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Abstract

Background: Although Susceptibility Weighted Imaging (SWI) is the gold standard for 

visualizing cerebral microbleeds (CMBs) in the brain, the required phase data are not always 

available clinically. Having a post-processing tool for generating SWI contrast from T2*-weighted 

magnitude images is therefore advantageous.

Purpose: To create synthetic SWI images from clinical T2*-weighted magnitude images using 

deep learning and evaluate the resulting images in terms of similarity to conventional SWI images 

and ability to detect radiation-associated CMBs.

Study Type: Retrospective.

Population: 145 adults (87males/58females; 43.9years-old) with radiation-associated CMBs 

were used to train (16,093patches/121patients), validate (484patches/4patients), and test 

(2420patches/20patients) our networks.

Field Strength/Sequence: 3D T2*-weighted, gradient-echo acquired at 3T.

Assessment: Structural-Similarity-Index (SSIM), Peak Signal-to-Noise-Ratio (PSNR), 

normalized Mean-Squared-Error (nMSE), CMB counts, and line profiles were compared among 

magnitude, original SWI, and synthetic SWI images. Three blinded raters (JEVM, MAM, BB with 

8-, 6-, and 4-years’ experience, respectively) independently rated and classified test-set images.

Statistical Tests: Kruskall-Wallis and Wilcoxon signed-rank tests were used to compare SSIM, 

PSNR, nMSE, and CMB counts among magnitude, original SWI, and predicted synthetic SWI 
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images. Intraclass correlation assessed inter-rater variability. P-values<0.005 were considered 

statistically significant.

Results: SSIM values of the predicted vs original SWI (0.972,0.995,0.9864) were statistically 

significantly higher than that of the magnitude vs original SWI (0.970,0.994,0.9861) for whole 

brain, vascular structures, and brain tissue regions, respectively. 67% (19/28) CMBs detected on 

original SWI images were also detected on the predicted SWI, whereas only 10 (36%) were 

detected on magnitude images. Overall image quality was similar between the synthetic and 

original SWI images, with less artifacts on the former.

Conclusions: This study demonstrated that deep learning can increase the susceptibility contrast 

present in neurovasculature and CMBs on T2*-weighted magnitude images, without residual 

susceptibility-induced artifacts. This may be useful for more accurately estimating CMB burden 

from magnitude images alone.

Keywords

Susceptibility Weighted Imaging; Deep Learning; Cerebral Microbleeds; Generative Adversarial 
Networks; Synthetic Image Generation; Bayesian Optimization

INTRODUCTION

Susceptibility-Weighted Imaging (SWI) has become the gold standard technique for 

visualizing iron containing structures such as veins and cerebral microbleeds (CMBs) in 

the brain, and remains a highly promising tool for assessing microstructural changes in 

iron content, tissue oxygenation, myelination, and vascular structure [1]. As such, the 

technique has been used extensively to detect and characterize pathology in patients with 

neurodegenerative disease, dementia, stroke, traumatic brain injury, and radiation therapy-

induced vascular injury [2]. Enhanced susceptibility contrast is achieved by multiplying high 

pass filtered phase images with T2*-weighted magnitude images, where the phase mask 

highlights negative phase values arising from vessels and other high frequency structures [3]. 

The result is a further reduction of signal intensity in hypointense areas of the magnitude 

image that enhances the contrast of venous and other susceptibility-shifted structures [3].

When SWI processing is not directly available on the scanner, retrospective processing is 

contingent upon the saving of raw k-space data, complex-valued real and imaginary images, 

or phase images. This can hinder its widespread clinical use especially for multi-echo 

acquisitions where increased storage is required. Prior patents surrounding the processing 

and/or cost-prohibitive research packages have resulted in the interchangeable use of multi-

echo magnitude T2*-weighted images with SWI, despite distinct differences in contrast 

and ability to detect lesions. For example, SWI is capable of detecting 31% (at 3T) and 

54% (at 7T) more CMBs than the corresponding T2*-weighted magnitude images alone 

[4]. Standard SWI processing is also inherently prone to residual phase wrapping artifacts 

and susceptibility drop out around air-tissue interfaces, limiting its application in diseases 

involving the temporal lobes, surgical resection cavities, or other large lesions comprised of 

heterogeneous materials creating large susceptibility gradients [5].
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With the growing popularity of SWI and pooling of data into larger multi-site studies, 

the need to retrospectively combining results quantified from SWI images with other T2*-

weighted magnitude images from the same or similarly acquired sequence becomes of great 

importance. Since raw complex k-space data or phase images are not always saved along 

with the magnitude images in routine clinical T2*-weighted imaging, there currently is no 

way to create the more sensitive SWI image from the magnitude image alone, introducing 

large variability into such studies that could prevent a potentially relevant clinical finding 

from reaching statistical significance.

Synthetic image generation has been successfully applied in the field of medical imaging 

for a variety of different purposes. For example, Xiao et al. generated synthetic images in 

order to enhance the performance of spatial registration of different MR image modalities 

[6]. Other studies have generated synthetic Computed Tomography (CT) images from MR 

images for attenuation correction and radiation therapy planning, and Positron Emission 

Tomography (PET) images from CT images to increase sensitivity to detecting tumors [7][8]

[9]. Several researchers have also attempted to generate multiple MRI image contrasts such 

as T1-weighted, T2-weighted, and T2-FLAIR, using acquired contrasts and deep learning 

in order to reduce total scan time [10][11][12][13]. MR to MR image generation using 

convolutional neural networks has also been applied to obtain ultra-high magnetic field MR 

images (i.e. 7T) from lower magnetic field MR images (i.e. 3T) [14] [15], the results of 

which are often validated by improved performance on a segmentation task when using the 

synthetic higher field strength images. These studies show that deep neural networks can 

learn the nonlinear dependencies between different image modalities and contrasts.

Although generated synthetic MR images have been shown to improve computational 

operations such as image registration and segmentation, there has been limited evaluation on 

their ability to improve the quantification of metrics that are relevant in clinical applications 

[6] [13]. The lack of availability of SWI images ubiquitously in the clinic has also led to 

an underestimation of the number CMBs in larger studies of radiation-associated CMBs 

[17] compared to when SWI alone is utilized [18] because fewer CMBs are detected 

on magnitude T2*-weighted images. This study aimed to learn SWI contrast from T2*-

weighted magnitude images alone using a generative adversarial network (GAN) framework 

and thereafter assess the network’s performance on CMB detection and quantification.

MATERIALS AND METHODS

Subjects and data acquisition

The retrospective study was conducted in accordance with the Declaration of Helsinki and 

approved by our Institutional Review Board. Informed consent was previously obtained 

from all patients involved in the study. 145 adult patients (87 males, 58 females; mean 

age 43.9 years old) who received prior treatment of a glioma and had confirmed radiation-

associated CMBs on 3T SWI imaging that was performed as part of a research brain tumor 

imaging study were included in this study. 121 patients were used in training, 4 in validation, 

and 4 in testing.
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3D T2*-weighted gradient echo (GRE) magnitude and phase MRI data were acquired 

on a 3T scanner (GE Healthcare Technologies, Milwaukee, WI, USA) with an 8-channel 

head coil (echo time (TE)/repetition time (TR)=28/46ms, flip angle=20, Field of View 

(FOV)=24cm, 0.625×0.625×2mm resolution, R=2 acceleration) in 145 patients with 

radiation-associated CMBs following treatment for glioma. SWI images were generated 

using traditional processing methods [19][3].

Image Preprocessing

3D patches of T2* weighted magnitude images, excluding regions of residual phase artifacts 

on SWI, were used as inputs in the training. Susceptibility-induced artifacts were manually 

masked, and erosion was applied to remove any edge artifacts. Voxel intensity values of 

all images were then normalized by dividing their intensities by 5 times the mode of the 

histogram of each image so that the resulting histogram peaks (reflecting background tissue 

signal intensity) were matched between the input magnitude and target SWI images and 

ranged from 0–1. Overlapping 3D input and target patches were created using magnitude 

and original SWI images (Figure 1B,C); alternative target patches were also created from the 

difference image (Figure 1D). The input patch size was 64×64xnumber of slices (with 16 

overlapping voxels in each in plane direction) while target patches were cropped to 48×48 in 

plane to minimize any edge artifacts [20]. The effect of applying a hyperbolic tangent (tanh) 

transformation to the target patches to potentially facilitate model training by making the 

image distribution more Gaussian was also evaluated [20]. A semi-automatic CMB detection 

and segmentation algorithm [21] was applied to the magnitude and original SWI images 

to generate a mask of veins and segmented CMBs (Figure 1E,F); the resulting masks were 

integrated into the network to measure loss.

Network Architecture

A conditional GAN technique with a fully convolutional U-Net as the generator network 

was employed [22]. Both the discriminator and the generator were conditioned on the input 

information to give a direction to the generation process as shown in Figure 2. This training 

approach enabled the generation of data distributions close to the sample data, and is 

advantageous for the proposed task because it allows for high frequency edges and structures 

to be captured [23].

Modified versions of the original GAN including the Wasserstein GAN with Gradient 

Penalty (WGAN-GP) [24] and Least Square GAN (LSGAN) [25] were implemented by 

adjusting the original GAN loss functions to either an Earth Mover (EM) loss that adds 

a gradient penalty to yield more stable training or least square loss for the discriminator 

instead of sigmoid cross entropy loss, respectively. These modified loss functions resulted in 

higher quality images and solved the vanishing gradient problem [26].

Hyperparameter Tuning with Bayesian Optimization

Hyperparameter values were initialized from Chen et al [20]. Bayesian Optimization was 

performed on the validation set via the open source Python package Optuna [27] to 

determine the optimal learning rate, batch size, number of channels, loss function of the 

generator network, model type, and whether or not to: 1) use the difference image as the 
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output instead of the SWI image, 2) apply a tanh transformation to the voxel intensities 

so that their resulting distribution is more Gaussian, and 3) perform data augmentation 

that included flipping the image patches in all dimensions. The hyperparameter values 

maximizing mean Structural Similarity Index (SSIM) between the predicted and original 

SWI images within the region defined by the CMB mask of the validation set were 

used. The models were ran for 200 trials, training for 4000 iterations in each Bayesian 

Optimization trial.

Network Implementation & Training

Networks were implemented in Pytorch 1.5.1 and trained using NVIDIA GeForce RTX 

2070, 8GB [20]. Two different GAN methods (LSGAN and WGAN-GP) were tested, with 

a 3D UNet as the generator, as well as the basic 3D UNet alone. 16,093 patches from 121 

scans (83.4%) were used to train the network, 484 patches from 4 patients (2.8%) were used 

in validation, and 2420 patches from 20 scans (13.8%) were utilized for testing.

Each network was trained for 40,000 iterations with selected hyperparameters, including an 

Adam optimizer with initial learning rate of 0.009, beta1= 0.5, beta2 = 0.999. The combined 

mean absolute error (MAE) loss, mean squared error (MSE) loss and newly-defined CMB 

mask loss (Equation 1) was used for the generator, where masked loss represents the MAE 

between masked original SWI and masked predicted SWI. Coefficients of the loss terms (λ1, 

λ2, λmasked) were tuned in Bayesian Optimization along with the other hyperparameters.

Generator Loss = λ1 ∗ MAE original SWI, predicted SWI + λ2 *
MSE original SWI, predicted SWI + λmasked * MAE
masked original SWI, masked predicted SWI

(Equation 1)

Evaluation and Statistical Analysis

A semi-automatic CMB detection algorithm was used to estimate the total number of 

CMBs on the test dataset [21] [28]. The number of CMBs detected, SSIM, peak signal-to-

noise-ratio (PSNR), and normalized mean squared error (nMSE) were compared across 

magnitude, the original SWI, and predicted synthetic SWI images from the test set using 

a Kruskall Wallis or Wilcoxon Signed Rank test. Line profiles of individual CMBs and 

vessels of varying sizes were also visually compared across the magnitude, original SWI, 

and predicted synthetic SWI images. Three professionals (JEVM, MAM, and BB) with 8, 

6, and 4 years’ respective experience identifying CMBs on SWI, were asked to classify and 

rate the overall image quality of 40 images (20 magnitude, 10 SWIoriginal, 10 SWIpredicted). 

Intraclass Correlation Coefficient (ICC) [29] was calculated to measure the reliability 

of these Likert ratings among the raters. P-values < 0.005 were considered statistically 

significant.

RESULTS

Hyperparameter Tuning

Four scans were sufficient for choosing 10 hyperparameters in an image generation task 

during validation because they resulted in 484 total patches, which included thousands of 
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pixels predicted at once for each patch. Figure 3 shows the 10 hyperparameters tuned for 

training, including their search space, the final selected values (Figure 3A) and a plot of the 

SSIM values over the course of optimization trials (Figure 3B). Overall, the 169th iteration 

yielded the highest SSIM value at 0.999921. Certain categorical hyperparameters performed 

better than others (Figure 4A). For example, batch sizes of 64, 16 or 8 along with 20, 24 or 

16 channels for the generator resulted in higher SSIM values, and the LSGAN model type 

outperformed the basic 3D U-Net and WGAN-GP. Applying a tanh transformation of the 

output patch and learning the target image directly instead of the difference image increase 

the network performance, while data augmentation techniques did not improve network 

performance. SSIM values measured within the CMB-masked images and corresponding to 

iterations of Bayesian optimization with different continuous hyperparameters (i.e. MAE, 

MSE) were clustered together within the typical range of learning rates values (~0.005, 0.3) 

that tend to perform well (Figure 4B). A similar pattern was observed when setting the other 

categorical hyperparameters to the selected values and the continuous hyperparameters to 

the range of high SSIM yielding values (Figure 4B).

Visual Evaluation

The predicted SWI yielded similar contrast to the original SWI images except for in the 

areas of residual phase wrapping artifacts (Figure 5A). Upon comparing the difference 

images in Figure 5, some of the small details were more prominent on the SWIoriginal – 

magnitude map. Figure 6A shows the violin plots of Likert ratings while Figure 6B shows 

the confusion matrices of classifications of each rater when asked to classify if an image was 

magnitude or SWI image contrast. For 18 of the 40 images classified, all raters agreed on 

the type of contrast. Although only 45% (9/20) of magnitude images, 60% (6/10) of original 

SWI images, and 20% (2/10) of predicted synthetic SWI images were correctly classified by 

all raters, the most experienced rater was able to correctly classify 80% (16), 80% (8), and 

70% (7) of the magnitude, original SWI, and predicted SWI images, respectively. An ICC of 

0.8 signified overall good agreement among the ratings of different raters.

Figure 7 depicts examples of a relatively poorly-predicted (Figure 7A,C) and well-predicted 

(Figure 7B,D) SWI image based on the total number of CMBs detected, spatial accuracy 

relative to the original SWI, and heightened CMB contrast. There was not a notable 

difference in the image quality of the magnitude or original SWI images between the two 

example synthetic images. Intensity values of small and large CMBs and vessels on the 

poorly-predicted SWI were in between that of the input magnitude and the original SWI, 

with the contrast of some small vessels on the predicted SWI similar to that of the input 

magnitude image (Figure 7D). Whereas in the well-predicted SWI, there were much larger 

differences in intensity across the images for all vascular structures, with similarly larger 

dips in the line profiles for both the original and predicted SWI images compared to the 

magnitude (Figure 7C).

Comparison of Quantitative Metrics

Figure 8 shows boxplots of SSIM values of the predicted SWI vs original SWI, and the 

magnitude vs original SWI, for each scan in the test set. Mean values of SSIM, PSNR, 

and NMSE are listed in Table 1. Mean SSIM values of the predicted vs original SWI were 
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statistically significantly higher than that of the input magnitude vs original SWI; this held 

true for the whole brain images (0.972 vs 0.970; Figure 8A), vessel and CMB-masked 

images (0.995 vs 0.994; Figure 8B), as well as areas outside of CMB and vessel masks 

(0.9864 vs 0.9861; Figure 8C). On average, 19 of the 28 CMBs detected on the original SWI 

images were also detected on the predicted SWI images, whereas only 10 of these (36%) 

were detected on the magnitude images, with significant differences in counts observed 

among all three image sets (Figure 8D).

DISCUSSION

This work tested whether a conditional GAN training approach could be used to generate 

synthetic SWI images from T2*-weighted magnitude images in the absence of phase data. 

Unlike prior studies which have been limited to segmentation and classification problems, 

this study evaluated whether the synthetic images could retain similar susceptibility contrast 

to traditionally processed SWI for the detection of CMBs in a clinical population [6][14]. A 

conditional LSGAN with optimal hyperparameter values can learn the majority of additional 

susceptibility weighting produced by SWI processing when magnitude images serve as 

network inputs.

The hyperparameters evaluated in this study not only represented the parameter space 

of networks and their loss functions, but also determined the training workflow (e.g. 

data augmentation, and type of input patch and output transformation). By tuning all the 

parameters of the training workflow together, Bayesian optimization methods were applied 

to identify the best training strategy. Some of the hyperparameters such as data augmentation 

and MAE loss coefficient did not have a large impact on the objective values. Values for 

the latter were selected over a broader range than the MSE and mask loss coefficients, and 

therefore could indicate that MAE loss did not have as significant of an impact on our task. 

Data augmentation also did not improve the network performance, which could suggest that 

the network has seen enough data to learn the patterns and the augmented data did not 

provide extra information.

Performance was evaluated qualitatively and quantitative via an image similarity index and 

ability to detect CMBs. While the magnitude images were already relatively similar to the 

original SWI images, visually and quantitatively the predicted synthetic SWI images had 

more similar contrast to the original SWI than to the magnitude images. Regions of residual 

phase wrapping artifact on the original SWI did not appear on the predicted SWI, because 

artifact-free magnitude images as inputs and artifact free SWI images were intentionally 

used as targets, hence the network had not previously encountered these artifacts. Likert 

ratings demonstrated that the image quality of the predicted SWI images were equivalent 

to the original SWI and magnitude images. Although no statistically significant difference 

was found among the ratings of these image groups, a trend of slightly higher ratings was 

observed for the predicted SWI, perhaps due to the elimination of phase artifacts by our 

neural network. Although Raters 1 (a neuroradiologist) and 2 classified the majority of the 

predicted synthetic SWI images as original SWI images, Rater3 classified the majority of the 

synthetic SWI as magnitude images because they did not have the residual phase wrapping 

artifacts that they were accustomed to viewing with SWI. Quantitatively, mean NMSE and 
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SSIM values were lower between the predicted and original SWI compared to the values 

between magnitude and original SWI, whereas the opposite was found for mean PSNR 

values. This further substantiates how the network is learning some of the target image 

contrast, resulting in realistic SWI image contrast.

Regardless of image quality, our network could learn most of the added hypointense 

susceptibility contrast of veins and CMBs generated by SWI processing. Line profiles 

showed that at the lowest voxel intensity value corresponding to the middle of the CMB, 

original SWI images are the most hypointense, followed by the predicted synthetic SWI 

images. A similar pattern was observed in the line profiles of large vessels irrespective of 

predicted synthetic SWI image quality, however, the line profiles of small vessel produced 

varying voxel intensities across the different images. This might indicate that the network 

could learn the target contrast of larger vessels better than smaller veins because of their 

relatively small sizes. When examining smaller CMB-like pathologies, small structures 

that were either missing or blurry on magnitude images were in fact present and more 

conspicuous on both the predicted and original SWI images, explaining the significantly 

increased number of CMBs detected overall on our synthetic SWI images compared to 

magnitude images. This is despite one subject whose CMB counts using the predicted SWI 

(n=5) were lower than both the magnitude (n=7) and original SWI (n=11). In another subject 

for comparison, however, 80% of CMBs (20/25) could be detected on the predicted SWI, 

while less than half (12/25) CMBs could be detected on the magnitude image.

Limitations

Although this work indicates that it is possible for a conditional GAN to learn susceptibility 

contrast weighting without the phase signal information, there is still room for improvement. 

One limitation is that all images in this study were acquired in a relatively small cohort 

with the same SWI acquisition protocol. Although our augmentation results suggest that 

adding more similar contrast images would not help performance of our network, including 

susceptibility weighted images acquired with a range of parameters, including various 

TE/TR/flip angles, resolution, and k-space sampling patterns, as well as data acquired 

with multiple echoes and from different field strengths such as more sensitive 7T scanners, 

could potentially improve performance, as well as further enriching our cohort with images 

from multiple sites and vendors. Other limitations of the study are that only GAN based 

approaches were employed and tuned only the most important hyperparameters with limited 

ranges. Although using a spatially-weighted loss function that focused on CMB locations 

when calculating SSIM resulted in artificially high values with small deviations during 

hyperparameter optimization due to the presence of zeroes in the mask having an SSIM of 

1, without this approach, overall performance of the network and resulting synthetic image 

quality dropped. It is possible that future work constructing more complex neural networks, 

new hybrid approaches of CNNs, and transformer-based networks along with tuning more 

hyperparameters with larger options and ranges will improve upon the current results, but 

these approaches will likely require more time, computational resources, and techniques of 

parallel programming.
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Conclusion

This study demonstrated the ability to increase the susceptibility contrast of T2*-weighted 

magnitude images using deep learning in the form of conditional GANs to generate 

synthetic SWI images. Both visual and quantitative analyses revealed that our network could 

learn the added susceptibility contrast present in both normal brain vasculature and CMBs 

without generating susceptibility-induced artifacts such as residual phase wraps. Although 

further improvement is still needed to match the full extent of SWI contrast, these synthetic 

images may be useful for more accurately estimating CMB burden of a patient in the 

clinic when the phase information was not saved, preventing the generation of SWI images 

using standard processing methods. While this work sought to address the logistical issue 

of unavailability of phase information with T2*-weighted acquisitions that is a common 

occurrence in clinical trials, modifications of this deep learning approach could also be used 

in the future to synthesize phase data from a shorter acquisition consisting of fewer echoes 

and shorter TEs.
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Figure 1. Image processing.
A. whole magnitude image, after removing artifacts due to a prior resection cavity and tumor 

for input in training. B. zoomed magnitude image, C. zoomed SWI, D. zoomed difference 

image of SWI and magnitude image, D. zoomed vessel and CMB-masked SWI, E. zoomed 

CMB-masked SWI.
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Figure 2. Networks and training method.
A. GAN, B. UNet Generator structure, C. CNN Discriminator structure.
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Figure 3. Overview of hyperparameter optimization.
A. Search spaces for hyperparameter tuning (left) are shown with the final selected 

parameters (right). B. History plot of SSIM values across trials. Each blue dot represents 

a model training with different hyperparameter values. The red dot corresponds to the best 

experiment in the optimization process.
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Figure 4. SSIM values across the hyperparameter search space.
A. Categorical hyperparameters and corresponding SSIM between CMB-masked predicted 

and original SWI in the validation set. B. Continuous hyperparameters and corresponding 

SSIM values. Each dot corresponds to a different trial in the optimization process. Blue 

dots represent the experiments when other hyperparameters are in the range of high 

SSIM yielding values whereas light green dot represent the best experiment among all 

experiments.
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Figure 5. Visual representation of the predicted SWI.
A. Representative multiple slice examples of the input magnitude image, original SWI, 

predicted SWI, their mIPs, and difference images from the predicted. B. Magnified view of 

the images in a region of small hypointense pathology.
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Figure 6. Rating and Classification Results.
A. Violin plots of ratings. B. Confusion matrices of rater classifications.
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Figure 7. Line Profile Analysis.
A and C are for CMB and vessel line profiles for a poorly predicted SWI. A. Input, original, 

and predicted images annotated in red along the trajectory of the line profile. C. Line 

profiles for a small CMB, large CMB, small vessel and large vessel. B and D are for CMB 

and vessel line profiles for a well-predicted SWI. B. Input, original, and predicted images 

annotated in red along the trajectory of the line profile. D. Line profiles for a small CMB, 

large CMB, small vessel and large vessel.
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Figure 8. Differences in SSIM values and CMB count across images.
A-C. Comparison of SSIM values of the predicted SWI vs original SWI and magnitude 

image vs original SWI for (A) whole-brain images, (B) CMB and vessel-masked images, 

and (C) brain tissue masked images. D. Boxplots showing the number of CMBs detected 

on the input magnitude image, original and predicted SWI images using semi-automated 

detection.
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Table 1.

Mean values of SSIM, PSNR and NMSE for the whole brain, vascular structures, and brain tissue regions 

from images in the test set.

Metric Comparison Whole Brain Vascular Structures Brain tissue

SSIM M/O 0.970 0.994 0.9861

P/O 0.972 0.995 0.9864

PSNR M/O 37.693 40.087 39.067

P/O 38.039 40.619 39.352

NMSE M/O 0.013 0.056 0.0108

P/O 0.012 0.049 0.0101

SSIM: Structural similarity index, PSNR: Peak signal to noise ratio, NMSE: Normalized mean square error, M/O = magnitude vs. original SWI, 
P/O = predicted vs. original SWI.
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