Based on the elements of primary individual classifiers’ output

vectors, the classifier combinations are usually categorized into three types [1]:

1. Abstract Level: Each individual classifier only provides the most probable class la-

bel. The C-dim vectors are one-hot, with only a single value 1 for the corresponding

predicted class, and 0 for the other classes.

2. Rank Level: Individual classifiers sort the class labels according to their probability

values. The elements of the output vector is the relative rank of likeliness of each class.

Other variant forms of output, such as n-best list, are also operated on this level.

3. Measurement Level: The elements of the C-dim vectors are the scores of each class.

The probability of class labels can be a monotonic function of the score. This is the

highest level of combination, since the base classifiers provide the most information

about each class label. However, the base classifiers may have different interpretations

of the scores, which require normalization or further transformation before combining.

Various methods have been developed on different levels of classifier combination. Major-

ity voting, including weighted majority voting, can be applied on Abstract Level, since it

requires no information about the confidence or probability of each class. Borda count, a

variant of voting methods, is popular for Rank Level [6]. Various rules or pre-defined func-

tions can be used on Measurement Level, including sum-rule, product-rule, and max-rule

[4]. Such rules need no further training of the combination scheme. Some generic methods,

such as neural network and logistic regression, can also combine on this level, i.e. training

a real classifier on the outputs of primary base classifiers. This is a special application of
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those well-developed machine learning models, where the input and the output have the

same format.

This project will focus on the multi-class classifier combination on Measurement Level. Each

classifier will output the predicted probability for all classes. The elements of each output

vector have the same meaning and consequently are ready for combining. The following part

of this thesis proposes a new design for the classifier combination rule, instead of merely

applying a generic secondary classifier to the output vectors. A good combination scheme

should generalize well without the heavy computation cost of training a generic classifier.

The proposed combination schemes will be applied to a plant leaf classification dataset for

the experiment, which is a multi-class classification problem.
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CHAPTER 2

Background

The number of plant species is estimated to be nearly half a million. Plant species classifi-

cation is extremely useful for botany research, food industry and pharmaceutical industry.

Although DNA analysis technology can provide feasible and precise answers to species iden-

tification, people still want easier and cheaper methods based on other biological features.

Taxonomy suggests that leaves can indicate the plant species. Since leaves are usually more

available than other organs, such as flower, fruit and seed, it is useful to classify the species

based on leaves. Charles Mallah, James Cope, James Orwell introduced a systematic method

based on three categories of leaf features: margin, shape and texture [3]. They estimated

three individual k-NN models for these types of features and used a linear combination as the

final result, which generated a 96.81% classification accuracy. Inspired by their exploratory

research, this project continues to analyze that leaf dataset using other statistical methods.

2.1 Dataset

The original leaf dataset from [3] is hosted by the Center for Machine Learning and Intelli-

gent Systems at UCI 1. This project uses a slightly modified version of the dataset 2, which

contains 1584 leaf specimens (16 samples in each of 99 plant species). The training dataset

contains 10 observations for each species, and the test set contains the remaining 6 obser-

vations in each class. This training/test split maintains equal sample size among species to

avoid the negative effects of unbalanced classification.

1https://archive.ics.uci.edu/ml/datasets/One-hundred+plant+species+leaves+data+set

2One species is excluded. https://www.kaggle.com/c/leaf-classification
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Leaf features extracted from grey-scale images have three main categories: margin, shape,

and texture. Each category is associated with 64 attributes: margin1 to margin64, shape1

to shape64, and texture1 to texture64. Thus, each data point has 192 features, which are

all continuous numeric variables. There exist no missing data in the training set. Both the

training set and the test set are standardized before analysis.

2.2 Problem Statement

The task of this project is to predict the species label of each data point in the test set, in

the form of a probability vector P (Xi) = (pi1, pi2, . . . , pij, . . . , piC) with probability pij that

the ith leaf belongs to the jth species (
∑C

j=1 pij = 1, C = 99 is the number of species). The

quality of classification is evaluated using logarithmic loss and accuracy, defined in Equation

(2.1) and Equation (2.3), respectively.

logloss = − 1

N

N∑
i=1

C∑
j=1

yij log(pij) (2.1)

yij = 1(observation i is from class j) (2.2)

accuracy =
1

N

N∑
i=1

C∑
j=1

yij1(pij > pik,∀k 6= j) (2.3)

Here, N is the number of observations in the test set. C = 99 is the number of class labels.

The indicator function yij is 1 if observation i is in class j and 0 otherwise. pij is the

predicted probability that observation i belongs to class j. logloss measures the negative

average natural logarithmic value of the predicted probability for the true class label. The

perfect prediction of assigning probability of 1 to the true species would give a zero logloss3.

3In this case, other class labels contribute 0 log(0), which is set as 0 to avoid undefined undesirable effects.
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A worse prediction would generate a larger logloss. accuracy is the percentage ratio of how

often the true class label receives the largest predicted probability.

2.3 Individual Classifiers

This project uses several classifiers as the base models for combination, including Support

Vector Machine (SVM), Random Forest, Linear Discriminant Analysis (LDA), Quadratic

Discriminant Analysis (QDA), Logistic Regression, and k-Nearest Neighbors (k-NN).

SVM constructs a hyper-plane in a high-dimensional space. Intuitively, a good separa-

tion is achieved by the hyper-plane that has the largest margin. SVM is effective in high

dimensional spaces, where the number of dimensions is greater than the number of samples.

It uses a subset of training points in the decision function (called support vectors), so it is

also memory efficient. And the model complexity depends on the number of support vectors.

Different Kernel functions can be specified for the decision function. ν−SVM [5], a variant

of the original version of SVM, introduces a new parameter ν which controls the number

of support vectors and training errors. The parameter ν ∈ (0, 1] is an upper bound on the

fraction of training errors and a lower bound of the fraction of support vectors.

LDA is a method to find a linear combination of features that characterizes or separates

two or more classes of objects or events. It assumes the conditional probability density

function given the class label P (X|y = k) as a multivariate Gaussian distribution and each

class has the same vector µ and variance-covariance matrix Σ. A variant model, QDA does

not have such strong assumptions on the variance-covariance matrices Σk of the Gaussian

distribution, leading to quadratic decision surfaces. It estimates a different Σk for each class.

Logistic regression is used to predict the odds of being a case based on the values of the

independent variables (predictors). The odds are defined as the probability that a particular

outcome is a case divided by the probability that it is a noncase.
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Random forest is an ensemble method for classification. Given a training dataset, it con-

structs multiple decision trees using bootstrapped sub-samples. Every decision tree is es-

timated using a random subset of the original predictors. A random forest classifier can

control overfitting, compared to a single decision tree.

k-NN is the original model in the paper [3]. It is an instance-based learning algorithm

using simple majority vote of the nearest neighbors of each data point. k-NN predicts the

probability of each class using the normalized frequency of samples that have that class label

within the neighbor.

Some classifiers are inherently designed as a binary model to distinguish two class labels.

In order to solve the multi-class classification problem, there are two common strategies:

One-vs-Rest and One-vs-One.

One-vs-Rest (also known as One-vs-All) trains a single classifier per class, with the sam-

ples of that class labelled as +1 and all the other samples as −1. This method has C binary

classifiers in total and applies all the classifiers to a new data point. It predicts the class

label for which the corresponding classifier reports the highest score. Here, the score can

be the distance from the boundary hyperplane in SVMs or the regression score in Logistic

Regressions.

One-vs-One trains a binary classifier for each pair of classes from the original set to dis-

tinguish these two classes. This method has C(C−1)
2

classifiers in total and applies all of them

to a new data point. The class with the highest number of +1 predictions is the final output

of the multi-class classifier.

In this project, SVM and ν−SVM [5] use the One-vs-One method and Logistic Regres-

sion uses the One-vs-Rest method. The One-vs-One method guarantees the classifiers have
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equal number of data points from the two classes each time. It’s free from the negative effects

of unbalanced classes. And each individual SVM has a small number of data points which

makes computation much easier. The One-vs-Rest method helps to estimate the regression

coefficients of all the features, since the number of features is much greater than the sample

size of each class. It also reduces the total number of underlying binary models from O(C2)

to O(C).
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CHAPTER 3

Classifier Combination

3.1 Combination Scheme

The most common combination models are usually constructed by simple average or weighted

average. In the case of classification, the final output is the majority voting or weighted

voting result (for Abstract Level). It can be expressed by Equation (3.1).

P (Xi) = ηi

M∑
m=1

weightm · Pm(Xi) (3.1)

Here, the prediction P (Xi) for a specific data point i with feature vector Xi is the weighted

average of M classifiers’ predictions: Pm(Xi), with the model weight of weightm. And ηi

is the normalizing constant. The cross-validation prediction accuracy of each individual

classifier can be used as the averaging weight weightm. For this leaf classification prob-

lem, the prediction output of Equation (3.1) is a multinomial distribution probability vector

P (Xi) = (pi1, pi2, . . . , pij, . . . , piC),
∑C

j=1 pij = 1 with probability pij that this leaf i belongs

to the jth species.

This combination scheme is straightforward and easy to compute. However, it is a model-

level combination using a set of fixed parameters for all data points, which can be too rigid.

For instance, a subset of data points with different class labels may be linearly separable,

while another subset of classes may have non-linear boundaries. Therefore, LDA should be

assigned a higher averaging weight in the previous case.
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3.2 Probability-based Combination

For each data point, classifiers may have very different predictive output with different prob-

ability distributions on the set of class labels. Consider the two extreme cases which might

appear in the predictions. The best case has all the probability mass on one class and zero

probability mass on the rest: pij = 1, pik = 0,∀k 6= j by an individual model. It suggests that

the classifier is completely confident that the observation belongs to a specific class, which is

the most valuable information for the multi-class classification. Thus, this prediction should

be emphasized. However, the worst case is a uniform distribution with equal probability

mass on each species: pij = 1
C
,∀j, which means the classifier cannot distinguish the class

label given the input features. It is completely uncertain of the ground truth. Outputs of

this type provide no useful information for the final decision and should be penalized by a

smaller averaging weight or even be excluded from combination.

Therefore, the uniformness of the output probability vector reflects the value of a classifier’s

prediction for a data point. A less uniform prediction provides more valuable information

and should receive a higher weight when combined to generate the final output. The classi-

fier combination scheme is further developed to incorporate the uniformness of probability

distribution, which can be expressed by Equation (3.2).

P (Xi) = ηi

M∑
m=1

Pm(Xi) · f(Pm(Xi)) · accuracym (3.2)

Here, f(·) is the uniformness measurement and accuracym is the cross-validation accuracy

of the mth individual model. A high f(·) value corresponds to low uniformness. ηi is the

normalizing constant to maintain the sum of P (Xi) elements equal to 1. The details of

uniformness measurement are discussed in the following section.

This new combination scheme is performed on the individual data point level, instead of

the overall model level. The combination weights of classifiers are calculated according to

the classifier’s overall accuracy and also the predictive probability of each model for the

specific input data point. This is dynamically calculated after the leaf feature input is given,
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instead of using only the fixed parameters of classifier accuracies. It utilizes the properties

of input data to improve the predictive performance. Compared with other existing generic

combination schemes, including Logistic Regression or Neural Network on the outputs of

base classifiers, this new scheme does not require further training, to achieve the balance

between computation efficiency and accuracy.

3.3 Uniformness Measurement

Three types of probability vector uniformness measure scores, based on entropy, Gini index

and the coefficient of variation respectively, are explored in this novel and flexible combina-

tion scheme. Entropy is defined in Equation (3.3).

Entropy(Pm(Xi)) = −
C∑

j=1

pmij · log pmij (3.3)

Here, Pm(Xi) = (pmij : j = 1, . . . , C) is the predicted probability vector of the mth classifier

for the ith data point, and pmij is the predicted probability that the ith data point belongs to

the jth class label by the mth base classifier. A larger value of entropy reflects the distribution

is more uniform. The extreme case of pmij = 1, pmik = 0,∀k 6= j, has entropy=0 1. Therefore,

the Entropy-uniformness measurement function is defined by Equation (3.4)

f(Pm(Xi)) =
1

a+ Entropy(Pm(Xi))
(3.4)

Here, a is a pre-specified positive constant.

Gini method for this multi-class classification uses Relative Mean Absolute Difference (RMAD)

defined in Equation (3.5), which is equal to twice the Gini coefficient defined in terms of the

Lorenz curve. It is directly used as the second uniformness measurement function f(·).

G(Pm(Xi)) =

C∑
s=1

C∑
t=1

|pmis − pmit|

2C
C∑

j=1

pmij

=

C∑
s=1

C∑
t=1

|pmis − pmit|

2C
(3.5)

1Define 0 log(0) = 0.
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The coefficient of variation defined in Equation (3.6) is directly used as the third uniformness

measurement function.

Coefficient of Variation(Pm(Xi)) =
Standard Deviation(Pm(Xi))

Mean(Pm(Xi))
(3.6)

Since Pm(Xi) represents the probability mass, with the element sum of 1. The denominator

of the coefficient of variation is always 1
C

. Thus, Equation (3.6) can be simplified to be

Equation (3.7).

Coefficient of Variation(Pm(Xi)) = C · Standard Deviation(Pm(Xi)) (3.7)

Both the methods based on Gini and the coefficient of variation assign zero weight to a

uniform probability vector. Thus, the complete uncertainty of such cases would be excluded

from the final result.
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CHAPTER 4

Experiment Result

4.1 Plant Leaf Classification

The base classifiers are estimated individually. The tuning of model parameters is based on

a grid search in the parameter grids. This process utilizes a 10-fold stratified cross validation

on the training set. Since the dataset contains an equal number of leaves for each class, each

fold is selected randomly with the equal number of data points in each class. This guar-

antees a balanced sampling scheme. After the best model parameters have been selected,

each classifier is trained using a 10-fold stratified cross validation to be evaluated based on

accuracy and logloss. The average cross validation accuracy is used as the overall accuracy

parameter in the combination scheme of Equation (3.2) for each individual classifier. The

constant a in Equation (3.4) is set as 10−6, to avoid the undesired effects of zero entropy in

the denomenator.

As listed in Table 4.1, all these models achieve high predictive accuracy in the cross vali-

dation, except for QDA, which also has the worst logloss. QDA assumes the conditional

probability density function given the class label P (X|y = k) as a multivariate Gaussian

distribution and each class has its own mean vector µ and variance-covariance matrix Σ.

However, LDA assumes an equal Σ for all classes. Recall that the training set has only 10

data points for each class, which makes it very difficult to the estimate a different Σ for each

class. QDA is very unstable and has poor predictive performance on this dataset. Conse-

quently, it is excluded in the combination. All three combination schemes are applied to the

test set. The covered base classifiers are also individually tested using the same dataset. The

13



Classifier CV Accuracy CV logloss

k-NN(3) 0.968687 0.383901

LDA 0.985354 1.292611

Logistic Regression 0.988889 0.109696

QDA 0.027273 33.596810

Random Forest 0.977273 0.752276

SVM 0.988889 2.328283

ν−SVM 0.990404 2.326457

Table 4.1: Cross Validation of Base Classifiers with All 192 Features

results of the simple average method and the weighted average method of Equation (3.1) are

introduced as the benchmarks. The test accuracy and logloss are listed in Table 4.2.

Model Accuracy Logloss

Combination-Entropy 0.989899 0.10732

Combination-Gini 0.991582 0.70907

Combination-Variation 0.986532 2.11106

Simple Average 0.989899 0.87522

Weighted Average 0.989899 0.87609

k-NN(3) 0.984848 0.10093

LDA 0.983165 1.36711

Logistic Regression 0.993266 0.10027

Random Forest 0.981481 0.66238

SVM 0.991582 2.08398

ν−SVM 0.991582 2.10675

Table 4.2: Test Predictive Performance with All 192 Features

14



The individual classifiers have similar test accuracy and logloss, compared with the train-

ing cross validation performance. Therefore, overfitting is not a concern here. In terms

of accuracy, the three combination schemes are close to the individual classifiers: better

than the worst classifier and worse than the best classifier. This result is reasonable, since

the schemes combine information from multiple classifiers, instead of trusting only the best

classifier of the test set, which is unknown beforehand. The combination schemes avoid the

risk of selecting a single bad classifier, at the cost of the performance of the unknown best

classifier being diluted. The probability-based combination schemes’ performance is also

close to the benchmarks of the simple average and the weighted average. As for logloss, the

Entropy scheme and the Gini scheme are between the best individual classifier and the worst

individual classifier, and they are better than the simple average as well as the weighted

average. However, the Variation Coefficient scheme is worse than any base classifier and the

two benchmarks.

Figure 4.1 shows the histograms of base classifiers’ three uniformness measures for all data

points in the test set. The classifiers have different behaviors in predicting the probabilities

of class labels, especially in terms of the variation coefficient. SVM and ν−SVM both have

higher values in Entropy and lower values in Gini than other classifiers, which is consistent

with their high logloss. Though SVM and ν−SVM can correctly predict the class label in

most cases by assigning the largest probability, the difference between the most probable one

and the remaining classes is smaller than other classifiers. Therefore, these two models are

not that confident of the predictive results. It partially explains the discrepancy between

accuracy and logloss performances.

4.2 Modified Version of Classification Setting

The base classifiers have satisfactory individual classification performance and the similar

predictive accuracy performance, within the range from 0.981481 to 0.983165. The dataset

with all 192 features, therefore, is easy for the plant species identification problem. The

15
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advantage of classifier combination is not very obvious in the previous experiment. In order

to test on a more difficult classification scenario, noises are added in two aspects. Firstly,

some strong features in the original dataset are removed. Secondly, several weaker classifiers

are introduced into the combination.

The original features’ importance is assessed by Random Forest. In each decision tree,

features used as the split criterion at the top nodes (closer to the root) exert larger effects on

the final class label of the data points, since a larger fraction of samples are split according

to these features. Thus, the depth of node in the classification tree can be used to estimate

the expected fraction of the samples it contributes to, which reflects the importance of this

split feature.1 Averaging over all the decision trees, Random Forest can provide the relative

importance of predictor features, as shown in Figure 4.2. The top 150 features with high

importance are removed from the original dataset to increase the classification difficulty.

Three extra k-NN models are introduced. With larger k parameters than the best value

selected by the stratified cross validation, they have worse predictive accuracy. This also

expands the range of individual classifiers’ accuracy, to differentiate the predictive strengths

of base models. The aim is to test the combination schemes on a more general and realistic

problem setting.

Each classifier is again trained using the 10-fold stratified cross validation. The result is

listed in Table 4.3. The average cross validation accuracy is used as the overall accuracy

parameter in the combination scheme of Equation (3.2) for each individual classifier. After

removing the strong features, the previous classifiers have worse cross validation perfor-

mance, with accuracy between 0.788889 and 0.874747, based on the remaining 42 features.

The three new k-NNs have even lower accuracy. The logloss cross validation performance

is also worse under the new problem setting.

1http://scikit-learn.org/stable/modules/ensemble.html#forest
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Figure 4.2: Random Forest Feature Relative Importance, the left figure contains all 192

features, while the right figure plots the Top 20 features.

The test result of three combination schemes are listed in Table 4.4. All base classifiers’ per-

formances, both accuracy and logloss, are similar to the stratified cross validation, which

excludes the problem of overfitting. Gini-based combination scheme outperforms all the

individual classifiers, in term of accuracy. Entropy-based combination scheme achieves the

same accuracy level as the best individual classifier, SVM. These two schemes also have lower

logloss than all base classifiers. They both outperform the benchmarks of the simple average

and the weighted average by accuracy and logloss. However, Variation-based combination

scheme’s predictive performance is still among the individual classifiers. It’s worse than the

two Average-based combination methods.

Figure 4.3 shows the histograms of all base classifiers’ three uniformness measures for the test

set observations. The classifiers have similar behaviors, compared with the original dataset.

SVM and ν−SVM still have higher values in Entropy and lower values in Gini than other
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Classifier CV Accuracy CV logloss

k-NN(3) 0.788889 2.655676

k-NN(5) 0.779293 1.831460

k-NN(10) 0.743434 1.647518

k-NN(20) 0.659091 1.696260

LDA 0.847980 1.361570

Logistic Regression 0.874747 0.618047

Random Forest 0.853030 1.095315

SVM 0.830303 2.400027

ν−SVM 0.865657 2.363698

Table 4.3: Cross Validation of Base Classifiers with 42 Features

classifiers, which is consistent with their high logloss. The newly introduced three kNN

models have outputs with higher uniformness, as the parameter k increases. The shifts of

the peaks in their Entropy and Gini histograms are obvious. This reflects the noise and the

lower level of model confidence.

In order to test the robustness of the probability-based combination schemes, a further

modified version excludes the top 3 classifiers with the highest predictive accuracy: Logistic

Regression, Random Forest, and ν−SVM, while others remain the same. This new test

setting adds to the difficulty of the classification, since the combination contains fewer and

weaker base classifiers. The result is listed in Table 4.5. All the three combination schemes’

performances deteriorate because of the exclusion of the strong classifiers. However, they still

have advantage over the remaining base classifiers. Gini-based combination scheme outper-

forms all the individual classifiers, in term of accuracy. Entropy-based combination scheme

achieves the same accuracy level as the best individual classifier, Logistic Regression. These

two schemes also have lower logloss than all base classifiers, except for Logistic Regression.

However, Variation-based combination scheme’s predictive performance is still among the
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Model Accuracy Logloss

Combination-Entropy 0.892256 0.74693

Combination-Gini 0.922559 0.80351

Combination-Variation 0.856902 2.22167

Simple Average 0.878788 1.01403

Weighted Average 0.890572 0.92351

k-NN(3) 0.797980 3.23597

k-NN(5) 0.774411 2.30688

k-NN(10) 0.767677 1.57074

k-NN(20) 0.703704 1.65144

LDA 0.855219 1.31816

Logistic Regression 0.892256 0.55779

Random Forest 0.877104 1.00408

SVM 0.853535 2.12663

ν−SVM 0.872054 2.13151

Table 4.4: Test Predictive Performance with 42 Features

individual classifiers. All the three combination schemes outperforms the benchmarks of the

simple average method and the weighted average method by accuracy.
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Model Accuracy Logloss

Combination-Entropy 0.855219 0.88710

Combination-Gini 0.867003 1.23904

Combination-Variation 0.831650 2.26138

Simple Average 0.823232 0.91618

Weighted Average 0.823232 0.91730

k-NN(3) 0.797980 3.23597

k-NN(5) 0.774411 2.30688

k-NN(10) 0.767677 1.57074

k-NN(20) 0.703704 1.65144

LDA 0.855219 1.31816

SVM 0.853535 2.12663

Table 4.5: Test Predictive Performance with 42 Features and Weaker Classifiers
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CHAPTER 5

Conclusion and Future Work

This thesis proposes a novel approach for the multi-class classifier combination. The combi-

nation incorporates the confidence attached to each class by the base classifiers in the form

of uniformness of the output probability vector. This is a special case of Measurement Level

combination, where the scores of base classifiers have a consistent format and interpretation.

The approach combines the classifiers on an individualized basis, dynamically calculating

the weights of classes for each individual data points. Therefore, it considers the specific

characteristics of each input feature vector, instead of using a set of fixed parameters for the

combination scheme, like the traditional methods including majority voting and Borda count.

Such flexibility improves the classification performance while keeping the computation cheap.

In the real problem of plant leaf classification, the probability-based classifier combination

schemes achieve good classification performance. In the two more difficult situations where

the base classifiers are relatively weaker, the Entropy-based combination scheme and the

Gini-based combination scheme outperform all the individual base classifiers. These results

reflect the advantage and robustness of the probability-based classifier combination method.

The new design provides a reliable approach even when the classification problem is quite

difficult for many classifiers. It also provides better results than traditional methods, such as

the simple average combination and the weighted average combination. However, the combi-

nation scheme of variation coefficient does not have better predictive performance than the

individual classifiers, either in terms of accuracy or logloss, which suggests the importance

of selecting the uniformness measurement function.
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Future development of the probability-based classifier combination method can assign a

different formula for each class. From the Bayesian perspective, each class needs a set of

base classifiers to predict the posterior probability and needs a specific combination scheme.

This is not covered in the current project since the sample size of each class in the plant leaf

dataset is much smaller than the number of features. Also, the priori distribution of the class

labels, which is a known uniform distribution in this dataset, should be estimated. Other

uniformness measurement functions can also be explored. In the experiment, the two eval-

uation indices accuracy and logloss are not alway consistent. The discrepancy also requires

further research.
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