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Summary
1
Docking calculations can accelerate drug discovery by predicting the bound poses of ligands for a 

targeted protein. However, it is not clear which docking methods work best. Furthermore, 

predicting poses requires steps outside the docking algorithm itself, such as preparation of the 

protein and ligand, and it is not known which components are most in need of improvement. The 

Continuous Evaluation of Ligand Protein Predictions (CELPP) is a blinded prediction challenge 

designed to address these issues. Participants create a workflow to predict protein-ligand binding 

poses, which is then tasked with predicting 10–100 new protein-ligand crystal structures each 

week. CELPP evaluates the accuracy of each workflow’s predictions and posts the scores online. 

The results can be used to identify the strengths and weaknesses of current approaches, help map 

docking problems to the algorithms most likely to overcome them and illuminate areas of unmet 

need in structure-guided drug design.

Graphical Abstract

2 INTRODUCTION

The discovery of a small molecule that binds a disease-related protein with high affinity is a 

key step in many drug discovery projects. The process is perhaps most efficient when a high-

resolution structure of the targeted protein is available, such as from X-ray crystallography, 

because then structure-based computational methods may be used to accelerate the 

discovery of high affinity ligands (Amaro et al., 2018; Anna et al., 2017; Bartuzi et al., 2017; 
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Ganesan and Barakat, 2017; Kuhn et al., 2016; Leelananda and Lindert, 2016; Lybrand, 

1995; Raghavendra et al., 2018; Rosenfeld et al., 1995; Santiago et al., 2017; Sledz and 

Caflisch, 2017; Sliwoski et al., 2014). The computational challenge of structure-based ligand 

design comprises two main components. One is prediction of the bound conformation, or 

pose, of a candidate ligand, typically by fast, ligand-protein docking algorithms (Amaro et 

al., 2008; Chen et al., 2003; Cheng et al., 2012; Doman et al., 2002; Ewing and Kuntz, 1997; 

Goodsell et al., 1996; Goodsell and Olson, 1990; Guedes et al., 2014; Knegtel et al., 1997; 

Kuntz, 1992; McGann et al., 2002; Sinko et al., 2013; Sousa et al., 2006; Trott and Olson, 

2009; Yuriev et al., 2015). The second involves using the predicted pose to assess the 

candidate ligand’s binding affinity for the targeted protein. Both components have been the 

subject of intensive research and development in both academic and commercial settings 

(Beck et al., 2017; Ciancetta and Jacobson, 2017; Hodos et al., 2016; Kim et al., 2017; Li et 

al., 2018; Mafud et al., 2016; Martinez-Mayorga et al., 2015; Medina-Franco et al., 2015; 

Morgnanesi et al., 2015; Ogungbe and Setzer, 2016; Rosano et al., 2016; Shunmugam et al., 

2017; Singh and Ecker, 2018; Tan et al., 2016; Topiol and Sabio, 2015; Zhu et al., 2015). 

Nonetheless, computational methods for pose prediction and affinity ranking have yet to 

fulfill their perceived promise, as neither is yet fully reliable (Gaieb et al., 2017; Gaieb et al., 

2019; Gathiaka et al., 2016; Muddana et al., 2012; Muddana et al., 2014; Warren et al., 

2006; Yin et al., 2017). It is difficult even to compare the reliability of various methods in a 

consistent manner, so it is correspondingly difficult to make and verify technical progress.

The challenge of rigorously comparing methods derives in part from the difficulty of 

reproducing the complicated end-to-end computations required for pose and affinity 

prediction (Jansen et al., 2012). This problem has generated growing interest in automated 

workflows that clearly memorialize a method (Balasubramanian et al., 2016; Beisken et al., 

2013; Dakka et al., 2018; Pronk et al., 2015; Purawat et al., 2017). Also, although many 

performance comparisons have been published, the results can be difficult to interpret (Abel 

et al., 2017; Cole et al., 2005; Corbeil et al., 2012; Damm-Ganamet et al., 2013; Grinter and 

Zou, 2014; Irwin, 2008; Jain, 2008; McGann, 2012; Mobley and Dill, 2009; Neves et al., 

2012; Spitzer and Jain, 2012; Warren et al., 2006). Thus, descriptions of new docking 

algorithms may include comparisons with existing methods, but the comparison is often 

secondary to the description of the new algorithm and hence not fully developed. 

Additionally, different methods are typically tested against different sets of protein-ligand 

complexes, so a consistent set of comparisons may not be available. Finally, studies that 

benchmark multiple methods against a common dataset, the data often include protein-

ligand cocrystal structures that have already been published. Such retrospective studies risk 

unintentional bias, and the tests may include structures that were used in training the 

docking algorithms(Weiss et al., 2016).

Several initiatives have addressed these limitations through prospective, or blinded, 

prediction challenges. In such challenges, researchers evaluate methods against a common 

set of test cases for which the experimental structures are withheld until after the 

computational predictions have been made. Prior blinded challenges include the GSK 

challenge(Warren et al., 2006), CSAR (Carlson, 2016; Carlson et al., 2016; Damm-Ganamet 

et al., 2013; Smith et al., 2016; Smith et al., 2011), and GPCRDOCK (Kufareva et al., 2014; 

Kufareva et al., 2011; Michino et al., 2009). Similarly, in recent years, the Drug Design 
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Resource (D3R) has run blinded prediction challenges called the Grand Challenges (Gaieb 

et al., 2017; Gathiaka et al., 2016). These efforts have provided insight about best practices 

and sometimes unexpected results regarding the effectiveness of various technical 

approaches. However, the challenges to date are not been large enough to afford statistically 

meaningful distinctions among individual methods or to support an efficient cycle of 

development and evaluation that can accelerate progress in the field.

Here, we introduce Continuous Evaluation of Ligand Protein Predictions (CELPP), a new 

blinded prediction challenge which overcomes these limitations. CELPP uses the Protein 

Data Bank’s (PDB) (Berman et al., 2003; Berman et al., 2000; Burley et al., 2018; Rose et 

al., 2017; Young et al., 2017) weekly publication of a list of structures slated for imminent to 

drive a weekly, pose-prediction challenge akin to the Continuous Automated Model 

Evaluation (CAMEO) protein structure prediction challenge (Haas et al., 2017), which 

served as its inspiration. Here, we detail the challenge, the automation used to enable smooth 

weekly operations, initial results for a number of docking workflows, and implications and 

directions for this community science project.

3 RESULTS

3.1 OVERVIEW OF THE CELPP BLINDED CROSS-DOCKING CHALLENGE

Each week (Figure 1), in-house CELPP scripts download the list of new PDB entries to be 

released five days later and identify those with protein-small molecule cocrystal structures 

suitable for automated docking calculations (https://github.com/drugdata/D3R). At this 

stage, the only information available about each of these structures, called target complexes, 

is the identity of the ligand, the amino acid sequence of the protein, and the pH of the 

crystallographic mother liquor. Additional scripts then search the PDB for crystal structures 

of each target protein and extract up to five structures appropriate for docking calculations 

(STAR Methods: Selection of target complexes and receptor structures). These structures are 

incorporated into the weekly CELPP data package, along with the ligand identities, 

crystallization pH values, and additional information (STAR Methods: Generation of the 

challenge data package). CELPP participants download the data package, run their own 

workflows to predict the ligand binding poses, and submit their predictions to a personal, 

password-protected web directory before the deadline, which is shortly before release of the 

new PDB entries containing the actual crystallographic poses. Following the deadline, D3R 

scripts evaluate the submitted predictions, send the evaluation results to each participant, and 

add the results to running statistics available online (http://drugdesigndata.org/about/celpp).

Thus, CELPP presents what is known as a cross-docking challenge, where the protein 

structure into which the ligand is docked was previously determined either with a different 

ligand or with no ligand at all (Kumar and Zhang, 2017; Shamsara, 2016; Yuriev et al., 

2015). This may be contrasted with the self-docking problem, in which the ligand is docked 

back into the protein structure resolved in complex with the same ligand. Cross-docking is 

typically more difficult, because the protein structure has not adapted to the ligand being 

docked and may be in a conformation that the ligand does not fit well. However, cross-

docking is a more important problem than self-docking, because it models the real-world 
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applications of docking methods, where the entire purpose of docking is to avoid having to 

determine cocrystal structures for every ligand of interest in a drug discovery project.

The success of a docking calculation depends not only on the algorithm itself, but also on 

other methods and parameters in the overall workflow. For example, in cross-docking, one 

of the most important decisions is what existing structure of the protein to use in the 

calculation (Gaieb et al., 2017; Gathiaka et al., 2016). Additional issues arise in the 

preparation of the protein and ligand structures for docking. For the protein, it is often 

necessary to decide how to resolve ambiguous electron density, whether to remove or retain 

crystallographic waters, how to account for possible crystallization artifacts resulting from 

crystal contacts and non-physiologic temperatures, whether to select alternate side-chain 

conformations, and how to set the protonation states of titratable residues (Alonso et al., 

2006; Corbeil et al., 2012; Dolinsky et al., 2007; Forli, 2015; Sastry et al., 2013). For the 

ligand, issues may include assignment of protonation and tautomer states, and the 

conformations of flexible rings (Ebejer et al., 2012; Irwin and Shoichet, 2005; Sastry et al., 

2013).

3.2 SCALE AND CHARACTER OF THE CELPP CHALLENGE

During a 66-week period spanning parts of 2017 and 2018, 1,989 targets met the CELPP 

criteria (STAR Methods: Selection of target complexes and receptor structures) and were 

submitted to outside participants and our in-house workflows (STAR Methods: Baseline 

Docking Workflows). To permit meaningful comparisons and reduce the number of test 

cases with unrecognized problems, such as an artifactual binding site at a crystal-induced 

interface, the statistic here only includes targets for which at least 3 workflows submitted 

predictions in the LMCSS category, and at least one LMCSS prediction achieved an RMSD 

under 8 Å (Table S1).

Future analyses will allow more sophisticated selections and comparisons. Most weeks saw 

20–50 targets, and the maximum number of targets per week has remained below 100 

(Figure 2, top). The ligands to be docked had an average of 27 heavy atoms and 5 rotatable 

bonds. The distributions of these descriptors are provided in the bottom panel of Figure 2 

and the full list of PDB IDs and ligand SMILES strings is provided in the SI. In some cases, 

the selection criteria for the candidate categories yielded the same PDB structure in different 

categories for a target complex. For example, the PDB structure with the largest maximum 

common substructure (LMCSS) to the target ligand may also be the one with the highest 

Tanimoto similarity index (hiTanimoto). The frequency of these overlaps is shown in Figure 

S1. Because apo structures are not always available, there are fewer candidate structures in 

that category.

3.3 POSE PREDICTION PERFORMANCE TO DATE

The performance records of three anonymous early-adopting external participants (one of 

them submitting the results from two distinct workflows) and the four in-house workflows 

over a 66-week period spanning 2017 and 2018 enable informative and illustrative analyses. 

Previous studies of pose prediction have generally considered a ligand RMSD within 2 Å of 

the crystal pose to be useful for compound design (Gaieb et al., 2017; Gathiaka et al., 2016; 
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Trott and Olson, 2009; Warren et al., 2006). In the CELPP dataset, the median prediction 

RMSD for the best-case prediction categories (LMCSS and hiTanimoto) is around 5 Å 

(Figure 3, middle). In these categories at best 20% of pose predictions are accurate to within 

2 Å RMSD, and only about 40% are accurate to within 4 Å RMSD (Figure S2). These rates 

are significantly worse than those seen in a prior blinded challenge (Warren et al., 2006), 

where about 34% of the top scoring poses generated by various docking codes had RMSDs 

less than 2 Å, when averaged across all protein targets. However, it is important to note that 

all participants in the prior study were provided with receptor structures hand-picked and 

prepared by human experts to accommodate the ligands to be docked. In contrast, CELPP 

receptors are selected automatically and are not prepared by system experts. The CELPP 

success rates are on par with those in the recent D3R Grand Challenge 3, which yielded a 

corresponding success rate of 16% (Gaieb et al., 2019). As in CELPP, Grand Challenge 

participants are not provided with expertly selected and prepared receptor structures. More 

broadly, it is worth noting that the performance of the fully automated workflows tested here 

may not be reflective of the best performance the algorithms can provide, particularly when 

parameters and procedures are tuned to a specific target and/or series of ligands.

Further analysis reveals that most methods provide rather similar levels of accuracy, both for 

the full set of candidate structures (Figure 3, top left) and for the LMCSS set (Figure 3, top 

right), based on median RMSD, with rDock and one External Participant performing 

noticeably worse. Focusing on the performance of various methods when provided high-

similarity structures (LMCSS and hiTanimoto categories; see next paragraph), we observe 

that two anonymous public participants performed slightly better than other methods, as 

measured by the fraction of RMSDs in the 0–2 Å range (Figure S2). The in-house OE Fred 

and Vina workflows yield rather similar results, with GLIDE variants and rDock trailing 

slightly by this metric. As noted above, the in-house workflows are not tuned for optimum 

results and thus may not reflect the best performance these algorithms can provide.

The CELPP data also allows quantification of important trends that have been previously 

noted (Gaieb et al., 2017; Gathiaka et al., 2016). First, docking into a receptor determined 

with a chemically similar ligand, as determined by the maximum common substructure 

(LMCSS) or the fingerprint Tanimoto similarity index (hiTanimoto), more than doubles the 

success rate (RMSD < 2Å), relative to docking into a structure determined without a bound 

ligand (hiResApo) (Figure S2). Docking into the highest resolution structure solved with any 

ligand (hiResHolo) and into the structure with the least similar ligand, based on maximum 

common substructure (SMCSS), yielded results of intermediate accuracy. Similar results are 

observed for the individual methods (Figure S2). Second, docking results tend to be less 

accurate for ligands with more rotatable bonds, but this challenge can be overcome by 

docking into a protein structure determined with a highly similar ligand (Figure 3, bottom). 

Best docking results are, therefore, obtained either when the number of rotatable bonds is 

less than 2 or when the fraction of the heavy atoms in the target ligand that are in its 

maximal common substructure with the candidate ligand (the MCSS ratio) is above 0.8. The 

worst results are obtained for target ligands with >10 rotatable bonds and an MCSS ratio 

lower than about 0.5. In the best-case scenarios, where the candidate structure has 0 or 1 

rotatable bonds and an MCSS ratio of at least 0.8, automated docking workflows can achieve 
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a median RMSD of around 3 Å. In more difficult cases, with MCSS ratios between 0.4 and 

0.5 and 7 rotatable bonds, the median RMSD rises to about 6 Å.

The “standard” target, 1FCZ, is included in the challenge package each week. As 1FCZ is an 

existing PDB structure, the LMCSS category poses a self-docking challenge where the 

correct ligand pose is publicly known (results from 1FCZ are excluded from the general 

dataset). All workflows regularly achieve RMSD values below 1 Å in the LMCSS category 

for 1FCZ (Figure S3). Three internal and two external workflows behave deterministically 

on this target, returning the same poses each week. One internal workflow (rDock) and two 

external workflows return different poses each week. These inconsistent results indicate a 

potential source of uncertainty for method comparison. The Glide workflow implemented in 

CELPP does not produce a prediction for 1FCZ, as the size of the docking region used for 

all methods in this study is smaller than its recommended value. However, when run with its 

default size docking box, the GLIDE workflow consistently produces a pose with an RMSD 

of 0.4 Å.

Directions to download the dataset analyzed in this paper are available in the Supporting 

Information (Wagner et al., 2019).

4 DISCUSSION

The CELPP challenge is a powerful tool to evaluate and improve protein-ligand pose 

prediction technologies. Unlike prior blinded prediction challenges in this field, CELPP sets 

a new challenge each week, each with dozens of new ligand-protein complexes to model and 

provides rapid and consistent feedback for participants. The >1,900 individual challenge 

cases set by CELPP in one 66-week period far exceeds the number of cases set by all prior 

blind pose-prediction challenges, and the CELPP challenge is ongoing. We invite additional 

researchers to become participants in this new blinded challenge and utilize it to help 

advance their pose-prediction technologies.

The high-throughput nature of CELPP dramatically increases the statistical power of the 

results and enables sharper distinctions among methods. We anticipate new insights into not 

only the core docking algorithms, but also procedural details, such as how crystallographic 

water molecules and protonation states are treated. We also plan to look for characteristics of 

protein targets and ligands that correlate with the performance of specific methods. For 

example, some algorithms may do better for hydrophobic sites or for specific protein 

families, such as serine proteases. Such statistical analyses will be posted on the CELPP 

website to help practitioners choose methods suited for their specific applications and set 

meaningful expectations for the quality of predictions on new systems. We will also scan for 

cases where multiple methods do poorly, checking for situations in which CELPP’s 

automated procedures may generate inappropriate challenges, such as where a cofactor is 

present in the candidate but not in the target. The volume and tempo of the CELPP challenge 

also allow its use in iterative optimization of pose prediction methods. Thus, we anticipate 

that CELPP will help drive the development of increasingly predictive docking workflows.
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A possible concern with CELPP is that it may not reveal the accuracy that could be achieved 

with a given docking method by an expert user devoting time to optimizing the results for a 

protein target. However, only a fully automated procedure reports on the accuracy of the 

method itself, as opposed to the expertise of the user, and our aim is to test the method. In 

addition, one may envision ways of building expertise and background information into an 

automated method. For example, a docking method could be trained to recognize that a 

protein target is a kinase and therefore to use kinase-specific settings.

It is also worth noting that, if a participant’s pose-prediction method were to change over 

time, it would become impossible to collect full statistics for a single, defined method. It will 

therefore be useful to distinguish between those methods which are locked in for a period of 

time, and for which meaningful statistics therefore can be obtained, from those which are 

mutable, such as when CELPP is used to guide ongoing improvements in a pose-prediction 

method.

Ultimately, we anticipate that participants will package their stable methods into shareable 

workflows, using technologies such as Docker (Merkel, 2014) and Singularity (Kurtzer et 

al., 2017), which can then be executed automatically on machines hosted by the CELPP 

project, and also shared with other users. Participants also would benefit by not having to 

manage the processes or allocate computer time for the calculations. Ideally, such workflows 

will be structured into modular steps with standardized I/O, enabling the creation and 

benchmarking of new strategies that recombine steps from various workflows. Such 

derivatization of workflows could, for example, make it possible to evaluate how various 

ligand-preparation methods affect the quality of the final pose predictions. This direction 

promises to build a beneficial culture of generating methods that are rigorously evaluated 

through ongoing blinded challenges and that are readily shared, so that effective methods 

can easily be used.

9 STAR METHODS

METHOD DETAILS

HOSTING THE CHALLENGE

Selection of target complexes and receptor structures: Every Friday, the PDB provides 

files (http://www.wwpdb.org/files/) listing the new crystal structures that will be released the 

at the end of the following Tuesday. For each forthcoming PDB entry, this pre-release 

notification contains the PDB ID, the protein sequence(s), the identities of the ligands, if 

any, in the form of InChi strings (Heller et al., 2015), and the pH at which the structure was 

determined. To be designated as a CELPP “target”, a structure must include a single druglike 

ligand (see below). There also must be at least one X-ray crystal structure of the same 

protein extant in the PDB to serve as a suitable “candidate” for cross-docking, and the target 

must have only one unique protein sequence, to avoid situations in which the target and 

candidate ligands are bound to different binding sites (Figure 4). A ligand is considered 

drug-like if it is not a single metal ion or typical solvent molecule, and if it is not on an 

exclusion list of common cosolutes and cofactors (e.g., Zn++, ethylene glycol, and NADH; 

see Scheme S3). We also exclude ligands with more than 100 self-symmetries (i.e., 
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automorphs), because evaluating symmetry-corrected root-mean-square deviations between 

predicted and crystal poses becomes excessively time-consuming in such cases (OpenEye 

Scientific Software). Finally, we include one “standard” target, PDB ID 1FCZ, in the 

challenge package each week to monitor workflow stability.

Candidate structures for use in the docking challenge are identified by using the sequence 

comparison program blastp (Altschul et al., 1990) to find PDB entries with >95% sequence 

identity and >90% sequence coverage of the target sequence (Figure 4). The resulting 

proteins are then further filtered to a set that were determined by X-ray crystallography 

(rather than NMR, for example) and which comprise only a single unique protein sequence. 

Any ligands bound to these candidates have their maximal common substructure with the 

target ligand calculated using RDKit. For each target, up to five candidate structures meeting 

these criteria are selected from the PDB for use as receptors in the cross-docking challenge. 

The five candidates, which are chosen to test the effects of various criteria for selecting the 

receptor used in cross-docking, are as follows: (i) Largest Maximum Common 
Substructure (LMCSS): This contains the ligand with the largest maximal common 

substructure to the target ligand. The center of mass of the ligand in this complex is used to 

define the binding pocket for all five candidates for this target. If two candidate complexes 

tie for the largest maximal common substructure, the highest-resolution one is used. (ii) 
Smallest Maximum Common Substructure (SMCSS): This contains the ligand with the 

smallest maximal common substructure to the target ligand. If two candidate complexes tie 

for the smallest maximal common substructure, the highest-resolution one is used. (iii) 
Highest Tanimoto Similarity (hiTanimoto): This contains the ligand with the highest 

ligand Tanimoto score, using the RDKit default fingerprint method, to the target ligand. If 

two candidate complexes tie for the highest mutual Tanimoto score, the highest-resolution 

one is used. This candidate may be the same as the LMCSS candidate. (iv) Highest 
Resolution Holo (hiResHolo): This has the highest crystallographic resolution limit of any 

determined with a druglike ligand. (v) Highest Resolution Apo (hiResApo): This has the 

highest crystallographic resolution limit of any for this protein determined with no druglike 

ligand.

Generation of the challenge data package: The results of the processing described in 

STAR Methods: Selection of target complexes and receptor structures are incorporated into a 

data package for use by CELPP participants. This is deposited in a public Box.com folder by 

about 00:00 Pacific Time every Sunday (Figure 1). For each target, the challenge data 

package (Figure 4) contains: (i) Structures of the candidate proteins in PDB format, aligned 

to the LMCSS structure coordinates but otherwise unmodified from the PDB entries from 

which they were drawn; (ii) PDB structure of the LMCSS ligand, drawn from the LMCSS 

candidate structure; (iii) The suggested binding pocket center (center of mass of the LMCSS 

ligand) in .txt format; (iv) SMILES, InChI, and 2D MOL files of the target ligand; (v) A 

parseable text file containing the PDB ID of the forthcoming entry, the crystallization pH, 

the HETID of the target ligand, and additional information about the candidate cocrystal 

structures, such as their PDB IDs and crystallographic resolution limits. See Scheme S1 for 

sample.
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Evaluation of Predictions: After the close of the submission window and release of the 

experimental cocrystal structure by the PDB (Figure 1), automated scripts evaluate the pose 

predictions by calculating the symmetry-corrected RMSD of each predicted ligand pose 

relative to the crystallographic pose, using Schrödinger and OpenEye tools (Scheme S2). 

When the crystal structure has multiple instances (protein chains) of the target protein, the 

predicted pose is assigned the lowest RMSD that can be achieved by aligning the predicted 

protein-ligand complex to each instance of the chain, as detailed in Scheme S2. In the future, 

we anticipate incorporating additional evaluation metrics, such as the fraction of native 

ligand-protein contacts made by a predicted pose. Such additions will be facilitated by the 

modular architecture of the CELPP software.

PARTICIPATING IN CELPP

Enrollment and Information: In order to obtain upload/download credentials for CELPP 

data, one must register as a CELPP participant. Information for how to participate in CELPP 

is available at the D3R website (https://drugdesigndata.org/about/celpp), including links to a 

CELPP Developers User Group on Google Groups and to the CELPP GitHub Wiki.

Developing a Prediction Workflow: Based on typical throughput (Results: Scale and 

character of the CELPP challenge), CELPP participants should construct a pose-prediction 

workflow that can process up to 100 targets in the 63-hour submission window (Figure 2, 

top). This requires executing up to 100 ligand preparation tasks, 400–500 protein preparation 

tasks, and 400–500 docking tasks. Participants are encouraged to submit predictions for all 

targets, so that methods can be compared on an equal footing. To help participants construct 

their workflows, D3R provides a workflow template, called CELPPade (Figure 5, https://

github.com/drugdata/cookiecutter-pycustomdock). CELPPade handles the download, 

unpackaging, repackaging and upload of the CELPP challenge data, letting the participant 

focus on implementing their docking solution by writing a few specific methods in Python.

The five user-written Python functions in CELPPade are located in three files (Figure 5, 

protein_prep.py, ligand_prep.py, and dock.py). These five functions mirror the stages in a 

general pose prediction workflow: protein and ligand structure preparation, protein and 

ligand file format conversion, and docking. Each function receives input filenames as 

arguments, and participants are responsible for populating the function bodies with 

commands to run the respective stage of their workflow. Participants can implement their 

docking workflow in these functions using Python commands or using Python’s interfaces to 

the command line to execute shell commands. Once implemented, CELPPade is able to run 

these functions in sequence on each prediction target in the current CELPP challenge week. 

Combined with the download and upload scripts bundled in CELPPade, implementing these 

five functions results in a functioning CELPP workflow.

We also provide a tutorial for creation of a model workflow based on CELPPade. This uses 

Chimera DockPrep (Pettersen Eric et al., 2004) to prepare both the protein and ligand, and 

AutoDock for pose prediction (Lang et al., 2009; Moustakas et al., 2006; Trott and Olson, 

2009). The model workflow provides examples of running shell commands from within 

Python, uses software that is free for use by academic labs, and can run on most 64-bit 
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Linux systems with Python, Chimera, RDKit, OpenBabel, and Autodock Vina installed 

(Lang et al., 2009; Moustakas et al., 2006; O’Boyle et al., 2011; Pettersen Eric et al., 2004). 

Note that participants are not required to use the CELPPade template; it is provided only as a 

convenience.

Even if a participant does not use the full CELPPade package, two helper scripts it contains 

may be of interest. The first, getchallengedata.py, helps participants access the correct 

challenge data package each week. It reads the Box.com login credentials of participants 

from the user’s customized file ftp_config and uses these to access the online folder. It then 

reads the file latest.txt file in the Box.com folder to determine the name of the most recent 

challenge package, downloads the package, and unzips it in the user’s local folder. The last 

script, packdockingresults.py, takes as input a formatted directory of docking results 

generated by the participant, compresses the directory into a tar file, and uploads the tar file 

to the participant’s private submission folder. These scripts facilitate automation by 

providing straightforward upload/download functionality for CELPP data, independent of 

the specific details of the prediction workflow.

Definition and Submission of Predictions: For each pose prediction, for a given candidate 

structure, a valid submission comprises the receptor structure in PDB format and the ligand 

structure in MOL format (Dalby et al., 1992; McNaught and Wilkinson, 1997), with ligand 

coordinates in the receptor frame of reference. Participants need not use the candidate 

receptor structures provided by D3R for docking but must inform us if they do not. 

Deviation from these file formats may result in improper evaluation or disqualification of a 

prediction. Using the CELPPade workflow template ensures that the docking results 

directory is appropriately formatted for upload. Pose predictions are uploaded to an online, 

password-protected Box.com folder provided by D3R. This upload must be completed 

before 15:00 U.S. Pacific time on Tuesday to be considered valid for scoring.

Evaluation Reporting: Detailed evaluation results are emailed directly to participants and 

will soon be publicly accessible at the CELPP website. Participants may choose to remain 

anonymous, in which case their methods and results will be posted without identifying 

information.

BASELINE DOCKING WORKFLOWS—To illustrate CELPP, test our procedures, and provide a 

baseline of performance, we used the CELPPade template (STAR Methods: Developing a 

prediction workflow) to create four in-house CELPP workflows, based on the Autodock 

Vina (Trott and Olson, 2009), FRED (McGann, 2011, 2012), Glide (Friesner et al., 2004; 

Halgren et al., 2004), and rDock (Morley et al., 2004; Ruiz-Carmona et al., 2014) docking 

suites. These use the protein and ligand preparation tools that accompany the respective 

docking codes where possible, and open-source tools otherwise. These workflows represent 

default implementations of their respective methods. To standardize the testing, all 

workflows are set to consider the same docking region. Algorithms that require a docking 

box are set to use a 15×15×15 Å region, and software that requires a sphere is set to use a 10 

Å radius region. As we have made no effort to optimize the workflows, their performance 

may not be reflective of the best performance the algorithms can provide, particularly when 

tuned for a specific protein target and/or ligand series. All the in-house prediction workflows 
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are available on GitHub. In addition, the AutoDock Vina workflow has been documented in 

a tutorial on CELPP workflow development. This can be accessed on the D3R GitHub page, 

as noted in STAR Methods: Developing a prediction workflow.

QUANTIFICATION AND STATISTICAL ANALYSIS—Prediction RMSDs were evaluated using the 

Schrodinger and OpenEye toolkits, first by aligning the target and predicted complexes, and 

then by calculating the symmetry-corrected ligand heavy atom RMSD. More information on 

the evaluation process is available in STAR Methods: Evaluation of Predictions, Scheme S2, 

and the evaluation codebase is available at the D3R GitHub repository.

Python’s numpy and matplotlib packages were used for numerical analysis and plotting. 

Means and medians in Figure 3 were calculated using matplotlib for the violin plots, and 

numpy for the heatmap.

For each ligand-protein pose prediction, we compute the symmetry-corrected RMSD of the 

ligand’s predicted coordinates versus its crystallographic coordinates. This is a widely used 

and understood metric in the field. We use the median across the full set of predictions to 

represent the overall performance in a manner that is insensitive to variations in individual 

RMSD values for large outliers. For example, we regard two predictions with RMSD of 9 Å 

and 7 Å as having equally failed to find the correct pose, so it is not useful to penalize one 

more than the other in our overall measure of performance.

Violin-style plots were selected in Figure 3 to provide a complete picture of the performance 

distribution of each method and facilitate a fair comparison of methods. The same data are 

plotted in finer detail in Figure S2 as cumulative histograms with bin sizes of 0.01 

Angstrom. The actual dataset including RMSD values is available for download, as 

described in the Data and Software Availability section.

The number of predictions analyzed in each panel of Figure 3 is as follows, where one 

prediction corresponds to one protein-ligand complex, with its own RMSD: Top left - 

Autodock Vina: 7550, Glide: 4148, OE Fred: 8649, rDock: 8073, First External Participant: 

7997, Second External Participant: 4614, Third External Participant: 1896, Fourth External 

Participant: 1624. Top right - Autodock Vina: 1655, Glide: 932, OE Fred: 1888, rDock: 

1761, First External Participant: 1746, Second External Participant: 1007, Third External 

Participant: 417, Fourth External Participant: 355 Middle - LMCSS: 9761, SMCSS: 9674, 

hiResApo: 5610, hiResHolo: 9711, hiTanimoto: 9759 Bottom - 19435

Table S1 contains a more detailed breakdown of the number of targets analyzed in this 

paper, separated by workflow and candidate category.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The CELPP week.
The CELPP week begins with the publication of PDB pre-release data on Friday evening. 

Challenge data preparation runs Friday evening and Saturday, and the upcoming week’s 

challenge package is made available to participants by the beginning of Sunday. 

Submissions are then accepted until Tuesday at 3:01 pm. Evaluation of the predictions 

begins on Tuesday evening, following release of the new PDB entries used in the challenge. 

Times are in the Pacific time zone.
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Figure 2. Characteristics of CELPP weekly challenges.
Top) Number of CELPP targets per week (66 weeks total). Bottom) Characteristics of 

CELPP target ligands (n=1,989). Each dot represents one target ligand, and histograms 

above and to the right show the distribution of characteristics on each axis. Uniformly 

distributed random values in the range [−0.5, 0.5] were added to X and Y coordinates to 

better show point density. Numbers of rotatable bonds and heavy atoms were calculated 

from InChI strings using RDKit.
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Figure 3. Results of CELPP.
Top Left) Performance by participant or in-house method, combining predictions from all 

candidate categories. Top Right) Performance by participant or in-house method for the 

LMCSS category only. Middle) Performance by candidate category, combining predictions 

from all participants and in-house methods. Black line indicates median, orange line 

indicates mean. The number above each plot indicates the fraction of predictions above 10 

Å. Bottom) Median prediction RMSD as a function of number of rotatable bonds and MCSS 

ratio. The MCSS ratio is defined as the fraction of the heavy atoms in the target ligand that 

are in its maximal common substructure with the candidate ligand. Data are taken from all 

participant and in-house method predictions in LMCSS and SMCSS categories. White 

indicates no data.
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Figure 4. CELPP Target Selection and Challenge Package Generation.
CELPP downloads the publicly-available PDB pre-release information and then processes 

the new entries to assemble the weekly challenge package. Boxes and arrows indicate 

processing steps, two-way arrows indicate filtering steps, clouds indicate internet-accessible 

file platforms, and the dark grey box indicates the weekly challenge data package, in which 

each target is one subdirectory. See main text for details.
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Figure 5. The CELPPade workflow template.
Vertical arrows indicate functions, rectangles indicate files passed between steps, and clouds 

represent internet-accessible folders. The large grey box indicates the steps that are run on 

the participant’s computer. Different colors indicate script files for different steps of pose 

prediction, and names ending in () indicate python functions that are implemented by 

participants. The output files from protein_prep.py and ligand_prep.py is not strictly 

required to be in mol2 format but adopting this format will improve interoperability of steps 

from diverse workflows.
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Table 1.
Baseline docking workflows.

Methods used for protein preparation, ligand preparation, and docking in the D3R in-house workflows. 

(Versions: Chimera 1.10.1, RDKit 2016.3.3, MGLTools 1.5.7, AutoDock Vina 1.1.2, Schrodinger 2015–3 

release, Omega 2.5.1.4, FRED 3.0.1, RBDock 2013.1/901)

Workflow 
Name Protein Prep Method Ligand Prep Method Docking Algorithm

Autodock 
Vina

Chimera DockPrep(Lang et al., 2009; Pettersen 
et al., 2004) and AutoDock Tools 
prepare_receptor4.py(Morris et al., 2009)

RDKit 3D coordinate generation, Chimera 
DockPrep,(Lang et al., 2009; Pettersen et 
al., 2004) and AutoDock Tools 
prepare_ligand4.py(Morris et al., 2009)

AutoDock Vina(Trott and 
Olson, 2009)

Glide Schrödinger PrepWizard(Sastry et al., 2013) Schrödinger LigPrep
Schrödinger Glide 
SP(Friesner et al., 2004; 
Halgren et al., 2004)

OE Fred HETATM removal and OpenEye receptor_setup OpenEye Omega(Hawkins et al., 2010) FRED(McGann, 2011, 
2012)

rDock
HETATM removal, Chimera DockPrep,(Lang et 
al., 2009; Pettersen et al., 2004) rbcavity(Ruiz-
Carmona et al., 2014)

RDKit 3D coordinate generation rbdock(Ruiz-Carmona et 
al., 2014)
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