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INTRODUCTION

Recent advances in medical and endovascular therapy have revolutionized stroke care. Intravenous
thrombolysis (IVT) with tissue plasminogen activator (tPA) was shown to be effective for acute
ischemic stroke (AIS) within 3 h of symptom onset in 1995 (1). Subsequent studies extended the
time window to 4.5 h (2, 3). However, IV tPA was not very effective for stroke from large vessel
occlusion (LVO) (4, 5).

Endovascular thrombectomy (EVT) was originally reported for patients with AIS from LVO
in early 2000s (6–8). In 2013, 3 prospective, multi-center randomized controlled trials (RCTs),
including the Interventional Management of Stroke (IMS) III (9), Mechanical Retrieval and
Recanalization of Stroke Clots Using Embolectomy (MR RESCUE) (10), and Intra-Arterial
vs. Systemic Thrombolysis for Acute Ischemic Stroke (SYNTHESIS EXP) (11), failed to show
significant clinical benefit of EVT over standard medical therapy. No mandatory requirement for
vascular imaging to screen for LVO (9, 11), nascent devices (9–11), and slow enrollment (10) may
be the major limitations of these studies. However, a post hoc analysis of data from IMS III showed
significant outcome benefit of EVT in the subgroup of patients with proven LVO (12).

In 2015, 5 RCTs independently demonstrated the safety and efficacy of EVT for AIS from LVO in
the anterior circulation within 6–12 h of symptom onset (13–17). Three additional studies reported
similar findings in 2016 (18–20). In early 2018, DWI or CTP Assessment with Clinical Mismatch
in the Triage of Wake-Up and Late Presenting Strokes Undergoing Neurointervention (DAWN)
and Endovascular Therapy Following Imaging Evaluation for Ischemic Stroke (DEFUSE 3) trials
extended the time window to 16–24 h after last known well (21, 22). These studies also showed that
thrombectomy during the extended time window was not associated with significant higher risk of
symptomatic intracranial hemorrhage (sICH) (21, 22).

In this review, we seek to appraise various imaging modalities used in the landmark studies and
to propose a simple and efficient imaging guide for EVT in the real-world practice.

Imaging Modalities Used in Landmark RCTs
There were great variabilities in the use of imaging tools for patient selection in the recent RCTs.
The key inclusion/exclusion criteria, main imaging modalities, and the thrombectomy devices
used in the landmark studies are summarized in Table 1. Non-contrast CT and CTA were used
to select patients with severe deficit and low infarct volume from LVO in most of the clinical trials
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(13, 15–20, 22). Advanced imaging tools, including CT perfusion
(CTP), diffusion/perfusion MRI, and MRA, were used to identify
patients with perfusion mismatch (i.e., small infarct and large
ischemic penumbra) in EXTEND-IA, SWIFT PRIME, DEFUSE
3, and EXTEND-IA TNK trials (14, 17, 22, 23), or clinical-
imaging mismatch (i.e., severe deficit and small infarct volume)
in the DAWN trial (21). In ESCAPE trial, multiphase CTA was
used to evaluate the extent of collateral circulation and patients
with no or minimal collaterals were excluded from the study (15).

CT and Alberta Stroke Program Early CT
Score (ASPECTS)
Non-contrast CT is widely available and can be performed
within a few minutes of arrival. It is very sensitive in detecting
hemorrhage (24, 25). During the first few hours of AIS, non-
contrast CT is usually normal. A visible hypoattenuation on the
CT is often irreversible (25). ASPECTS was developed to quantify
early ischemic changes on non-contrast CT (26, 27). The scoring
system divides the MCA territory into 10 zones on 2 axial CT
slices at the levels of basal ganglion and the superior ganglionic
margin (26). One point is subtracted for early ischemic change
in each zone. A normal CT scan without any sign of ischemic
change gets 10 points as shown in Figure 1. A score of 0 indicates
diffuse ischemic changes in the entire MCA territory (26, 27).

ASPECTS can also be derived from CT angiographic (CTA)
source image (28) or DWI image (16, 17, 29). CTA source image-
and DWI-ASPECTS are more sensitive than non-contrast CT
in the detection of early ischemic changes and prediction of
final infarct volume (28, 29). The limitation of MRI is that it
cannot be performed timely for acute stroke therapy at some
medical centers.

Of note, ASPECTS score has a few limitations. First, it is
limited to the anterior circulation (26). Second, it is based on
anatomical structure with an unequal weighing of brain regions
(30, 31). Its correlation with lesion volume is dependent on lesion
location (31, 32). Last, it has poor sensitivity and inter-rater

Abbreviations: AIS, acute ischemic stroke; ASPECTS, Alberta Stroke Program

Early CT Score; CT, computed tomography; EVT, endovascular thrombectomy;

IQR, interquartile range; IVT, intravenous thrombolysis; OTT; onset to treatment

time; RCTs, randomized controlled trials; sICH, symptomatic intracranial

hemorrhage; tPA, tissue plasminogen activator; DAWN, Diffusion Weighted

Imaging (DWI) or Computerized Tomography Perfusion (CTP) Assessment

with Clinical Mismatch in the Triage of Wake Up and Late Presenting Strokes

Undergoing Neurointervention; DEFUSE 3, Endovascular Therapy Following

Imaging Evaluation for Ischemic Stroke; ESCAPE, Endovascular Treatment

for Small Core and Anterior Circulation Proximal Occlusion with Emphasis

on Minimizing CT to Recanalization Times; EXTEND-IA, Extending the

Time for Thrombolysis in Emergency Neurological Deficits—Intra-Arterial

trial; IMS III, Interventional Management of Stroke III trial; MR CLEAN,

Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute

Ischemic Stroke in the Netherlands; MR RESCUE, Mechanical Retrieval and

Recanalization of Stroke Clots Using Embolectomy; REVASCAT, Randomized

Trial of Revascularization with Solitaire FR Device vs.Best Medical Therapy

in the Treatment of Acute Stroke Due to Anterior Circulation Large Vessel

Occlusion Presenting Within 8 h of Symptom Onset; SWIFT PRIME, Solitaire

with the Intention for Thrombectomy as Primary Endovascular Treatment trial;

SYNTHESIS EXP, Intra-Arterial vs. Systemic Thrombolysis for Acute Ischemic

Stroke (SYNTHESIS EXP) trial; THERAPY, The Randomized, Concurrent

Controlled Trial to Assess the Penumbra System’s Safety and Effectiveness in the

Treatment of Acute Stroke.

reliability for early ischemic changes (32, 33). However, the lower
inter-rater reliability can be overcome by training (34).

ASPECTS score was found to be a strong predictor of clinical
outcome after EVT (13, 16, 35). There was no difference in
outcome between patients with ASPECTS 6-7 and 8-10 (16). A
meta-analysis of the pooled data from the 5 landmark studies
published in 2015 showed a clear benefit of thrombectomy in
patients with ASPECT ≥ 6 (35). When the treatment effect was
analyzed for the 3 ASPECTS strata of 0–5, 6–8, and 9–10, there
was a strong and consistent treatment effect for both ASPECTS
6–8 and 9–10 group with an adjusted odds ratio of 2.34 (95% CI:
1.68–3.26) and 2.66 (95% CI: 1.61–4.40), respectively (35). There
was no clear benefit for the 121 patients with ASPECT 0–5. These
findings appear to have validated the use of ASPECTS score 6–10
as surrogate marker of small infarct volume.

CT Angiography (CTA) for Screening
for LVO
CTA of head and neck is a contrast study with high sensitivity and
specificity for evaluation of cerebral vasculature and LVO (36). It
also provides important information on collaterals, aortic arch,
and cerebral ischemia (37–40). CTA may help interventionist to
choose treatment strategy and reduce puncture-to-reperfusion
time (39).

Decreased contrast enhancement on CTA source images is
indicative of reduced cerebral blood volume (CBV) (34). CTA
source images are more sensitive in predicting final infarct
volume and outcome than non-contrast CT (28, 38, 40). Of note,
slow contrast injection and quick image acquisition can lead to
an overestimation of the infarct size (41).

Most landmark studies used CTA to select patients with severe
deficit from LVO for EVT (13–22).

CTA for Assessment of
Collateral Circulation
Collateral circulations are highly variable among patients (38,
42). They directly affect the size of ischemic penumbra and infarct
progression after LVO (37, 42–44). CTA is the most commonly
used imaging modality to assess collaterals (42). Multiphase CTA
is better than conventional CTA because of the ability to examine
collateral flow with time resolution (38). Dynamic CTA is able to
evaluate time to retrograde filling and visualize distal branches of
the cerebral artery trees. Digital subtraction angiography remains
the gold standard given its triphasic evaluation of arterial,
capillary, and venous circulation with high temporal and spatial
resolution (38, 39). The degree of leptomeningeal collaterals
can be semi-quantified by comparing the retrograde pial arterial
filling to the contralateral hemisphere (37, 43). Amajor limitation
of collateral assessment on CTA is that it is a single snap shot
in time of contrast and may misdiagnose adequate collaterals as
poor if the image is acquired early in the arterial phase (42, 43).

Optimal collateral circulation is associated with slower infarct
progression and may allow for EVT outside of the traditional
time window (43, 45). A good leptomeningeal collateral flow
is associated with better outcome, lower rates of sICH and
mortality after EVT (42, 44, 46, 47). A large infarct core and poor
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TABLE 1 | Landmark studies of EVT for AIS from LVO in the anterior circulation.

Study Patient (n) Key inclusion criteria Key exclusion criteria Main imaging

modalities

EVT devices

MR CLEAN (13) 233 Age ≥ 18, NIHSS ≥ 2, LVO,

IVT < 4.5 h, EVT < 6 h

BP > 185/110 mmHg,

coagulopathy, active or recent

hemorrhage

CT, CTA, CT perfusion

(68%)

Retrievable stent

EXTEND-IA (14) 35 Age ≥ 18, NIHSS≥ 6, LVO,

IVT < 4.5 h, ischemic core <

70mL, mismatch volume ≥

10mL,

EVT < 6 h

Intracranial hemorrhage, any

terminal illness

CT, CTA, CT perfusion Solitaire device

ESCAPE (15) 165 Age ≥ 18, NIHSS ≥ 5, LVO,

IVT < 4.5 h, small infarct core,

EVT < 12 h

ASPECTS 0-5,

no or minimal collaterals

CT, CTA Available

thrombectomy

device

SWIFT PRIME (16) 98 Age 18–80, NIHSS 8–29, LVO,

IVT < 4.5 h, small to moderate

infarct core,

EVT < 6 h

Hemorrhage, tumor or vacuities

on CT or MRI,

> 1/3 MCA territory or 100ml

infarct, DWI-ASPECTS ≤ 5

CT, CTA, CT perfusion Solitaire stent

retriever

REVASCAT (17) 103 Age 18–80, NIHSS ≥ 6, LVO,

IVT < 4.5 h, EVT < 8 h

Large ischemic core (ASPECTS

≤ 7 on CT or 6 on DWI MRI)

CT, CTA, MRI Solitaire stent

retriever

THERAPY (18) 108 Age 18–85, NIHSS ≥ 8, LVO, ≥

8mm clot length

> 1/3 MCA territory infarct,

cervical ICA stenosis/occlusion

CT, CTA Penumbra

THRACE (19) 414 Age 18–80, NIHSS 10-25, LVO,

IVT < 4 h, EVT < 5 h

Cervical ICA stenosis/occlusion CT, CTA, or MRA/MRI Stent retriever,

Penumbra

PISTE (20) 65 Age ≥18, NIHSS ≥ 6, LVO, IVT

< 4.5 h, EVT < 6 h

Contraindicated for IVT, > 1/3

MCA territory infarct,

CT, CTA Stent retriever,

Penumbra

DAWN (21) 107 Age ≥ 18, NIHSS ≥ 10, LVO,

small infarct core (< 1/3 MCA

territory), a mismatch between

clinical deficit and infarct volume

EVT 6–24 h

Rapid improvement in neuro

status, active or recent

hemorrhage, Coagulopathy

CT, CTA, MRA, CT

perfusion, MR

perfusion/diffusion

Trevo retriever,

Solitaire, or

Penumbra

DEFUSE 3 (22) 92 Age 18–85, NIHSSS ≥ 6, LVO,

ischemic core < 70ml,

mismatch ratio > 1.8, mismatch

volume ≥ 15ml, or DWI volume

< 25ml EVT 6-16 h

BP > 185/110 mmHg,

coagulopathy, ASPECTS score

< 6 on non-contrast CT

CT perfusion 75%, MR

perfusion/diffusion 25%

Trevo retriever

FIGURE 1 | Alberta Stroke Program Early Computed Tomography Score

(ASPECTS). The scoring system divides the MCA territory into 10 zones at

ganglionic and supra-ganglionic levels: 6 for cortical regions (M1- M6), and 4

subcortical regions (C, caudate; L, lentiform; IC, internal capsule; and I, insular

ribbon).

collaterals were shown to be strong predictors of poor functional
outcome (46, 47). Based on these findings, the ESCAPE trial
excluded patients with minimal or no pial collaterals (15).

Collateral assessment on CTA matched with the ASPECTS score
on non-contrast CT. Minimal or no pial collaterals in >50% of
MCA distribution was associated with an ASPECTS score of 5
or less (39). The DAWN and DEFUSE 3 trials demonstrated the
benefit of late recanalization within 16–24 h using clinical-infarct
mismatch profile indicative of good collaterals (21, 22).

Recent systemic review and meta-analysis have confirmed the
favorable impact of good collateral status on functional outcome
after EVT (44, 48, 49).

Magnetic Resonance Imaging (MRI) and
Magnetic Resonance Angiography (MRA)
MRI/MRA can also be used to evaluate AIS and LVO. Diffusion
weighted image (DWI) is highly sensitive and specific for the
detection of early ischemic changes within the first 6 h of
symptom onset (50–52). Early reversible ischemia has very
mild depression in apparent diffusion coefficient (ADC) due to
mild reduction in cerebral blood flow (CBF) (50, 51). Timely
reperfusion therapy may reverse diffusion abnormalities (52).
In the absence of reperfusion, diffusion abnormalities are often
irreversible (52, 53). A good stroke MR protocol should include
DWI, FLAIR, and SWI (33, 54).
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MRA is a good option for assessment of LVO and collateral
circulation (33, 55). Time-of-flight (TOF) and contrast-enhanced
(CE) MRA provide good vascular images through the neck and
the Circle ofWillis (55). CEMRA is performed with a rapid, short
repetition time gradient echo sequence following an IV bolus of
gadolinium. It is minimally invasive and offers better diagnostic
accuracy than TOF-MRA in localizing LVO (55).

MRI/MRA were used as imaging tools in a few landmark
studies (16, 17, 19–22).

In SWIFT PRIME and REVASCAT, 17.4% and 5.3% of patients
had MRI studies for patient screening (15, 16). The DAWN and
DEFUSE 3 trials used more advanced imaging tools, including
diffusion/perfusion MRI, for patient selection (21, 22).

Of note, the use of MRI/MRA for patient selection has some
drawbacks. It takes time to screen the patients for metallic
implants and to access the scanner (33, 54, 55). The images tend
to be more susceptible to patient motion. In addition, it is more
difficult to monitor unstable patients in the MRI suite (33, 54).

CT Perfusion (CTP) and
Diffusion/Perfusion MRI
Acute LVO may lead to significant reduction of cerebral blood
flow (CBF), resulting in a small irreversible infarct core and
surrounding area of ischemic tissue that may be salvaged with
prompt reperfusion (ischemic penumbra) (56, 57). Without
reperfusion, the infarct core can expand and reach the size of
the ischemic penumbra depending on duration of LVO and
collaterals (56, 57).

CTP is a dynamic contrast-enhanced study developed for the
analysis of the infarct core and ischemic penumbra per CBF,
mean transition time (MTT) and cerebral blood volume (CBV)
(58–62). The infarct core is defined as an area of brain tissue
with more than 70% reduction in CBF compared to normal
contralateral hemisphere and the ischemic penumbra is defined
as an area with > 6 s of delayed arrival of contrast (39, 59–62).
The ischemic penumbra is identified by amismatch between CBF
and CBV, whereas the infarct core has a matched decrease in
both CBF and CBV (61–64). The mismatch between infarct core
and penumbra is an indirect measurement of collateral blood
flow (49).

The diffusion/perfusion MRI is very sensitive in the detection
of infarct core and perfusion mismatch (51, 61, 65–70). MRI
may predict clinical response to early reperfusion therapy (65–
70). However, tissue at risk can be overestimated by perfusion-
weighted imaging (71).

Both CTP and MR perfusion images can be obtained with
high-speed CT and MR imaging systems within 10min (22,
61). The data processing is similar. CTP or diffusion/perfusion
MRI was used to assess infarct core and ischemic penumbra in
EXTEND-IA, SWIFT PRIME, EXTEND IA-TNK, DAWN, and
DEFUSE 3 (14, 16, 21–23).

CTP was performed in 66.8% of the patients in the MR
CLEAN trial (13). It was shown that a large infarct core was
associated with poor functional outcome. Both EXTEND-IA and
SWIFT-PRIME used CTP to select patients with small infarct
core (IQR 4–32 and 0–16ml, respectively) for EVT (Table 1)

(14, 16). Such strict selection criteria led to the highest rate
of favorable outcome ever reported with EVT (60 and 71%,
respectively) (14, 16). However, these studies may have excluded
patients who could benefit from EVT (16, 64, 72, 73).

The DAWN trial evaluated the safety and efficacy of EVT
for patients with LVO within 6–24 h of last known well (21).
Approximate 60% of the patients had wake-up stroke. The key
inclusion criteria were severe clinical deficit and a small infarct
core on MRI or CTP. The rate of functional independence at 90
days was 49% after EVT as compared to 13% in the control group.

In DEFUSE 3 trial, CTP was performed in 73% of the patients
and diffusion/perfusion MRI was done in the other 27% (22).
Inclusion criteria includes an initial infarct volume < 70ml, a
ratio of ischemic penumbra to infarct core≥ 1.8, and an absolute
mismatch ≥ 15ml. The study enrolled patients with perfusion
mismatch for EVT within 6–16 h after last known well. The rate
of functional independence at 90 days was significantly higher
than control group (45 vs. 17%) (22).

Both DAWN and DEFUSE 3 trials demonstrated significant
benefit of EVT within 16–24 h of last known well by selecting
patients with clinical-imaging mismatch (i.e., severe deficit and
small infarct core) per advanced imaging tools. The median
NIHSS score with IQR was 17 (13–21) and 16 (10–20) while
the median infarct core with IQR was 7.6 (2–18) and 9.4 (2.3–
25.6) ml, respectively (Table 2) (21, 22). These results led to
a paradigm shift from “time window” to “tissue window” per
advanced perfusion imaging.

TABLE 2 | Clinical-infarct volume mismatch as eligibility criteria for EVT in recent

landmark studies.

Median

NIHSS (IQR)

Median

ASPECTS

(IQR)

Median infarct

core per

advanced

imaging-ml

(IQR)a

sICHb

(%)

Favorable

outcome

(%)

MR CLEAN

(13)

17 (14–21) 9 (7–10) - 7.7 33

EXTEND-IA

(14)

17 (13–20) NR 12 (4–32) 0 71

ESCAPE (15) 16 (13–20) 9 (8–10) - 3.6 53

SWIFT PRIME

(16)

17 (13–20) 9 (8–10) 6 (0–16) 1.0 60

REVASCAT

(17)

17 (14–20) 7 (6–9) - 1.9 44

THERAPY

(18)

17 (14–21) 7.5 (6–9) - 9.3 38

THRACE (19) 18 (15–21) 5–10 - 2 53

PISTE (20) 18 (6–24) 5–10 - 0 51

DAWN (21) 17 (13–21) NR 7.6 (2.0–18.0) 6 49

DEFUSE

3(22)

16 (10–20) 8 (7–9) 9.4 (2.3–25.6) 7 45

IQR, interquartile range; NR, not reported.
aAdvanced imaging of perfusion CT or diffusion/perfusion MRI was used to quantify infarct

core and ischemic penumbra (14, 16, 21, 22).
bsICH was defined as intraparenchymal hematoma, subarachnoid hemorrhage, or

intraventricular hemorrhage associated with a worsening of the NIHSS score by≥ 4 points

within 24 h (3).
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Patient Selection per Perfusion Imaging
and Beyond
Recent studies suggested that the selection criteria per advanced
perfusion imaging in Dawn and DEFUSE 3 trials may have
excluded a significant proportion of patients who could benefit
from EVT. In a single center study of 79 patients comparing
admission infarct core per CTP and final infarct on followup
CT, Boned et al. showed that CTP overestimated infarct core for
more than 10mL in 38% of the patients (72). Therefore, CTP-
based patient selectionmay deny treatment to patients whomight
benefit from reperfusion therapy. In a matched case-controlled
study of patients with LVO on CTA and baseline ischemic core
>50mL on CTP, EVT was associated with significantly improved
functional outcome at 90 days (73). In a study of prospectively
collected data, 38% of the DAWN-ineligible patients and 41% of
DEFUSE 3- ineligible patients achieved functional independency
at 90 days after EVT (74). In another retrospective study, 30% of
DAWN and/or DEFUSE-3 ineligible patients achieved functional
independence after off-label EVT (75). Two additional studies
showed that EVT could benefit patients with large infarct core
(DWI-ASPECTS ≤ 5 or DWI lesion > 70mL) (76, 77). EVT was
also reported to be safe and effective for patients who met all
DAWN trial criteria but were treated beyond 24 h of last known
well (78).

Figure 2 showed a typical example of EVT for wake-
up stroke from middle cerebral artery occlusion. CTP or
diffusion/perfusion MRI may be unnecessary in clinical practice
in appropriately selected patients (13, 15–20).

Major Complication of EVT: Symptomatic
Intracranial Hemorrhage (sICH)
The periprocedural sICH is the most feared complication of
EVT (13–22, 57). Early pathophysiological responses to sudden
LVO are distal vasodilation to compensate for dramatic reduction
in tissue perfusion and subsequent loss of vascular reactivity.
Reperfusion leads to blood overflow into the dilated vasculature,
resulting in hyperperfusion, cerebral edema, capillary leak, or
hemorrhage (57, 79). Endothelial cell injury and impairment
of the blood-brain barrier (BBB) are likely the underlying
mechanism of ICH (79). The primary predictors of sICH are
infarct volume (80), low CBV (70), and severely delayed CBF
due to poor collaterals (81). Intensive management of high blood
pressure may reduce the risk of reperfusion injury and sICH (82).

The rate of sICH from EVT ranged from 0 to 9.3% in the 10
RCTs (Table 2). That was comparable to the risk of sICH in the
medical arms (13–22). Meta-analysis of data from the 5 landmark
studies published in 2015 showed that the rate of sICH increased
only slightly with delayed EVT (35). EVT within 16–24 h of last
known well was not associated with significant higher rate of
sICH (21, 22).

Perspectives: From Time Window to
Perfusion Mismatch and Beyond
Advanced perfusion imaging used in the 4 landmark studies has
helped demonstrating the best treatment effect of EVT (14, 16).
and extending the treatment window up to 16–24 h of last known
well (21, 22). However, the median infarct core was only 12,

FIGURE 2 | Endovascular thrombectomy for wake-up stroke. A 44 years old man woke up with right sided weakness and global aphasia. Last known well was 8 p.m.

the night before. NIHSS score was 15. Non-contrast CT showed subtle left frontal hypodensity with ASPECTS of 8 (A). CTA showed L MCA M1 occlusion (B) and CTP

revealed a large ischemic penumbra (C). He underwent thrombectomy with excellent MCA recanalization (D,E). Follow-up MRI (F) showed an infarct in the left frontal

region that was similar in size to the hypodense area on non-contrast CT and infarct core on CTP. He recovered well with only mild expressive aphasia at 3 month.
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6, 7.6, and 9.4ml in EXTEND-IA, SWIFT PRIME, DAWN,
and DEFUSE 3 trials, respectively, (Table 2) (14, 16, 21, 22), as
compared to 49.7ml in MR CLEAN (13, 83). Therefore, the best
treatment effect in the studies using advance perfusion imaging
is likely the results of strict selection of patients with small infarct
core for EVT (14, 16, 21, 22). There are increasing evidence to
suggest the limitations of advanced imaging modalities in the
real-world practice.

First, in a recent systematic review and meta-analysis of
individual patient data from all recent RCTs that compared
EVT with standard medical therapy, perfusion mismatch was
not associated with either functional independence or functional
improvement (84). Patient should not be excluded from EVT
within 6 h of stroke onset purely on the basis of a large estimated
ischemic core.

Second, the use of perfusion imaging for patient selection
may cause delay in reperfusion therapy (22, 55). In a meta-
analysis of pooled data from the 5 RCTs published in 2015,
earlier treatment with EVT was associated with lower degrees of
disability (84). The more recent meta-analysis showed that 30-
min delay in imaging-to-reperfusion time had a similar adverse
effect on functional outcome as a 10-ml increase in ischemic
core volume (85). In a recent cohort study, the use of advanced
modality imaging was shown to delay EVTwithout improvement
in clinical outcomes (86).

Third, the selection criteria per advanced perfusion imaging
may exclude a significant proportion of eligible patients (16,
73–77). CTP and MRI diffusion/perfusion were shown to
overestimate infarct core (71, 72). A number of recent studies

demonstrated that thrombectomy may benefit DAWN and/or
DEFUSE-3 ineligible patients (73–77).

Last, perfusion imaging capability is not readily available, in
particular, in developing regions. A significant proportion of
eligible patients world-wide would be deprived from the proven
therapy if perfusion imaging criteria be strictly adhered to in
clinical practice.

When designing clinical trials, it makes sense to use advanced
imaging tools for patient selection in order to achieve the best
treatment effect in small sample size studies. Since EVT has
been independently proven effective by 10 RCTs (13–22), it is
imperative to provide the therapy to all eligible patients in the
fastest puncture-to-reperfusion time.

Of the 10 RCTs that independently demonstrated the powerful
efficacy of EVT, 8 validated the use of ASPECTS score for
the assessment of early infarct (13, 15, 17–20, 22). As shown
in Table 2, clinical-imaging mismatch (i.e., high NIHSS and
ASPECTS) is clearly a good indication for EVT in the real-
world practice.

Proposed Simple Imaging Guide for EVT
The ideal imaging guide for decision-making for EVT should be
widely available, quick to perform and interpret, and sensitive for
the detection of early infarct, LVO and collaterals (13–22, 39).

NIHSS is a good surrogate marker for clinical deficit (87, 88)
and ASPECTS has been validated for the assessment of early
infarct in the anterior circulation (13, 15, 17–20, 22, 35). As
shown in Table 1, all of the 10 recent RCTs used NIHSS scores as

FIGURE 3 | Proposed simple imaging guide for endovascular thrombectomy.
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eligibility criteria (≥2, ≥5, ≥6, ≥8, ≥10, 8–29, and 10–25) (13–
22). From these studies, there are insufficient data to determine
whether there is an overall net benefit from EVT in patients
with NIHSS score 2–5 (13, 15, 89). A NIHSS score ≥ 6 was the
minimum used in 4 trials (14, 17, 20, 22), fulfilling the AHA’s
Level of A evidence. The other 4 trials used higher NIHSS score
(≥ 8) (16, 18, 19, 21). Meta-analysis of the pooled data from the 5
RCTs published in 2015 showed strong efficacy of thrombectomy
in patients with ASPECTS ≥ 6 (35). Therefore, NIHSS ≥6 and
ASPECTS ≥ 6 from LVO are evidence-based cut-off values for
timely decision-making for thrombectomy (90, 91).

Based on data from recent landmark studies, we propose the
following simple and efficient imaging guide for decision-making
for EVT (Figure 3). In patients with suspected acute ischemic
stroke, non-contrast CT is performed to assess IV tPA eligibility
and ASPECTS score. CTA is then performed to evaluate LVO and
collaterals. In patients with significant clinical-imagingmismatch
(NIHSS ≥ 6 and ASPECTS ≥ 6) from LVO, EVT should
be considered immediately per AHA guidelines (90, 91). In
patients without clinical-imaging mismatch (NIHSS ≥ 6 and
ASPECTS≤ 5), advanced perfusion imaging is recommended to
identify salvageable ischemic penumbra. This simple and efficient
imaging protocol may lead to EVT for most eligible patients in
the fastest onset-to-reperfusion time. Two recent studies have
shown the safety and effectiveness of simplified imaging protocol
in patients with wake-up or late presenting stroke (89, 92).

Of note, ASPECTS has low inter-rater reliability, especially
in early time window (32, 33, 93). For patients with a high
ASPECTS and a LVO on CTA, the ASPECTS-based guideline
is an easy and fast protocol to safeguard earliest treatment.
In cases with low ASPECTS (≤ 5) or uncertain eligibility, a
multimodal imaging study should be used to rescue patients with
salvageable ischemia.

CONCLUSION

EVT is a proven therapy for appropriately selected patients with
AIS from LVO up to 24 h of symptom onset (13–22). Although
advanced perfusion imaging may better define infarct core and
ischemic penumbra, they have a number of limitations for the
real-world practice. A simple imaging protocol with non-contrast
CT and CTA to identify clinical-imaging mismatch (NIHSS ≥

6 and ASPECTS≥ 6) from LVOmay be the best guide for EVT in
clinical practice. Advanced perfusion imaging is recommended in
patients with large infarct core to identify additional candidates
for the best possible care.
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