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B → D(∗)(→ DY )τ(→ Xν)ν decays, specifically for X = `ν or π and Y = π or γ. We

include contributions from all ten possible new physics four-Fermi operators with arbitrary

couplings. Our results capture interference effects in the full phase space of the visible τ and

D∗ decay products which are missed in analyses that treat the τ or D∗ or both as stable.

The τ interference effects are sizable, formally of order mτ/mB for the standard model,

and may be of order unity in the presence of new physics. Treating interference correctly

is essential when considering kinematic distributions of the τ or D∗ decay products, and

when including experimentally unavoidable phase space cuts. Our amplitude-level results

also allow for efficient exploration of new physics effects in the fully differential phase

space, by enabling experiments to perform such studies on fully simulated Monte Carlo

datasets via efficient event reweighing. As an example, we explore a class of new physics

interactions that can fit the observed R(D(∗)) ratios, and show that analyses including

more differential kinematic information can provide greater discriminating power for new

physics, than single kinematic variables alone.

Keywords: Beyond Standard Model, Heavy Quark Physics

ArXiv ePrint: 1610.02045

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP01(2017)083

mailto:ligeti@berkeley.edu
mailto:mpapucci@lbl.gov
mailto:dean.robinson@uc.edu
https://arxiv.org/abs/1610.02045
http://dx.doi.org/10.1007/JHEP01(2017)083


J
H
E
P
0
1
(
2
0
1
7
)
0
8
3

Contents

1 Introduction 1

2 Construction 3

2.1 Operator basis 3

2.2 Form factors 4

2.3 Helicity angles 6

2.4 Phase space 7

3 Amplitudes 8

3.1 Amplitude factorization and τ spinor basis 8

3.2 B → Dτντ 10

3.3 B → D∗(→ Dπ)τντ 11

3.4 τ → `ν`ν̄τ and τ → πν̄τ 13

4 Applications 13

4.1 Monte Carlo strategy 13

4.2 Univariate versus bivariate analyses 14

5 Summary 19

A Helicity angle expressions 20

B B → D∗(→ Dγ)τντ 22

1 Introduction

Over the past few years, the BaBar [1, 2], Belle [3–5] and LHCb [6] experiments have

reported a persistent anomaly in the ratios

R(D(∗)) ≡ Γ[B → D(∗)τντ ]

Γ[B → D(∗)`ν]
, ` = µ, e , (1.1)

compared to the standard model (SM) expectations. The latter are fairly precise, be-

cause heavy quark symmetry [7–9] and data constrain the B → D(∗) form factors. The

world averages for R(D(∗)) [10] show a tension with the SM at approximately the 4σ level,

motivating consideration of possible new physics (NP) contributions to this signal.

Signatures of NP in B → Xτντ are of long-standing interest (see e.g. refs. [11–15]),

and a large number of recent studies [1–6, 16–42] have examined possible beyond SM

(BSM) origins for this anomaly. In many cases NP not only affects the B → D(∗)τντ rates

compared to SM expectations, but also modifies the differential phase space distributions
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of the B → D(∗)τντ process. Many studies have examined possible changes in the q2 ≡
(pB − pD(∗))2 invariant mass distribution, in order to assess the viability of NP models.

An advantage of this observable, which is measured to moderate precision [2], is that

interference effects arising from decays of the τ and the D∗ are absent in dΓ/dq2, provided

there are no phase space cuts. In this case, one can treat the τ and D∗ as stable particles

in the b→ cτντ decay.

The experimental measurements of R(D(∗)) and other observables are, however, com-

plicated by several considerations. First, prompt decay of both the τ and D∗ means that

the τ and D∗ themselves are not external states. The non-negligible τ mass opens up sig-

nificant contributions from both τ spin states, so that the consequent τ interference effects

can be formally of order mτ/mB in the SM. Moreover, SM–NP interference that is chirally

suppressed by mτ/mB when treating the τ as stable, can become O(1) once interference

between τ spin states is included. Interference effects among the D∗ spin states are typ-

ically always O(1). Second, the presence of multiple neutrinos in the final state reduces

the overall number of experimentally accessible observables, preventing full reconstruction

of the underlying B → D(∗)τντ event. Once the full τ and D∗ decay phase space is con-

sidered, which contains at least five final-state particles, kinematic observables other than

q2 become available to probe the NP structure, e.g., the charged lepton energy, E`, or the

π–` opening angle. Kinematic distributions of such observables are sensitive to these τ

and D∗ interference effects, as are their expectation values integrated over the full phase

space. Third, experimentally unavoidable phase space cuts, including both missing mass

and lepton momentum cuts used to reduce backgrounds, imply that interference effects

between the τ and D∗ spin states affect all pertinent measurements, including dΓ/dq2.

The experimental acceptances in the presence of NP may therefore differ from the SM ones

used to extract R(D(∗)).

To properly capture all these effects, one must compute the matrix elements for the

full B → Dτ(→ Xν̄τ )ντ and B → D∗(→ DY )τ(→ Xν̄τ )ντ processes, treating both the

τ and D∗ as internal states. Computations of the corresponding full matrix elements for

the SM only have long been available and implemented in prevalently used Monte Carlo

generators, such as EvtGen [43, 44]. Computations for various parts of the full processes

with NP are also available [22, 45–51], variously omitting the coherent D∗ decays and

interference effects, the τ decays and interference effects, the NP interference effects with

the SM, or combinations thereof. In this work, we present a set of generalized NP helicity

amplitudes, i.e., matrix elements carrying explicit quantum numbers and full differential

phase space dependence, for the full B → D(∗)(→ DY )τ(→ Xν̄τ )ντ processes, in particular

for X = `ν or π and Y = π or γ. We contemplate NP arising from all possible four-Fermi

operators with b̄c ν̄τ flavor structure. We include possible CP violating NP, which may

introduce additional large interference effects, and right-handed neutrinos, should they be

Dirac. (Some of these operators may also be constrained by other flavor-diagonal and

flavor-changing processes in the neutrino sector, but the current limits do not significantly

constrain the scale of these operators beyond what is probed in B → D(∗)τντ .) As such,

this paper may be considered as an extension of ref. [14] to include all the effects mentioned

above.
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In practice, experiments measure R(D(∗)) via a simultaneous fit of the expected signal

distribution plus irreducible backgrounds, where the normalizations of various background

components are allowed to vary. Including NP contributions in this fit requires estimation of

the efficiencies and acceptances for the SM+NP signal via Monte Carlo (MC) simulations.

Given the level of accuracy required by the anticipated high luminosity future of both

LHCb and Belle II, the MC datasets become impractically large once detector simulations

are included. In order to explore and run fits over the full space of BSM scenarios within

reasonable timescales, one requires an efficient means to compute event weights, with which

the fully simulated MC sample can be reweighted. With judicious choices of spinor phase

and basis conventions and phase space coordinates, the helicity amplitudes for the B →
Dτ(→ Xν̄τ )ντ and B → D∗(→ DY )τ(→ Xν̄τ )ντ processes can be expressed explicitly

and compactly. Such explicit and compact expressions allow for very efficient computation

of the relevant matrix elements required for reweighting the MC samples: the number of

terms in the amplitude-level computation scales linearly as O(
∑

nmn) for the inclusion

of n NP currents, each with mn internal quantum numbers, compared to O
(
(
∑

nmn)2
)

for approaches that calculate the matrix element squared directly. A software package

implementing these results, for use by experimental collaborations, is under preparation.1

In section 2 we establish our notation and conventions. After deriving the amplitudes

in section 3, we proceed to consider example applications of this efficient computational

construction. We construct a MC method in section 4, in which MC data samples are

reweighted with matrices of weights. This reweighting need only be performed once per

sample, and the result can be used to generate data for any new physics model. Post-

reweighting, for any set of NP four-Fermi couplings, the distributions of kinematic ob-

servables Oi in bi bins can be generated by a smaller set of only
∑

i bi linear operations.

The general problem of reweighting a large MC dataset between different NP theories is

thereby reduced to a much smaller set of linear operations. We use this strategy to ef-

ficiently generate 1D and 2D distributions in ten kinematic observables, including lepton

and pion energies and opening angles, with and without phase space cuts, over a range of

NP couplings. To demonstrate the usefulness of efficiently producing multidimensional dis-

tributions, we present a sample bivariate analysis that exhibits higher distinguishing power

between SM and NP theories, compared to using only single kinematic distributions.

2 Construction

2.1 Operator basis

In addition to the SM four-Fermi interaction, we consider a complete set of four-Fermi NP

operators mediating b̄→ c̄τ+ντ decay, choosing an operator basis

Vector: i2
√

2VcbGF

(
mW

ΛV

)2 [
b̄
(
αVLγ

µPL + αVRγ
µPR

)
c
][
ν̄τ
(
βVL γµPL + βVRγµPR

)
τ
]
,

(2.1a)

1Hammer: Helicity Amplitude Module for Matrix Element Reweighting [52].
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Scalar: − i2
√

2VcbGF

(
mW

ΛS

)2 [
b̄
(
αSLPL + αSRPR

)
c
][
ν̄τ
(
βSLPR + βSRPL

)
τ
]
, (2.1b)

Tensor: − i2
√

2VcbGF

(
mW

ΛT

)2 {[
b̄
(
αTRσ

µνPR
)
c
][
ν̄τ
(
βTLσµνPR

)
τ
]

+
[
b̄
(
αTLσ

µνPL
)
c
][
ν̄τ
(
βTRσµνPL

)
τ
]}

. (2.1c)

Here we have classified each operator according to the Lorentz structure — scalar, vector,

or tensor — of the contracted quark and lepton currents, b̄Γc and ν̄τΓτ . The CP conjugate

operators for b → cτ−ν̄τ are obtained by complex conjugation. (We are careful to label

the tau neutrino in b̄ → c̄τ+ντ distinctly from the tau antineutrino in τ → ν̄τX, and

from the light lepton flavored neutrino for X = `ν`. Henceforth we drop all other bars

and sign superscripts where the meaning is unambiguous.) We use the convention σµν ≡
(i/2)[γµ, γν ].

NP couplings to the quark and lepton currents are denoted by α and β, respectively,

normalized to g2Vcb/
√

2 and g2/
√

2, where g2 is the SU(2) electroweak coupling and Vcb is

the usual CKM element, while the scale of the operator is normalized to the W mass, mW .

If one views each operator as a tree-level exchange of a fictitious particle, then α and β

correspond to its quark and lepton current couplings, respectively, and ΛS,V,T corresponds

to the mediator mass. The NP couplings may be complex in general, admitting multiple

sources of CP violation. We label the chirality of the leptonic β couplings according to the

tau neutrino chirality, in order to easily distinguish between contributions involving left-

and right-handed neutrinos, and hence contributions that do or do not interfere with the

SM operator. Neglecting neutrino masses, βL and βR terms do not interfere. The chirality

of the quark couplings αL,R are defined by the chirality of the charm quark. The identity

σµνγ5 ≡ i

2
εµνρσσρσ , (2.2)

with ε0123 = +1, guarantees the absence of αTLβ
T
L or αTRβ

T
R terms, so that there are only two

tensor operators. This yields a total of ten independent four-Fermi NP operators. Neutrino

flavor-violating effects are GIM-suppressed and may be neglected. Finally, we assume in

this paper that τ decays are described by the SM, supported by the good agreement of SM

predictions with τ decay data [53].

2.2 Form factors

Lorentz symmetry ensures that for the B → D(∗) transitions, the scalar, pseudoscalar,

vector, axial vector and tensor currents have one (zero), zero (one), two (one), zero (three)

and one (three) independent form factors, respectively. We define

qµ ≡ pµB − p
µ

D(∗) , (2.3)

so that q2 is the only unfixed Lorentz invariant in the B → D(∗) decay. Note m2
τ ≤ q2 ≤

(mB − mD(∗))2, and that qµ is equivalently the momentum flowing to the τντ pair. For
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B̄ → D we adopt the following conventions and definitions for the form factors,〈
D
∣∣ c̄ b ∣∣B̄〉 ≡ fS(q2) , (2.4a)〈

D
∣∣ c̄γµb ∣∣B̄〉 ≡ f+(q2)(pB + pD)µ + [f0(q2)− f+(q2)]

m2
B −m2

D

q2
qµ , (2.4b)〈

D
∣∣ c̄σµνb ∣∣B̄〉 ≡ ifT (q2)

[
(pB + pD)µqν − (pB + pD)νqµ

]
. (2.4c)

The pseudoscalar and axial vector currents 〈D| c̄γ5b |B̄〉 ≡ 0 and 〈D| c̄γµγ5b |B̄〉 ≡ 0,

while the axial tensor current 〈D| c̄σµνγ5b |B̄〉 is fixed by the identity (2.2). Under these

conventions, at leading order in ΛQCD/mb,c, these form factors are

fS(q2) = ξ(w)
(mB +mD)2 − q2

2
√
mDmB

, (2.5a)

f+(q2) = ξ(w)
mB +mD

2
√
mDmB

, (2.5b)

f0(q2) = ξ(w)
(mB +mD)2 − q2

2
√
mDmB (mB +mD)

, (2.5c)

fT (q2) =
ξ(w)

2
√
mDmB

, (2.5d)

where ξ(w) is the Isgur-Wise function [7, 8]. These relations are understood for the value

of the recoil parameter w ≡ vB · vD(∗) = (m2
B + m2

D(∗) − q2)/(2mBmD(∗)). Under CP

conjugation, the form factors for the conjugate B → D̄ process are〈
D̄
∣∣ b̄ c ∣∣B〉 = fS(q2) , (2.6a)〈

D̄
∣∣ b̄γµc ∣∣B〉 = −f+(q2) (pB + pD)µ −

[
f0(q2)− f+(q2)

] m2
B −m2

D

q2
qµ , (2.6b)〈

D̄
∣∣ b̄σµνc ∣∣B〉 = −ifT (q2)

[
(pB + pD)µqν − (pB + pD)νqµ

]
, (2.6c)

noting in particular the sign change for the tensor and vector currents.

Similarly for B̄ → D∗ we define〈
D∗
∣∣ c̄γ5b

∣∣B̄〉 ≡ a0(q2) ε∗ · pB , (2.7a)〈
D∗
∣∣ c̄γµb ∣∣B̄〉 ≡ −ig(q2) εµνρσ ε∗ν (pB + pD∗)ρ qσ , (2.7b)〈

D∗
∣∣ c̄γµγ5b

∣∣B̄〉 ≡ ε∗µf(q2) + a+(q2) ε∗ · pB (pB + pD∗)
µ + a−(q2) ε∗ · pB qµ , (2.7c)〈

D∗
∣∣ c̄σµνb ∣∣B̄〉 ≡ −aT+(q2) εµνρσε∗ρ(pB + pD∗)σ − aT−(q2) εµνρσε∗ρ qσ

− aT0(q2) ε∗ · pB εµνρσ(pB + pD∗)ρ qσ . (2.7d)

The matrix element of the scalar current vanishes, 〈D∗| c̄ b |B̄〉 ≡ 0, while the axial tensor

current matrix element 〈D∗| c̄σµνγ5b |B̄〉 is fixed by the identity (2.2). At leading order in
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ΛQCD/mb,c, these form factors are

a0(q2) = ξ(w)

√
mD∗

mB
, (2.8a)

a+(q2) = −a−(q2) = −g(q2) =
ξ(w)

2
√
mD∗mB

, (2.8b)

f(q2) = −ξ(w)
(mB +mD∗)

2 − q2

2
√
mD∗mB

, (2.8c)

aT±(q2) = ±ξ(w)
mB ±mD∗

2
√
mD∗mB

, (2.8d)

aT0(q2) = 0 , (2.8e)

Under CP conjugation, the form factors for the conjugate B → D̄∗ process are〈
D̄∗
∣∣ b̄γ5c

∣∣B〉 = a0(q2) ε∗ · pB , (2.9a)〈
D̄∗
∣∣ b̄γµc ∣∣B〉 = ig(q2) εµνρσε∗ν(pB + pD∗)ρ qσ , (2.9b)〈

D̄∗
∣∣ b̄γµγ5c

∣∣B〉 = ε∗µf(q2) + a+(q2) ε∗ · pB (pB + pD∗)
µ + a−(q2) ε∗ · pB qµ , (2.9c)〈

D̄∗
∣∣ b̄σµνc ∣∣B〉 = aT+(q2) εµνρσε∗ρ(pB + pD∗)σ + aT−(q2) εµνρσε∗ρ qσ

+ aT0(q2) ε∗ · pB εµνρσ(pB + pD∗)ρ qσ , (2.9d)

noting that the pseudoscalar and axial currents do not change sign.

2.3 Helicity angles

The helicity amplitudes are most simply expressed in terms of the (θ, φ) helicity angles for

each vertex of the B → D̄(∗)(→ D̄Y )τ+(→ Xν̄τ )ντ amplitude.2 That is, we factorize the

phase space of the process into a series of rest frames in the (off-shell) cascade B → D(∗)(→
DY )W(→ νττ(→ ν̄τW (→ X))) and so on. Here, for the purpose of defining helicity angles,

we treat the τντ pair as originating from a fictitious W particle in the B → D(∗) transition,

with momentum qµ. Similarly we define pµ to be the momentum of the W ∗ in the τ decay,

and p2 ∈ [0,m2
τ ] neglecting the daughter charged lepton’s mass. (Hereafter we always label

the momenta of massive particles with the base symbol p and those of massless particles

with the base symbol k.)

In figure 1 we show schematically the helicity angle definitions for B → D(∗)(→
DY )W(→ νττ(→ ν̄τW (→ `ν`))), with Y = π or γ. Explicit expressions for these he-

licity angles in terms of Lorentz invariant objects are provided in appendix A. The polar

θ angles in figure 1 are well-defined rest frame by rest frame. The orientation of the az-

imuthal φ angles is, however, defined with respect to an arbitrary direction in the B rest

frame, (θ∗, φ∗), combined with a sequence of parent-daughter frame transformations. As

the B is a spin-0 state, the (θ∗, φ∗) angles themselves are unphysical, and vanish from all

2Helicity angles and momenta are labelled according to the b̄→ c̄ process. Corresponding definitions for

the conjugate process follow by replacing all particle labels with their antiparticles.
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φ∗

θ∗

q

pD(∗)

B
φτ

θτ

pB = pD(∗)

pτ

kντ

W
φW

θW

kντ = q

p

kν̄τ

τ

φ`

θ`

kν̄τ = pτ

k`

kν`

W
φD

θD

pB = q

kγ , pπ

pD

D∗

Figure 1. Helicity angle definitions with respect to spatial momenta (bold symbols) in the sequence

of particle rest frames. Each subfigure is drawn in the rest frame of the particle denoted in the

central grey disk. Transformations between frames are achieved by Euler rotations and Lorentz

boosts, denoted by gray arrows (see text for details).

amplitudes, but we nonetheless keep these angles explicit in figure 1. In a parent rest frame

with daughter polar coordinates (θ, φ), the parent-daughter frame transformation is defined

to be the sequential z y′z′′ Euler rotations Rz′′(φ)Ry′(−θ)Rz(−φ), followed by a Lorentz

boost along the z′′ axis to the daughter frame. These Euler rotations transform to a frame

in which the daughter momentum is aligned with the z′′ axis, while preserving a line of

nodes orthogonal to the plane of the daughter momentum and z axis. These conventions

ensure that apart from the polar θ angles, only the relative twist angles φτ − φW , φ`− φW
and φD − φτ are physical.

2.4 Phase space

The phase space integration limits are [0, π) and [0, 2π) for each polar and azimuthal

helicity angle. In these coordinates, the full phase space measure can be straightforwardly

factorized into B → D(∗)τντ , τ → Xν̄τ and D∗ → Dπ, Dγ pieces. These are

dPSB→D(∗)τντ =
1

1024π5

(
1− m2

τ

q2

)
|q∗|
mB

dΩτdΩ∗dq2 ,

dPSτ→`ν`ν̄τ =
1

2048π5

(
1− p2

m2
τ

)
dΩ`dΩWdp

2 , (2.10)

while dPSτ→πν̄τ = (1−m2
π/m

2
τ )/(16πmτ ), dPSD∗→Dπ = |p∗π|/(8πm2

D∗) and dPSD∗→Dγ =

[1−m2
D/m

2
D∗ ]/(16πmD∗). Here the spatial momentum of the τντ pair in the B rest frame

– 7 –



J
H
E
P
0
1
(
2
0
1
7
)
0
8
3

and of the pion in the D∗ rest frame are, respectively,

|q∗| = mB

2
λ
(
mD(∗)/mB,

√
q2/mB

)
,

|p∗π| =
mD∗

2
λ
(
mD/mD∗ , mπ/mD∗

)
, (2.11)

with λ(x, y) ≡
√

[1− (x− y)2][1− (x+ y)2] the usual phase space factor.

3 Amplitudes

The helicity amplitudes for the full B → D(∗)(→ DY )τ(→ Xν̄τ )ντ process carry only

quantum numbers of external particles (i.e., not the τ and D∗ spins) corresponding to

certain convenient basis choices for external spinors and polarization vectors. For X = `ν`,

these are the spins sντ , sν̄τ , s`, sν` = −, + that label the helicity amplitudes below, and

also the photon helicity κ = ± in the case of D∗ → Dγ.

The azimuthal helicity angles arise as phases in the helicity amplitudes. These phases

are odd under CP, along with those that occur in the NP α or β couplings. In the remainder

of this paper, we shall consider explicit expressions for only the b̄→ c̄ process. Results for

the CP conjugate b→ c process are obtained by conjugation of all these phases, i.e.,

Asb→c(θ, φ;α, β) = As̄b̄→c̄(θ,−φ;α∗, β∗) , (3.1)

where s is the set of quantum numbers of all external states, and s̄ the corresponding CP

conjugate, obtained by interchanging all spins and helicities with their conjugates.

Since we assume that τ decays are described by the SM, and we can neglect the light

charged daughter lepton mass, it is always the case that sν̄τ = +, s` = +, and sν` = −, such

that our choice of spinor basis for massless states coincides with the usual helicity basis. We

drop these quantum numbers from the amplitude labelling below, with the understanding

that all other amplitudes are zero. For the SM, sντ = − only. However, in the presence of

NP currents involving left- (right-)handed ντ , associated with βL (βR) couplings, one may

further have sντ = − (sντ = +) contributions that do (do not) interfere with the SM.

3.1 Amplitude factorization and τ spinor basis

It is convenient to express the helicity amplitudes factorized into B → D(∗)(→ DY )τντ
and τ → Xν̄τ pieces, not only for the sake of presentation, but also in order to enable

the B → D(∗)(→ DY )τντ results to be used modularly with respect to different choices

of τ → Xν̄τ . To obtain the square of the polarized matrix elements, one sums over the

internal τ spin, sτ = 1, 2,3 before squaring,

|M|2B→Dτ(→Xν̄τ )ντ
=

∑
sντ ,sν̄τ ,sX ,sY

∣∣∣∣∣∑
sτ

[AB→Dτντ ]sντsτ [Aτ→Xν̄τ ]sν̄τ sXsτ

∣∣∣∣∣
2

, (3.2)

3For a massive fermion, we label spin states by 1 and 2 (see, e.g., p. 48 in ref. [54]).
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and similarly for B → D∗(→ DY )τ(→ Xν̄τ )ντ . Here sX (sY ) is the set of quantum

numbers of the X (Y ) external state: sX = {s`, sν`} for X = `ν`, sY = κ for Y = γ and

sX (sY ) is empty for X = π (Y = π). The fully differential decay rates are then

dΓB→Dτ(→Xν̄τ )ντ =
1

2mB

1

2mτΓτ
|M|2B→Dτ(→Xν̄τ )ντ

dPSB→DτντdPSτ→Xν̄τ , (3.3)

dΓB→D∗(→DY )τ(→Xν̄τ )ντ =
1

2mB

1

2mτΓτ

1

2mD∗ ΓD∗
|M|2B→D∗(→DY )τ(→Xν̄τ )ντ

× dPSB→D∗τντdPSτ→Xν̄τdPSD∗→DY , (3.4)

where we have included the factorized phase space measures (2.10) as well as τ and D∗

propagators, using the narrow width approximation for both states.

In order to permit extension of the results below to any τ → Xντ decay, we specify

here our choice for the τ spinor basis and phase conventions. Calculation of the helicity

amplitudes are achieved by decomposing momenta and spinors (or polarizations) of massive

states onto a lightcone basis. For the τ , we choose the ντ momentum kντ as a null reference

momentum. In the τ rest frame, using phase space coordinates as defined in figure 1, the

Dirac spinor basis for the τ+ is

v̄1(pτ ; kντ ) = h1(sντ )
(√
mτ , 0 , 0 , −

√
mτ

)
, v̄2(pτ ; kντ ) = h2(sντ )

(
0 ,
√
mτ ,

√
mτ , 0

)
,

(3.5)

for γµ in the Dirac basis and γ5 = diag{−12,12}, PR,L ≡ (1± γ5)/2. While the factoriza-

tion (3.2) permits modularity under choices of τ → Xντ , it may also introduce unphysical

manifestations of the azimuthal helicity angle φτ in each amplitude factor, which disappear

under summation over sτ . It is, however, far more computationally efficient to permit only

physical phases — the relative azimuthal twist angles — to appear in each helicity am-

plitude factor. To ensure that φτ appears only in the physical combinations φD − φτ and

φτ − φW in the B → D(∗)(→ DY )τντ and τ → Xντ helicity amplitudes, respectively, we

introduced in eq. (3.5) an additional spinor phase function, hsτ (sντ ), defined with respect

to sντ , such that

h1(−) = 1 = h2(+) , h1(+) = eiφτ h2(−) = e−iφτ . (3.6)

This additional phase factor in the τ+ spinors is balanced by a cancelling phase factor

e±iφτ in the corresponding B → D(∗)(→ DY )τντ amplitudes. We emphasize that this

is merely a bookkeeping device, that does not affect the physical phase structure of the

full B → D∗(→ DY )τ(→ Xν̄τ )ντ helicity amplitudes. Under this phase convention the

τ → Xν̄τ helicity amplitudes therefore carry sντ as a quantum number, even though ντ
itself is not involved in the τ decay.

The quantum numbers in eq. (3.5) need only be matched with those in each of the

B → D(∗)(→ DY )τντ helicity amplitudes below to identify the corresponding τ spinor and

phase to be used to compute the τ decay helicity amplitude of interest. We provide below

explicit expressions for the τ → `ν`ν̄τ and τ → πν̄τ amplitudes under these conventions.
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3.2 B → Dτντ

Let us now proceed to present the helicity amplitudes. For readability, we group terms by

form factors. For B → Dτντ , the helicity amplitudes [AB→Dτντ ]
sντ
sτ ≡ A

sντ
sτ are

A−1 = −i2
√

2VcbGF
√
q2 −m2

τ

{
1

2
fS(q2)(αSL + αSR)βSLr

2
S

+
f0(q2)(−m2

B +m2
D)mτ (1 + (αVL + αVR)βVL r

2
V )

2q2

+
f+(q2)mBmτ |q∗|(1 + (αVL + αVR)βVL r

2
V ) cos(θτ )

q2

− 4fT (q2)mB|q∗|αTRβTLr2
T cos(θτ )

}
, (3.7a)

A−2 = −i2
√

2VcbGF
√
q2 −m2

τ

{
−
f+(q2)mB|q∗|(1 + (αVL + αVR)βVL r

2
V ) sin(θτ )√

q2

+
4fT (q2)mBmτ |q∗|αTRβTLr2

T sin(θτ )√
q2

}
, (3.7b)

A+
1 = −i2

√
2VcbGF

√
q2 −m2

τ

{
−
f+(q2)mB|q∗|(αVL + αVR)βVR r

2
V sin(θτ )√

q2

+
4fT (q2)mBmτ |q∗|αTLβTRr2

T sin(θτ )√
q2

}
, (3.7c)

A+
2 = −i2

√
2VcbGF

√
q2 −m2

τ

{
− 1

2
fS(q2)(αSL + αSR)βSRr

2
S

+
f0(q2)(m2

B −m2
D)mτ (αVL + αVR)βVR r

2
V

2q2

−
f+(q2)mBmτ |q∗|(αVL + αVR)βVR r

2
V cos(θτ )

q2

+ 4fT (q2)mB|q∗|αTLβTRr2
T cos(θτ )

}
, (3.7d)

where rV,S,T ≡ mW /ΛV,S,T .

Expressions for the SM helicity amplitudes may be read off taking all α’s or all β’s to

zero. These SM results numerically match the output of EvtGen. In the SM, only A−1 and

A−2 are non-zero, and contain terms that are all linear or zeroth order in mτ , respectively.

Interference effects arising from decay of the sτ = 1, 2 spin states to the same final state

therefore enter at O(mτ/mB) in the SM. When treating the τ as stable, interference terms

for operators that respectively couple to ν̄τLτL and ν̄τLτR, such as the fSf+ term between

the NP scalar and SM vector operators within A−1 , are chirally suppressed as expected,

entering only at order mτ/mB. However, interference between τ spin states can produce

O(1) contributions to these terms, e.g. the fSf+ interference term between A−1 and A−2 .

Similar conclusions follow for B → D∗τντ , below.
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3.3 B → D∗(→ Dπ)τντ

The decay D∗ → Dπ proceeds through the operator ĝπD
∗µ(π∂µD−D∂µπ), in which ĝπ is

the phenomenological coupling

ĝπ =

[
6πm2

D∗Γ(D∗ → Dπ)

|p∗π|3

]1/2

, (3.8)

with ĝπ = (mD∗/fπ)gπ in the notation of ref. [9]. We define the functions

∆± ≡ sin θD

[
cos2 θτ

2
e−i(φD−φτ ) ± sin2 θτ

2
ei(φD−φτ )

]
, (3.9a)

∆0 ≡ cos θD sin θτ , (3.9b)

Σ+ ≡ cos θD cos θτ , (3.9c)

ΣR
− ≡ sin θD sin θτ cos(φD − φτ ) , (3.9d)

ΣI
− ≡ sin θD sin θτ sin(φD − φτ ) , (3.9e)

Σ0 ≡ cos θD . (3.9f)

Under our phase and spinor conventions, the sτ = 2 (sτ = 1) helicity amplitudes are linear

combinations of the ∆ (Σ) functions exclusively. Each set of ∆ or Σ functions is L2(C)

orthogonal under integration over the angular phase space dΩDdΩτ . The ∆ functions are

orthogonal with respect to Σ once one accounts for the additional e±iφτ phase that must

occur in the integration measure, in accordance with our τ spinor phase conventions (3.5).

(This phase is encoded in the τ → Xν̄τ amplitudes below.) This ∆–Σ orthogonality

corresponds to the absence of τ interference effects in the total rate under integration over

the full angular phase space, i.e., no angular phase space cuts, as expected.

The helicity amplitudes [AB→D∗(→Dπ)τντ ]
sντ
sτ ≡ [Aπ]

sντ
sτ are found to be

[Aπ]−1 = −i2
√

2ĝπVcbGF |p∗π|
√
q2−m2

τ

{
a0(q2)mB |q∗|(αSL−αSR)βSLr

2
SΣ0

mD∗
(3.10a)

+f(q2)mτ (1+(αVL−αVR)βVL r
2
V )

[
(−m2

B+m2
D∗+q

2)Σ+

2mD∗q2
+
mB |q∗|Σ0

mD∗q2
−

ΣR−√
q2

]

+
2ig(q2)mBmτ |q∗|(1+(αVL+αVR)βVL r

2
V )ΣI−√

q2
+
a−(q2)mBmτ |q∗|(1+(αVL−αVR)βVL r

2
V )Σ0

mD∗

−a+(q2)mBmτ |q∗|(1+(αVL−αVR)βVL r
2
V )

[
2mB |q∗|Σ+

mD∗q2
+

(−m2
B+m2

D∗)Σ0

mD∗q2

]
+

8aT0(q2)m2
B |q∗|2αTRβTLr2TΣ+

mD∗
−2aT−(q2)αTRβ

T
Lr

2
T

[
(−m2

B+m2
D∗+q

2)Σ+

mD∗
−2
√
q2ΣR−

]
+2aT+(q2)αTRβ

T
Lr

2
T

[
(m2

B+3m2
D∗−q2)Σ+

mD∗
+

2(m2
B−m2

D∗)Σ
R
−√

q2
+

4imB |q∗|ΣI−√
q2

]}

[Aπ]−2 = −i2
√

2ĝπVcbGF |p∗π|
√
q2−m2

τ

{
(3.10b)

+f(q2)(−1+(αVR−αVL )βVL r
2
V )

[
(−m2

B+m2
D∗+q

2)∆0

2mD∗
√
q2

+∆−

]
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−2g(q2)mB |q∗|(1+(αVL+αVR)βVL r
2
V )∆++

2a+(q2)m2
B |q∗|2(1+(αVL−αVR)βVL r

2
V )∆0

mD∗
√
q2

−8aT0
(q2)m2

Bmτ |q∗|2αTRβTLr2T∆0

mD∗
√
q2

+2aT−(q2)mτα
T
Rβ

T
Lr

2
T

[
(−m2

B+m2
D∗+q

2)∆0

mD∗
√
q2

+2∆−

]

−2aT+
(q2)mτα

T
Rβ

T
Lr

2
T

[
4mB |q∗|∆+

q2
+

(m2
B+3m2

D∗−q2)∆0

mD∗
√
q2

−2(m2
B−m2

D∗)∆−

q2

]}

[Aπ]+1 = −i2
√

2ĝπVcbGF |p∗π|
√
q2−m2

τ

{
(3.10c)

+f(q2)(−αVL+αVR)βVR r
2
V

[
(−m2

B+m2
D∗+q

2)∆0

2mD∗
√
q2

+∆∗
−

]

+2g(q2)mB |q∗|(αVL+αVR)βVR r
2
V ∆∗

++
2a+(q2)m2

B |q∗|2(αVL−αVR)βVR r
2
V ∆0

mD∗
√
q2

+
8aT0(q2)m2

Bmτ |q∗|2αTLβTRr2T∆0

mD∗
√
q2

+2aT−(q2)mτα
T
Lβ

T
Rr

2
T

[
(m2

B−m2
D∗−q2)∆0

mD∗
√
q2

−2∆∗
−

]

+2aT+
(q2)mτα

T
Lβ

T
Rr

2
T

[
(m2

B+3m2
D∗−q2)∆0

mD∗
√
q2

+
4mB |q∗|∆∗

+

q2
−

2(m2
B−m2

D∗)∆
∗
−

q2

]}

[Aπ]+2 = −i2
√

2ĝπVcbGF |p∗π|
√
q2−m2

τ

{
a0(q2)mB |q∗|(−αSL+αSR)βSRr

2
SΣ0

mD∗
(3.10d)

+f(q2)mτ (−αVL+αVR)βVR r
2
V

[
(−m2

B+m2
D∗+q

2)Σ+

2mD∗q2
+
mB |q∗|Σ0

mD∗q2
−

ΣR−√
q2

]

−
2ig(q2)mBmτ |q∗|(αVL+αVR)βVR r

2
V ΣI−√

q2
+
a−(q2)mBmτ |q∗|(−αVL+αVR)βVR r

2
V Σ0

mD∗

+a+(q2)mBmτ |q∗|(αVL−αVR)βVR r
2
V

[
2mB |q∗|Σ+

mD∗q2
+

(−m2
B+m2

D∗)Σ0

mD∗q2

]
+

8aT0(q2)m2
B |q∗|2αTLβTRr2TΣ+

mD∗
−2aT−(q2)αTLβ

T
Rr

2
T

[
(−m2

B+m2
D∗+q

2)Σ+

mD∗
−2
√
q2ΣR−

]
+2aT+

(q2)αTLβ
T
Rr

2
T

[
(m2

B+3m2
D∗−q2)Σ+

mD∗
+

2(m2
B−m2

D∗)Σ
R
−√

q2
−

4imB |q∗|ΣI−√
q2

]}
,

where again rV,S,T ≡ mW /ΛV,S,T . Expressions for the SM helicity amplitudes may be read

off taking all α’s or all β’s to zero. These SM results numerically match the output of

EvtGen.

Note that orthogonality of the ∆ and Σ functions permit us to read off from the

amplitudes which square and cross-terms contribute under integration over full angular

phase space, and which are absent. For instance, the f(q2) g(q2) cross-term integrates to

zero. However, in the presence of angular phase space cuts, such terms do contribute. D∗

interference terms correspond to cross-terms within or between the ∆ or Σ functions that

contain orthogonal θD or φD dependence, and are typically O(1).

The decay D∗0 → D+π− is kinematically forbidden, opening up a large D∗0 → D0γ

branching ratio ' 38%. This large branching ratio motivates consideration of the B →
(D∗ → Dγ)τντ helicity amplitudes, too. We derive these amplitudes in appendix B.
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3.4 τ → `ν`ν̄τ and τ → πν̄τ

Under the conventions of eq. (3.5), the helicity amplitudes [Aτ→`ν`ν̄τ ]
sντ
sτ ≡ [B`]sντsτ for

τ → `ν`ν̄τ are explicitly

[B`]−1 = i2
√

2GF
√
m2
τ−p2

{
mτcos

θW
2

sinθ`+2ei(φ`−φW )
√
p2cos2 θ`

2
sin

θW
2

}
, (3.11a)

[B`]−2 = −i2
√

2e−i(φτ−φW )GF
√
m2
τ−p2

{
2ei(φ`−φW )

√
p2cos2 θ`

2
cos

θW
2
−mτ sinθ`sin

θW
2

}
,

(3.11b)

and [B`]+1,2 = ei(φτ−φW )[B`]−1,2. Note the quantum number, sντ , belonging to the τ neutrino

in the parent B → D(∗)τντ process, is a consequence of our spinor phase conventions in

eq. (3.5), which ensures that φτ appears only in the physical combination φτ − φW .

For τ → πν̄τ , we adopt definitions for the helicity angles by replacing the W with a

pion in the τ decay within figure 1, and replacing (θW , φW )→ (θπ, φπ) and pµ → pµπ. The

helicity amplitudes [Aτ→πν̄τ ]
sντ
sτ ≡ [Bπ]

sντ
sτ are found to be

[Bπ]−1 = −i2
√

2GF fπmτ

√
m2
τ −m2

π cos
θπ
2
, (3.12a)

[Bπ]−2 = −i2
√

2GF fπmτe
−i(φτ−φπ)

√
m2
τ −m2

π sin
θπ
2
, (3.12b)

and [Bπ]+1,2 = ei(φτ−φπ)[Bπ]−1,2. Here fπ = 93 MeV is the pion decay constant.

4 Applications

The computation of the NP helicity amplitudes for B → D(∗)(→ DY )τ(→ Xν̄τ )ντ decays

permits us to efficiently reweigh large Monte Carlo samples to any theory generated by the

NP operators (2.1). We may thereby access the full kinematic structure of the (visible)

τ and D∗ decay products, and explore the NP effects therein. To illustrate the potential

usefulness and NP discrimination power of these results, in this section we provide a first

exploration of such NP effects for B → D∗(→ Dπ)τ(→ `ν`ν̄τ )ντ , focusing on NP scenarios

compatible with the B → D(∗)τντ rate [26]. We include effects of q2, missing momentum,

and lepton energy cuts in this analysis. However, background modelling, detector simula-

tions, or B → Dτντ pollution, all of which are required for a realistic analysis, are deferred

to a future study [52].

4.1 Monte Carlo strategy

In accordance with the results of section 3, the full B → D∗(→ Dπ)τ(→ `ν`ν̄τ )ντ helicity

amplitudes may be expressed in the linear form

[M]sντsν̄τ s`sν`
= ~v · [ ~Mv]

sντ
sν̄τ s`sν`

, (4.1)

where ~Mv is a vector of amplitudes and the 11-dimensional vector ~v is

~v =
(

1 , αSRβ
S
Lr

2
S , α

S
Rβ

S
Rr

2
S , α

S
Lβ

S
Lr

2
S , α

S
Lβ

S
Rr

2
S , α

V
Rβ

V
L r

2
V ,

αVRβ
V
R r

2
V , α

V
Lβ

V
L r

2
V , α

V
Lβ

V
R r

2
V , α

T
Rβ

T
Lr

2
T , α

T
Lβ

T
Rr

2
T

)
. (4.2)
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The first entry of ~Mv corresponds to the SM contribution. By construction, ~Mv is in-

dependent of the particular NP model, but depends only on phase space configuration.

Our MC strategy is then as follows: (i) A large MC sample of pure phase space weighted

events is created; (ii) For each event, the Hermitian matrix of weights Wv ≡ ~Mv( ~Mv)
† is

computed from the results in section 3; (iii) These matrix weights are then either 1D, 2D

or nD histogrammed with respect to a set of kinematic observables Oi, or alternatively, the

matrix weights are collated event-by-event with the observables Oi; (iv) After all reweight-

ing, the histograms or weighted event sample corresponding to a particular NP point may

be generated by contracting all matrix weights with the desired ~v, i.e., via ~v †Wv~v.

At present, step (i) is performed with EvtGen [43], while steps (ii) and (iii) are executed

by our own Python code. In this strategy, reweighting of the MC sample into matrix

weights, Wv, need be performed only once for any given choice of phase space cuts, while

ranging over the multi-dimensional space of NP couplings is reduced to the highly efficient

post-reweighting linear operation, ~v †Wv~v. We therefore just use Mathematica for step (iv).

The amplitude-level calculation of ~Mv permits calculation of the 11 × 11 weight matrix,

Wv, with roughly an order of magnitude fewer floating point operations than a direct

amplitude-squared calculation, and therefore makes practical the reweighting of large MC

samples for multiple cut choices.

We shall consider here an MC sample of 10 million events, reweighted once on the full

phase space, and once with application of the phase space cuts, motivated by refs. [2, 3],

E` > 400 MeV , m2
miss > 1.5 GeV2 , q2 > 4 GeV2 . (4.3)

With three neutrinos in the final state, the remaining visible phase space for B → D∗(→
Dπ)τ(→ `ν`ν̄τ )ντ is parametrized by seven independent parameters. In the B rest frame

we compute an overcomplete set of ten observables, including

q2 , ED∗ , ED , Eπ , E` , cos θDπ, cos θπ`, cos θD` , (4.4)

where cos θXY is the opening angle between pX and pY , as well as the normalized triple

product and the missing invariant mass, respectively,

VDπ` ≡ p̂D · (p̂π × p̂`) , and m2
miss ≡ (kντ + kν̄τ + kν`)

2 . (4.5)

To generate the B → D∗τντ form factors (2.9), we use the ISGW2 parametrization [55, 56]

for f(q2) as presently implemented in EvtGen [43, 44] and obtain the q2-dependence of the

rest via the leading order HQET relations (2.8).

4.2 Univariate versus bivariate analyses

Various NP scenarios may produce B → D(∗)τντ rates commensurate with the central

values of current observations. In particular, leptoquark models with couplings

αTRβ
T
Lr

2
T = −0.38 , αTRβ

T
Lr

2
T = 0.05 ,

{
αTRβ

T
Lr

2
T , α

S
Rβ

S
Lr

2
S

}
= {−0.04 , 0.16} ,

(4.6)
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can reproduce the central values of the observed B → D(∗)τντ rates [26]. (In the notation

of ref. [26], these values correspond to the Wilson coefficients CT = 0.52(Λ/1 TeV)2, CT =

−0.07(Λ/1 TeV)2 and C ′′SL = −0.46(Λ/1 TeV)2, respectively.)

In this section, as an example, we focus on the NP model with gT ≡ αTRβTLr2
T = −0.38.

In figures 2 and 3, we present the differential distributions for each of the ten kinematic

observables (4.4)–(4.5) in the full and cut phase space, respectively, generated by ranging

over gT ∈ [−0.76, 0], i.e., over a range spanning twice the best fit gT value. We also show

the distributions for gT = −0.38 and the SM. While the q2 distribution itself has some

discriminating power between the SM and the NP along the gT contour, other observables,

in particular E`, cos θD`, and cos θπ` may be just as, if not more, discriminating.

To explore this further, in figure 4 we present density plots of the doubly differential

decay rates with respect to three pairs of kinematic observables,

1

Γ

d2Γ

dq2 dE`
,

1

Γ

d2Γ

dq2 d cos θπ`
, and

1

Γ

d2Γ

dEπ d cos θπ`
, (4.7)

for the SM (top row), gT = −0.38 (middle row), and their difference (bottom row). In

particular, the density plots for the difference of d2Γ/dq2 dE` and d2Γ/dq2 d cos θπ` have

non-trivial level contours, suggesting that an analysis using both of these observables may

have significantly more SM–NP discrimination power than q2 or any other single kinematic

observable. (A preliminary multivariate study of all ten observables with a boosted decision

tree trained to discriminate the SM and the gT = −0.38 model supports this claim [52].)

To roughly quantify the relative discrimination power of single and doubly differential

distributions in the q2–E` space, we proceed to divide the MC sample into two bins —

a “2-binning” — according to a partitioning in each of the one-dimensional q2 and E`
distributions as well as in the two-dimensional q2–E` parameter space. We choose these

partitionings at intersection points of contours of the SM and gT = −0.38 theories, to

maximize their difference in each bin. From figures 2 and 4, this corresponds to 2-binning

on either side of

q2 ' 7.25 GeV2 , E` ' 0.9 GeV , and E` ' 2.3 GeV− 0.21 GeV−1 q2 . (4.8)

The latter partition is shown by a gray dashed line on the q2–E` difference plot in the

bottom left panel in figure 4.

For each 2-binning, we define a discriminator,

χ2 ≡
∑
i,j=1,2

(
nH
i − nT

i

) 1

σ2
ij

(
nH
j − nT

j

)
, (4.9)

where n1,2 are the two bin entries, T (H) labels the true (hypothesis) theory, and σ2 is

a 2 × 2 covariance matrix. An approximate covariance matrix for the three 2-binnings is

constructed based on the distributions presented in ref. [3], measured in a signal-rich region

approximated by the phase space cuts (4.3). We decompose the covariance matrix as

σ2 = σ2
data + σ2

bg + σ2
sys + σ2

shape , (4.10)
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Figure 2. Kinematic distributions in the B rest frame for couplings ranging over gT ∈ [−0.76, 0]

(gray regions) without phase space cuts. The blue (red) dashed curves show the SM (gT = −0.38).
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Figure 3. Kinematic distributions in the B rest frame for couplings ranging over gT ∈ [−0.76, 0]

(gray regions) with phase space cuts (4.3). The blue (red) dashed curves show the SM (gT = −0.38).
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Figure 4. Density contours of (1/Γ)d2Γ/dx dy for three pairs of kinematic observables, for the SM

(top row), gT = −0.38 (middle row) and their difference (bottom row).

where we have suppressed the indices. The first term, σ2
data, corresponds to the Poisson

error of the measured data in each bin, while σ2
bg corresponds to the error in the nor-

malizations of the main background components, mainly the D∗∗ backgrounds, which are

fixed by data in different kinematic regions. Both terms therefore scale with the square

root of the luminosity. Rescaling statistics to a initial benchmark luminosity of 5 ab−1 at

Belle II implies σdata ' 10% and σbg ' 14%. While σdata is uncorrelated by construction,

we assume σbg is purely an error in overall normalization, and therefore fully correlated

between the two bins. By looking at the systematic error breakdown in ref. [3], we divide

the systematic components into a fully correlated systematic error σsys and a component

σshape coming from D∗∗ background shape variations of unknown correlation between the

two bins. We conservatively assume that systematic errors remain the same in the future,

therefore setting σsys ∼ 4% and σshape ∼ 3%. We emphasize that translation of the χ2

values, obtained from this approximate covariance matrix (4.10), into statistical confidence

levels requires a more comprehensive treatment of backgrounds and their correlations than

attempted here, beyond the scope of the present work. However, the relative size of χ2 val-
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Figure 5. Approximate χ2 bands, ranging over arbitrary systematic σshape (anti)correlations, for

2-binning in q2 (red), E` (blue) and q2–E` (black), according to the partitionings in eq. (4.8), for

the true theory being the SM (left) and gT = −0.38 (right). The phase space cuts in eq. (4.3) are

applied, and statistics is rescaled to a future 5 ab−1 luminosity. Also shown for each 2-binning are

contours for uncorrelated (solid), fully correlated (dashed) and fully anticorrelated (dotted) σshape.

These χ2 values are not statistical confidence levels; see text for details.

ues for different 2-binnings is less sensitive to background correlation effects, and therefore

can be thought of as a proxy for the ratio of the actual χ2 statistics.

As an example, we now suppose either the SM or the gT = −0.38 model to be the

true theory, and consider the space of hypotheses gT = [−0.76, 0.76]. In figure 5 we show

corresponding χ2 bands for both theories, generated by ranging over arbitrary correlation

for σshape, with phase space cuts (4.3). We see in figure 5 that the two-dimensional 2-

binning for the SM (gT = −0.38) true theory excludes the gT = −0.38 (SM) hypothesis

with greater confidence than either of the single observable 2-binnings alone. However,

for gT hypothesis ranges closer to the true theory values, the lepton energy E` 2-binning

has greater distinguishing power. An optimized discrimination of these theories using a

multivariate analysis will be studied elsewhere.

5 Summary

In this paper we have derived explicit and compact expressions for the 1 → 4, 5 and 6 body

helicity amplitudes for B → D(∗)(→ DY )τ(→ Xν̄τ )ντ , with Y = π or γ and X = `ν` or

π, including arbitrary NP contributions from the maximal set of ten four-Fermi operators.

These results properly account for interference effects in the full phase space of the τ and

D∗ decay products. The former are formally O(mτ/mB) in the SM, but can be O(1) in the

presence of new physics, and the latter are typically O(1). While these effects are included

in EvtGen for the SM, they are missing from previous NP analyses. This amplitude-level

calculation also permits efficient computation of the event weights themselves, which in

turn permits efficient reweighting of the large fully simulated MC datasets required for the

high statistics analyses at Belle II and LHCb.

– 19 –



J
H
E
P
0
1
(
2
0
1
7
)
0
8
3

As an example, we have presented a preliminary exploration of kinematical effects in

the phase space of B → D(∗)(→ Dπ)τ(→ `ν`ν̄τ )ντ for a class of theories with a NP anti-

symmetric tensor current. Our amplitude-level calculation makes it feasible to efficiently

compute an event ‘weight matrix’ in the space of NP couplings, so that reweighting of

the MC dataset need be performed only once per data sample. In this way, not only sin-

gle but also multidimensional distributions can be rapidly computed for any NP theory.

We find that bivariate analyses can exhibit greater discriminating power of the SM versus

NP models.

Directions for future study include computing the analogous helicity amplitudes for

B → D∗∗τντ using recent form factor results [57], in order to examine the interference

effects from the τ and D∗∗ decays. One might also extend the bivariate analysis to con-

sider the hadronic τ → πν mode, given recent results using single kinematic variables [5].

Employment of a boosted decision tree to perform a complete multivariate analysis of the

full phase space is also planned. A comprehensive treatment of backgrounds and detector

effects will permit estimation of the corresponding statistical confidence levels and future

NP exclusion limits achievable with such multivariate analyses at current and upcoming

experiments. A software package, Hammer [52], is under development, which can be incor-

porated into existing software pipelines that account for these background and detector

effects.
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A Helicity angle expressions

In this appendix we provide expressions for the physical helicity angles in terms of Lorentz

invariant combinations of particle momenta. The polar angles θD,τ,W,` ∈ [0, π), so we need

specify only the cosine of these angles,

cos θτ =
E∗W

|q∗| kντ · q pB · q

[
pB · q ktn · q − q2 pB · kντ

]
, (A.1a)

cos θW =
pτ · kν̄τ pτ · kντ −m2

τ kντ · kν̄τ
pτ · kν̄τ pτ · kντ

, (A.1b)

cos θ` =
2 (k` − kν`)· kν̄τ

m2
τ − p2

, (A.1c)
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and for B → D∗τντ processes

cos θD

∣∣∣
D∗→Dπ

=
E∗π
(
E∗D∗E

∗
W + |q∗|2

)
−mD∗ pπ · q

mB|p∗π||q∗|
, (A.2a)

cos θD

∣∣∣
D∗→Dγ

=
kγ · pD pD∗ · q −m2

D∗ kγ · q
mB|q∗| kγ · pD

. (A.2b)

Note that cos θW is defined with p dependence implicit, so that for τ → πν̄τ one need only

replace θW → θπ in eq. (A.1). In these expressions, the B rest frame energies

E∗W =
m2
B −m2

D∗ + q2

2mB
, E∗D∗ =

m2
B − q2 +m2

D∗

2mB
, (A.3)

and the D∗ rest frame energy E∗π = (m2
D∗ −m2

D +m2
π)/2mD∗ .

For the azimuthal angles, only the combinations φτ −φW , φW −φ` and φD−φτ appear

in the helicity amplitudes. We therefore provide direct expressions for the sine and cosine

of these relative twist angles, rather than for the azimuthal helicity angles themselves. To

keep expressions short, we express these twist angles iteratively in terms of trigonometric

functions of the polar helicity angles.

sin(φτ − φW ) = −
√
q2 tan2[θW /2] ε pB pD∗ kντ kν̄τ

mBmτ |q∗| sin θτ kντ · kν̄τ
, (A.4a)

cos(φτ − φW ) =

√
q2 csc θτ csc θW

mBmτ |q∗| pτ · kν̄τ pτ · kντ

{
pτ · kντ

[
m2
τ pB · kν̄τ − pB · pτ pτ · kν̄τ

]
− cos θW pτ · kν̄τ

[
m2
τ pB · kντ − pB · pτ pτ · kντ

]}
, (A.4b)

sin(φ` − φW ) =
2 tan[θW /2] ε k` kν` kντ kν̄τ

mτ

√
p2 sin θ` kντ · kν̄τ

, (A.4c)

cos(φ` − φW ) =
csc θ` csc θW

mτ

√
p2 pτ · kντ

{
m2
τ

[
2 kν` · kντ + (cos θ` cos θW − 1) pτ · kντ

]
+ (1− cos θW )(1 + cos θ`) pτ · kντ pτ · kν̄τ

}
, (A.4d)

with ε0123 = +1, and for B → D∗τντ processes

sin(φD − φτ )
∣∣∣
D∗→Dπ

=

√
q2 csc θD csc θτ ε

pB pD pπ kντ

mB|p∗π||q∗| pτ · kντ
, (A.5a)

sin(φD − φτ )
∣∣∣
D∗→Dγ

=
mD∗

√
q2 csc θD csc θτ ε

pB pD kγ kντ

mB|q∗| kγ · pD pτ · kντ
, (A.5b)

cos(φD − φτ )
∣∣∣
D∗→Dπ

= − csc θD csc θτ

mD∗ |p∗π|
√
q2 kντ · q

{
E∗π
[
q2 pB · kντ − q · kντ pB · q

]
(A.5c)

+mD∗
[
q · kντ pπ · q −q2 pπ · kντ

]
+|p∗π| cos θD cos θτ pD∗ · q kντ · q

}
,
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cos(φD − φτ )
∣∣∣
D∗→Dγ

=
csc θD csc θτ

mD∗
√
q2 q · kντ pD · kγ

{
m2
D∗
[
q2 kγ · kντ − q · kγ q · kντ

]
+ kγ · pD q · kντ

[
pB · q (1 + cos θD cos θτ )

− (m2
B −m2

D∗) cos θD cos θτ

]
− q2 pB · kντ kγ · pD

}
. (A.5d)

B B → D∗(→ Dγ)τντ

For B → D∗(→ Dγ)τντ , the helicity amplitudes [AB→D∗(→Dγ)τντ ]
κsντ
sτ ≡ [Aγ ]

κsντ
sτ obey a

parity relation

[Aγ ]±sντsτ (θD) = [Aγ ]∓sντsτ (θD + π) . (B.1)

Hence, one need only explicitly express half of the helicity amplitudes.

The decay D∗ → Dγ proceeds via the operator (eµa/4)εµνρσ(∂µD
∗
ν − ∂νD∗µ)FρσD, in

which, following the notation of ref. [9], µa is a magnetic moment such that

eµa =

[
12πΓ(D∗ → Dγ)

8m3
D∗

(m2
D∗ −m2

D)3

]1/2

. (B.2)

We define the functions

Ω± ≡ sin2 θD
2

cos2 θτ
2
e−i(φD−φτ ) ± cos2 θD

2
sin2 θτ

2
ei(φD−φτ ) , (B.3a)

Ω0 ≡ sin θD sin θτ , (B.3b)

Ξ± ≡ sin θτ

[
cos2 θD

2
ei(φD−φτ ) ± sin2 θD

2
e−i(φD−φτ )

]
, (B.3c)

Ξ0 ≡ sin θD cos θτ , (B.3d)

ΞD ≡ sin θD . (B.3e)

The Ω and Ξ functions play the same role as ∆ and Σ in the D∗ → Dπ mode above. That

is, the sτ = 2 (sτ = 1) helicity amplitudes are linear combinations of the Ω (Ξ) functions

exclusively. Each set of Ω and Ξ functions is L2(C) orthogonal under integration over the

angular phase space dΩDdΩτ , while the Ω functions are orthogonal with respect to Σ with

the inclusion of an additional e±iφτ phase in the integration measure, in accordance with

our τ spinor phase conventions (3.5). One finds

[Aγ ]+−
1 = −2iVcbeµaGF (m2

D∗−m2
D)
√
q2−m2

τ

{
(B.4a)

+
ia0(q2)mB |q∗|(−αSL+αSR)βSLr

2
SΞD

4mD∗

+if(q2)mτ (−1+(αVR−αVL )βVL r
2
V )

[
(−m2

B+m2
D∗+q

2)Ξ0

8mD∗q2
+
mB |q∗|ΞD
4mD∗q2

+
Ξ−

4
√
q2

]

+
ig(q2)mBmτ |q∗|(1+(αVL+αVR)βVL r

2
V )Ξ+

2
√
q2

− ia−(q2)mBmτ |q∗|(1+(αVL−αVR)βVL r
2
V )ΞD

4mD∗
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+ia+(q2)mBmτ |q∗|(1+(αVL−αVR)βVL r
2
V )

[
mB |q∗|Ξ0

2mD∗q2
+

(−m2
B+m2

D∗)ΞD
4mD∗q2

]
−2iaT0

(q2)m2
B |q∗|2αTRβTLr2TΞ0

mD∗
+iaT−(q2)αTRβ

T
Lr

2
T

[
(−m2

B+m2
D∗+q

2)Ξ0

2mD∗
+
√
q2Ξ−

]
+iaT+(q2)αTRβ

T
Lr

2
T

[
2mB |q∗|Ξ+√

q2
− (m2

B+3m2
D∗−q2)Ξ0

2mD∗
+

(m2
B−m2

D∗)Ξ−√
q2

]}

[Aγ ]+−
2 = −2iVcbeµaGF (m2

D∗−m2
D)
√
q2−m2

τ

{
(B.4b)

−if(q2)(−1+(αVR−αVL )βVL r
2
V )

[
Ω+

2
+

(−m2
B+m2

D∗+q
2)Ω0

8mD∗
√
q2

]

+ig(q2)mB |q∗|(1+(αVL+αVR)βVL r
2
V )Ω−−

ia+(q2)m2
B |q∗|2(1+(αVL−αVR)βVL r

2
V )Ω0

2mD∗
√
q2

+
2iaT0

(q2)m2
Bmτ |q∗|2αTRβTLr2TΩ0

mD∗
√
q2

−iaT−(q2)mτα
T
Rβ

T
Lr

2
T

[
2Ω++

(−m2
B+m2

D∗+q
2)Ω0

2mD∗
√
q2

]

+iaT+
(q2)mτα

T
Rβ

T
Lr

2
T

[
−2(m2

B−m2
D∗)Ω+

q2
+

(m2
B+3m2

D∗−q2)Ω0

2mD∗
√
q2

+
4mB |q∗|Ω−

q2

]}

[Aγ ]−+
1 = −2iVcbeµaGF (m2

D∗−m2
D)
√
q2−m2

τ

{
(B.4c)

+if(q2)(−αVL+αVR)βVR r
2
V

[
(−m2

B+m2
D∗+q

2)Ω0

8mD∗
√
q2

+
Ω∗

+

2

]

+ig(q2)mB |q∗|(αVL+αVR)βVR r
2
V Ω∗

−+
ia+(q2)m2

B |q∗|2(αVL−αVR)βVR r
2
V Ω0

2mD∗
√
q2

+
2iaT0

(q2)m2
Bmτ |q∗|2αTLβTRr2TΩ0

mD∗
√
q2

−iaT−(q2)mτα
T
Lβ

T
Rr

2
T

[
(−m2

B+m2
D∗+q

2)Ω0

2mD∗
√
q2

+2Ω∗
+

]

+iaT+(q2)mτα
T
Lβ

T
Rr

2
T

[
(m2

B+3m2
D∗−q2)Ω0

2mD∗
√
q2

−
2(m2

B−m2
D∗)Ω

∗
+

q2
+

4mB |q∗|Ω∗
−

q2

]}

[Aγ ]−+
2 = −2iVcbeµaGF (m2

D∗−m2
D)
√
q2−m2

τ

{
(B.4d)

+
ia0(q2)mB |q∗|(−αSL+αSR)βSRr

2
SΞD

4mD∗

+if(q2)mτ (−αVL+αVR)βVR r
2
V

[
(−m2

B+m2
D∗+q

2)Ξ0

8mD∗q2
+
mB |q∗|ΞD
4mD∗q2

+
Ξ∗
−

4
√
q2

]

−
ig(q2)mBmτ |q∗|(αVL+αVR)βVR r

2
V Ξ∗

+

2
√
q2

+
ia−(q2)mBmτ |q∗|(−αVL+αVR)βVR r

2
V ΞD

4mD∗

+ia+(q2)mBmτ |q∗|(αVL−αVR)βVR r
2
V

[
mB |q∗|Ξ0

2mD∗q2
+

(−m2
B+m2

D∗)ΞD
4mD∗q2

]
+

2iaT0
(q2)m2

B |q∗|2αTLβTRr2TΞ0

mD∗
−iaT−(q2)αTLβ

T
Rr

2
T

[
(−m2

B+m2
D∗+q

2)Ξ0

2mD∗
+
√
q2Ξ∗

−

]
+iaT+(q2)αTLβ

T
Rr

2
T

[
(m2

B+3m2
D∗−q2)Ξ0

2mD∗
−

2mB |q∗|Ξ∗
+√

q2
+

(−m2
B+m2

D∗)Ξ
∗
−√

q2

]}
,
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with rV,S,T ≡ mW /ΛV,S,T . The four remaining helicity amplitudes [Aγ ]−−sτ and [Aγ ]++
sτ

follow immediately from the parity relation (B.1).
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