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Abstract

A Very Long Instruction Word (VLIW) processor is an architectural model that has been ex
tensively adopted as computing paradigm in the field of Instruction Level Parallelism (ILP); a
common design is based on a set of functional units, each able to issue an operation per cycle,
connected to a shared register file.

A VLIW has extreme requirements in terms of the number of gates, points of I/O, power
dissipation and number of ports on its register file; characteristics that prevent implementation of
the ideal architectural model on a single chip in current technologies, except for a limited number
of functional units. A practical solution is to partition the architecture into multiple modules so as
to meet technological constraints. The design of this brand of partitioned architectures requires an
analysis of the overall effects of partitioning on both hardware and softwarer since the partitioning
alters the performance in a non-intuitive manner.

In this paper we investigate the tradeoffs involved in the design of partitioned VLIWs with
a methodology that matches data obtained through software simulation with hardware estimation
models, creating a global performance model. The focus of the analysis is to study the effects of
multiple register files on the overall performance and on the area requirements of the processor
modules.

'This is an expanded version of a paper published in Proceedings of the 25th International Symposium
on Microarchitecture, Portland, OR, 1992, pp. 292-300, Copyright (c) 1992, IEEE



1 Introduction

A VLIW processor is a parallel architecture in which several functional units (FU) can
simultaneously execute multiple operations synchronously[9]. Operations are supplied to
the processor in the form of long macroinstructions (i.e., Very Long Instruction World)
that contain the opcodes and the operands for each FU.

A few commercial VLIW-like machines have already appeared on the market: ectrly
examples of this approach are the FPS series [5], the Intel 80860, and the Multiflow TRACE
[6]. Other architectures, such as the IBM RS6Q00, the Motorola 88110, the DEC Alpha
and the SUN Sparc 10, allow the issuance of few instructions per cycle but the selection
mechanism is implemented in hardware. These architectures are currently referred to as
Superscalars and are mostly based on the architectures of earlier machines such as the
CDC 6600 [23] and the IBM System 360/91 [8].

Although all of these architectures pursue the goeil of executing multiple operations
concurrently, none of them has been built using the "ideed" VLIW architecture model
frequently assumed by authors in the field of Instruction Level Parallelism (ILP).

The design variations from the ideal model are necessary sinceany practical implemen
tation of an architecture with a large number of functional units (say more than 4) on a
single chip is constrciined by several technological constraints, including: the total number
of gates required to implement the functional units, the number of I/Os pins for data and
control signals, the power to be dissipated, and the inability to design eind build a register
file (RF) that provides a sufficiently large data-bandwidth to connect to 8dl the functional
units.

Although someof these restrictions becomeless of an impediment due to technologicEil
improvements, the limitation imposed by the single register file (RF) is unlikely to vtinish.
Multi-port Static RAM technology has been ciround for several yecirs and yet there are no
consolidated technologies for building RFs with a large (say more than 9) number of ports
per RF [13] [16]. Also, to the best of our knowledge, there do not exist static memory cell
designs with a large number of ports that are able to achieve access times comparable to
single-port memory cells.

Even if a large multi-port RF could be built, it is likely to introduce some performance
degradation - a degradation that may greatly offset the benefits of a complete intercon-
nectivity and lessen the theoretical performances achievable with many functional units.
This exact problem was faced by the designers of the Multiflow TRACE [6], who concisely
noted: "any reasonably large number of functional units requires an impossibly large num
ber of ports to the register file... The only reasonable implementation compromise is to
pjirtition the register files".

Hence, any practical implementation of a VLIW architecture with a reasonably large
number of FU requires a pcirtitioned scheme in which the register file is not connected to
all the functional units.



A possible solution is to divide the architecture into a few interconnected modules each
carrying a subset of the functional units and a register file. Several benefits accrue from
this kind of architecture: it is scalable, since more clusters can be added to increase the size
of the VLIW; it permits the use of standard, off-the-shelf, low-cost components and each
module has simpler requirements for fabrication; finally, this approach enhances testability
and maintainability, since a faulty partition can be replaced or replicated with ease.

The design of this type of architecture is a complicated effort since the partitioned
structure has several intuitive, as well as non-intuitive, effects on the overall performance
that are hard to quantify. A partitioned structure requires code, at best, as efficient as
the code produced for an ideal model because of the additional constraints posed on the
scheduling of operations; more often, it results in some performance degradation. However,
it also a simpler data-path which might turn into a faster cycle time: the reduced number
of ports in the RF may alleviate, if not eliminate, the bottleneck represented by the limited
speed of this component.

In this paper we describe a methodological approach to the analysis of the effects on
hardware and software performance of a VLIW with a partitioned RF. This approach
analyzes area/performance tradeoffs to derive a broad view of the design space and its
characteristics.

In Section 2 we present a sample Limited Connectivity VLIW architecture that uses
multiple, port-limited RFs for architectures that are realizable in CMOS technologies. In
Section 3 we propose some closed-form approximations to estimate the growth, both in
terras of delay and area, for a register file with multiple I/O ports. In Section 4 we de
scribe a code partitioning strategy that maps code generated for an ideal VLIW to the
Limited Connectivity VLIW architecture under different constraints such as: fixed num
ber of partitions, fixed number of data moves between partitions, and majcimum number
of ports per RF partition. In Section 5 we present the results of benchmarks for different
LC-VLIW configurations. By merging these results with the hardware estimation tech
niques developed in Section 3, we create a parameterized performance space to allow an
early investigation of the tradeoffs between different VLIW configurations.

2 Limited Connectivity VLIW Model

The ideal VLIW processor model assumes the capability of simultaneously executing differ
ent opcodes on different functional units. A functional unit (FU) is a component capable of
executing one generic operation (i.e., arithmetic, logical, a memory access, etc.); each unit
is completely equivalent to all the others such that no structural dependencies between the
units can exist. Uniform access, by all FUs, to any register during each cycle is provided
through full connectivity between FUs and the RF - we will refer to this architecture as a
Fully Connected VLIW.



The resultingmodel provides a simple computing pciradigm, used by several authors [9]
[20] [21], which is extremely appealing for the development of parallelization techniques.
However, it is impractical to realize in silicon for large numbers of FUs[2] since several
technological constraints limit its realizability; among the others, one of the most severe
constraints is the large number of ports required by the centralized RF.

A practical solution is to limit the full connectivity between registers and FUs in an
attempt to reduce the number of ports needed by each register file. This approach waa
adopted by the Multiflow TRACE design team whose architecture had as many as 5 reg
ister files per board [6]. The basic concept is to trade some of the ideal performance,
achieved through full complete connectivity between registers and FUs, for realizability
and, possibly, a faster data-path.

2.1 A Limited-Connectivity VLIW Architecture

Several types of partitioned design schemes are possible. In this paper we consider a
clustering approach in which the architecture is divided into modules, where each mod
ule (cluster) is composed of an equal number of FUs completely interconnected to a local
register file (i.e., each FU has exclusive access to 2 read ports and 1 write port). Commu
nication between different clusters is achieved through a number of buses that connect the
local RFs. We refer to this architecture as Limited Connectivity VLIW (LC-VLIW).

The synchronization protocol adopted for interbank communications is based on a fixed
cycle time (i.e. no stalls or time varying cycles) and the insertion of ad-hoc, inter-RF copy
operations, is used to move data from one register file to another.

Other approaches are feasible: interlocking schemes based on a varying cycle time
that stalls the execution until all the operands are available, or compiler based techniques
that consider transmission delays. The approach adopted has the clear advantage of not
requiring any complicated interlocking logic and also allows a high scheduling flexibility
since inter-bank movementoperations/delays don't have to be scheduled immediately after
(or before) the use of the operand.

Figure 1 shows a simplified architecture composed of4 clusters each with two functional
units each. Each cluster is itself a small VLIW with two FUs completely connected (i.e.
each FU can access any register in the module duringany cycle), and all RFs are connected
through 4 data-buses.

Each FU requires 2 read ports and 1 write port in a RF for full FU utilization. Thus
in Figure 1 each RF requires 4 read ports and 2 write ports to provide the necessary
connectivity between the registers and the FUs; furthermore each RF provides 4 additional
write ports for inter-cluster data transfers for a total of 10 ports (4 read and 6 write). The
read ports needed during each inter-bank copy operation to drive the buses axe those used
by the FU on which the operation is scheduled.
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Figure 1: 4 cluster, 8 FU, 4 inter-bank bandwidth, Limited Connectivity VLIW

During an inter-cluster move operation the FU to which this is bound remains idle;
one of the two read ports reserved to this unit is used to drive the bus and to transfer the
data to a RF in another module. This operation in our model talces one cycle, just like
any other operation performed by the machine. To support this communication scheme
the copy operation has to be scheduled on a FU belonging to the module that contains the
source register in order to ensure that an output port remains available.

3 Register File Complexity Analysis

The VLIW architectural model requires a RF whose number of ports grows with the number
of FUs, thus it is important to analyze the complexity of a RF with a large number of
ports. It is to be noted that this bottleneck is a relatively recent problem: although multi-
port memory cell technology is well defined and stable for small number of ports [4, 2],
only recently has a demand for memories with a very large number of ports (i.e., more
than 8) arisen. This interest is related to the increasing number of multifunctional unit
architectures in the microprocessor world. Despite the recent spread of interest, though,
only few design have been published on SRAM memory cell design with large number of
ports [12] [13] [16], and several issues need still to be investigated.

A single-port RF typically exhibits design tradeoff in terms of its aspect ratio, the
number of bits stored and performetnce; however, multiporting adds a new dimension to
the RF design space, since the number of ports affect both the area and the access timing
to the registers.

In this section we describe a set of functions that model the effects of the number of

ports on the area and access time of a RF for high speed, heavily pipelined processors with
multiple functional units. We use these functions as estimators for our tradeoff analysis;
we do not claim an exhaustive analysis of the issue, which would be beyond the scope of



this paper. The aneilysis has been performed assuming standard CMOS technology and
a bit-slice data-path architecture, both currently popular for the design of processors [7].
Also each memory cell has to support multiple reads and exclusive writes, since concurrent
writes to the same memory cell cure not permitted.

3.1 Area Complexity Analysis

In a memory cell the principal factors determining its overall area are: 1) the active area,
2) the null area, and 3) the routing area. A SRAM is composed of a bi-stable circuit,
usually implemented with two cross connected inverters, and some access circuitry. The
number of gates required by the core of the cell is fixed (usually 4), yet its area changes
with the number of ports since the two inverters must be sized to drive the increased loads
represented by the added ports and the increased data (control) line length.

The total load (Ct) is the parallel of the load represented by the access circuitry and
data line for each port (Cp), since in the worst case each cell must be able to drive all the
read ports simulteineously: Ct = #outport3 * Cp. Hence the size of the active area (i.e.,
the core memory inverters) is likely to grow linearly with the number of ports.

The growth of the area required by the access circuitry also can be assumed to be linear
since the same circuit is used to govern the access per data line (i.e., per port).

A study of published designs [4, 13, 17, 11, 24, 12, 16] suggests that in a register even
with a moderate number of ports, the area requirement is usually dominated by the routing
area. Register files are commonly built using a bit-slice data-path architecture with cells
belonging to the same register organized in rows and cells corresponding to the same bit
organized in columns (bit slice) [4] [12] [15] [16]. Data-lines eire routed along the bit slice,
sincethey share all the cells in the same registers position, while the control linesaie routed
orthogonally to data linesacross the cells belonging to the same register. Furthermore each
memory cell requires a number of data-lines (select-lines) at least equal to the number of
the ports (to ensure complete connectivity between each register and each port). These
considerations along with the minimum distance requirements for line tracking allows us
to model the routing area as proportional to the square of the number of ports.

The routing factor is predominant in multi-ported memory cells since its growing factor
is more than linear, even for a limited number of ports, the cell layout is almost completely
occupied by the data and control lines, thus making it impossible to accommodate other
lines without increasing the dimensions of the cell. Assuming that the routing factor
dominates for medium to large number of ports we derive the following cell area growth
model:

Area(p) = CoreArea » (1 + Sxp) * (1 + Syp) (1)

where Area(p) is the estimated cell area for a p ported SRAM, CoreArea is the amount



of silicon required for the memory core (i.e., without access circuitries) , the two constants
6x and Sy are the percentage dimensional increase determined by each port.

The parameters Sx and Sy axe used to estimate the percentage increase of dimensions
X and y of memory cells per port and can be calculated by dividing the minimum allowed
track-to-track distance by the layout dimensions of the core of a single memory cell. These
two parameters have been evaluated to be in the range 5% to 20% for most of the designs
considered.

A different general layout for the RF (e.g., a tiled architecture) doesn't affect the model
since our assumptions still hold and the number of tracks to be routed per cell remains the
same.

3.2 Delay Complexity Analysis

Register access time is another characteristic influenced by the number of ports and is
another important factor considered in our analysis. The design of a cell and of the access
circuitry is dependent on the number of ports since simultaneous access to all the RF ports
require appropriate sizing of the drivers, resulting in an increased cell dimension cind line
length - therefore an increased propagation delay. RF performance is thus degraded by an
increase in the number of ports.

Write operations have traditionally been the most sensitive and difficult to design,
though in our model multiple write accesses to the same cell are forbidden, hence the
number of write ports does not largely affect performance of the RF except for the effects
of increased line delays. Multiple read operations to the same cell, instead, can occur (and
in the worst case all read ports can access the same memory cell simultaneously); this
strongly influences the design of the core of the cell, whose inverters must be sized to drive
all the lines in all situations.

To proceed with our analysis we assume that the design adopts a data-line pre-chaxging
technique, which is widely used in the design of SRAMs. Prechaxging brings the voltage
of the data line to a logic one before a read operation. When the logic content of the cell
is the same as the precharged line, there is only a minor flow of current through the access
circuitry (i.e., a static read operation) thereby this operation can be quickly performed.
When the content of the cell is different from the precharged vetlue, a major flow of current
is required in order to force the data-line level to the same logic value (i.e., a dynamic
read operation), causing a long read operation. This technique permits a smaller cell size
since only the pull-down transistor in the inverter which drives the line during a dynamic
operation, must be sized for large loads (see Fig. 2).

The standaid design techniques, adopted for single-ported static memory cells, can be
easily extended to deal with a limited number of ports. Conflicting requirements for the
read/write operations quickly bring these standard techniques to its limits.
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Figure 2: Basic SRAM Cell access scheme for a read operation

During a read access to a memory cell whose output is a logic 0, since the data-line is
precharged to a logic 1, charge must flow through the access gate and the pull-down gate
in the inverter discharging the data-line (gates PI and Ml in Figure 2).

A parameter critical to the stability of the cell is the ratio between the ^ of the pull
down (p.d.) transistor and the pass gate: when the pass gate is turned on the voltage
between the data line and the source of the pull-down transistor is partitioned according
to impedance ratio between the two transistors [4]. If the drsiin of the pulldown is brought
to a potential that turn the other inverter on the content of the cell is lost. This ratio must
be kept low in order to guarantee the stability ofthe cell during an access; in a multiported
memory cell the critical ratio is between the parallel combination of p pass gates and the
pull-down gate of the inverter [16] and keeping the ratio constant require either a decrease
in the 13 of eanh pass gate or an increase in the 0 of the pull down gate. The first solution
generates a larger and slower pass tretnsistor, whereas the second generates a larger load
and hence a slower write operation.

Even assuming this scheme can be expanded to a reasonable number of ports, it still
suffers from an increase in the access timings; the fall read time can be assumed to remain
constant since the series of the p.d. gates and the parallel of the pass gates remain consteint
[25], though in this case the p.d. transistor represent a proportionally larger load which
reflects in a longer write operation.

Estimating the write delay with the delay ofa cascade ofbuffers, increasing the 0 ofthe
transistor proportionally increases the delay, hence this can be estimated to grow linearly
with the increase in a gate's size which is in turn proportional to the number of read ports.

The approach of decreetsing the 0 of the pass gates leads to longer read times since
the propagation delay through the pass gate is proportionally longer to the length of the
channel.

A different scheme for driving read ports makes use of a buffer stage, as proposed in
[12]: the memory cells are accessed through a single-ended read circuitry driven through a



Figure 3: Buffered SRAM Cell access scheme

cascade of buffers as shown in Figure 3. A clear advantage of this scheme is that it scales
well for driving an increasing number of ports by simply increasing the number of buffers
and their size. The obvious drawback is the increase in the memory access time due to the
latency of each inverter, the overall area used and the increase in design complexity.

For a cascade of buffers, the minimum total switching time is obtained when each
buffer is e times larger thain the previous one; then the delay is proportional to c*T*/n(y)
where Y is the ratio between the parallel of the load capacitance for eaxrh port and the
gate capacitance of the cell's inverter [14]. Although the logarithmic cost function looks
appealing, the complexity involved in laying out this scheme has prevented the use of this
technique. Instead, several projects have been based on a single buffer stage.

The single buffer stage seems a reasonable design tradeoff since it permits loads to
be driven with a reasonable slowdown (i.e., the delay introduced by the buffer can be
estimated to grow linearly with the output load, hence with the number of output ports
concurrently accessing the cell), and a simple organization. This meikes it a likely solution
in the future for multiported SRAM design.

We therefore model the growth in the access time for multiported register ceils as a
function of only the number of output ports and estimate its increase as:

Delay{OP) = Delay{l)(l + k OP), (2)

where Delay(OP) is the time estimated for a memory access to a register file with OP
ports and k is a parameter used to express the percentage cost increcise per port.

4 The Partitioning Methodology

Compiling code for a LC-VLIW architecture requires a partitioning of code into a number
of substreams, each to be executed on a different cluster; each substream has to be resource-
constraint scheduled according to the architectural parameters (i.e., number of units per



module and number of inter-bank communications allowed per cycle).
Operations must be allocated such that all its operands are present in the local register

file, ready for computation (i.e., in registers directly accessible from the FU that performs
the operation). However, this task cannot always be accomplished statically since the
operands produced in one module might be required on a different one; hence, data must
be shuffled around at run time by inserting ad-hoc movement operations that provide
each operation with the operands not directly available in the register file. On top of
these requirements (i.e., data-availability and resource constraining) the code partitioning
process has to modify the code such that it minimizes the performance degradation due to
the insertion of data movement operations.

In this paper, we constrain ourselves to deal with stradght line code loops; this permits
simplification of the partitioning technique without affecting the meaningfulness of the
results. Straight line code is typical in inner loops of most scientific applications - which
frequently dominates execution time. In any case the use of guarded operations can be
used to extend our technique to deal with conditionals inside loops.

4.1 Problem Definition and Approach

We begin by assuming that code for an ideal VLIW is already generated (currently gener
ated by the PS compiler developed at U.C. Irvine [21]). This VLIW code serves as a useful
reference point for the analysis of our results since it sets a baseline, in terms of software
performance achievable.

The code for a VLIW comes in the form of an ordered sequence of Very Long Instruc
tions; each instruction is divided into a number of operations, with each operation defining
the function to be performed by a distinct functional unit.

The objective of our methodology is to partition the code such that the value computed
by an operation in one cluster can reach successive uses by operations in different clusters
only through main memory (i.e., through a couple of store/load operations), or through
specific data movement operations (also referred to as inter-bank movement operations).

The intent of the analysis is to estimate the degradation in performance introduced
by the partitioning of the architecture, regardless of the scheduling technique adopted for
producing VLIW code; hence the code partitioning phase was implemented as separate step
in the process of compilation. An integrated approach would have not allowed such a clear
distinction of the costs of partitioning from the performance of the operation scheduler.

The code partitioning approach is divided into three phases. First, a graph represen
tation of the code's dataflow is generated; second, a partitioning algorithm is applied to
the graph in order to produce substreams of code to be run on each module so that the
code length increase is minimized^; third, intra-substream data movement operations are

^In straight line code the number of instructions in the loop body is directly proportional to the



inserted and the code is compacted.

Phase 1: Graph Generation

A Data Dependence Graph (DDG) graph, representing the dataflow among operations
and including loop-carried dependencies, is built from the VLIW code: each operation in
the code is mapped to a node of the graph and arcs connect operations between which
exist a data dependence. The graph is then modified according to the following rules:

• Immediate constant assignment operations (e.g. R1 = 100) are removed from the
DDG, in that they do not represent a data flow from one operation to another (i.e.,
the immediate is encoded in the operation and doesn't need to be transferred or
stored).

• Dependencies between store and load operations through main memory are not taken
into considerations since each LC-VLIW module is assumed to have complete access
to main memory.

• Dependencies from outside the loop are also disregarded since they are negligible
compared with internal dependencies: data can be distributed among all the register
files such that each cluster has all the necessary operands (including those produced
outside the loop) in its own register file (data can be duplicated if useful). Successive
iterations will kill the content of the register (in which case the new value is computed
within the loop and the dependency is internal) or will continue to use it (i.e., the
data is stored in a local register and doesn't need to be moved again). These data
communications are performed only once and axe therefore negligible compared to
intra-loop data movements that are executed at each iteration.

With these modifications we are able to insulate the DDG within the loop body from
dependencies to and from outside of the loop. The graph contains all and only those data
flow movements to be considered for code partitioning.

Phase 2: Code Partitioning

The graph partitioning algorithm is applied to the DDG. The technique uses an im
proved and adapted version of the Lee, Park and Kim algorithm [18] to partition the
graph in a set of subgraphs each representing a substream of code. The primary goal of
the algorithm is to produce a subgraph that meet each module resource constraints; as
a secondary goal the algorithm seeks the minimization in the code length of the parti
tioned code. This is achieved by minimizing a function estimating the increase in code

execution time



length (i.e., the number of LC_VLIW instructions in the loop kernel) for each movement
operation inserted.

In a second step the set of inter-bank movement operations are optimized to avoid
unnecessary repetitions of the same move that could have been originated during the
partitioning step (this might happen when an operand generated in a module is required
several other times in another module).

Phase 3: Compact Code in Partitions

Once the graph has been partitioned and data movement operations have been intro
duced in the DDG representation, the graph is mapped back to code, through a two-step
process.

First, we insert empty LC-VLIW instructions to allocate spcice for inter-bemk movement
operations that have been created during the previous phase. This is done by tracing
through the code and creating a new empty instruction every time a move operation
cannot be cillocated in an empty slot within the existing code^. The move operation is
later inserted in the empty instruction and assigned to the module containing the source
operand.

Second, we apply a resource constrained scheduler (RCS) to compact the code and to
ensure that the number of movement operations meet the constraints determined by the
inter-bsink communication bandwidth avciilable.

The resulting code is now consistent with the model of execution adopted: each in
struction contains a number of operations no more than to the maximum allowed, homo
geneously divided into a number of subinstructions that are to be executed on different
modules. Communications between operations in different clusters is accomplished through
explicit data movement operations, and no more than B (where B is the bandwidth) oper
ations can perform a data movement across different modules per iteration.

We illustrate the technique with an example shown in Table 1. A small kernel in 0
language is converted into MlPS-likeassembly language and parallelizedfor a 4-FU VLIW
(VLIW code). The VLIW code is first partitioned for a 2 module LC.VLIW by applying
phases 1 and 2 to the code; this requires the insertion of an additional operation /move
F4' F4" from one module to another). The VLIW code is later compacted in phase 3. In
the partitioned code we adopt the convention of labeling each register with a number of
apostrophes related to the module in which it is contained (e.g. fmove F4' F4" move a
virtual register F4' on module 1 to virtual register F4", on module 2).

Note that although the partitioning process requires the introduction of a movement
operation, this doesn't translate into longer (and slower) scheme since the move can be
accommodated in the existing code without altering its length.

^VLIW code usually contains some empty operation slots since scheduling cannot guarantee full uti

lization of all the FUs.



for (ksl; k<=1000; k++)

q +s iWxpc)

(LABEL L5)

(floed F8 -16000 12 )

(Boed FlO -8000 12 )

(fmul F4 F8 FlO)

(fadd F6 F6 F4)

(iadd 12 12 8)

(iadd 13 13 8)

(iconstant 14 8000)

(ile ccO D 14)

(if ccO (LABEL L5))

1: fadd F6 F6 F4

2: fload FlO 12 8000

3: icozutant 13 8000

1: fadd F6' F6' F4'

3: ile ccO 13' 14'

4: iconstant 13' 8000

Bnul F4 F8 FlO

iadd 12 12 8

iadd 13' 13' 8

C Code

Assembly Code

VLIW Code

ile ccO I3 I4

fload F8 12 16000

iadd 13 13 8

Code after partitioning

fmul F4'' FS" FlO"

finove F4' F4''

fload FIG" 12" 8000

fload F8" 12" 16000

iadd 12" 12" 8

Code after partitioning and compaction

1: fadd F6' F6' F4'

2: Ue ccO 13' 14'

3: iconstant 13' 8000

iadd 13' 13' 8

fmul F4" F8" FlO"

finove F4' F4"

iadd 12" 12" 8

fload F8" 12" 16000

fload FlO" 12" 8000

Table 1: Example of code partitioning



4.2 Algorithm Implementation

The paxtitioning algorithm isbased on a fast deterministic search algorithm, coupled with a
stochastic process that repeats the deterministic search from distinct, randomly generated
initial solutions. This process is iterated for initial solutions that lie at decreasing distances^
from the best found solution until no change is registered. The code for the algorithm is
presented in Appendix B.

The deterministic algorithm uses the partitioning mechanism described by Lee, Park
and Kim (LPK) [18], and modified to improve it's flexibility in order to be applied to
the specific situation. The stochastic process is used to explore a wider search space, and
is implemented by randomly generating initial solutions (from which the LPK algorithm
starts) differing from the best found solution in K positions (i.e., at distance K). The
process is repeated for diminishing values ofK until either a better solution isencountered
(in which case the process is restarted) or a threshold is crossed (in which case the process
is terminated).

The idea behind this implementation is to search the space around the optimal solution
at decreasing distances in order to escape from a possible local minima.

This algorithm has two major advantages: it does not suffer from the long run times
typically required for techniques using exhaustive search or Simulated Annealing, and it
widens the search space typically covered by a deterministic approach. It can also be tuned
to satisfy execution time and search space coverage, by changing the function that alters
K at each cycle, as well as the termination threshold that in turns alters the number of
times the deterministic algorithm is applied.

The time complexity for the LPK algorithm is known to be quadratic while the stochas
tic search is performed a number of times dependent on the search space and on the pa
rameters. In our configuration the number of iterations ofthe outer cycle was observed be
usually less than linecir and frequently quite small ( between 4 to 10 iterations ). Hence we
can argue that the total complexity of the algorithm is superquadratic (i.e., 0{N^a{N))
with a{N) —o{N); N is the number of nodes in the graph).

4,3 Related Work

Although several works have been published on code partitioning by the distributed com
puting community (e.g., [19]), very few authors, to the best of our knowledge, have ad
dressed the issue in the VLIW domain. In our case the number of operations that must
be considered for partitioning is at least an order of magnitude higher than assumed in

^Xhe distance between two partitions is defined as the number of operations allocated onto different

clusters



previous work. Furthermore, the functional units execute synchronously making unlikely
the reuse of any of the techniques developed for loosely connected, asynchronous systems.

The most closely related work is the code partitioner for the Multiflow TRACE axchitec-
ture [6] and Ellis' BUG (Bottom Up Greedy) assignment algorithm [10]. Both approaches
eu'e based on a greedy heuristic and designed to be applied on traces. BUG is a well
known algorithm that achieves reasonably good results for straight line code but that does
not take into considerations loopback dependencies. The improved version used in the
TRACE compiler was adapted in order to better control the greediness and to take into
consideration loopback dependencies.

However both the BUG and TRACE approaches are not suitable for the assumed LC-
VLIW communication model, where movement operations must be introduced to copy
data across the module boundaries. Applying a greedy heuristic to this case would require
the recomputation of all the information for the DAG every time an additional operation
is inserted. Also BUG integrates both the phases of resource constrained scheduling and
code partitioning, whereas we partition the code after scheduling.

Hence our motivations and computing paradigm are quite different justifying the need
for a different approach and the inappropriateness of comparing our technique with BUG
since the compeirisons would be misleading and meaningless.

5 Tradeoff Analysis

The overall performance of a partitioned VLIW architecture is the results of two key factors:
code performance after the partitioning process and hardware performeince achievable by
a clustered architecture. Increasing the level of partitioning (i.e., the number of clusters
in which the architecture is divided) drives these two factors along opposite directions: ein
increased number of modules frequently results in longer code while it might allow a faster
execution cycle-time.

The process of partitioning requires the insertion of inter-bank data movement oper
ations when operands are not present in the local register file. These operations usually
have the effect of increasing the code length since they cannot be accommodated in any of
the empty slots available in ideal VLIW code.

A partitioned architecture, though, has a reduced number of functional units directly
connected to eeich register file, therefore has smaller requirements in terms of ports. Register-
file access timings are directly affected by this parameter and a reduced number of ports
might results in a faster access.

Our analysis is based on the assumption that the RF is, by far, most affected by the
parallel architecture of a VLIW when compared to a standard RISC processor. The RF's
performance and area are, in turn, directly affected by the nrimber of ports on the RF
- involving major structural modifications; the design of other components (FUs, control



PI State Equation Fragment

P2 Adaptive Integration Algorithm

P3 Integration Prediction Algorithm

P4 Difference Prediction Algorithm

P5 Fluidodynamics Fragment 1

P6 Fluidodynamics Fragment 2

P7 SPECmark Kernel

P8 8th order elliptic futer

Table 2:

logic, I/O units) is relatively unaffected. This makes the RF a most likely bottleneck for
the entire system.

This assumption is substantiated by recently published results: cycle times as short as
5 ns (and less) are becoming possible with today's technology [22], yet multiport register
files usually exhibits access times that are several times larger [16, 13, 3].

We show how the models for multiport RFs and the results from simulations of code
produced for a LC-VLIW can be used to examine some of the tradeoffs, in terms of per
formance and silicon area requirements, between different architectural configurations. We
assume fast inter-chip communication and an architecture cycle time comp«irable to the
inter-chip communication time (MCM architectures exhibit these characteristics). This al
low us to adopt a simplifiedmodel in which every operation (inter-RF movement operation
included) takes one cycle, as well as ciny other operation.

We generated experimental results for a laxge designspace obtained by modifying three
key architectural parametersofa LC-VLIW: the numberoffunctional units per module, the
number of modules into which the architecture is partitioned, and the maximum number of
movement operations among clusters allowed per instruction (inter-bank communication
bandwidth).

Each configuration defines an architecture with specific requirementsin terms ofnumber
of ports per RF, this allows, by using formulas in Section 3, an estimation of the area
and delay of the register file. Thus we provide a mechanism for analyzing the hardware
performance and the effect on area requirements for different LC-VLIW architectures.

A set of standard benchmarks (see Table 2) composed of straight-line code loops repre
sentative of scientific code were compiled for different configurations of a LC-VLIW. The
complete results for all benchmeirks are given in Appendix A.

Several parameters aie involved in this einalysis; in this first phaae we do not consider



BenckmArks Benchmark P7 Benchmark P6

# Partitions 2 modules 4 modules 2 modules 4 modiiles

RB = 1

RB = 1/2

RB = 1/4

RB = 1/8

43 0% 48 0% 31

43 0% 55 +14% 31

51 +18% 91 +89% 31 38 +11% 52 +10% 63 +16%

Table 3: Partitioned code length produced for a 8 FU LC_VLIW

the relative bandwidth^ which we assume being 1. This decision was made on the ground
ofexperimental results that show a limited influence of this parameter, withina reasonable
range (1 - 1/3), on benchmarks performetnce.

Table 3 shows the code lengths obtained for various configurations of 8-FU LC-VLIW.
Threebenchmarks (P7, P6 and P3) are compiled for architectures with 2 or 4 modules and
different values of RB; each line contains the set of results (i.e., number of instruction per
iteration in the compiled loop) for a fixed value of relative bandwidth, with RB ranging
from 1 (i.e. up to 8 move operations per cycle) to 0.125 (i.e. 1 move operation per cycle
at most). Each value has on the side the percentage increase over the ideal code that that
configuration requires.

Among all the benchmarks P7 is the one that has proved to be the most sensitive to RB
variations, probably because of the complex communication pattern eimong the operations
in it; P6 and P3, instead show an average behavior. In all the cases, it can be seen how
the performance degradation due to a reduced inter-cluster communication bandwidth is
negligible. In all the experiments a RB of 1/2 doesn't affect the best results at all, and a
RB of1/4 determines a drop in performance at worst equal to 14% and from 2% to 3% in
all the other cases.

This is the first importeint result since not onlydo theseobservations allow us to proceed
in the rest of the analysis without considering RB as a parameter of primary importance,
but they also identify a RB between0.25 and 0.5 as the amount of communication resources
required so as not to affect the performance in a LC-VLIW. Should the need for a more
precise analysis arise, this parameter can be taken into consideration after a first analysis
step has identified a set of architectures as candidates most suited to the needs of the
designer.

*We define the Relative inter bank communicationBandwidth (RB) as the ratio between the maximum

number ofmovement operations allowed per cycle and the number ofoperations per instruction.



Figure 4: Instructions per iteration of P7 for several configurations

5.1 Performance Analysis

Table 4 presents a set of results obtained by compiling P7 for several different architectural
configurations of a LC-VLIW, where each configuration is defined in terms of the number
of functional units and the number of modules in which the architecture is partitioned.

The results are in the form of number of instructions contained in the loop body of the
benchmark, hence higher values indicate lower performance. The results are also organized
such that values of code length obtained by compiling codefor configurations with the setme
number of read ports per RF are placed eilong the same row and vedues for configurations
with the same number of modules appear in the columns. In our architectural model the
number of read ports per RF is equal to twice the numberof functional units connected to
it (i.e., each FU connected to a RF requires 2 read ports), hence each row contains results
for architectures with the same cluster size (i.e., number of FU per cluster).

The same set of results of Table 4 are also plotted in form of 3D-bars in Figure 4. The
number of ports is plotted on the X-axis, the number of modules per VLIW module on the
Y-axis and the cost (^instructions) on the Z-axis. Taller bars means worse values (larger
number of instructions per iteration). On top of each bar is printed the number of FUs in



Out Ports 1 Module 2 Modules 3 Modules

132 (2fu) 96 (3fu)

66 (4fu) 53 (6fu)

48 (6fu) 42 (9fu)

2 ports 218 (Ifu) 132 (2fu)

4 ports 100 {2fu) 66 (4fu)

6 ports 70 (3fu) 48 (6fu)

8 ports 56 (4fu) 43 (8fu)

10 ports 47 (5fu) 37 (lOfu)

12 ports 41 (6fu) -

14 ports 38 {7fu) -

16 ports 35 (8fu)
-

18 ports 33 (9fu) -

20 ports 32 (lOfu) -

4 Modules

82 (4fu)

48 (8fu)

5 Modules

70 (5fu)

42 (lOfu)

Table 4: Number of instructions per iteration of P7

the architectural configuration the code wets compiled for.
The design space defined in both the table and the figure shows the software perfor

mance improvement achievable by increasing the number of functional units per module
(i.e., moving along the direction of increasing number of ports) and by increasing the
number of modules in the architecture.

Performance increases monotonically in both directions, as is intuitive, since in both
cases we increase the number of functional units and the scheduling technique is able not
to make use of additional FUs in another module if the cost of communication alfects
performance.

Architectures with the same number of FUs but different number of modules frequently
provide different results since the number of instructions is altered by the partitioning
phase. We define the effect of etn increased number of modules as partitioning slowdown
and measure it as the percentage code length increcise.

The data in Table 4 presents a level of slowdown ranging from 17% for a (6-FU and
2-cluster) architecture, up to 48% for a (5-FU and 5-cluster) architecture. A superficial
analysis of this data could lead to the conclusion that a partitioned architecture performs
worse than the ideal architecture, since any LC-VLIW requires code which can be, at
best, as efficient as the code produced for an ideal architecture. However the softwzire
performcince space does not take into consideration changes in propagation delay through
the critical data-path, hence the processor execution cycle time.

It is to be remembered, though, that in the adopted architectured model, commu
nications are performed in parallel to other operations (in the form of inter-bank data
movement operations) and do not represent an additional delay to be accounted for in the
execution cycle time. This observation, together with the assumption of an inter-module
communication time smaller than the execution time, allows us to compare configurations
with the same number of ports as architectures with the same cycle time.

Consider the row relative to 6 read ports (out-ports) in Table 4. We considered 3



architectural configurations requiring that number of ports per RF®: a (3-FU 1-module) ,
a (6-FU 2-module) and a (9-FU 3 module).

The last configuration is the one whose code contains the smallest number of instruc
tions (42 vs 70 for the ideaJ 3 FU architecture). This result is obviously worse that the
ideal 9 FU VLIW (33 steps), which doesn't have to deal with transfer of register values
from RF to RF, but it provides a reasonable way to improve performance under the 6-port
per RF constraint. 6 read ports allow the realization of cin 3-FU ideal VLIW and the only
way to increase performance is through a LC-VLIW created by coupling 3-FU modules
together.

A more comprehensive ajialysis is required to account for different data-path timings
achievable by each configuration, leading to different estimates of the execution cycle-
time. The approach adopted was to weight the number of instructions per iteration with
an estimation of the register access. Our focus is to analyze the effect on performance
behavior induced by a partitioned RF since we assume the cycle time to be dominated by
the register access time. Hence we approximate the overall execution time of a benchmark
with the product of the code length times the register access time.

In case of different circhitectural models this approximation can be cheinged to better
suit the needs of each model. A possible alternative is to count the influence of the register
access time only partially as in:

Texec = ^instr * (1 + k)Tacc

where Texec is the execution time for an iteration of a benchmark and Tacc is the
estimated register access time. Note that k = 0 is the case adopted in our cinalysis.

Results obtained by weighting values in Table 4 with the estimated RF access time
obtained by using formula (2), are presented in Figure 5. Each vertical bar is proportional
to the estimated execution time.

The introduction of the estimated cycle time into the model greatly affects the perfor
mance space. In this space (See Fig. 5) the architectures with the best performance are
those that havea largenumberofFUs distributed in many modules (soas to keep the num
ber of read-ports low) whereas the ideal architectures perform poorly; this behavior differs
from the previous results suggesting that the best architectures are ideal VLIWs with a
large number of FUs. The most overall efficient architecture for running P7 among those
analyzed is a LC-VLIW with 10 FUs distributed among 5 modules (2 FU per module).

In this case the performance of the ideal VLIW peaks at about 5 functional units and
further increments in the number of FUs decrease performance instead of improving it.
This can be explained since the estimated RF access time grows faster than the software

®The analysis was constrained to architectures with no more that 10 FU since in most of the cases that
is the maximum amount of parallelism that could be found in the benchmarks
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Figure 5: Estimated overall performance (hardware + software performance)



speedup achievable by scheduling the code for a number of functional units larger than 4
or 5, malting the overall performance level off at first, and then decrease.

The observed behavior can be generalized to most of the programswhose amount of IIP
is limited (i.e., all the programs that are not perfectly parallelizable): the code produced
for a VLIW with an increasingly large numberofFUs makes the performance benefits level
off as the number of available FUs get closer to the inherent ILP limit of the program; this
up to a point where it might not be sufficient to counterbalance the cost increase, in terms
of hardware delays, that the newly added resources determine.

Hence we can state that for every program not perfectly parallelizable exists a limit
after which an increase in the number of FUs is not profitable since it decreases the overall
performance. This "wall" can be broken by making use of a partitioned architecture.

5.2 Area Analysis

RFs with large number of ports also exhibit a noticeable increase in area. As mentioned
in Section 3, the area required by a multiported SRAM cell is roughly proportional to the
square number of ports. This value grows rapidly to become unacceptable, particularly in
a VLIW architecture whose area availability is already tight.

We use an estimation model for approximating the area of a multiported memory cell,
with p ports, based on function (1). Assuming S\ = S2 = S (i.e., both cell's dimensions are
increased of the same amount per each port) the area can be modeled cis:

Arta{p) = CoreArea* 6pY (3)

Function 3 is plotted® in Figure 6 for two possible values of 6 (0.1 and 0.2), based
on data from published designs [2] [4] [16], and a number of ports in the range (1 - 30).
The RF area growth is extremely fast: if 5 = 0.1 in formula 3, then a fivefold increase
is obtained for 12 ports, (i.e., the number of RF ports required in a 4 FU VLIW) and a
tenfold increase for 22 ports.

This area requirement is certainly not acceptable for a large VLIW where the need for
registers^ is extremely high. It is, therefore, imperative to explore the possibilities offered,
by a partitioned approach in order to reduce the amount of silicon required for each cell.

The number of ports required by a VLIW can be reduced with a partitioned design
scheme as outlined in Section 2: the total number of ports is the number of ports required
to connect each FU to the RF (i.e., 3 * FU since each FU uses a write port and two

®The area is measured in units (1 unit being the area required by the core cell).
high level offine grain parallelism can be exposed only through aggressive renaming techniques that

frequently turn intoa large number of register requirement [21].
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Figure 6: Estimated SRAM eirea increase vs number of ports

read ports) plus the additional ports introduced in the design by the RF interconnection
scheme.

The total number ports per register file P can be calculated as:

P=3(^) +(M0-l)(^) (4)
where FU is the total number of functional units in the LC-VLIW and MO is the

number of modules, or clusters, in which it is partitioned. The first term accounts for
ports used to connect the set of FUs in a module to the register file, and the second term
accounts for additional write ports connected to the inter-bank communication buses®.

The plots of the memory celPs area requirement for a specific configuration in terms of
FUs and modules is presented in Figure 7. Each curve estimates the axea growth (expressed
as area units) of a register file in a LC-VLIWs for a fixed level of partitioning and a given
number of FUs. The equation is:

^hf(p) = Ahf(O) * (1 + A" *p)^ (5)
where AflF(p) is the area of a register file with p ports (A/iir(0) is the core cell area,

which is used as a unit of measure). Only few points along each curve in Fig. 7 correspond

®The number of additional ports per RF is calculated based on the maximum number of operations

that can be simultaneously issued in a LC-VLIW to move data to the same module (i.e., the number of

the FUs in all but one module). Every module has functional units and, under the assumption of BR

= 1, up to (MO - 1) modules can move data to a same module.
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Figure 7: Area requirement for a multiported register file (Ahf(O) = 1)

to a physically realizable axchitecture and these axe marked with black dots.
Figure 7 suggest that the cirea requirementsfor the registers of a LC-VLIW can be kept

reasonably low by selecting the appropriate level of partitioning.
A further reduction in the RF area requirement cein be achieved by relaxing the as

sumption of a full relative bandwidth (RB=1): limiting the bandwidth to 1/2, or 1/4,
affects the performeince only slightly and permits a reduction in the number of additional
write ports which, in turn, results in a smaller cell area.

The cost in terms of total area requirements per module can be evaluated by adding
the estimations for the RF area with the FU area. Splitting an architecture in 2 or more
modules, though, opens up the problem of how mciny registers every bank should contain;
we adopt the conservative approach of each RF in the partitioned architecture containing
an identical number of registers as the RF in the ideal architecture. This assumption
ensure the ability of partitioning code without a chance of running out of registers, since
in the process we do not introduce new registers.

The estimation of the area required by a module (considering only FUs and RFs) can
be obtained as:

•Amo = AfU + -^RF

where A\fO is the estimated area per module required for the set of FUs and the local
RF, Afu is the area occupied by a functional unit and Arf is the estimated area of the
register file, evaluated by using Equation (5). Assuming Afu = ARF(Oport) = lunit, for
the sakeofsimplicity, we can plot the area per module as in Figure8. Each curve, in Figure
8, plots an estimation of the the silicon required by a single module in an architecture with
a fbced number of clusters for a growing number ofFUs. Again since the curves are derived
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Figure 8: Area requirement for a module (Ahf(O) = Auf = 1)

from equation 6 not all the points are meaningful and the realizable configurations are
identified by diamonds.

Figure 8 can be used to determine a correct partitioning strategy to satisfy the area
constraints determined by available technology.

The non linear behavior of each curve is due to the quadratic growth in the size of the
RF. A higher ratio tends to straighten the nonlinearity since the area required by
the FUs is split evenly among each cluster and a FU's size is not affected by a partitioned
design scheme - we assume in our analysis a ratio of 1 (i.e., Apu + •A^(o)).

Architectures partitioned into a large number of clusters allow an important reduction
in terms of silicon estate per module. Consider the 10-FU 5-RF configuration, which
allows the best overall performance among the considered axchitectures. Each module of
that LC-VLIW requires an amount of silicon comparable to a 3-FU ideal VLIW (see Fig.
8). Partitioned architectures therefore not only perform better than ideal models but also
allow a feasible implementation based on area concerns.

6 Area/delay tradeoff

The separate zinalysis performed for time and area caji be merged into a comprehensive
model that can be used to evaluate the tradeoffs involved in a partitioned architecture.

The design of a LC-VLIW requires the evaluation of several parameters at once; our
approach allows the simultaneous consideration of three important parameters: silicon area
occupation for the FUs and RF per module, number of ports per register file and overall
performance. A fourth parameter, the inter bank communication bandwidth, can also be
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Figure 9: Cost for configurations limited by area constraints

considered, but since its relative influence on both performance and number of ports is
limited we do not consider it as a first order parameter in our analysis.

The primary criteria of evaluation used is fezisibility. In our jinalysis, the area and
ports per RF are the parameters that might prevent physical realizability. Leirge VLIW
configurations both occupy excessive areas and require RFs with large number of ports
that can degrade performance. We can limit both parameters to values that are proven
to be achievable with available technology and apply them to equations (4) and (6) in
order to define a set of feasible configurations. By mapping these two constraints on the
performance space of Fig. 5, it is possible to delete all the bars relative to architectures
that do not match the requirements and hence perform a search only on the restricted
(feasible) design space.

This process is illustrated in Figure 9 where all the configurations requiring an estimated
area per module of more than 8 units and register files with more than 6 read ports have
been deleted. It is interesting to note that the best solution of the unrestricted space (i.e,
before area/ports constraining) still remains in the pruned design space; hence the 10 FU
architecture composed by 5 modules is the most effective LC-VLIW configuration in terms
of performance but also require a small die size and a limited number of ports.

These kinds of architectures are well suited for a realization using Multi Chip Module
(MCM) technology: each die can contain one (or more) modules and buses can be routed
on the substrate so as to achieve fast inter-chip communications. The fast communication
allowed by MCM permits to design fast and scalable architectures where more modules



can be added to fit the needs of the user.

The scalability is limited from the propagation time of a signal from module to module;
yet the decoupling between the intermodule communication path and the register-FU that
the LC-VLIWs provide allows plenty of time for this task.

7 Summary

There is great potential in exploiting spatial parallelism (i.e., replication of FUs) to scalably
increase the performance of processors. A VLIW architecture model is suitable for exploit
ing ILP through multiple functional units, though the ideal model is seriously limited in
its realization by several technological constraints.

For this reason only few real VLIWs have been designed and only two, the Multiflow
Trace and the Intel 1860/1960, have reached the market. The first adopted a highly par
titioned design and a slow cycle time, the second aimed at a limited parallelism with two
functional units on a single chip.

Recently some technological limitations have been pushed a step forward by technologies
like MCM and TAB wiring; also CMOS has further reduced the feature size allowing to use
new schemes of partitioning. The performance of these architectures are deeply affected
from the interaction of software and hardware phenomena, hence the need has arisen for
tools to explore the resultant design.

In this paper we presented a design space exploration model for the limited-connectivity
VLIW architecture, and we investigated some of the tradeoffs, in terms of area and delay,
for a partitioned VLIW model focusing on the effects of a partitioned RF. Data obtained
through the compilation of code for several architecturcd configurations and some estima
tion figures for the hsirdware performance were developed.

By merging these models together we were able to demonstrate that the overall perfor
mance space is unintuitive and that configurations with large number of FUs are likely to
perform significantly better than an implementation of the ideal VLIW.

The area requirement for this kind of architecture was also analyzed and the results
of the estimations suggest that a partitioned architecture allows to greatly decrease the
requirement of area per chip up to a point where the area constraints do not pose a problem
anymore.

Several benchmarks werecompiled and all showedsimilar behavior, although in different
measures; the code for benchmark P7 was used as an example during the course of the
analysis presentation and an optimal architecture was found in the 10 FUs LC-VLIW
partitioned in 5 modules.

Large VLIWs divided on a large number of modules, each composed by few FU and a
RF, seems to be the way to go to create feasible, fast processors. Several benefits aocrue
from this approach: high performance, feasibility, scalability, small die size, testability are



only some. The number and the size (i.e., number of FUs) of the modules axe functions of
the design, the technology used and the set of programs taken into consideration. Future
work needs to address the feasibility of applying this approach to newer technologies such
as MCMs.
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A Appendix

Results of the compilation of 8 benchmarks for severed configuration of LC-VLIW axe
presented in Tables 5,6,7,8,9,10,11,12,13. Each table contains the results for a set of ar
chitectures with the same number of functional units ranging from 1 (RISC code) to 10.
Values on the same line share the same configuration parameters: number of FUs, number
of modules and number of inter-bank move operation allowed per macroinstruction.

Assembly Code. 3 ports per register file
PI P2 P3 P4 P5 P6

31 130 39 43 73 18

Table 5: Number of instructions (sequential assembly code)

ideal VLIW, 2 op. per istr., 6 ports/BR
PI P2 P3 P4 P5 P6 P7 P8

19 69 23 22 41 9 100 204

2 Modules, 2 move-op per istr., 4 ports/BR
PI P2 P3 P4 P5

23 90 30 32 50

Table 6: Number of macroinstructions. 2 FUs LC_VLIW

ideal VLIW, 3 op. per istr, 6 ports/RF
PI P2 P3 P4 P5 P6

18 53 18 17 34 6

3 Modules, 3 move-op per istr., 5 ports/RF
PI P2 P3 P4 P5 P6

22 82 23 31 40 9

Table 7: Number of macroinstructions. 3 FUs LC_VLIW



ideal VLIW,

PI P2

18 48

2 Modules, 4

PI P2

18 54

2 Modules, 2
PI P2

18 54

4 Modules, 4
PI P2

22 72

4 Modules, 2
*2

'6

4 op. per istr, 12 ports/RF
P3 P4 P5 P6 P7

15 15 31 5 56

move-op per istr., 8 ports/RF
P3 P4 P5 P6 P7

18 18 33 6 ^
move-op per istr., 8 ports/RF

P3 P4 P5 P6 P7

18 19 33 6 66

move-op per istr., 6 ports/RF
P3 P4 P5 P6 P7

20 27 36 7 82

move-op per istr., 5 ports/RF
P3 P4 P5 P6 P7

21 28 36 7 90

Table 8: Number of macroinstructions. 4 FUs LC-VLIW

ideal VLIW, 5 op. per istr, 15 ports/RF
PI P2 P3 P4 P5 P6

18 47 14 14 31 4

5 Modules, 5 move-op per istr., 7 ports/RF
PI P2 P3 P4 P5 P6

22 71 18 25 36 6

Table 9: Number of macroinstructions. 5 FUs LC-VLIW



ideal VLIW,

PI P2

18 47

2 Modules, 6

2 Modules, 3

6 op. per istr, 18 ports/RF
P3

13

P4 P5 P6 P7

13 31 3 41

move-op per istr, 12 ports/RF
^3

5

P4 P5 P6 P7

16 31 4 48

move-op per istr., 12 ports/RF
P3

15

P4 P5 P6 P7

16 31 4 48

3 Modules, 6 move-op per istr., 10 ports/RF
PI P2

18 55

P3

16

P4 P5 P6 P7

16 34 4 53

3 Modules, 3 move-op per istr., 9 ports/RF
PI P2

18 55

P3

16

P4 P5 P6 P7

16 34 4 53

6 Modules, 6 move-op per istr., 8 ports/RF
PI P2

22 68

P3

17

P4 P5 P6 P7

24 36 6 66

6 Modules, 3 move-op per istr., 6 ports/RF
PI P2

22 69

P3

17

P4 P5 P6 P7

25 36 6 69

Table 10: Number of macroinstructions. 6 FUs LC-VLIW



ideal VLIW, 8 op. per istr., 24 ports/RF
PI P2 P3 P4 P5 P6

18 47 12 12 31 3

P7

35

P8

164

2 Modules, 8 move-op per istr., 16 ports/RF
PI P2 P3 P4 P5 P6

18 47 14 13 31 4

P7

43

P8

164

2 Modules, 4 move-op per istr., 16 ports/RF
PI P2 P3 P4 P5 P6

18 47 14 13 31 4

P7

43

P8

164

2 Modules, 2 move-op per istr., 16 ports/RF
PI P2 P3 P4 P5 P6

18 48 14 13 31 4

P7

43

P8

164

2 Modules, 1 move-op per istr., 16 ports/RF
PI P2 P3 P4 P5 P6

18 52 14 15 31 5

P7

51

P8

164

4 Modules, 8 move-op per istr., 12 ports/RF
PI P2 P3 P4 P5 P6

18 54 14 14 15 34 5

P7

48

P8

180

4 Modules, 4 move-op per istr., 10 ports/RF
PI P2 P3 P4 P5 P6

18 54 14 15 34 5

P7

48

P8

180

4 Modules, 2 move-op per istr., 10 ports/RF
PI P2 P3 P4 P5 P6

18 56 14 15 35 5

P7

55

P8

180

4 Modules, 1 move-op per istr., 10 ports/RF
PI P2 P3 P4 P5 P6

18 63 16 22 38 6

P7

91

P8

181

Table 11: Number of macroinstructions. 8 FUs LC.VLIW

34



ideal VLIW, 9 op. per istr, 27 ports/RF
PI P2 P3 1

18 46 12

?4 P5 P6 P7 P8

12 31 2 33 161

2 Modules, 6 move-op per istr, 12 ports/RF
PI P2 P3 1

18 47 15

?4 P5 P6 P7 P8

16 31 4 48 165

2 Modules, 3 move-op per istr, 12 ports/RF
PI P2 P3 1

18 47 15

:>4 P5 P6 P7 P8

16 31 4 48 165

3 Modules, 9 move-op per istr, 15 ports/RF
PI P2 P3 1

18 48 15

P5 P6 P7 PS

14 34 4 42 164

3 Modules, 3 move-op per istr, 12 ports/RF
PI P2 P3 1

18 48 15

?4 P5 P6 P7 P8

14 34 4 43 164

6 Modules, 6 move-op per istr, 8 ports/RF
PI P2 P3 ]

22 68 17 ;

P4 P5 P6 P7 PS 1
24 36 6 66 238

6 Modules, 3 move-op per istr, 6 ports/RF
PI P2 P3 ]

22 69 17 :

P4 P5 P6 P7 PS

25 36 6 69 238

Table 12: Number of macroinstructions. 9 FUs LC-VLIW

; ideal VLIW, 10 op. per istr., 30 ports/RF
i PI P2 P3 ]
118 46 11

P4 P5 P6 P7 PS

12 31 2 32 164

2 Modules, 10 move-op per istr., 20 ports/RF
PI P2 P3 ]

18 46 13

P4 P5 P6 P7 PS

14 31 3 37 164

2 Modules, 5 move-op per istr., 20 ports/RF
PI P2 P3 ]

18 46 13

P4 P5 P6 P7 PS

14 31 3 37 164

5 Modules, 10 move-op per istr., 14 ports/RF
PI P2 P3 ]

18 52 16

P4 P5 P6 P7 PS

15 33 4 42 182

5 Modules, 5 move-op per istr., 11 ports/RF
PI P2 P3

18 53 16

P4 P5 P6 P7 PS

16 33 4 42 182

Table 13: Number of macroinstructions. 10 FUs LC-VLIW



B Appendix
l* ALGORITHM "/

float GAIN(MAX_NO-OF_NODES][MAX_NO_OF-CLUSTER]; /" GAIN[i][c] = gain to move op i to cluster c */
int STATE[MAX.NO_OFJMODES]i /• STATE[iI = op i has been moved (true/false) •/
int HISTORY[MAX_NO_OF_NODES)(2]5 /• HISTORY = infos on previous move */
int PART[MAX.NO.OFJ^ODES]; /* PART[i] = cluster of op i */
int BESTJ>ART[MAX_N0_0FJ^0DES]; /" BEST-PART temporary best solution "/

/- INPUT VARUBLES "/
int nodesmumber, clustermumber;

do { /• loop 0 •/

cal<nilateinitial^am();
whUe (TRUE) { /* loop 1 */

for (i=l; i<= nodejiumber; i++) { /* loop 2 */

best^ain = findJ>est^ain(bestj)p,bestxluster);
STATE[be8t.op] = TRUEj
HISTORY[i][FROM] = PARTrbest-op];
HISTORY[i][OP] = bestjjpj
PART[be8t_Dp] = bestjdusterj
TEMP[i] = best-gain;
update.gain();
G = max^arti2d.sumjof-TEMP(indexj}f^ax);
if (G > e)

backtrackjip-to(indexjsfjnax);
else {

backtrack-AlLmovement();
break;

}
} /• end of loop 2 */

} /* end of loop 1 */

communication-value = computexomm-val();

if (communication-value < minimum) {
K - K_INIT;
miniTTiiiTTi = communicationjralue;
BESTJART = PART;

} else {
PART = BEST-PART;

if (K < c)
break;

else

K = /(iC);

randonuze(PART,K);

} while (TRUE) r end of loop 0 •/




