
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
An I/O-Complexity Lower Bound for All Recursive Matrix Multiplication Algorithms by Path-
Routing

Permalink
https://escholarship.org/uc/item/69z7c7jf

Author
Scott, Jacob N.

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/69z7c7jf
https://escholarship.org
http://www.cdlib.org/

An I/O-Complexity Lower Bound for All Recursive Matrix
Multiplication Algorithms by Path-Routing

by

Jacob N. Scott

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Mathematics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Olga V. Holtz, Chair
Professor James W. Demmel

Professor Satish B. Rao

Fall 2015

An I/O-Complexity Lower Bound for All Recursive Matrix
Multiplication Algorithms by Path-Routing

Copyright 2015
by

Jacob N. Scott

1

Abstract

An I/O-Complexity Lower Bound for All Recursive Matrix Multiplication
Algorithms by Path-Routing

by

Jacob N. Scott

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Olga V. Holtz, Chair

Via novel path-routing techniques we prove a lower bound on the I/O-complexity
of all recursive matrix multiplication algorithms computed in serial or in parallel
and show that it is tight for all square and near-square matrix multiplication al-
gorithms. Previously, tight lower bounds were known only for the classical Θ (n3)
matrix multiplication algorithm and those similar to Strassen’s algorithm that lack
multiple vertex copying. We first prove tight lower bounds on the I/O-complexity
of Strassen-like algorithms, under weaker assumptions, by constructing a routing
of paths between the inputs and outputs of sufficiently small subcomputations in
the algorithm’s CDAG. We then further extend this result to all recursive divide-
and-conquer matrix multiplication algorithms, and show that our lower bound is
optimal for algorithms formed from square and nearly square recursive steps. This
requires combining our new path-routing approach with a secondary routing based on
the Loomis-Whitney Inequality technique used to prove the optimal I/O-complexity
lower bound for classical matrix multiplication.

i

Contents

Contents i

List of Figures iii

List of Tables vii

1 Introduction 1

2 Matrix Multiplication I/O-Complexity by Path Routing 4
2.1 New Approach . 6
2.2 Preliminaries . 7
2.3 Definitions . 10
2.4 Simple Proof for Strassen’s Algorithm 13
2.5 Strassen-Like Algorithms . 16
2.6 Proof of The Routing Theorem . 21
2.7 Conclusion . 30
2.8 Acknowledgments . 30

3 Generalization to Recursive Divide-and-Conquer Matrix Multi-
plication Algorithms 32
3.1 Main Theorems . 34
3.2 Tightness of the Main Theorems (Theorems 6 and 7) 40
3.3 Internal I/O Bounds for Submultiplications 42
3.4 Improving the Routing Theorem . 50
3.5 Adding I/O Bounds When ω(G) < 3 55

4 Internal I/O-Complexity 60
4.1 Mathematical Motivation . 63
4.2 Open Questions . 66

ii

5 Proof of Theorem 6 in General for Square Matrix Multiplication
Steps 68
5.1 The Loomis-Whitney Inequality . 68
5.2 Motivation Behind the Proof . 71
5.3 Proof of Theorem 6 for Square Matrix Multiplication Algorithms . . . 73

6 Modifications to the Proof of Theorem 6 for Rectangular Matrix
Multiplication Steps 88
6.1 Proof of Theorem 6 for General Matrix Multiplication Algorithms . . 88
6.2 Proof of Theorem 26 . 92

7 Parallel Divide-And-Conquer Matrix Multiplication Algorithms 96
7.1 Parallel Bound . 96
7.2 Tightness of Theorem 29 . 98
7.3 Conclusion . 98

Bibliography 101

iii

List of Figures

2.1 The base graph G1 of Strassen’s algorithm for multiplying two 2 × 2
matrices A and B. Here b = 7. 8

2.2 The meta-vertex corresponding to copies of the vertex v. Edges whose
endpoints are not shown denote edges to vertices not in the shown meta-
vertex. If this meta-vertex is in the CDAG for Strassen-like matrix mul-
tiplication, the structure of the meta-vertex is actually more regular than
depicted due to the simple recursion. 9

2.3 One of the decoding graphs in G1 for Strassen’s algorithm. Because there
is no edge from v to w, a chain must instead take a more indirect path,
shown in red, through the encoding graph. 14

2.4 An example of a path considered in the
(
11 · 7k

)
-routing between an input

vertex (to D1
k) that is not in S and an output vertex that is in S. The

submultiplications are shown in red, S1 is shown in blue, and S1 is circled.
Note that the path zags up and down, as explained in Figure 2.3. For
simplicity, only one encoding graph is shown and only 3 submultiplications
are drawn. 16

2.5 The overall idea of the main proof. For simplicity only one encoding
graph is explicitly drawn. The set S is shown in blue. Note that only the
elements on rank k of the decoding graph and rank r− k of the encoding
graphs in input-disjoint Gi

ks lie in S. A typical boundary-crossing path
in G3

k is shown. (Not shown) The two vertices of the path on the bottom
rank of G3

k lie in different encoding graphs. 18
2.6 The sequence of guaranteed dependencies between aij and ci′j′ shown as

elements in the matrices A, B, and C. Note the use of j as a row index. 23
2.7 The construction of G′k from b copies of G′k−1. A pair of adjacent vertices

on the middle two ranks is replaced with a guaranteed dependence in one
of the G′k−1. 25

iv

2.8 The vertices shown in red are those adjacent to the vertex in H corre-
sponding to the guaranteed dependence (v, w), where v corresponds to
the input a12 of A and w corresponds to the output c11 of C. The graph
shown is the G′1 for Strassen’s algorithm. 26

2.9 G◦1 for Strassen’s algorithm when i = 2 andD2 = {(a21, c21), (a21, c22), (a22, c21), (a22, c22)}.
The crossed-out vertices are those removed from G1 to construct this re-
duced computation graph G◦1. This is equivalent to setting all but the
2nd row of A to 0; the resulting algorithm computes the product of a row
of A by the matrix B. 28

2.10 However, D2 need not contain all possible guaranteed dependencies as
in Figure 2.9, depending on the given subset D. In this figure D2 =
{(a21, c21), (a21, c22), (a22, c22)}. Because the guaranteed dependence (a22, c21)
is not included in D2, the vertex crossed out in blue is removed, and so
G◦1 does not quite compute vector-matrix multiplication; the coefficient
of a22 in the computation of c21 may not be correct. This necessitates
adding additional multiplication vertices to “fix” errors of this form. . . . 29

2.11 All the main intermediate results used in the proof of Theorem 3. 31

3.1 The internal I/O-complexity of a CDAG G is defined to be the minimum
number of I/Os – excluding those of the input and output vertices –
required to compute the CDAG G′, as shown in this figure. 40

3.2 To multiply two rectangular matrices A and B, a divide-and-conquer
matrix multiplication algorithm divides them into blocks, computes linear
combinations, multiplies those linear combinations recursively, and takes
linear combinations of the products to find C. Here x = 2, y = 3, and
z = 4. 43

3.3 (a) The CDAG for Strassen matrix multiplication of 4×4 matrices, involv-
ing two recursive levels. Only the encoding graph for A and the decoding
graph for C are shown. To make the construction easier to visualize, the
four base graph copies on the top/bottom layer are shown in different
shades of grey, while only one out of the 7 copies of the encoding and
decoding graphs on the middle layer are shown (green). Edges denot-
ing an input to an elementary matrix multiplication are shown in blue.
(b) An example chain within one top-level base graph, shown in red; the
corresponding edges in (a) are also shown in red. (c) An example chain
between A and C within the overall graph shown in red; note that this
chain uses only the top of the highlighted edges from (a) but not the
bottom (shown in yellow). 55

v

4.1 A computation sequence is a sequence of operations – including cache
I/Os – that computes a computation graph. 63

5.1 Each elementary multiplication performed within classical matrix multi-
plication can be associated to a unique lattice point in a three-dimensional
box, as shown. The point representing the multiplication aij ·bjk lies at the
intersection defined by the elements aij, bjk, and cik on the three labeled
orthogonal faces of the box. In other words, the elementary multiplica-
tions of classical matrix multiplication can be embedded in a box. 70

5.2 A classical tree rooted at subcomputation X, shown in red. Large white
vertices represent classical-like subcomputations, large black vertices rep-
resent non-classical-like subcomputations, blue vertices represent (non-
elementary) subcomputations disjoint from their parents, and small black
vertices represent elementary multiplications. For simplicity only two sub-
computations are shown per vertex. 74

5.3 Every elementary multiplication performed within any matrix multipli-
cation algorithm (that does not duplicate work) can be associated to a
unique lattice point in a two-dimensional rectangle, dependent on the
linear combinations of elements of the input matrices A and B that are
multiplied. In this embedding the outputs this submultiplication plays
a part in are not considered. The point representing the multiplication
a · b lies at the intersection defined by the elements a ∈ FA and b ∈ FB,
where a and b are linear combinations of the input elements of A and B
respectively. 82

5.4 Every elementary multiplication and triple (i, j, k) in U can be associated
to a unique lattice point within a two-dimensional rectangle of three-
dimensional boxes. Overall, this forms a large box whose faces are labeled
by FA, FB, and FC . The vertices of the C faces of the embedded boxes are
all distinct (and lie in FC), so chains emanating through the C side of one
of the boxes simply stop there; the vertices of the A and B sides of the
small boxes are not distinct, and so must continue onwards to a distinct
element of FA or FB via the square embedding represented in Figure
5.3. Because this overall embedding forms a three-dimensional box – just
as in the proof for classical matrix multiplication – the Loomis-Whitney
inequality still applies! . 84

vi

5.5 The definitions of La, Lb, and Lc with respect to a computation segment
S. Disjoint submultiplications above the cutoff layer lie in La (blue).
Disjoint submultiplications beneath the cutoff layer may either lie in Lb

(green) or in Lc (purple). Which set they lie in depends entirely on how
many of their inputs are in S; if not too many inputs are in S such
a submultiplication lies in Sb and contributes an appropriate number of
internal I/Os by itself. If many inputs lie in S, it lies in Sc. All elementary
multiplications in L computed during S also lie in Lc. We constructed
a routing, shown in red, of sufficiently many chains from the inputs and
outputs of Lc up to either the inputs and outputs of the entire graph
(not in the example shown), or the first vertex distinct from those on
the next layer. This may happen even at a subcomputation that is not
disjoint from its parent (such as the children of the classical-like matrix
multiplications shown as hollow circles), if some but not all of its values
are distinct from its parent’s. 87

6.1 (a) The inputs and outputs of a matrix multiplication X can be thought
of as composing three orthogonal faces of a cube consisting of triples
(i, j, k). If the dark red squares indicate the elements SA of A in S, then
for this set S both statements (1) and (3) of Claim 6 hold. (b) Because
statement (1) holds, there exists an efficient routing from the bright red
squares in the indicated rows to the green squares on the side and back to
the blue squares in the indicated rows. (c) Because statement (3) holds,
there exists an efficient routing from the green squares to the (bright and
dark) red squares, and an efficient routing from the blue squares to the
(bright and dark) red squares. There are Ω (i · n) triples (i, j, k) in the
corresponding U0, represented by the n unit cubes directly beneath each
bright red square. 95

vii

List of Tables

4.1 Pebbling strategies [10] correspond to computation sequences. 62
4.2 Every internal I/O of SG|H – an I/O counted by the internal I/O-complexity

of H – corresponds to an internal I/O of SG. Every time an I/O is counted
by the internal I/O-complexity of H (a “yes” in the third column), it cor-
responds to an internal I/O of SG (a “yes” in the second column) and is
thus counted in the internal I/O-complexity of G. From this it follows
that the internal I/O-complexity of G is at least equal to the sum of those
of the Ai. 65

viii

Acknowledgments

Thanks to Olga Holtz for introducing me to this field of research, Oded Schwartz for
assistance with the paper of Chapter 2, and James Demmel for his helpful comments.

1

Chapter 1

Introduction

In this paper we develop a new technique to prove lower bounds on the I/O-complexity
of algorithms and use it to derive lower bounds on the I/O-complexity of recursive
divide-and-conquer matrix multiplication algorithms. We show that our bound is
tight for square matrix multiplication algorithms, as well as for “near-square” ma-
trix multiplication algorithms, those whose multiplication subproblems each multiply
matrices of dimensions within a constant factor. As explained in detail in Chapter
2, the I/O-complexity of an algorithm is the minimum number of cache reads/writes
necessary to compute it; I/O-complexity lower bounds are therefore of great interest
when designing “big data” algorithms where cache operations can be more costly
than arithmetic computations. Because matrix multiplication underlies many prob-
lems in numerical linear algebra – upon which many big data algorithms are based –
we prove lower bounds for any recursive divide-and-conquer matrix multiplication al-
gorithm, with the understanding that the techniques developed can likely be applied
to other linear algebra problems as well.

This dissertation is composed of two parts. First we present a paper by myself,
Holtz, and Schwartz [16] in which we prove an optimal lower bound for the I/O-
complexity of a subset of matrix multiplication algorithms (also under an assumption
removed later in this dissertation), called Strassen-like via a new technique based
on path routings. This novel approach overcomes many of the difficulties of existing
techniques in this field, as detailed in Chapter 2. The text of this paper has been
extended slightly to better introduce the concepts used in succeeding chapters.

Any recursive divide-and-conquer matrix multiplication algorithm is formed from
a tree of recursive steps, not necessarily all taking the same form. Each recursive
step – called a base graph in Chapter 2 – represents an algorithm for multiplying
small matrices applied to blocks of larger matrices, with multiplications of blocks
performed recursively. In a Strassen-like algorithm, each recursive step is identical

CHAPTER 1. INTRODUCTION 2

and multiplies square matrices, but the approach in Chapter 2 can easily be extended
to apply even when the recursive steps are not uniform. However, if any recursive
step is as slow as classical Θ(n3) matrix multiplication, then the approach in Chapter
2 is not always sufficient. Many matrix multiplication algorithms used in practice
involve recursing until the matrices to multiply are of sufficiently small size and then
reverting to classical matrix multiplication; such algorithms are thus not covered by
Chapter 2.

We then show how to further generalize the technique of Chapter 2 to any re-
cursive divide-and-conquer matrix multiplication algorithm. First we extend the
approach to rectangular matrix multiplication, potentially involving recursive steps
of different dimensions. Then we show how to combine the path-routing approach
of Chapter 2 with the Loomis-Whitney Inequality technique [12] [6] – used previ-
ously to prove I/O-complexity lower bounds for classical matrix multiplication – to
yield our general result. The bound we derive has a dependence on the maximum
number of subblocks into which a matrix is divided in any recursive step, which we
assume is a constant. Finally, we show how to extend this line of reasoning to prove
a lower bound on the I/O-complexity of recursive matrix multiplication algorithms
computed in parallel. These bounds are asymptotically optimal for square matrix
multiplication algorithms.

For convenience we now state the main results proved in this dissertation:

Theorem 1 (Main Theorem – see Theorem 7 of Chapter 3) Let G be the com-
putation graph (CDAG) for a recursive divide-and-conquer rectangular matrix mul-
tiplication that computes distinct products in each recursive step. If the exponent
ω(G) ≤ 3 and the maximum number of blocks a matrix is divided into in any sub-
computation is a small constant, then G has I/O-complexity

IO(G) ≥ Ω

(
Mult
√
M

ω(G)
·M

)
where Mult is the number of elementary multiplications computed by G. If ω(G) > 3,
the matrix multiplication algorithm can be “simplified” to one requiring fewer arith-
metic operations and no more cache I/Os to which this result also applies.

Theorem 2 (Main Parallel Theorem – see Theorem 29 of Chapter 7) Let G
be as above. If G computes Mult elementary multiplications, then the I/O-complexity
of G computed in parallel by P processors is

IO(G) ≥ Ω

(
1

P
· Mult
√
M

ω(G)
·M

)

CHAPTER 1. INTRODUCTION 3

The definition of CDAG and of the I/O-complexity of a CDAG computed in
parallel appear in the following chapter. The definition of ω(G) appears in Chapter
3; intuitively, ω(G) is the number such that, if every step in the recursive matrix
multiplication were identical to the least efficient one used, G would contain Θ

(
nω(G)

)
elementary multiplications for input dimension n. Note that these results apply to
classical matrix multiplication, as well as any algorithm interleaving classical and fast
matrix multiplication recursive steps, and are independent of the implementation
(ordering of intermediate computations) of the algorithm. These results are the
natural generalizations of the current lower bounds in the literature [5] [12] [4] to
any recursive matrix multiplication algorithm, and are optimal for square and nearly
square matrix multiplication algorithms.

4

Chapter 2

Matrix Multiplication
I/O-Complexity by Path Routing

This chapter is adapted from a paper I published [16] with coauthors Olga Holtz and
Oded Schwartz: http://dx.doi.org/10.1145/2755573.2755594

In practice, most of the runtime of an algorithm is often due to the communica-
tion of data within memory hierarchy and between multiple processors, rather than
the arithmetic computations. The amount of communication performed during an
algorithm depends on the order in which intermediate values are computed and kept
in/discarded from cache. While much work has gone into constructing implementa-
tions of algorithms that reduce communication, in this paper we show lower bounds
on the communication of any implementation of a common class of fast (but not
classical; see Lemma 1) matrix multiplication algorithms.

The I/O-complexity of an algorithm is defined as the minimum possible number
of cache operations required to compute all outputs of the algorithm using a fixed
cache size M . In 2011, Ballard, Demmel, Holtz, and Schwartz showed a tight lower
bound on the I/O-complexity of Strassen’s fast matrix multiplication algorithm [5].
We prove an analogous I/O-complexity bound via a more general technique for any
fast square matrix multiplication algorithm based on a uniform recursive step that
does not recompute any intermediate values, subject to the assumption that every
intermediate linear combination is used in only one multiplication. We also claim,
without proof, that this assumption can be lifted. Because algorithms achieving our
I/O-complexity bounds have been found [3], our bounds are optimal.

Machine model
In this paper, we assume a 2-layer memory hierarchy for sequential computations

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 5

consisting of slow memory and fast memory. The slow memory is of unlimited size
and represents, for example, the hard drive of a computer, while the fast memory,
which we call cache, is of limited size M and may represent RAM. We model the I/O
communication of an algorithm as follows: initially, all data resides in slow memory
and the cache is empty. A single value may be input into cache from slow memory
or output to slow memory from cache for the cost of one I/O. A computation in the
algorithm may only be performed if all input values to that computation already
reside in cache; when computed, the result is also put in cache. The algorithm halts
when all outputs of the algorithm are stored in slow memory. In this model we
assume that no arithmetic computation is ever performed more than once. See [10]
for the formalization of this model as a pebble game played on the computation
graph.

The number of cache I/Os required may depend on the order in which interme-
diate values of the algorithm are computed. The algorithm’s I/O-complexity is thus
defined as the minimum number of I/Os over all sequences of computations and I/Os
that computes the algorithm’s outputs.

For parallel computations we consider P processors, each having independent
local memory of size M . As in [5] and [20], we define the bandwidth cost of an
algorithm executed in parallel to be the number of values communicated between
processors along the critical path. In other words, we count the total number of
words (single values) sent between processors, except that words sent between pro-
cessors simultaneously count as only one I/O. We call this the bandwidth cost of the
algorithm.

Previous Work
In 1981 Hong and Kung [10] proved a tight lower bound on the I/O-complexity

of the classical Θ(n3) matrix multiplication algorithm (achieved by blocked multi-
plication) using S-partitions. A different proof of this result was given in [12] and
later generalized in [6] via the Loomis-Whitney inequality [14]; this approach was
also shown to apply to several other problems in numerical linear algebra. See [1]
and [9] for further generalizations using other geometric bounds. However, these
proofs do not easily apply to algorithms that use distributivity for cancellation, such
as Strassen’s algorithm.

The edge expansion approach detailed in [5] relates the I/O-complexity of an
algorithm to the edge expansion properties of the underlying computation graph.
This technique provides an I/O-complexity lower bound for Strassen’s fast matrix
multiplication algorithm, but fails for algorithms with base graphs (the computa-
tion graph representing one recursive step; see Section 2.2) containing disconnected
encoding and decoding graphs and those involving multiple copying. In [4], this

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 6

approach is extended to fast recursive matrix multiplication algorithms for rectangu-
lar matrices whose base graphs consist of multiple equal-size connected components.
This is sufficient to yield lower bounds for some common fast matrix multiplication
algorithms, such as Bini’s algorithm [8] and the Hopcroft-Kerr algorithm [11], but
still does not address algorithms with general base graphs.

In this paper we present the first approach for proving I/O-complexity lower
bounds for recursive fast matrix multiplication algorithms involving arbitrary base
graphs, as long as the same base graph is used at each recursive step.

2.1 New Approach

Most previous lower bounds in this field are based on the Loomis-Whitney inequality
(as in [12]), dominator sets/S-partitions (as in [10], [15], and [7]), or edge expansions
(as in [5] and [4]). In this paper we apply a new technique, based on the existence
of a routing of paths within the underlying computation graph. In particular, we
show the existence of a set of paths between all the inputs and all the outputs of
sufficiently large matrix multiplication subcomputations such that each vertex is hit
relatively few times. We then show that if some, but not all, of these input and
output vertices are to be computed in one computation segment, then there must
exist many other vertices that contribute cache I/Os as a result. This new approach
may generalize to other problems that have sufficient symmetry to guarantee the
existence of an efficient routing.

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 7

2.2 Preliminaries

As in [5], we define the computation directed acyclic graph (CDAG) of an algorithm
to be the directed graph that contains a vertex for every value in the computation
(input, output, or intermediate value) and an edge, from input value to output value,
whenever one value depends directly on another. For example, if y = x1− 2x2 + 4x3,
then there are edges (x1, y), (x2, y), and (x3, y) in the CDAG.

Strassen’s matrix multiplication algorithm works as follows [17]: to multiply 2×2
matrices A and B, compute specific linear combinations of the entries of A and
linear combinations of the entries of B, perform 7 multiplications of these linear
combinations, and then take linear combinations of the results to get the entries
of C = AB. For larger square input matrices, divide each input matrix in half
horizontally and vertically and apply the above procedure, recursively computing
the necessary products of submatrices.

A Strassen-like algorithm is a square matrix multiplication algorithm that takes
a similar form: to multiply matrices of dimensions n0× n0, take linear combinations
of the input matrices, compute products, and take linear combinations of the results
to yield the entries of the output matrix. For larger matrices, divide into blocks and
recurse.

Let Gr be the CDAG of a Strassen-like algorithm for nr
0 × nr

0 square matrix
multiplication C = AB, necessarily consisting of r recursive levels. We call G1 the
base graph. G1 consists of two encoding graphs, which compute linear combinations
of entries of A and of B, a multiplication layer with b multiplication vertices, which
compute products of these linear combinations, and then a decoding graph, which
takes linear combinations of these products to yield the entries of C. Note that
G1 has 2n2

0 inputs, n2
0 from each input matrix. Further note that the same linear

combination of input elements may be used as inputs in multiple product vertices.
In this paper all figures show computations that proceed from bottom to top; we
therefore omit the directions of edges. See Figure 2.1.

Note that Gr is a ranked graph, with inputs on rank 0 and outputs on rank 2r.
Ranks 0 through r lie in the encoding graphs and ranks r + 1 through 2r lie in the
decoding graph; the multiplication layer occurs between ranks r and r + 1.

An intermediate vertex in Gr may have a single input vertex and, in this case,
may have the same value as its one input. We call this copying ; if the same value is
copied to more than one child vertex, we call it multiple copying. We could consider
this an artifact of our drawing of Gr and choose to identify these vertices. However,
doing so would break the simple ranked, recursive structure of Gr. Instead, we group
all vertices that represent the same value into a single meta-vertex. The vertices
corresponding to each meta-vertex form a chain in the case of single copying and an

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 8

Figure 2.1: The base graph G1 of Strassen’s algorithm for multiplying two 2 × 2
matrices A and B. Here b = 7.

upwards-branching subtree of the CDAG in the case of multiple copying, where each
vertex of the subtree apart from the root has no other edges entering it from below.
See Figure 2.2 for a depiction of a meta-vertex in the case of multiple copying. For
most of this chapter we consider only vertices, not meta-vertices, and then show that
our technique still applies when copying or multiple copying occurs.

The approach in [5] fails when the decoding graph of the base graph G1 has
a disconnected encoding or decoding graph. Note that the entire CDAG Gr (and
similarly G1) must be connected simply because it computes matrix multiplication
(this will be shown in greater detail in the process of proving Lemma 4), but the
decoding graph and/or encoding graph may not be connected individually, as is the
case for classical matrix multiplication.

In this paper, we first demonstrate a technique to derive the I/O-complexity
bound for Strassen’s algorithm presented in [5] more easily. We then show how to
extend the technique, via use of Theorem 4, to the case of disconnected decoding
and/or encoding graphs, allowing us to derive strong lower bounds for all Strassen-
like matrix multiplication algorithms in which each linear combination is used in only
one multiplication. This will prove Theorem 3, our main result. Finally, we present
a proof of Theorem 4.

Theorem 3 (Main Theorem) Let a and b be small constants. Consider a Strassen-
like matrix multiplication algorithm for n × n matrices with arithmetic complexity
o(n3) using cache size M = o (n2) in which the base graph has 2a inputs and b
multiplication vertices. If in the base graph every nontrivial linear combination of
elements of the input matrices is used in only one multiplication, then the algorithm

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 9

Figure 2.2: The meta-vertex corresponding to copies of the vertex v. Edges whose
endpoints are not shown denote edges to vertices not in the shown meta-vertex. If
this meta-vertex is in the CDAG for Strassen-like matrix multiplication, the structure
of the meta-vertex is actually more regular than depicted due to the simple recursion.

has I/O-complexity

Ω

((
n√
M

)2 loga b

·M

)
.

If run on P processors each of local cache size M , then the bandwidth cost is

Ω

((
n√
M

)2 loga b

· M
P

)
.

In other words, if a Strassen-like matrix multiplication algorithm performs Θ(nω0)
arithmetic operations with ω0 < 3, then its I/O-complexity is

Ω

((
n√
M

)ω0

·M
)
.

If run on P processors, the bandwidth cost is

Ω

((
n√
M

)ω0

· M
P

)
.

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 10

Furthermore, regardless of the cache size the bandwidth cost is

Ω

(
n2

P 2/ω0

)
as long as computation is load balanced per rank of the computation graph.

In [3] an explicit divide-and-conquer algorithm is given that attains the bounds
in Theorem 3. The sequential-to-parallel argument from [2] (as well as [5], [12], and
[6]) allows us to take P = 1 – that is, work entirely in the serial model – and get the
factor of 1

P
in the parallel case with no additional work. Therefore, the remainder

of this paper is devoted to proving a lower bound of Ω

((
n√
M

)2 loga b

·M
)

in the

sequential case, from which Theorem 3 follows. By [3], the lower bounds in Theorem
3 are optimal.

2.3 Definitions

The proof presented in [5] relies on the notion of edge expansion; it shows a lower
bound for the edge expansion of small subsets of vertices of the CDAG for Strassen’s
algorithm and then applies a lemma to yield a better edge expansion bound that
relies on the fact that Gr contains as subgraphs many edge-disjoint copies of Gk for
k < r. In our proof we bypass edge expansions entirely by explicitly cutting Gr into
many copies of Gk for k < r. Both methods rely on the following fact, which is a
consequence of the recursive definition of Strassen-like algorithms:

Fact 1 For 0 ≤ k ≤ r, let Gr,k be the induced subgraph of Gr formed by the middle
2(k+ 1) levels of vertices (i.e. ranks r− k through r of the encoding graphs and rank
0 through k of the decoding graph). Then Gr,k consists of br−k vertex-disjoint copies
of the graph Gk.

In other words, the middle 2(k + 1) layers of Gr are responsible for computing br−k

independent matrix multiplications of square matrices of size nk
0 × nk

0.

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 11

Definition 1 For any subset S of vertices of a computation graph G with directed
edges E, define the following:

1. R(S) = {v ∈ G− S | for some w ∈ S, (v, w) ∈ E}

2. W (S) = {v ∈ S | for some w ∈ G− S, (v, w) ∈ E}

3. δ(S) = R(S)
⋃
W (S)

Note that R(S) and W (S) are disjoint, so |δ(S)| = |R(S)|+ |W (S)|. If S denotes a
set of consecutively-computed vertices of G, then R(S) denotes the set of vertices of
G that must be read into cache, if not already present, during the computation of
the vertices of S, and W (S) the set of vertices of G that must be written to cache, if
not to remain in cache after the computation of S. We assume that no vertex in G is
ever computed more than once, meaning that if a vertex is used in the computations
of multiple other vertices, it must either remain in cache until all the computations
of vertices depending on it have finished or else be written to and read from cache.

We also assume that every linear combination of inputs in the base graph – except
for the inputs themselves – is used in at most one multiplication in the base graph;
this implies that every meta-vertex in the base graph is either a single vertex or else
is rooted at one of the input vertices.

If S ′ is a subset of meta-vertices of G, we similarly define
δ′(S ′) = {meta-vertex v′ of G not in S ′ |

for some w′ ∈ S ′, v′ and w′ are adjacent},
where two meta-vertices v′ and w′ are considered to be adjacent if for some vertex
v ∈ v′ and vertex w ∈ w′, (v, w) ∈ E or (w, v) ∈ E. In other words, δ′(S ′) is the set
of meta-vertices adjacent to any of those in S ′.

The main proof in this paper is based on finding routings of paths between sets
of vertices in subgraphs of the CDAG that avoid using any vertex too many times.
To this end we make the following definition:

Definition 2 If X and Y are subsets of the vertices V (G) of a directed graph G,
define an m-routing between X and Y to be a collection R of |X||Y | paths such that
for any x ∈ X and y ∈ Y there exists a path, ignoring the directedness of edges, in
G between x and y and such that every vertex of G is used collectively amongst all
the paths in R at most m times. Similarly, if F is a subset of V (G)× V (G), define
an m-routing for F to be a collection of paths, one for every (v, w) ∈ F connecting
v and w, such that every vertex of G is hit at most m times.

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 12

We will consider only the case where X and Y are disjoint. Note that m-routings
need not be unique, and in fact part of the challenge of our proof is constructing a
canonical m-routing with sufficiently small m.

Definition 3 Let G = (V,E) and S ⊆ V . If p is a path in G that contains at least
one vertex in S and at least one vertex in G − S, then we call p boundary-crossing
with respect to S in G.

Note that any boundary-crossing path contains at least one pair of adjacent vertices
such that one is in S and the other is not. Our basic strategy will be to show the
existence of m-routings for relatively small m, and then show that such a routing
must contain many boundary-crossing paths, implying the existence of many vertices
in δ(S) and thus many meta-vertices in δ′(S ′).

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 13

2.4 Simple Proof for Strassen’s Algorithm

First we use our technique to rederive the lower bound on the I/O-complexity for

Strassen’s algorithm presented in [5], Ω

((
n√
M

)log2 7
·M
)

. As in [5], we consider

the sequence of computations of vertices performed by the algorithm. In [5], this
sequence is divided up into segments of sufficient length such that the I/O due to
each segment is guaranteed to be at least M , the cache size. To do this, the smallest
segment length s is found such that for any segment S of size s we are guaranteed
that |δ(S)| ≥ 3M . All vertices present in δ(S) contribute to the I/Os due to S,
except for vertices in R(S) already present in cache (at most M) and vertices in
W (S) that need not be written to cache (at most M). Because [5] considers only
the decoding graph of Gr, there are no concerns about vertex copying.

We use the same basic argument, but instead divide the sequence of vertex com-
putations of the CDAG Gr into the smallest segments possible such that each seg-
ment S (except perhaps the last segment) contains 66M vertices from rank k of the
decoding graph (rank r + k of Gr)

1. When a vertex v is in S we consider every
vertex in the same meta-vertex as v to also be in S; however, because there is no
copying in the decoding graph every meta-vertex can contain only one vertex from
the decoding graph. Note that the size of each segment may be different; we care
only about the number of vertices on this specific rank. We let k = dlog4(132M)e,
the smallest integer k such that 4k ≥ 2 · 66M . Because rank k of the decoding graph
contains 4k7r−k vertices, there are

⌊
4k7r−k

66M

⌋
such complete segments. Let S be one

such complete segment and let S denote the vertices in S on rank k of the decoding
graph of Gr. Thus we pick S as small as possible such that |S| = 66M . If Gr is
the CDAG for Strassen’s algorithm for multiplying nr

0×nr
0 matrices, recall that Gr,k

contains 7r−k copies of the graph Gk. For 1 ≤ i ≤ 7r−k, let Gi
k be the ith such copy,

Si be the subset of S in Gi
k, and Si be the subset of vertices of Si on rank k of Gr.

Intuitively, we “count” S by the number of vertices of S on this particular rank.
It is these vertices that will contribute, perhaps indirectly, to I/Os performed during
the computation of S, regardless of what vertices on other ranks lie in S.

Let Dk be the decoding graph of Gk. We now claim that there exists a routing of
paths between all the input vertices and output vertices of Dk such that no vertex
of Dk is hit too often:

Claim 1 There exists an
(
11 · 7k

)
-routing in Dk between the set of inputs of Dk and

the set of outputs of Dk.

1We did not optimize for the constant factor.

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 14

Proof. If D1 were simply the complete graph K7,4 consisting of all 28 edges
between the 7 inputs and 4 outputs, there would exist a very natural routing of
paths between inputs and outputs of Dk: for any input and output, there is a unique
chain of vertices between them defined by the sequence of subcomputations the input
lies in. A vertex on rank i of Dk is then hit 7i4k−i ≤ 7k times in this routing, once
for every pair consisting of an input vertex beneath it and an output vertex above
it.

Unfortunately, D1 is not a complete graph. However, because D1 is connected
there still exists a path within each copy of D1 from any input vertex to any output
vertex. Where each path previously went directly from an input vertex v to an
output vertex w of each D1, it will now take any path (that doesn’t repeat vertices)
through the same D1 component from v to w. This idea is depicted in Figure 2.3.
This multiplies the number of times a vertex is hit in the routing by at most the
number of vertices in D1, 11. �

Figure 2.3: One of the decoding graphs in G1 for Strassen’s algorithm. Because there
is no edge from v to w, a chain must instead take a more indirect path, shown in
red, through the encoding graph.

Each Gi
k contains a copy of Dk – for this proof we consider only the decoding

piece Dk of Gk, but in the full proof we must consider Gk in its entirety in order to
account for base graphs with disconnected encoding/decoding portions. Let Di

k be
the copy of Dk lying in Gi

k and note that |Si| ≤ 1
2
4k, so at most half of the vertices

on the top rank of Di
k are in S. For each 1 ≤ i ≤ 7r−k, fix an

(
11 · 7k

)
-routing in Di

k

between the 7k inputs and 4k outputs. See Figure 2.4. There are now two cases:

1. Fewer than half of the 7k vertices on the bottom rank of Di
k are in S. In this

case, there exist at least |Si|127k paths in the routing going from an input to
Di

k not in S to an output in S.

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 15

2. At least half of the vertices on the bottom rank of Di
k are in S. In this case,

there exist at least
(
4k − |Si|

)
1
2
7k paths in the routing going from an input in

S to an output not in S.

In either case, there are at least 1
2
|Si|7k boundary-crossing paths (between Si and

Di
k − Si) in the routing. Associate to each boundary-crossing path an edge in the

path that crosses between Si and Di
k − Si. The vertex of this edge that is not in S

lies in δ(Si). By the definition of m-routing2,

|δ(Si)| ≥
1
2
|Si|7k

11 · 7k
=

1

22
|Si|

Adding this up over all the Si yields

|δ(S)| ≥
7r−k∑
i=1

1

22
|Si| =

1

22
|S| (2.1)

This step relies on the Dk being disjoint and the lack of copying in the decoding
graph of Strassen’s (or any Strassen-like) matrix multiplication algorithm. If mul-
tiple copying did occur, vertices in the different Di

k need not correspond to distinct
computations. This will add an additional layer of complexity to the upcoming proof.

Since |S| was chosen to be 66M , this yields δ(S) ≥ 3M . Therefore the computation
of S contributes at least M I/Os. Thus the total I/O is at least

⌊4k7r−k

66M

⌋
·M = Ω

(
7r

(
4

7

)k
)

= Ω

(
|V (Gr)|

M

M log4 7

)

= Ω

((
n√
M

)log2 7

·M

)
as long as M = o (n2

0) (which guarantees that 66M ≤ 4k7r−k). �

2And using the fact that the boundary-crossing paths in Di
k are a subset of all the paths in the(

11 · 7k
)
-routing in Dk.

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 16

Figure 2.4: An example of a path considered in the
(
11 · 7k

)
-routing between an

input vertex (to D1
k) that is not in S and an output vertex that is in S. The

submultiplications are shown in red, S1 is shown in blue, and S1 is circled. Note
that the path zags up and down, as explained in Figure 2.3. For simplicity, only one
encoding graph is shown and only 3 submultiplications are drawn.

2.5 Strassen-Like Algorithms

We now turn our attention to Strassen-like square matrix multiplication algorithms.
Several nuances prevent our above proof from working as-is:

1. G1 may have disconnected encoding or decoding graphs. This prevents us from
finding an m-routing in the decoding graph Dk because Dk itself may no longer
be connected. We will solve this problem by considering Gk, consisting of the
decoding graph as well as the two encoding graphs. The paths in our m-routing
will no longer be chains or even chains with length 1 “zags,” but may need to
bounce between inputs and outputs of Gk several times. See Figure 2.5.

2. Multiple copying may occur in the encoding graphs. This means a collection
of m-routings for the Gi

k could potentially hit a meta-vertex more than m
times. We will show via Theorem 4 that m-routings will only hit a meta-
vertex entirely within Gk at most m times and then change the overall counting
argument slightly to prevent meta-vertices between multiple Gi

ks from being
hit too often.

As before, we divide the sequence of vertex computations of Gr into segments
such that each segment S contains enough vertices of a certain type. Again let Gi

k

be the ith subcomputation of Gr,k for 1 ≤ i ≤ br−k. Let a duplicated vertex be a
vertex of the CDAG Gr with at least one other copy (called a duplicate) in Gr, that is

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 17

one whose meta-vertex contains more than one vertex. We call two subcomputations
input-disjoint if none of their inputs lie in the same meta-vertex.

Let S be a segment of the sequence of vertex computations. Recall that when
v ∈ S we consider every vertex w in the same meta-vertex as v to also be in S. For this
argument we count only the vertices on rank k of the decoding graph of Gr and rank
r − k of either encoding graph that are in mutually input-disjoint subcomputations
Gr,k. We choose k = dloga 72Me, the smallest integer k such that ak ≥ 2 · 36M .

First we show that counting only vertices lying in subcomputations that do not
share inputs reduces the number of vertices on the relevant ranks by only a constant
factor. In Chapter 3 we will show a stronger analog of this lemma via a different
technique; see Corollary 2. Note that this lemma does not apply to classical matrix
multiplication, so our proof will not apply to classical matrix multiplication or al-
gorithms with interleaved classical recursive steps; in later chapters we show how to
extend our result to such algorithms.

Lemma 1 Let k ≤ r − 2. If not every vertex in the encoding graph for A of G1 is
a duplicated vertex and similarly for the encoding graph for B of G1, then at least a
fraction 1

b2
of the subcomputations Gi

k are mutually input-disjoint.

Proof. Consider the recursion tree of subcomputations computed by Gr. Let P1

be the “grandparent” subcomputation of Gi
k – the subcomputation in the recursion

tree two levels above Gi
k – and suppose P1 multiplies matrices A1 by B1. Then at

least one child subcomputation P2 of P1 multiplies matrices A2 by B2 such that A2

shares no meta-vertices with A1. Similarly, at least one child subcomputation of
P2 multiplies matrices A3 by B3 such that B3 shares no meta-vertices with B2, and
hence with B1. Thus at least one subsubcomputation of P1 is input-disjoint from it.
P1 has b2 subcomputations two levels down from it, so at least a fraction 1

b2
of all

the subcomputations Gi
k are mutually input-disjoint. �

Fix a collection C of br−k−2 mutually input-disjoint subcomputations Gi
k. Let S

be the set of vertices of S on the aforementioned ranks in these subcomputations,
which now consist of both encoding and decoding graphs. Formally, for v ∈ S we let
v ∈ S if both conditions below are met:

1. v lies on one of the following ranks: rank k of the decoding graph of Gr, rank
r−k of the encoding graph of Gr that encodes A, or rank r−k of the encoding
graph of Gr that encodes B.

2. The subcomputation Gi
k that v lies in (necessarily as an input or output of) is

in C.

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 18

Divide the sequence of vertex computations into segments such that for each segment
S we have |S| = 36M . Let Si be the subset of S in Gi

k and Si be the subset of S
in Gi

k. Note that if Gi
k is not one of the chosen input-disjoint subcomputations then

Si = ∅. Intuitively, only the vertices in S “count” towards our I/O lower bound,
regardless of how many other vertices lie in S, and we choose our segment divisions
such that each segment has enough counted vertices. See Figure 2.5.

Figure 2.5: The overall idea of the main proof. For simplicity only one encoding
graph is explicitly drawn. The set S is shown in blue. Note that only the elements
on rank k of the decoding graph and rank r − k of the encoding graphs in input-
disjoint Gi

ks lie in S. A typical boundary-crossing path in G3
k is shown. (Not shown)

The two vertices of the path on the bottom rank of G3
k lie in different encoding

graphs.

Note that if the condition of Lemma 1 is not met, then the algorithm never com-
putes linear combinations of one of the input matrices. It is known (see Theorem 14)
that any matrix multiplication algorithm that computes linear combinations of only
one of the input matrices performs no better than naive matrix multiplication and
so does not have o(n3) arithmetic complexity (i.e., is not a fast matrix multiplication
algorithm). Thus from now on we assume the condition of Lemma 1 is met.

Second, we show that our choice of partitioning the sequence of vertex compu-
tations into segments S exists. If meta-vertices contained multiple input and/or
output vertices counted in S, then including into S the next vertex v in the sequence
of vertex computations – which by definition also includes into S every vertex in the
same meta-vertex as v – could increase this count by more than one.

Lemma 2 If Gi
k and Gj

k are input-disjoint, then the meta-vertices corresponding to
the inputs and outputs of Gi

k and Gj
k are all distinct.

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 19

Proof. Note that the decoding graph of G1 cannot contain copying. If it did, then
in the base case of n0× n0 matrix multiplication C1 = A1B1 some outputs would be
identically equal, which is not the case. Hence the decoding graph of Gr contains no
copying, and so every output vertex of Gi

k and Gj
k is non-duplicated. By definition,

the input vertices of Gi
k and Gj

k are in distinct meta-vertices, proving the lemma. �
For the remainder of this proof we will consider, for each i, the entire subcom-

putation graph Gi
k (as opposed to just the decoding portion Di

k). We must consider
the decoding graph and both encoding graphs of Gi

k together because the decoding
graph by itself, or even the decoding graph plus one encoding graph, may be dis-
connected. We now state the main theorem used in our proof, whose proof we defer
until Section 2.6. Compare to the routing found in Section 2.4 between the input
and output vertices of each Di

k.

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 20

Theorem 4 (Routing Theorem) Let Gk be the CDAG for nk
0 × nk

0 matrix multi-
plication, a = n2

0, and let the encoding graph of the base graph G1 have 2a inputs
and b outputs. Assume every linear combination vertex in the base graph is used in
only one multiplication. Then there exists a 6ak-routing between the set of inputs of
Gk and the set of outputs of Gk. Furthermore, every meta-vertex in Gk is also hit
by the routing at most 6ak times.

For each of the mutually input-disjoint Gi
k in C, fix a 6ak-routing guaranteed by

the Routing Theorem between the inputs and outputs of Gi
k. Because the size of the

top rank of Gi
k is ak and the size of the bottom rank is 2ak and |Si| ≤ |S| ≤ 1

2
ak, for

every vertex v in Si there exist at least 1
2
ak paths in the routing that go either:

1. between a vertex in S on the bottom rank of Gi
k and a vertex not in S on the

top rank of Gi
k (if v is on the bottom rank)

2. between a vertex not in S on the bottom rank of Gi
k and a vertex in S on the

top rank of Gi
k (if v is on the top rank).

Thus the routing in Gi
k contains at least 1

2
ak|Si| boundary-crossing paths; call the set

of such paths Pi and let P =
⋃
i

Pi be all these boundary-crossing paths in the above

routings for all input-disjoint Gi
k. Then |P | ≥

∑
i

1
2
ak|Si| = 1

2
ak|S|. By the Routing

Theorem every meta-vertex contained entirely within Gi
k is hit by the routing at

most 6ak times. No meta-vertex in Gi
k extends beneath the bottom rank of Gi

k, and
so every meta-vertex in Gr intersects at most one of the mutually input-disjoint Gi

k.
Therefore every meta-vertex in Gr is hit at most 6ak times by the paths in P .

Let S ′ be the set of meta-vertices represented by S, and recall that δ′(S ′) denotes
all meta-vertices adjacent to S ′ that are not in S ′ itself. Then

|δ′(S ′)| ≥
1
2
ak|S|
6ak

=
1

12
|S| (2.2)

This is a more general analogue of Equation 2.1.
Every meta-vertex adjacent to S necessarily contributes one to the I/Os due to

computing S, except possibly for those meta-vertices already in memory (at most
M) and those that need not be written to cache (at most M). Because |S| = 36M ,
we have |δ′(S ′)| ≥ 3M , and so computing S requires at least M I/Os.

As indicated above, because Gr has o(n3) multiplications we may apply Lemma 1.
Because rank k of the decoding graph of Gr and rank r−k of the encoding graphs of

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 21

Gr together have size 3akbr−k and 1
b2

of these vertices are in mutually input-disjoint
subcomputations Gi

k, the total I/O from computing Gr is at least⌊ 1
b2

3akbr−k

36M

⌋
·M = Ω

(
br
(a
b

)k)
= Ω

(
|V (Gr)|

M

M loga b

)

= Ω

((
n√
M

)2 loga b

·M

)
as long as M ≤ o (n2) (which guarantees that 36M ≤ 1

b2
3akbr−k and k ≤ r − 2).

In the parallel case, we apply the above argument to a processor that computes
an above-average number of vertices of S, yielding a factor of 1

P
as in [2]. The

cache-independent result comes from instead picking k = Θ
(
logb

nω0

P

)
and letting S

represent the computations performed by just one processor. This proves Theorem
3. �

2.6 Proof of The Routing Theorem

In this section we prove Theorem 4. Let Gk be the CDAG for a square Strassen-like
matrix multiplication algorithm for C = AB, let Out be the set of outputs of Gk

(corresponding to entries of C), In be the set of inputs, InA be the set of inputs to
the encoding graph for A within Gk, and InB be the inputs to the encoding graph
for B. Then |Out| = |InA| = |InB| = ak = n2k

0 . For v ∈ In and w ∈ Out, we say
that the input-output pair (v, w) is a guaranteed dependence if in any correct matrix
multiplication algorithm there exists a chain from v to w, or equivalently if the output
element corresponding to w explicitly depends on the input element corresponding
to v. It is clear that if v ∈ InA represents the input aij and w represents the output
ci′j′ then there is a guaranteed dependence between v and w if and only if i = i′, and
similarly if v ∈ InB represents the input bij, then there is a guaranteed dependence
between v and w if and only if j = j′.

To prove the Routing Theorem we will combine the following two lemmas, whose
proofs follow in the succeeding sections:

Lemma 3 Let F ⊆ V (Gk)× V (Gk) be the set of all guaranteed dependencies (v, w)
of Gk with v ∈ In and w ∈ Out. Then there exists a 2nk

0-routing for F in Gk

consisting only of chains.

Intuitively, we can route chains between all pairs of input and output vertices where
a chain is guaranteed to exist while using no vertex more than 2

√
ak times. That

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 22

every path of the routing is a chain is not necessary to complete the proof of the
Routing Theorem.

Lemma 4 Fix a routing for F , where F is as defined in Lemma 3. Then there
exists a routing between In and Out such that every path in the routing consists of
the concatenation of chains in F – some reversed in direction – such that each chain
in F is used 3nk

0 times.

In other words, given any way of routing chains between all guaranteed dependencies,
we can combine those chains, backwards and forwards, to give a path between every
input and every output vertex while not using any such chain more than 3

√
ak times.

Given these lemmas, the proof is simple:

Proof of the Routing Theorem. By Lemma 3, fix a 2nk
0-routing R0 for the set

of guaranteed dependencies F . By Lemma 4, there exists a routing R between the
inputs and outputs of Gr composed of concatenations of chains (some reversed) in
R0 such that every chain in R0 is used at most 3nk

0 times. Thus in the routing R
every vertex of G is used at most 2nk

0 · 3nk
0 = 6ak times, and so R is a 6ak-routing,

as desired.
Because every meta-vertex is an upward-facing subtree (see Figure 2.2), any path

hitting a meta-vertex also hits the root vertex of the meta-vertex. Hence every
meta-vertex is also hit at most 6ak times. �

Proof of Lemma 4

In this section we prove the second, significantly easier, lemma. The proof of this
lemma is constructive, yielding an explicit scheme for routing chains between all
inputs and outputs given a routing for all guaranteed dependencies. This lemma
holds for any correct matrix multiplication algorithm based only on the definition of
matrix multiplication.

Proof of Lemma 4. For an input vertex v ofGk and output vertex w corresponding

to element ci′j′ of C, suppose first that v ∈ InA. Let v then represent element aij of

A. We form the following sequence of guaranteed dependencies:

aij → cij′ → bjj′ → ci′j′

That is, (aij, cij′) is a guaranteed dependence, (bjj′ , cij′) is a guaranteed dependence,
and (bjj′ , ci′j′) is a guaranteed dependence. Note that every guaranteed dependence
in this chain involves 3 out of the 4 variables i, i′, j, and j′. Hence as i, j, i′, and j′

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 23

vary between 1 and nk
0, each guaranteed dependence above is used nk

0 times, once for
each value of the missing variable (for each time it appears in the above sequence).
For example, for any i, j, and j′, the guaranteed dependence between aij and cij′ is
used exactly once for every 1 ≤ i′ ≤ nk

0. See Figure 2.6 for another interpretation of
this pattern.

Similarly, if v ∈ InB let v correspond to element bij of B. The following sequence

of guaranteed dependencies has the same properties:

bij → ci′j → ai′i → ci′j′

Amongst both these sequences, each guaranteed dependence between an element
of A and one of C is used exactly 3 · nk

0 times and similarly for every guaranteed
dependence between B and C. This proves Lemma 4. �

Note that these sequences are not unique. When routing aij to ci′j′ , any sequence

of the form

aij → cij′ → b j′ → ci′j′

where the blank is any value forms a set of sequences of guaranteed dependencies.
However, unless the values that the blank takes are well-distributed over j for all
choices of i, i′, and j′, this sequence will not have the desired property. This explains
the odd use of j as a row index, and similarly the use of i as a column index when
routing bij to ci′j′ .

Figure 2.6: The sequence of guaranteed dependencies between aij and ci′j′ shown as
elements in the matrices A, B, and C. Note the use of j as a row index.

Proof of Lemma 3

This lemma is significantly harder to prove. We use the following overall strategy:
In order to prove there exists a 2nk

0-routing between all guaranteed dependencies,
we show there exists a n0-routing of guaranteed dependencies in the subgraph of

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 24

G1 formed by the decoding graph together with the encoding graph for A; by the
recursive structure of Gk, this is sufficient to prove it in general. Define a middle-rank
vertex of G1 to be a vertex on the top rank of the encoding graph of A. To show
the lemma for this 2

3
of G1 – the encoding graph for A together with the decoding

graph for C – we show a (several-to-one) matching between guaranteed dependencies
and middle-rank vertices on some chain satisfying the dependence. By assumption,
every vertex representing a linear combination of elements of A is adjacent to exactly
one multiplication vertex; thus a routing of guaranteed dependencies that uses each
middle-rank vertex at most n0 times also uses each multiplication vertex at most n0

times.
We will prove the existence of this matching via a version of Hall’s Matching

Theorem. In order to apply this theorem, we will need to show that for every set of d
guaranteed dependencies, there exist chains between those dependencies collectively
hitting at least d

n0
middle-rank vertices. We demonstrate that if this is not the case,

then setting some entries of the n0× n0 input matrix A to be identically 0 results in
an algorithm that correctly computes many of the guaranteed dependencies between
C and A using relatively few multiplications. Finally, we show that this implies the
existence of an algorithm for multiplying a n0 × n0 matrix by a length n0 vector in
fewer than n2

0 operations, which is known to be impossible [19]. This will conclude
the proof.

Let G′k be the induced subgraph of Gk containing the vertices from the decoding
graph of Gk and the encoding graph of Gk for A (excluding only the encoding graph
for B). Let F ′ be the subset of F with both vertices lying in G′k, that is the set
of guaranteed dependencies (v, w) between inputs v of A and outputs w of C. For
simplicity, we simply call F ′ the guaranteed dependencies of G′k. We now consider
m-routings for the set of guaranteed dependencies (that is, F ′) of G′k. It then suffices
to find an ak-routing of guaranteed dependencies in G′k.

Claim 2 If there exists an m-routing for the guaranteed dependencies of G′1, then
there exists an mk-routing for the guaranteed dependencies of G′k.

Proof. This lemma follows from the recursive structure ofG′k. Intuitively, the graph
G′k is formed by placing b copies of G′k−1 in parallel, connecting up their inputs with
ak−1 copies of the encoding graph for A, and connecting up their outputs with ak−1

copies of the decoding graph for C. See Figure 2.7. In other words, take ak−1 copies
of G′1 and replace their middle two ranks with copies of G′k−1. Any number of copies
of G′1 in parallel still have an m-routing for guaranteed dependencies, and replacing
their middle ranks effectively replaces a pair of adjacent vertices on the middle ranks
with a guaranteed dependence in G′k−1. Thus if there exists an mk−1-routing for

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 25

Gk−1 then there exists an mk routing for Gk. The claim then follows by induction.
�

Figure 2.7: The construction of G′k from b copies of G′k−1. A pair of adjacent vertices
on the middle two ranks is replaced with a guaranteed dependence in one of the
G′k−1.

Therefore it will suffice to prove the existence of an n0-routing for the guaranteed
dependencies of G′1. We now apply a version of Hall’s Matching Theorem:

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 26

Theorem 5 (Hall’s Matching Theorem) (Many-to-one version) Let G be a bi-
partite graph with bipartition X and Y and for D ⊆ V (G) let N(D) denote the set of

neighbors of D in G. If for every D ⊆ X we have |N(D)| ≥ |D|
p

, then there exists a
many-to-one matching between X and Y such that every vertex in X is used exactly
once and every vertex in Y is used at most p times.

This theorem follows from the standard form of Hall’s Matching Theorem by simply
duplicating all vertices in Y p times.

We now construct a graph H = (X, Y) to which to apply Theorem 5. For every
guaranteed dependence (v, w) in G′1 (with v an input representing an element of A
and w an output representing an element of C), define a corresponding vertex in
X. Let Y be the set of middle-rank vertices of G1: all vertices on the top rank of
the encoding graph for A. It suffices to assign to each guaranteed dependence in
X a middle-rank vertex from Y through which its chain may pass. To this end, if
x ∈ X corresponds to the guaranteed dependence (v, w) and y ∈ Y corresponds to
the middle-rank vertex t, let there be an edge between x and y if there exists some
chain between v and w passing through t. See Figure 2.8.

Figure 2.8: The vertices shown in red are those adjacent to the vertex in H cor-
responding to the guaranteed dependence (v, w), where v corresponds to the input
a12 of A and w corresponds to the output c11 of C. The graph shown is the G′1 for
Strassen’s algorithm.

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 27

Lemma 5 For any set D ⊆ X, we have |N(D)| ≥ |D|
n0

.

From Lemma 5, the proof of Lemma 3 follows, and thus our main result:

Proof of Lemma 3. By Hall’s Matching Theorem (Theorem 5), there exists a
many-to-one matching from X to Y using every vertex in Y at most n0 times. Fix
such a matching. For every guaranteed dependence (v, w) of G′1, simply route a chain
through the vertex of Y that (v, w) is matched with. Every vertex on the middle two
ranks of G′1 is thus hit at most n0 times. Every vertex on the top and bottom ranks
of G′1 is hit exactly n0 times by any routing for guaranteed dependencies that uses
only chains, because in n0 × n0 matrix multiplication every element of A influences
n0 elements of C, and every element of C depends on n0 elements of A. Thus there
exists a n0-routing for the guaranteed dependencies in G′1, and so by Claim 2 there
exists a nk

0-routing for the guaranteed dependencies of G′k. The same holds for the
induced subgraph of G1 consisting of the decoding graph together with the encoding
graph for B, yielding a 2nk

0-routing for the guaranteed dependencies of Gk. �

Proof of Lemma 5

Finally, we prove Lemma 5 to complete the proof of the Routing Theorem and thus
our main result, Theorem 3:

Proof of Lemma 5. Suppose by way of contradiction that for some subset D ⊆ X
of guaranteed dependencies in G′1 we have |N(D)| < |D|

n0
. Recall that a guaranteed

dependence occurs between the vertex representing aij and the vertex representing
ci′j′ exactly when i = i′. We may thus partition D by the choice of i: let Di be the
subset of D consisting of all guaranteed dependencies between aij and cij′ for any j

and j′. Because 1 ≤ i ≤ n0, for some i we have |Di| ≥ |D|
n0

. Since N(Di) ⊆ N(D), we

have |N(Di)| < |D|
n0
≤ |Di|. In other words, the set of guaranteed dependencies Di is

computed using fewer than |Di| multiplication vertices.
We now demonstrate that this is impossible by using this structure to create a

matrix-vector multiplication algorithm that requires fewer than n2
0 multiplications.

For fixed Di, define the computation graph G◦1 as follows: G◦1 is the induced subgraph
of G1 containing as inputs vertices corresponding to all the elements of B and their
linear combinations, the elements aij of A for all j, and the elements cij′ of C for all
j′. G◦i additionally contains all the middle-rank vertices in N(Di) and all vertices
on the bottom rank of the decoding graph. G◦1 may now contain “useless” vertices –
we draw G◦1 with these vertices additionally removed, but it does not matter for the
bounds in this proof. See Figures 2.9 and 2.10.

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 28

Figure 2.9: G◦1 for Strassen’s algorithm when i = 2 and D2 =
{(a21, c21), (a21, c22), (a22, c21), (a22, c22)}. The crossed-out vertices are those removed
from G1 to construct this reduced computation graph G◦1. This is equivalent to set-
ting all but the 2nd row of A to 0; the resulting algorithm computes the product of
a row of A by the matrix B.

By the structure of G1, every multiplication vertex multiplies a linear combination∑
i,j

λAijaij by a linear combination
∑
i,j

λBijbij for some coefficients λAij and λBij in the

ground field F (R or C). We consider linear combinations of the aijs with coefficients
in F [b11, b12, . . . , bn0n0]. In other words, consider bijs to be coefficients and aijs to be
variables. For 1 ≤ j ≤ n0, let aij and cij be the inputs and outputs of G◦1 respectively.
Note that for all 1 ≤ j, j′ ≤ n0, cij depends on aij′ . We now define a boolean-valued
function f that represents whether the coefficient of each input is correct in each
output: For 1 ≤ j, j′ ≤ n0, define f(j, j′) to be 1 exactly when the coefficient of aij′
in cij is its correct value for matrix multiplication, namely bj′j, and otherwise 0.

Let nf denote the number of pairs (j, j′) with 1 ≤ j, j′ ≤ n0 at which f takes the

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 29

Figure 2.10: However, D2 need not contain all possible guaranteed dependen-
cies as in Figure 2.9, depending on the given subset D. In this figure D2 =
{(a21, c21), (a21, c22), (a22, c22)}. Because the guaranteed dependence (a22, c21) is not
included in D2, the vertex crossed out in blue is removed, and so G◦1 does not quite
compute vector-matrix multiplication; the coefficient of a22 in the computation of
c21 may not be correct. This necessitates adding additional multiplication vertices
to “fix” errors of this form.

value 1 – that is, the number of coefficients correctly set by G◦1. By the definition
of G◦1 relative to the matching graph H, we have nf ≥ |Di| (for the i for which

|Di| ≥ |D|
n0

): If the guaranteed dependence of cij on aij′ is represented in Di, then
the coefficient of aij′ in cij must be “correct” for matrix multiplication, since, by
definition of G◦1, there exists no chain between the vertices corresponding to cij and
aij′ contained in G1 (which correctly computes matrix multiplication) but not in G◦1.

Finally, we use G◦1 to construct a new, correct, vector-matrix multiplication algo-
rithm. Define G◦1 to be the CDAG formed as follows: to the CDAG G◦1 add n2

0 − nf

multiplication vertices, one for each pair (j, j′) for which f(j, j′) = 0. For 1 ≤ j, j′ ≤
n0 let the coefficient of aij′ in cij computed by G◦1 be xj′j ∈ F [b11, b12, . . . , bn0n0]
– a linear combination of the “coefficients” bij. For each such j and j′ at which
f(j, j′) = 0, use a multiplication vertex to compute aij′ (bj′j − xj′j) and add it to
the output vertex representing cij. In other words, for every incorrect dependence
of cij on aij′ we may use a single multiplication vertex to “fix” the dependence.
Now G◦1 correctly computes n0 × n0 vector-matrix multiplication. G◦1 contained

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 30

fewer than |Di| multiplication vertices and we added at most n2
0 − nf , so G◦1 has

< |Di| + n2
0 − nf ≤ |Di| + n2

0 − |Di| = n2
0 multiplication vertices. Thus we have

constructed a correct algorithm for computing n0 × n0 vector-matrix multiplication
using fewer than n2

0 multiplications, which is known to be impossible [19]. This
concludes the proof of Lemma 5 and hence of our main result Theorem 3. �

We state the result we obtained in the proof of Lemma 5 as its own Lemma:

Lemma 6 Let G◦1 be a CDAG with inputs aij and bij and outputs cij for 1 ≤ i, j ≤ n0

where each cij is computed as a product of linear combinations of the aij and bij. If
for d pairs (j, j′), 1 ≤ j, j′ ≤ n0, the coefficient of aij′ in cij is bj′j, then G◦1 uses at
least d multiplications.

2.7 Conclusion

We have proven optimal lower bounds for the I/O-complexity of any Strassen-like
square matrix multiplication algorithm in which every linear combination in the
base graph is used in only one multiplication by proving the existence of a routing
between the inputs and outputs of such an algorithm that uses every intermediate
computation vertex relatively few times. The proof generalizes easily to algorithms
composed of different base graphs, as long as each base graph performs square matrix
multiplication with 2a inputs and b subcomputations and satisfies the conditions of
Lemma 1. This bound holds regardless of the form of the base graph(s), including
those that have disconnected encoding or decoding pieces and those that perform
multiple copying. Our technique provides a novel alternative to the edge expansion
argument in [5] that applies to less straightforward recursive computation graphs.

In Chapter 3 we remove the assumption that every linear combination is used
in only one multiplication. Without this assumption Lemma 5 no longer holds;
vertices representing linear combinations used in multiple multiplications may require
too many paths routed through them. Thus a more general approach to routing
guaranteed dependencies is required. This difficulty will be overcome by routing
paths in response to the choice of S, where paths are now allowed to “jump” to
other vertices that have the same membership in S. This extends our result to all
fast Strassen-like matrix multiplication algorithms.

2.8 Acknowledgments

Research is supported by grants 1878/14, and 1901/14 from the Israel Science Foun-
dation (founded by the Israel Academy of Sciences and Humanities) and grant 3-

CHAPTER 2. MATRIX MULTIPLICATION I/O-COMPLEXITY BY PATH
ROUTING 31

10891 from the Ministry of Science and Technology, Israel. Research is also supported
by the Einstein Foundation and the Minerva Foundation.

Finally, in Figure 2.11 we present a quick summary of all the results used or
proved thus far:

Figure 2.11: All the main intermediate results used in the proof of Theorem 3.

32

Chapter 3

Generalization to Recursive
Divide-and-Conquer Matrix
Multiplication Algorithms

In this chapter we generalize the lower bound of Theorem 3 to all recursive divide-
and-conquer matrix multiplication algorithms, defined below. This class of matrix
multiplication algorithms does not necessarily use the same base graph G1 at each
recursive step and may even mix in classical matrix multiplication steps, as is often
done in practice. This also requires removing the assumption of the previous chapter
that every (nontrivial) linear combination be used in only only multiplication. All
well-studied matrix multiplication algorithms are of this form. The proof of our main
result lies in the following chapters. In this chapter we develop some machinery and
show how to apply it to prove our general result for matrix multiplication algorithms
that are efficient at every step. In Chapter 4 we introduce a powerful new technique
for computing I/O-complexity lower bounds and show how it simplifies the proof
in this special case. We prove our main result for general, square matrix multipli-
cation algorithms in Chapter 5, and show how to extend it to rectangular matrix
multiplication algorithms in Chapter 6. Finally, we extend our result to matrix mul-
tiplication algorithms run in parallel in Chapter 7. These bounds are tight for square
matrix multiplication algorithms (and matrix multiplication algorithms all of whose
submultiplications have their dimensions within a constant factor).

Throughout this paper we assume that every base graph computes distinct mul-
tiplications. If this is not the case, an algorithm that is more efficient, both in terms
of arithmetic and in terms of I/O-complexity, can easily be derived by removing
the extraneous multiplications. Without this assumption an algorithm of fixed I/O-
complexity can be made to have arbitrarily high arithmetic complexity (by simply

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 33

adding extraneous multiplications that are never used), so this assumption is both
reasonable and necessary.

To achieve these generalized bounds we further refine our technique through the
use of a modified measure of I/O-complexity that we call internal I/O-complexity ;
see Definition 7. I/O-complexity is neither additive nor superadditive; one can-
not simply partition a CDAG into two (non-parallel) subgraphs, compute the I/O-
complexities of the subgraphs, and compute the sum to derive a lower bound on
the I/O-complexity of the entire graph. Intuitively this is because the I/Os due to
the inputs and outputs of each subgraph are “artificial” I/Os that should not count
when computing the I/O-complexity of the entire graph. Internal I/O-complexity
ignores these I/Os and, as proved in Theorem 17, is superadditive, as long as the
graphs considered are disjoint. For non-disjoint graphs we conjecture that in many
cases internal I/O-complexity is still superadditive, but this is not necessary for the
proof of our main result.

First we generalize the technique of Chapter 2 to recursive steps – not necessarily
all identical – that multiply rectangular matrices, as long as each base graph is
more efficient than classical matrix multiplication. This assumption is important to
guarantee the existence of sufficiently many mutually disjoint submultiplications, as
in the proof of Chapter 2. This step requires redoing some of the proofs of Chapter
2, keeping all the matrix dimensions distinct. For this reason we present abbreviated
versions of some of these generalized proofs.

We also show how to remove the assumption of Chapter 2 that intermediate linear
combinations are used only once. By itself this extends the results of Chapter 2 to
all Strassen-like fast matrix multiplication algorithms.

Next we use this result to provide a tight lower bound on the I/O-complexity of
recursive divide-and-conquer matrix multiplication algorithms with no inefficient 1

recursive steps via an argument based around an analog of Lemma 1. As in Chapter
2, we prove the existence of sufficiently many disjoint parallel subcomputations whose
I/O-complexities we may then add. This step requires proving that any fast matrix
multiplication algorithm computes a product of nontrivial linear combinations; see
Theorem 14.

However, many matrix multiplication algorithms used in practice contain recur-
sive steps that perform no better than classical matrix multiplication. Most im-
plementations of fast matrix multiplication, for instance, revert to classical matrix
multiplication at recursive steps involving small enough matrices. Thus it is of inter-
est to prove I/O-complexity lower bounds for recursive divide-and-conquer matrix

1At least as slow as classical matrix multiplication; see the definition of exponent below.

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 34

multiplication algorithms involving arbitrary recursive steps. The difficulty in this
generalization arises because subcomputations may share multiply copied inputs.

We will show that within a computation interval S, every sufficiently small matrix
multiplication subcomputation must either have most of its input and output vertices
in S, or else contribute a proportional number of disjoint (internal) I/Os. We then
separately analyze subcomputations most of whose input and output vertices are in
S; in particular, because decoding graphs contain no vertex copying, it is possible
to efficiently route paths between these input and output vertices to vertices that do
not lie in S.

3.1 Main Theorems

Recall that in Chapter 2 we derived an I/O-complexity lower bound for Strassen-like
matrix multiplication proportional to the total number of input vertices to dimension
nk
0 × nk

0 submultiplications for a particular k. This k was chosen so that the number
of input elements in each subcomputation (which was Θ

(
n2k
0

)
= Θ

(
ak
)
) was Θ(M).

In the general case, we similarly derive an I/O lower bound proportional to the
number of input vertices in all subcomputations of the recursion tree involving Θ(M)
inputs/outputs. As a corollary, we derive the I/O-complexity bound of

Ω

(
number of arithmetic operations√

M
ω0

·M
)
,

where ω0 represents the worst matrix multiplication exponent of any of the recursive
steps used in the algorithm (see below). This holds as long as each base graph is no
worse than classical matrix multiplication; if this is not the case, the algorithm can
be simplified to one that is, as explained after Theorem 6.

Call a recursive divide-and-conquer matrix multiplication algorithm any algo-
rithm for multiplying rectangular matrices that, in order to multiply (potentially
padded) matrices A and B, divides A into x equal-width blocks vertically and y hor-
izontally (for a total of xy blocks of equal dimensions), divides B into y equal-width
blocks vertically and z horizontally (for a total of yz blocks of equal dimensions),
computes some linear combinations of blocks of A and some linear combinations of
blocks of B, multiplies some pairings of these linear combinations recursively, and
finally computes linear combinations of these results to yield the blocks of C. The
values of x, y, and z may be different for different recursive steps. In other words,
a recursive divide-and-conquer matrix multiplication algorithm is a generalization of

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 35

a Strassen-like algorithm in which base graphs needn’t be identical, multiply square
matrices, or satisfy the conditions of Lemma 1. 2

Effectively all matrix multiplication algorithms in the literature are recursive
divide-and-conquer (or used to build up divide-and-conquer matrix multiplication
algorithms via tensors [18]). Our bound is tight for square matrix multiplication
algorithms, and therefore solves the problem of determining the I/O-complexity of
matrix multiplication, given its arithmetic complexity, for any reasonable square
matrix multiplication algorithm. There may exist rectangular matrix multiplication
algorithms for which our bound is too low, but all such algorithms involve breaking
the multiplication into submultiplications of very-far-from-square matrices, and thus
are unlikely to be relevant in practice.

Just as before we will consider each recursive step to consist of a “base graph”
G1; however, now G1 may be different at different steps. For ease of notation we will
still refer to each recursive step as a base graph G1; which recursive step we mean will
be made clear by context. As before, each G1 will consist of inputs corresponding to
blocks of the overall input matrices A and B, multiplications of linear combinations
of these inputs that correspond to submultiplications performed recursively (though
not necessarily with the same base graph!), and linear combinations of the products
that form the output matrix, which is used as a (scaled) summand in various blocks
of the overall output matrix C.

Definition 4 If a base graph G1 divides A into x equal-width blocks vertically and
y horizontally, divides B into y equal-width blocks vertically and z horizontally, and
performs b submultiplications, then we define the exponent 3 of G1 as
ω(G1) = 3 logxyz b.

Definition 5 If G is the CDAG for a recursive divide-and-conquer matrix multi-
plication algorithm, define the exponent of G to be ω(G) = max

base graph G1

ω(G1), the

maximum exponent of a base graph in G.

Definition 6 If G1 is a base graph of G, call G1 fast if ω(G1) < 3 and slow if
ω(G1) ≥ 3.

2There is one subtlety in this definition with respect to the definition of I/O-complexity. It is
assumed that all submultiplications are distinct as long as all elementary multiplications of each base
graph are distinct; if not, then it is assumed that these identical submultiplication are recomputed
as if they were different, or else this system of recursive steps is to be represented as one single
recursive step with larger x, y, and z values.

3This is equivalent to the bound on the optimal matrix multiplication exponent ω derived from
the base graph G1, usually interpreted as a result stemming from tensor rank in the literature [13].

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 36

The exponent of a base graph is a measure of how inefficient that base graph is
from the viewpoint of arithmetic complexity. If all base graphs have the same expo-
nent ω0, as in the case of Strassen-like algorithms, then the number of elementary
multiplications performed is simply Θ (nω0), justifying the name ω(G1). The expo-
nent of a full matrix multiplication CDAG then represents the worst performance of
any of its base graphs. A base graph G1 representing classical Θ(n3) matrix multipli-
cation has ω(G1) = 3 and is thus slow, but not every slow base graph need represent
classical matrix multiplication. However, it will turn out (Theorem 15) that every
slow matrix multiplication algorithm can be reduced in some sense to classical matrix
multiplication.

Let IO(G) be the I/O-complexity of G and for a submultiplication X of G – a
subgraph of G computing a matrix multiplication – define max size(X) to be the
number of elements in the largest matrix (either input or output) of X. We will
prove the following results:

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 37

Theorem 6 Let G be a CDAG for recursive divide-and-conquer rectangular matrix
multiplication that computes distinct products in each recursive step. Let I be the

set of subcomputations of G whose minimum matrix dimension is ≥ Ω
(√

M
)

and

none of whose subcomputations satisfy this property. If ω(G) ≤ 3 and the maximum
number of blocks a matrix is divided into in any subcomputation is a small constant,
then G has I/O-complexity

IO(G) ≥ Ω

(∑
X∈I

max size(X)

)
.

The above result still holds even if ω(G) > 3, as long as each recursive step of G
with exponent > 3 has a disjoint submultiplication. If ω(G) > 3 but this is not the
case, the matrix multiplication algorithm can be transformed into one one requiring
fewer arithmetic operations and no more cache I/Os to which this result also applies
by modifying the base graphs of exponent greater than 3.

Theorem 7 (Main Theorem) Let G be as in Theorem 6. If G computes Mult
elementary multiplications, then

IO(G) ≥ Ω

(
Mult
√
M

ω(G)
·M

)
Both theorems hold for internal I/O-complexity as well (see Chapter 4). This

theorem is our main theorem, relating the (internal) I/O-complexity of an arbitrary
recursive matrix multiplication algorithm to the number of elementary multiplica-
tions it computes and the worst efficiency of any of its recursive steps. This theorem
does require that every step of G be no more inefficient than classical matrix multipli-
cation; clearly this is not a large assumption in practice. In fact, by (the discussion
following) Theorem 15, every matrix multiplication step that is less efficient than
classical matrix multiplication either has a disjoint submultiplication – in which case
Theorem 6 is valid – or else can be “reduced” to classical matrix multiplication in a
way that cannot possibly increase the I/O cost of G. Thus the bound of Theorem
6 applies to any recursive divide-and-conquer matrix multiplication algorithm that
would ever be used in practice. In Chapter 7 we will generalize the proof of The-
orem 6 to parallel algorithms computing any recursive divide-and-conquer matrix
multiplication. The tightness of Theorem 6 is discussed in Section 3.2.

To prove Theorem 7 from Theorem 6, we require the following lemma:

Lemma 7 If G computes the product of an l ×m matrix by an m× n matrix, then
G involves at most (lmn)ω(G)/3 elementary multiplications.

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 38

Proof. We prove this inductively. The result is clearly true in the base case, since
ω(G1) for a base graph G1 is defined as ω(G1) = 3 loglmn b, where b is the number of
elementary multiplications. Suppose G has subcomputations of dimensions l

x
, m

y
, and

n
z
. Then the number of subcomputations is given by b = (xyz)ω(G1)/3 ≤ (xyz)ω(G)/3,

where G1 represents this top-level base graph. By the inductive hypothesis each

subcomputation has no more than
(

lmn
xyz

)ω(G)/3

elementary multiplications, and so the

total number of elementary multiplications is no more than (xyz)ω(G)/3
(

lmn
xyz

)ω(G)/3

=

(lmn)ω(G)/3.
�

Proof of Theorem 7 from Theorem 6. For each subcomputation in I of
dimensions l,m, n, the number of elementary multiplications b performed within I
satisfies b ≤ (lmn)ω(G)/3 by Lemma 7. If Y is the contribution of one subcomputation

X of I to the sum in Theorem 6, then Y ≥ Ω
(

b
(lmn)ω(G)/3 max(lm,mn, ln)

)
. Let

r = max(lm,mn,ln)
min(l,m,n)2

. Then

Y ≥ Ω

(
b

(rmin(l,m, n)3)ω(G)/3
rmin(l,m, n)2

)
≥ Ω

(
b

√
M

3ω(G)/3
· r

rω(G)/3
·M

)

≥ Ω

(
b

√
M

ω(G)
·M

)

Thus by Theorem 6 the total number of I/Os is at least Ω
(

Mult√
M

ω(G) ·M
)

. �

Consider the recursion tree representing the subcomputations performed in the
computation of G. In Theorem 6, the set I is formed by “cutting off” the recursion
tree at the indicated size. Thus the number of I/Os from a matrix multiplication
algorithm is bounded below by the total number of vertices of its CDAG on this
“layer.” 4 Note that Theorem 6 is stronger than Theorem 7 for matrix multiplication
algorithms involving base graphs of different exponents; in particular, if the bottom
(smaller) recursive steps are more efficient than those closer to the top of the recursive
tree, then the bound of Theorem 7 is too low; for this reason we present the bound
of Theorem 6 as its own theorem.

In order to prove this result, we will first consider the case where ω(G) < 3 –
that is, every base graph is strictly better than naive matrix multiplication – and

4Not necessarily a layer in the general case, since recursive steps needn’t be of the same dimen-
sions.

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 39

then approach the general case. Again, note that any optimal algorithm in terms of
arithmetic complexity has ω(G) < 3.

We face several difficulties in our generalization:

• The recursion tree of a divide-and-conquer matrix multiplication algorithm
needn’t have every leaf node at the same height.

• Even if the input matrices are square, blocks may become rectangular (if x, y,
and z are different in some recursive step). Our proof will thus be forced to
account for rectangular input matrices as well.

• Multiple copying in base graphs may cause subcomputations to have shared
inputs (but not outputs). In the Strassen-like case we found that either every
encoding base graph contained a disjoint subcomputation or else the entire
matrix multiplication algorithm was essentially naive matrix multiplication;
this does not hold in general.

Define duplicated vertices as in the Strassen-like case. Note the following fact:

Fact 2 Suppose that at the recursive step of a divide-and-conquer matrix multiplica-
tion algorithm corresponding to multiplying A and B that the submultiplication A1B1

is performed, where A1 is a linear combination of blocks of A and similarly for B1.
Then either every input vertex of A1 has a duplicate vertex outside A1 or every input
vertex of A1 does not. The former case occurs exactly when A1 is simply equal to
one of the blocks of A. The same holds for B1.

In other words, the “A” matrix used in a submultiplication is either entirely
copied from A (the input to the parent subcomputation) or entirely disjoint from A.
It is never the case that some of the “A” inputs to a submultiplication are copies of
those to the parent multiplication while others are not. We also make the following
useful definition:

Definition 7 If G is a CDAG, define the internal I/O-complexity IO+(G) as the
minimum number of I/Os required to compute G′, excluding I/Os of the input/output
vertices of G′, where G′ is defined as follows: To each input vertex v in G′ create
a new input vertex v′ with an edge from v′ to v. See Figure 3.1. In other words,
IO+(G) is the minimum number of I/Os required to compute G where the I/Os of
the output vertices of G are “free” and every input vertex of G may be input once
for free. Call an I/O counted by internal I/O-complexity an internal I/O.

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 40

Note that IO(G) ≥ IO+(G); every result in the following chapters on internal I/O-
complexity thus applies to standard I/O-complexity as well. That every input vertex
of G may be input for free only once follows from the assumption that no value is
ever recomputed. In Chapter 4 we prove a few results about internal I/O-complexity
that simplify our proof.

Figure 3.1: The internal I/O-complexity of a CDAG G is defined to be the minimum
number of I/Os – excluding those of the input and output vertices – required to
compute the CDAG G′, as shown in this figure.

3.2 Tightness of the Main Theorems (Theorems

6 and 7)

Theorem 6 is asymptotically tight for any square recursive divide-and-conquer matrix
multiplication algorithm (that is, involving only square recursive steps), in the sense
that there exists an implementation of any such algorithm using a number of cache
I/Os proportional to the bound of Theorem 6. To see this, consider the following
implementation for computing the CDAG G of any recursive divide-and-conquer
algorithm to multiply square matrices: 5

5Here “algorithm implementation” refers to the specific sequence of vertex computations and
cache I/Os used to realize an algorithm, while “algorithm” is functionally synonymous with CDAG.

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 41

Algorithm Implementation 1

• Let I be the set of subcomputations of G whose matrix dimension is ≥ Θ
(√

M
)

and none of whose subcomputations satisfy this property.

• Compute, in arbitrary order, the vertices in the encoding graphs of G not in
I, and then the vertices in the inputs of the subcomputations in I, performing
cache I/Os when necessary.

• Compute each subcomputation in I via Algorithm Implementation 2 below.

• Using the outputs of the subcomputations in I, computed above, compute the
vertices in the decoding graph of G not in I in arbitrary order, performing cache
I/Os when necessary.

Algorithm Implementation 2

• To compute matrix multiplication X with base graph G1, do the following:

• If X is simply an elementary multiplication, compute it.

• Otherwise, compute in order the matrix multiplications X1, X2, ..., Xn, each
via Algorithm Implementation 2, where X1, X2, ..., Xn are the submultiplica-
tions G1 depends on. Do not perform any internal I/Os.

Note that the maximum number of vertices that must be in cache during a run
of Algorithm Implementation 2 is within a constant factor of the number of in-
put/output vertices in a chain of subcomputations, one at each recursive level, down
from a subcomputation X in I. Since there are Θ(M) input/output vertices of X
and at most half as many input/output vertices in a subcomputation relative to its
parent computation, this implementation computes X using Θ(M) cache without
any internal I/Os. Thus the maximum number of I/Os performed during Algo-
rithm Implementation 1 is proportional to the number of input/output vertices of
the subcomputations in I, plus the number of input/output vertices not in the sub-
computations of I, which is itself proportional to the total number of input/output
vertices of I.

Thus the maximum number of cache I/Os required by this implementation is at
most a constant factor times the total number of vertices in the inputs and outputs
of I, which is proportional to

∑
X∈I

max size(X). Hence Theorem 6 is tight up to a

constant factor for square matrix multiplication algorithms. This bound is again

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 42

tight for all “near-square” matrix multiplication algorithms, algorithms whose sub-
multiplications all (or at least for those of dimension ∼

√
M) have their largest and

smallest matrix dimension within a constant factor. Theorem 7, a simplification of
Theorem 6, is thus tight for square and near-square matrix multiplications when all
base graphs have the same exponent. Note that this algorithm implementation is
the serialization of the parallel CAPS algorithm implementation presented in [3].

For rectangular matrix multiplications, Theorem 6 might not be tight. If a
submultiplication of dimensions l, m, and n has its minimum dimension (that is,

min(l,m, n)) less than Θ
(√

M
)

but its other dimensions significantly larger, it is

unclear whether its I/O-complexity is proportional to the number of entries in its
inputs/outputs, as in the above algorithm, or significantly larger, resulting in an
algorithm of worse I/O-complexity than the bound of Theorem 6. However, if each

submultiplication whose minimum matrix dimension is = Θ
(√

M
)

is computable

without any internal I/Os, then the previous argument holds, yielding an algorithm
implementation achieving the bound of Theorem 6 up to a constant factor.

3.3 Internal I/O Bounds for Submultiplications

In this section we generalize the results and proofs of Chapter 2. For now we still
assume that every intermediate nontrivial linear combination is used in only one
multiplication within each base graph. As in the Strassen-like case, we first prove
the existence of efficient routings within submultiplications and, using many such
routings, prove Theorem 6 when ω(G) < 3. We also derive an I/O bound for sub-
computations of sufficient size; this was not done in Chapter 2, but will be necessary
to prove Theorem 6 in the general case in the following chapter.

Several of the proofs in this section are analogous to those in Chapter 2; such
proofs are abbreviated below, with only their differences with the corresponding
Strassen-like proofs spelled out in detail. We will first give the natural generaliza-
tions of these proofs; unfortunately, the resulting theorem (Theorem 13) will not be
sufficient in the case of rectangular submultiplications. We will then show how to
further generalize our routing argument to give yet a stronger version of the Routing
Theorem, and thus prove our result in general.

Let G1 be the base graph corresponding to any recursive step in a divide-and-
conquer matrix multiplication algorithm. Suppose that G1 is applied to the multi-
plication of an l × m matrix A by an m × n matrix B to get an l × n matrix C,
and suppose G1 does so by dividing A vertically into x blocks and horizontally into
y blocks, and dividing B vertically into y blocks and horizontally into z blocks (and

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 43

then the product C is divided into x blocks vertically and z blocks horizontally). G1

then contains xy + yz inputs and xz outputs. As before, let G′1 be the portions of
G1 corresponding to the encoding graph of A and the decoding graph of C (omitting
only the encoding graph of B). See Figure 3.2.

Figure 3.2: To multiply two rectangular matrices A and B, a divide-and-conquer
matrix multiplication algorithm divides them into blocks, computes linear combina-
tions, multiplies those linear combinations recursively, and takes linear combinations
of the products to find C. Here x = 2, y = 3, and z = 4.

We also remove the assumption that every intermediate nontrivial linear combi-
nation of inputs within a base graph is used in only one multiplication. This requires
adding an extra layer of complexity to the previous proof, which also allows the
path-routing counting argument to generalize to matrix multiplication algorithms
with reused nontrivial linear combinations.

Previously we showed the existence of an n0-routing between the guaranteed
dependencies (a, c) of each base graph computing C = AB, where a is an input of A
and c an output of C. Via Hall’s Matching theorem, we were able to construct such
a routing that hit every multiplication vertex at most n0 times. However, a linear
combination (of the inputs) vertex may be used in many multiplications, resulting
in the linear combination vertex being hit more than n0 times. Also, the inputs and
output vertices of a base graph may be hit more/fewer times than the multiplication
vertices, simply because the numbers of vertices in the input/output matrices may
be different (they aren’t both n2

0).
To alleviate these issues, we allow paths to “jump” within the matrix multipli-

cation CDAG between vertices with the same membership in S. Note that this does
not alter the counting argument (of boundary-crossing paths) used in the proof of

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 44

Theorem 3. Many of the “jumps” used will be within the same rank, while some will
involve jumping between an output and an input vertex of the same submultiplication
with the same membership in S.

Lemma 8 Let A be x× y, B be y × z, and C be y × z, where A, B, and C are the
inputs/outputs of a matrix multiplication subcomputation. Let G1 be a base graph
multiplying C = AB and S be a set of vertices in G1. Then there exists a routing of
paths between A and C that hits every linear combination vertex at most min(y, z)
times, where each path goes between a vertex of A in S and a vertex of C not in S, and
which consists of a number of paths equal to the number of guaranteed dependencies
(a, c) for which a ∈ S and c /∈ S. There is a similar routing of paths from vertices of
A not in S to vertices of C in S, and similar for paths between B and C (replacing
z with x).

Intuitively, this lemma states that there exists an efficient routing of guaranteed
dependencies (a, c) with a ∈ S and c /∈ S where each path from a to c may start not
at a itself, but at another vertex in A that is also in S.

Proof. As usual, we apply Hall’s Matching theorem. Let D be a set of guaranteed
dependencies (a, c) between a vertex a ∈ S

⋂
A and a vertex c ∈ S

⋂
C and T be

the set of vertices of C represented in D (which are by definition all in S). Define
VD to be the set of linear combination vertices v for which there exists an edge from
a vertex in S

⋂
A to v and an edge from v to a vertex in T . Let ci, 1 ≤ i ≤ x, be

the number of vertices in the ith row of C that are in T if row i of A has at least
one vertex in S; otherwise let ci = 0. Then |D| ≤ (c1 + ...+ cx)y, since for every row
of ci vertices of C in S, there are at most y guaranteed dependencies counted by D
for each such vertex, and no guaranteed dependencies counted by D if none of the
corresponding vertices of A are in S.

Intuitively, each row i of C whose corresponding row in A has at least one vertex
in S requires at least ci linear combination vertices for the dependence of those ci
vertices of C in S on the vertex of A in S. Each such linear combination vertex
is counted by VD. More precisely, after setting every vertex of A not in S to 0,
the span of the elements of C counted by the cis – ignoring elements of C that are
now identically 0 – is of size c1 + ... + cx, and thus requires at least c1 + ... + cx
linear combination vertices, each of which is by construction counted by VD. Thus
|VD| ≥ c1 + ...+ cx. From this we see that |D| ≤ |VD|y, and so |VD| ≥ |D|

y
.

By Hall’s Matching theorem, there exists a matching between the guaranteed
dependencies (a, c) (with a ∈ S

⋂
A and c ∈ S

⋂
C) and linear combination vertices

they depend on that have some incoming edge from A
⋂
S, using each linear combi-

nation vertex at most z times. In other words, every guaranteed dependence (a, c)

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 45

is matched with a linear combination vertex v it depends on such that there exists
some edge (u, v) where u is a vertex in A that is also in S. Simply route the path
for each guaranteed dependence along this path. Every linear combination vertex
(and thus also every multiplication vertex) is thus hit at most y times. A similar
argument establishes a routing from vertices in A that lie S to vertices in C lying in
S that hits every vertex at most y times.

The same construction applies swapping the roles of A and C, yielding a routing
that hits every linear combination vertex at most z times. Simply picking the best of
these two routing (depending on which is the minimum of y and z) yields the desired
routing.

�
We will also need the following extension:

Lemma 9 There exists a routing of paths between A and B that hits every linear
combination vertex at most min(x, z) times, where each path goes between a vertex
of A in S and a vertex of B not in S, and which consists of a number of paths equal
to the number of guaranteed dependencies (a, b) for which a ∈ S and b /∈ S. There
is a similar routing of paths from S

⋂
A to S

⋂
B.

Proof. Analogous to the above proof. For every set D of guaranteed dependencies
from S

⋂
A to S

⋂
B, define VD and T similarly to before (replacing C with B). Let

bi, 1 ≤ i ≤ y, be the number of vertices of the ith row of B that are in S and used
in D, or 0 if all vertices in the ith column of A are in S. Then |D| ≤ (b1 + ...+ by)x.

Setting every vertex in S to 0, the span of the linear combinations of elements of
A and of B is at least b1 + ...+ by, and so |VD| ≥ b1 + ...+ by. This yields |VD| ≥ |D|

x
.

By Hall’s Matching theorem this yields a matching from guaranteed dependencies
between A and B and linear combination vertices they depend on on a path from S
to S, yielding a routing that hits every linear combination vertex at most x times. A
similar routing from vertices in S

⋂
A to S

⋂
B hits every linear combination vertex

at most x times, and an analogous argument yields routings from B to A hitting
every vertex at most z times. �

Via the usual recursive argument we get the following analogue of Lemma 3:

Lemma 10 If paths are allowed to jump between vertices with the same membership
in S, then there exists a max(2mamax, 2namax)-routing of guaranteed dependencies
between A and C and a max(2lamax, 2mamax)-routing of guaranteed dependencies
between B and C.

Proof. Compare Lemma 3. Apply the routings constructed in Lemma 8 within
each base graph. In each submultiplication step multiplying C = AB, we must route

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 46

paths between the guaranteed dependencies (a, c) of A and C. If a and c have the
same membership in S, route the path by simply “jumping” from a to c directly. If
a ∈ S and c /∈ S, use a routing constructed by Lemma 8 from S to S. If a /∈ S and
c ∈ S, use a routing constructed by Lemma 8 from S to S. This has the effect of
doubling the number of times every vertex is hit just once, as opposed to once per
depth of the recursion tree. 6

Within the first base graph (representing the outermost submultiplication step),
every input vertex in A is hit at most 2namax times and every output vertex at
most 2mamax times (the amax because “jumping” paths may hit every input/output
vertex additional times, at most one for the number of inputs/outputs of the base
graph). Suppose a submultiplication of size x, y, z performed within this outer base
graph multiplies matrices C1 = A1B1 of dimensions l1,m1, n1, and assume that every
input/output vertex of the submultiplication is hit at most 2 max(m1, n1)amax times
in a path routing of guaranteed dependencies between A1 and C1, with every non-
input/output vertex hit at most 2 max(m1, n1) times.

To route paths between the guaranteed dependencies of A and C, from S to S,
every path in each of the routings between A1 and C1 (from S to S and S to S)
is used at most min(y, z) times (Lemma 8). Thus every vertex within that submul-
tiplication is used at most 2 max(m1, n1)amax min(y, z) ≤ 2 max(m1y, n1z)amax =
2 max(m,n)amax times. By induction, every vertex within the matrix multiplication
CDAG is hit at most 2 max(m,n)amax times. Similar logic yields a 2 max(l,m)amax-
routing of paths between the guaranteed dependencies of B and C. �

Via the same argument, we can prove

Lemma 11 If paths are allowed to jump between vertices with the same membership
in S, then there exists a max(2lamax, 2namax)-routing of guaranteed dependencies
between A and B.

We now prove a generalization of Lemma 4; this proof will require slightly more
careful counting to yield the bounds we want, but is otherwise identical. Let InA

denote the set of inputs of G corresponding to elements of A, InB those corresponding
to elements of B, and Out denote the outputs of G (which correspond to elements
of C).

Lemma 12 Fix a routing FA for the guaranteed dependencies of G between A and
C and a routing FB for the guaranteed dependencies of G between B and C. Then

6This can actually be shown not to increase the number of I/Os at all, since the boundary-
crossing edge (u, v) contributes one I/O only from the vertex u, not v, but this is not necessary in
our proof.

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 47

there exists a routing in G between InA and Out such that every path in the routing
consists of the concatenation of chains in FA and FB – some reversed in direction –
such that every chain in FA is used l times and every chain in FB is used 2l times.
There similarly exists a routing between InB and Out composed of chains in FA and
FB such that each chain in FA is used 2n times and every chain in FB is used n
times.

Proof. We use the same explicit sequences of guaranteed dependencies. To route
aij to ci′j′ we use

aij → cij′ → bjj′ → ci′j′

where 1 ≤ i, i′ ≤ l, 1 ≤ j ≤ m, and 1 ≤ j′ ≤ n. For every choice of i′ the first
aij → cij′ guaranteed dependence is used, for every choice of i′ the second cij′ → bjj′
dependence is used, and for every choice of i the third bjj′ → ci′j′ dependence is
used. Thus as i, j, i′, and j′ range over all possibilities, every guaranteed dependence
between A and C is used l times and every guaranteed dependence between B and
C is used 2l times.

Similarly, for the sequence of guaranteed dependencies

bij → ci′j → ai′i → ci′j′

used to route bij to ci′j′ for 1 ≤ i′ ≤ l, 1 ≤ i ≤ m, and 1 ≤ j, j′ ≤ n, we see that each
guaranteed dependence in this chain is used n times, proving the lemma. �

Theorem 8 (Generalized Routing Theorem) If G is the CDAG for divide-and-
conquer matrix multiplication of l×m matrix A by m×n matrix B, then there exists
a 6lamax max(l,m, n)-routing between InA and Out in which paths may jump between
vertices with the same membership in S. 7 There is similarly a 6namax max(l,m, n)-
routing between InB and Out. The same bounds hold for the meta-vertices of G.

Proof. Apply Lemmas 10 and 12. To route paths between InA and Out we
require l copies of a routing of guaranteed dependencies between A and C, each
of which hits every vertex at most 2 max(m,n)amax times, and 2l copies of a rout-
ing of guaranteed dependencies between B and C, each of which hits every vertex
at most 2 max(l,m)amax times. Thus every vertex is hit at most (2lmax(m,n) +
4lmax(l,m))amax ≤ 6lmax(l,m, n)amax times. As before, the same bound applies
to meta-vertices as well (since except for path “jumping,” which results in only an

7Recall that this means there is a path in the routing between every vertex in InA and every
vertex in Out.

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 48

extra factor of amax, every path passing through a meta-vertex passes through its
root vertex as well). �

Note that when l = m = n = nk
0 and amax is small, this yields a Θ(nk

0)-routing
between the inputs and outputs of G, as before in Theorem 4.

Just as before we can apply the Generalized Routing Theorem to derive a bound
on the internal I/O-complexity of a matrix multiplication subcomputation:

Theorem 9 If G is the CDAG for divide-and-conquer matrix multiplication of l×m
matrix A by m× n matrix B, then

IO+(G) ≥ 1

144amax

min(lm,mn, ln)

as long as M ≤ 1
72amax

min(lm, ln,mn)

Proof. As in the Strassen-like case, we break the computation of G into segments
such that each segment (except perhaps the last) contains a sufficient number of
input vertices; we need use only the input vertices of A.8 If such a segment S
contains I vertices among the inputs of A, then the Generalized Routing Theorem
guarantees a 6lamax max(l,m, n)-routing of I · ln paths between those vertices and all
the vertices representing the outputs of C such that every meta-vertex is also hit at
most 6lamax max(l,m, n) times. Throughout this proof we use the fact that if x ≥ 1
then bxc ≥ 1

2
x and dxe ≤ 2x; the constant in this bound could likely be improved

by more careful counting, but is sufficient for our purposes.
Choose each segment (except maybe the last) to contain I = d72Mamax max(l,m,n)

n
e

input vertices of A. Either S contains at least ln
2

output vertices of C or it does not.
In the latter case there exist at least I · ln

2
boundary-crossing paths in the routing

between vertices of A in S and vertices of C not in S. In the former case, note that
I ≤ d lmn

2n
e = d lm

2
e, and so there are at least lm

4
≥ I

4
vertices of A not in S. Thus

there are at least I · ln
4

boundary-crossing paths in the routing between vertices of A
not in S and vertices of C in S. Either way,

|δ′(S ′)| ≥
1
4
I · ln

6lamax max(l,m, n)
≥

1
4
d72Mamax max(l,m,n)

n
en

6amax max(l,m, n)
≥ 3M

where S ′ is the set of meta-vertices in the segment S. Therefore S requires at least
3M−2M = M I/Os. Each such I/O corresponds to an edge in G between a vertex in
S and a vertex not in S; it is clear that none of these I/Os represent an output from

8Applying the same technique using a routing between B and C instead of between A and C
yields exactly the same result.

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 49

G or the first inputting of an input vertex of G, and are thus counted by internal
I/O-complexity. Then

IO+(G) ≥
⌊ lm

d72Mamax max(l,m,n)
n

e

⌋
M ≥

⌊ lmn

72Mamax max(l,m, n)

⌋
M ≥ 1

144amax

lmn

max(l,m, n)

=
1

144amax

min(lm,mn, ln)

as long as M ≤ 1
72amax

min(lm, ln,mn) (which implies there is at least one complete
segment and thus this floor is nonzero). �

Corollary 1 Every subcomputation of a divide-and-conquer matrix multiplication
algorithm involving matrices that each have ≥ 72amaxM entries has internal I/O-
complexity of at least 1

2
M .

In other words, if a matrix multiplication subcomputation is reasonably large,
then computing it requires at least as many I/Os that are not due to inputs/outputs
as the size of smallest matrix, up to a constant factor. Compare Equation 2.2.

While not necessary to the rest of the proof for ω(G) < 3, the following theorem
gives some intuition about the I/O-complexity of small square matrix multiplications.
This theorem is however vital to the more general proof of Theorem 6 given in
Chapter 5.

Theorem 10 Let G be a CDAG for divide-and-conquer matrix multiplication of
l×m matrix A by m× n matrix B where L ≤ l,m, n ≤ rL. Let S be a subset of the
vertices of G containing s inputs of A, inputs of B, and outputs of C in total and let
S ′ be the corresponding set of meta-vertices. If S contains fewer than 0.8 · lm input
vertices of A, fewer than 0.8 ·mn input vertices of B, or fewer than 0.8 · ln output
vertices of C, then

δ′(S ′) ≥ 2

225r4
s.

Proof. This proof is similar in form to the above proof, except that it uses only
one segment. Since 6lrmax(l,m, n) ≤ 6r3L2, the Generalized Routing Theorem
guarantees a 6r3L2-routing of paths between the inputs of A and outputs of C and
similarly a 6r3L2-routing between the inputs of B and outputs of C.

We will show the existence of at least 4
75max

sL2 boundary-crossing paths in one
or the other of the routings. This proof is fairly technical, but the result is quite
intuitive: unless most of the inputs and outputs of a matrix multiplication are all in

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 50

cache at the same time (in S), the number of adjacent meta-vertices is proportional
to the number in cache.

Suppose first that |IA| ≥ s
3
. If |IC | ≤ 0.8ln, then the number of boundary-

crossing paths between A and C is ≥ s
3
· 0.8ln ≥ 4

15
sL2. Otherwise, |IC | ≥ 0.8ln ≥

0.8 lm+mn+ln
3r

≥ 4
15r
s. Either |IA| ≤ 0.8lm or |IB| ≤ 0.8mn by assumption; either way,

the number of boundary-crossing paths – either between A and C or between B and
C – is at least 0.2L2 · 4s

15r
= 4

75r
sL2. A similar argument holds if |IB| ≥ s

3
.

Finally, suppose |IC | ≥ s
3
. If either |IA| ≤ 0.8lm or |IC | ≤ 0.8mn then there are

≥ s
3
·0.2L2 = 1

15
sL2 boundary-crossing paths. Otherwise, |IC | ≤ 0.8ln by assumption

and we have |IA| ≥ 0.8lm ≥ 4
15r
s (via the same logic as in the previous case). Then

between A and C there are at least 0.2L2 · 4s
15r

= 4
75r
sL2 boundary-crossing paths.

In any case there are at least 4
75max

sL2 boundary-crossing paths in one of the
routings, and so

δ′(S ′) ≥
4

75r
sL2

6r3L2
=

2

225r4
s.

�
Unfortunately, the previous two theorems will be insufficient for our study of

rectangular matrix multiplication algorithms. Our strategy in the coming sections
will be to consider many small submultiplications that each have internal I/O of
at least Θ(M). But if these submultiplications involve matrices of wildly different
sizes (very long and skinny matrices, for example), this bound is too small relative
to the number of such submultiplications that must compose the overall matrix
multiplication. We therefore prove a result analogous to Theorem 9 for matrices of
significantly different sizes; this effectively replaces the “min” in Theorem 9 with a
“max.”

3.4 Improving the Routing Theorem

In this section we strengthen the Generalized Routing Theorem (Theorem 8) to the
following:

Theorem 11 (Improved Routing Theorem) Let G be a CDAG for divide-and-
conquer matrix multiplication C = AB of dimensions l ≥ m ≥ n and let A′ be a
subset of A such that no row of A contains more than n vertices in A′. If |A′| ≤ mn,
then there exists a 2lmn-routing of |A′| · |C| paths (perhaps jumping between vertices
with the same membership in S), m for each guaranteed dependence (a′, c) with a′ ∈
A′ and c ∈ C. The same result holds if no column of A contains more than n vertices
of A′. A similar result holds for any permutation of sizes l, m, and n.

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 51

Clearly, a vertex a in A must be hit at least once for every pair (a, c) in D, and
similarly for C. Thus this theorem states that as a result of constructing this routing
between arbitrary pairs (a, c), no vertex is hit significantly more than the minimum
number of times a vertex must be hit simply by necessity of routing all pairs in D.
Proving this theorem will require generalizing the logic of the previous section. As
before, only the changes from the previous arguments are highlighted. From the
following generalization of Lemma 10 the proof is simple:

Theorem 12 Let D be a set of guaranteed dependencies between A and C. If paths
are allowed to jump between vertices with the same membership in S, then there
exists a routing of guaranteed dependencies between A and C hitting every vertex no
more than the maximum number of times a vertex appears in D. Analogous bounds
hold for routings between B and C and between A and B.

Proof of Theorem 11 from Theorem 12. First suppose that every row of A
contains no more than n vertices of A′. Route every vertex in A′ to every vertex in
C that has a guaranteed dependence on it. Route every vertex in C to every vertex
in B it has a guaranteed dependence on. Route back every vertex in B to every
vertex in C with a guaranteed dependence on it. For every a′ ∈ A′ and c ∈ C, this
forms a path from a′ to c passing through each of the m vertices of B that c has a
guaranteed dependence on.

By Theorem 12, the vertex hit the maximum number of times occurs not in the
middle of one of these routings, but at the end. Thus it is sufficient to count the
number of times that each endpoint of these routing pieces is hit:

• Every vertex in A′ is hit once for every vertex in c and vertex in b that it
depends on, a total of m|C| = lmn times.

• Every vertex in A but not in A′ is never hit.

• Every vertex in B is hit once for every vertex in A′ and every vertex in C that
depends on it, a total of l|A′| ≤ lmn times.

• Every vertex in C is hit in two different situations: m|A′| times as the end of a
path, and in the middle of a path once for every vertex of A′ in the same row
and every vertex of C in the same column and every vertex of B in the same
column. This is at most m|A′|+ lmn ≤ 2lmn times.

Thus every vertex is hit at most 2lmn times.
Now suppose that every column of A contains no more than n vertices of A′.

Route every vertex in A′ to every vertex in B that has a guaranteed dependence on

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 52

it. Route every vertex in B to every vertex in C that has a guaranteed dependence
on it. Route back every vertex in C back to every vertex in B it has a guaranteed
dependence on. For every a′ ∈ A′ and b ∈ C, this forms a path from a′ to b passing
through each of the l vertices of C that b has a guaranteed dependence on.

• Every vertex in A′ is hit once for every vertex in B and vertex in C that it
depends on, a total of l|B| = lmn times.

• Every vertex in A but not in A′ is never hit.

• Every vertex in C is hit once for every vertex in A′ and every vertex in B that
depends on it, a total of m|A′| ≤ lmn times.

• Every vertex in B is hit in two different situations: l|A′| times as the end
of a path, and in the middle of a path once for every vertex of A′ in the
corresponding column and every vertex of C in the same column and every
vertex of B in the same column. This is at most l|A′|+ lmn ≤ 2lmn times.

Hence every vertex is again hit at most 2lmn times.
�
From this we can prove a stronger result on the internal I/O-complexity of a

rectangular submultiplication. From now on we revert to asymptotic notation for
simplicity, and because the precise counting argument is analogous to the proof of
Theorem 9.

Theorem 13 If G is the CDAG for divide-and-conquer matrix multiplication of l×m
matrix A by m× n matrix B, then

IO+(G) ≥ Θ (max(lm,mn, ln))

as long as M ≤ Θ (min(l,m, n)2)

Proof. Assume first that l ≥ m ≥ n, and ensure M ≤ 1
8
n2. Partition the sequence

of computations into segments containing Θ(M) vertices of A. For each such segment
S, partition the rows of A into rows containing ≤ n

2
vertices and those containing

> n
2

vertices of S.
Suppose rows of the former type contain at least half of the specified vertices in

S. Let A′ be a set of vertices of A defined as follows: for every row of A containing
k ≤ n

2
vertices of S, add these k vertices of S to A′, and then add another k

vertices of S in the same row to A′. Apply Theorem 11 between A′ and C (that
is, all guaranteed dependencies between A′ and C): in this routing exactly half

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 53

of all paths are boundary-crossing, so there are at least Θ(M)m|C| = Θ (lmnM)
boundary-crossing paths, resulting in at least Θ

(
lmnM
2lmn

)
= Θ (n2) = Θ(3M) I/Os.

After subtracting the 2M “free” I/Os (those uncounted by internal I/O-complexity),
this results in Θ(M) I/Os for this segment.

If instead rows of the latter type contain half of the vertices of S, then Θ(M)
vertices of A′ are in columns of A that contain ≤ n

2
vertices of A′ each, and an

analogous argument applies (routing to B instead of to C). This again yields Θ(M)
I/Os for the segment. Thus the internal I/O-complexity of this matrix multiplication
is Θ

(
lm
M
·M
)

= Θ(lm). Similar arguments apply for any ordering of l, m, and n.
See Section 6.2 for a graphical illustration of a similar proof. �

We now turn to proving this improved guaranteed-dependence-routing theorem
(Theorem 12) that the improved Routing Theorem depends upon. Before we showed
the existence of a matching from guaranteed dependencies to valid intermediate
vertices they may pass through; it turned out that allowing paths to “jump” before
beginning this routing was vital.

Now we must, in effect, match weighted guaranteed dependencies to valid inter-
mediate vertices such that the total weight routed through each intermediate vertex
is no more than the maximum total weight of an input/output vertex. For a set of
pairs D, define mult(D) to be the maximum multiplicity of an element as a compo-
nent of a pair in D.

Proof of Theorem 12. This proof is a generalization of those of Lemma 8 and
Lemma 10. The routing generated by those two lemmas may hit intermediate vertices
more than an input/output vertex is hit if for every vertex v, the set D does not
contain all the guaranteed dependencies involving v. We first prove the following
claim:

Claim 3 If G1 is a base graph for C1 = A1B1 and D is a subset of the guaran-
teed dependencies between A1 and C1, there exists a routing of D (perhaps involving
jumping paths, in the same sense as in Lemma 8) such that every linear combination
vertex of G1 is hit at most mult(D) times.

Compare Lemma 8.

Proof. Assume without loss of generality that the minimum number of times a
vertex appears in D occurs for a vertex in C (if not, apply the symmetric argument
swapping A and C). Using the same notation as in the proof of Lemma 8, we
now have |D| ≤ (c1 + ... + cx)mult(D), since every vertex in C has a guaranteed

dependence in D on at most mult(D) vertices of A. This yields |VD| ≥ |D|
mult(D)

. By
Hall’s Matching theorem there then exists a matching of guaranteed dependencies
to intermediate vertices using each at most mult(D) times. �

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 54

We now perform the usual recursive construction. Consider a computation X
multiplying C = AB. For this computation, A and C (and B) are broken into
blocks, and the products of certain linear combinations of these blocks are com-
puted recursively. We must route the guaranteed dependencies between these blocks
through these intermediate linear combinations. There are many base graph copies
for this single recursive step, one for each position within the A blocks (this corre-
sponds to the vertices on the first two ranks of the CDAG). Using the above routing
for each such base graph copy, every input/output vertex of each submultiplication
of X is hit no more times than the input/output vertices of X. By induction, this
implies that every internal vertex of each submultiplication is hit no more than the
maximum number of times any of its input/output vertices are hit, proving the claim.

�
This proof can also be interpreted as constructing a routing of chains within G

one CDAG level at at time, working out to in. To better illustrate this somewhat
hard-to-visualize proof and give intuition about the form of this routing, we show an
example of its logic in the case of Strassen’s algorithm applied to 4×4 matrices, shown
in Figure 3.3. Consider the base graph defined by the front-most, black, highest-level
encoding and decoding graphs in Figure 3.3 (a). By the above claim, there exists an
assignment of guaranteed dependencies in this base graph to multiplication vertices
that uses each multiplication vertex no more times than one of its input/output is
used.

For example, a path may be routed through this base graph as shown in red
in (b). In the overall CDAG, this corresponds to the edges shown in red (and the
analogs in the other top-level base graph copies shown in grey). A chain from A
to C in the overall CDAG that follows one of these red edges needn’t follow the
other red edge; overall chains from A to C are formed by “splicing” routings for the
middle-level base graphs (such as the one shown in green in (a)) inside the routings
for each top-level base graph. Thus a path starting at C may follow the red edge
down, go through the middle-layer (green) base graph to reach a different base graph
copy than the one it started in, and follow an edge within the routing for that base
graph (shown in red) to reach A, instead of taking the edge in the original base graph
copy partnered with the first edge it transversed (shown in yellow in Figure 3.3 (c)).
This path is shown in red in Figure 3.3 (c).

By Claim 3, within each of the highest-level base graph copies (shades of grey
in Figure 3.3 (a) and (c)) the second-level vertices (those used as inputs/outputs to
base graphs on the same level as the green base graph) are hit no more often than
the inputs to each such base graph. The same argument applied to the green middle-
level base graph, whose inputs/outputs are the aforementioned vertices, implies that
the elementary multiplication vertices (and their inputs) are hit no more often than

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 55

any overall input/output vertex. This applies for every middle-level base graph (in
parallel with the one shown in green). Note that this argument applies regardless of
the subset of guaranteed dependencies to be routed, proving Theorem 12.

(a) (b) (c)

Figure 3.3: (a) The CDAG for Strassen matrix multiplication of 4 × 4 matrices,
involving two recursive levels. Only the encoding graph for A and the decoding
graph for C are shown. To make the construction easier to visualize, the four base
graph copies on the top/bottom layer are shown in different shades of grey, while
only one out of the 7 copies of the encoding and decoding graphs on the middle layer
are shown (green). Edges denoting an input to an elementary matrix multiplication
are shown in blue. (b) An example chain within one top-level base graph, shown
in red; the corresponding edges in (a) are also shown in red. (c) An example chain
between A and C within the overall graph shown in red; note that this chain uses
only the top of the highlighted edges from (a) but not the bottom (shown in yellow).

3.5 Adding I/O Bounds When ω(G) < 3

In the following chapter we use a more involved argument to give a full proof of
Theorem 6 for any ω(G). In this chapter we develop some fundamental results about
the structure of disjoint submultiplications and complete the proof of Theorem 6
for ω(G) < 3 relying on Theorem 13. Recall that in Chapter 2 we first proved the
existence of sufficiently many disjoint submultiplications of sufficient size and then

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 56

used the Routing Theorem to find efficient path routings in each, leading to a tight
I/O-complexity lower bound.

The proof of Chapter 2 generalizes easily to divide-and-conquer matrix multi-
plication algorithms of exponent ω(G) < 3. However, it first requires proving the
existence of Ω(I) disjoint subcomputations, where I is as in Theorem 6. To that
end, we prove that at least 1

a3max
of the computations of I are mutually disjoint as

long as Ω(G) < 3, where amax is again the maximum number of blocks a matrix is
divided into horizontally or vertically per recursive step.

By Fact 2, in each subcomputation A1B1 either the vertices of A1 are all copies of
those input to G1 or none of them are, and similarly for B1. If the latter case holds
for both A1 and B1, then A1B1 represents an input-disjoint subcomputation and thus
a disjoint subcomputation. Call a linear combination α1v1 ++αrvr of v1, v2, ..., vr
trivial if at most one αi 6= 0. Then it suffices to show that any base graph G1

with ω(G1) < 3 contains a multiplication vertex that multiplies two nontrivial linear
combinations of entries of its input matrices. Note that because ω(G) < 3, every
base graph G1 computes some non-trivial linear combination of one of its inputs in
the encoding steps, but this does not immediately prove that two non-trivial linear
combinations are multiplied together.

Theorem 14 If a matrix multiplication algorithm computes C = AB (with dimen-
sions l, m, and n as before) by computing products of the form aij ·

∑
j′,k′

wj′k′bj′k′

and/or products of the form bjk ·
∑
i′,j′

Wi′j′ai′j′ for some scalars wj′k′ and Wi′j′ and

then taking linear combinations to yield the entries of C, then the algorithm uses at
least lmn multiplications.

Intuitively, this lemma states that any matrix multiplication algorithm base graph
that is better than classical matrix multiplication computes some product of non-
trivial linear combinations: a nontrivial linear combination of entries of A multiplied
by a nontrivial linear combination of entries of B.

Proof. Suppose C is computed using only products of the above forms; let Vj be
the set of all computed products of the forms aij ·

∑
j′,k′

wj′k′bj′k′ and bjk ·
∑
i′,j′

Wi′j′ai′j′

as i ranges from 1 to l and k ranges from 1 to n. Note that this partitions all the
computed products – except for those of the form aijblk for j 6= l – unambiguously
into m sets, since the product aijbjk (which takes the form of both types of products)
falls into Vj regardless of which form of product it is considered to be. Fix 1 ≤ j′ ≤ m.
We will set most of A and B to 0 to zero out all products not in Vj′ .

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 57

Considering aij and bjk as indeterminates, set aij = 0 whenever j 6= j′ and
similarly set bjk = 0 whenever j 6= j′. In other words, “zero out” the matrix A to
consist of only its j′th column (of indeterminates aij as before) and the matrix B
to contain only its j′th row. Then the product matrix AB contains all the terms
cik = aij′bj′k for all 1 ≤ i ≤ l and 1 ≤ k ≤ n. For every j, let V ◦j denote the set of
products of Vj with the aforementioned indeterminates aij and bjk zeroed out. Note
that all products aijblk with j 6= l are 0. Then for j 6= j′ by assumption Vj contains
only the trivial 0 product, and the multiplications of the form aijblk not put in any
Vj are also all 0. The products in Vj′ may be changed as well by this “zeroing out,”
but |V ◦j′ | ≤ |Vj′ |.

Since some linear combination of all the products in all the V ◦j – all but one of
which contain no nonzero products – must yield aij′bj′k, aij′bj′k is in the span of V ◦j′ .
This holds for each 1 ≤ i ≤ l and 1 ≤ k ≤ n. These ln products are all linearly
independent, and so |Vj′| ≥ |V ◦j′ | ≥ ln. Thus the total number of products computed
in all the Vj is at least lmn. �

This gives the desired result:

Corollary 2 If ω(G) < 3, then for every base graph G1 in G at least one of the
subcomputations of G1 (one level down) is disjoint from G1.

Proof. The above lemma shows the existence of an input-disjoint subcomputation
of G1. It is clear that the outputs of this subcomputation are then disjoint from G1

as well. �
In the following chapter we will require a variant of Theorem 14 along the follow-

ing lines: every matrix multiplication involving no more than lmn multiplications (so
no worse than classical matrix multiplication) either has a disjoint submultiplication
or else essentially performs classical matrix multiplication, in the following sense:

Definition 8 Call a matrix multiplication algorithm for multiplying l×m matrix A
by m × n matrix B to get l × n matrix C classical-like if it satisfies the following
conditions:

• It computes exactly lmn elementary multiplications

• Each elementary multiplication can be associated to a unique triple (i, j, k)
such that aij and bjk appear in the linear combinations representing the inputs
to the multiplication and the result of the multiplication occurs in the linear
combination of products yielding cik.

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 58

Theorem 15 Every matrix multiplication algorithm computing C = AB (with di-
mensions l, m, and n) that uses at most lmn elementary multiplications is either
classical-like or else involves an elementary multiplication both of whose linear com-
bination inputs are nontrivial (involve multiple aijs or bjks).

Proof. Suppose no elementary multiplication computes the product of two nontriv-
ial linear combinations. By Theorem 14 this algorithm uses exactly lmn elementary
multiplications. With notation as in the proof of Theorem 14, recall that the set V ◦j
of elementary multiplications spans the set of all products of the form aij′bj′k for fixed
j′ (after zeroing out all aijs and bjks with different j values). Thus |Vj| = ln. We
now apply Hall’s Matching theorem, matching every product in Vj to an appropriate
triple (i, j, k). Consider a product to be associated to the triple (i, j, k) if aij and bjk
appear in the input linear combinations and cik depends on the product.

Let X be a subset of triples of the form (i, j′, k) (with 1 ≤ i ≤ l and 1 ≤ k ≤ n)
and Y be the set of products in Vj compatible with some triple in X. If |X| < |Y |,
then for some cik, cik is dependent on no product involving both aij′ and bj′k, an
impossibility (since aij′bj′k appears as a term in the value of cik). Thus there exists
a matching from products in Vj to appropriate triples (i, j′, k), and so there exists a
matching from all the products computed in this matrix multiplication algorithm to
triples (i, j, k). �

Note that if the matrix multiplication algorithm uses more than lmn elementary
multiplications, the same proof still holds, except the matching constructed will
not use every elementary multiplication. The matching will pair exactly lmn of
the > lmn elementary multiplications to all the triples (i, j, k). But this implies
that, relative to this matrix multiplication algorithm, classical matrix multiplication
performs fewer arithmetic operations while requiring no more I/Os (even when used
as a base graph in a recursive construction). 9 Thus any matrix multiplication
algorithm with ω(G) > 3 that does not have a disjoint submultiplication can be
replaced by one with ω(G) ≤ 3, and so it suffices to consider matrix multiplication
algorithms all of whose base graphs have this property.

We have now shown a tight (for square matrices) I/O bound for submultiplications
of small size and shown that there are sufficiently many disjoint submultiplications
at each recursive level. The remainder of the proof of Theorem 6 for matrix multi-
plication algorithms with ω(G) < 3 is effectively unchanged from that in Chapter 2,

9Each elementary multiplication in our graph can be associated to one for classical matrix mul-
tiplication which depends on a subset of the inputs our elementary multiplication depends on, and
similarly for the outputs. Thus changing the given matrix multiplication algorithm to classical ma-
trix multiplication involves simply deleting edges of the CDAG, together with unnecessary vertices,
which cannot increase its I/O cost.

CHAPTER 3. GENERALIZATION TO RECURSIVE DIVIDE-AND-CONQUER
MATRIX MULTIPLICATION ALGORITHMS 59

giving a bound with a constant factor proportional to 1
a3max

. Because the following
chapter subsumes this proof, we omit the details.

We make one final comment: while the proof of Theorem 13 may be somewhat
complicated, if only square matrix multiplication steps are allowed it simplifies sig-
nificantly. In that case, the only necessary argument in the above proof beyond
that used in Chapter 2 is Lemma 8, to allow for “jumping” chains and thus remove
the assumption of Chapter 2 that nontrivial linear combinations are used only once.
This additionally streamlines the proof of Chapter 5, which proves Theorem 6 for
ω(G) ≤ 3 for square matrix multiplications involving only square matrix multiplica-
tion recursive steps.

60

Chapter 4

Internal I/O-Complexity

Recall that the internal I/O-complexity IO+(G) of a CDAG G is defined as the
minimum number of I/Os required to compute G, excluding the first inputting of
each input vertex and excluding the outputting of each output vertex of G. See
Definition 7 and Figure 3.1. In this chapter we prove useful properties of internal I/O-
complexity, such as its superadditivity and its relation to standard I/O-complexity.
This yields a very short proof of Theorem 6 based on Theorem 13. We also compare
the newly-developed internal I/O-complexity technique with several of those in the
literature.

The internal I/O-complexity of an algorithm is a measure of how many I/Os are
truly due to the inherent complexity of the algorithm, as opposed to simply having
to read all inputs once and output the answer. For example, there is a simple but
relatively useless cache-independent I/O-complexity lower bound for matrix multi-
plication: multiplying two n × n matrices requires at least 3n2 I/Os, since every
input/output must be read/written into/from cache at least once. Recall that, from
Theorem 9 (or Theorem 13) our I/O bound for n × n matrix multiplication was
proportional to n2, the same as this trivial bound!1 Meanwhile, adding two n × n
matrices has the same simple lower bound, but intuitively performs much less work.
Thus the bound proved in the previous chapter, in terms of standard I/O-complexity,
is no better than the most trivial possible I/O bound, and in fact no better than the
analogous bound for simply adding matrices.

The reason this happens is that bounds on standard I/O-complexity give no
indication of how many of those I/Os are not simply due to the necessity of reading
and writing the inputs and outputs. Internal I/O-complexity is defined to ignore
these inputs and outputs, giving a clearer picture of where the I/Os of an algorithm

1Assuming M is smaller than a constant times the matrix size, n2.

CHAPTER 4. INTERNAL I/O-COMPLEXITY 61

comes from. The internal I/O-complexity lower bound for matrix multiplication or
matrix addition via the trivial argument is then 0, while the results of the previous
chapter show a Ω (n2) internal I/O-complexity lower bound for matrix multiplication,
much better than the trivial bound. Thus multiplying two n×n matrices requires not
just ∼ n2 I/Os, but ∼ n2 I/Os that are not just due to the “forced” inputs/outputs
of the input/output vertices.

In Theorem 13 we proved the following internal I/O-complexity lower bound:
multiplying two n× n matrices by a divide-and-conquer algorithm requires at least
Θ(n2) internal I/Os (those counted by internal I/O-complexity) as long as the cache
size is ≤ Θ(n2). In other words, even ignoring the I/Os due to inputting the input
matrices and outputting the result, at least Θ(n2) I/Os are still required to compute
matrix multiplication by divide-and-conquer. The same is clearly not true of matrix
addition: the internal I/O-complexity cost of matrix addition is zero. Thus internal
I/O-complexity provides a better measure of the difficulty of performing an algorithm
in the sense of minimizing cache I/Os.

Internal I/O-complexity is also a valuable measure due to its additive properties.
Consider partitioning the vertices of a computation graph G into two sets X and
Y and forming their induced subgraphs. One may want to derive a bound on the
I/O-complexity of the entire graph G by combining I/O bounds for each of X and
Y (in a more practical scenario, one may partition the vertices of G into many more
than two subsets). Unfortunately, the sum of the I/O-complexities of X and Y may
be larger than the I/O-complexity of G. For example, suppose all vertices of X come
before all vertices of Y , so that the output of the subcomputation X is used as the
input to the subcomputation Y . Then the outputs of X (same as the inputs of Y)
should not necessarily be counted in the I/Os of G, yet are counted both in the I/Os
of X and in the I/Os of Y .

However, internal I/O-complexity does not suffer from this problem. We prove
below that the sum of the internal I/O-complexities of X and Y is a lower bound
on the I/O-complexity of G. One can also define the internal I/O-complexity of a
CDAG in terms of the red-blue pebble game as per Hong and Kung [10]: a red pebble
(representing a value in cache) may be placed on each input vertex once for free, and
the algorithm is complete when a pebble of either color is placed on every output
vertex.

To prove many of the results in this chapter we show that a sequence of compu-
tations that compute one CDAG G can be modified in some way to yield a sequence
of computations for another CDAG H. To this end we make the following definition:

Definition 9 Let a computation sequence of CDAG G be a sequence specifying com-
putations and I/Os of vertices of G whose execution computes G. Each operation

CHAPTER 4. INTERNAL I/O-COMPLEXITY 62

in this sequence is either a computation, an inputting (moving a piece of data into
cache), an outputting (moving a piece of data out of cache to slow memory), or a
deletion (simply deleting a piece of data from cache).

In the language of the red-blue pebble game devised by Hong and Kung [10], a
computation sequence is a pebbling strategy. For ease of notation in the following
proofs we refer to computation sequences instead of pebbling strategies, but the
concepts are identical. The pebbling operations defined in [10] correspond to the
operations of computation sequences as shown in Table 4.1. An example CDAG
and computation sequence are shown in Figure 4.1. By assumption a vertex may
be computed only once, so the operation Compute v may occur in a computation
sequence at most once. Also, note that in this section we refer to the act of performing
an I/O as “inputting” or “outputting” (instead of the more standard verbs “input”
and “output”) to help keep these operations separate from the input and output
vertices of CDAGs.

Pebbling Operation Computation Sequence Operation
R1 (Input) Inputting

R2 (Output) Outputting
R3 (Compute) Computation

R4 (Delete) Deletion 2

Table 4.1: Pebbling strategies [10] correspond to computation sequences.

2We do not allow for the deletion of a blue (slow memory) pebble, since deleting a piece of
data from the slow memory of unlimited size is never necessary and we assume no value is ever
recomputed.

CHAPTER 4. INTERNAL I/O-COMPLEXITY 63

(a) An example CDAG G

1. Input a 9. Delete b

2. Input b 10. Compute h

3. Compute d 11. Output h

4. Compute e 12. Delete f

5. Output d 13. Input d

6. Input c 14. Compute g

7. Delete a 15. Output g

8. Compute f

(b) A computation sequence that computes G

Figure 4.1: A computation sequence is a sequence of operations – including cache
I/Os – that computes a computation graph.

4.1 Mathematical Motivation

Before proving the necessary results about internal I/O-complexity – which will allow
for a simple proof of Theorem 6 – we first provide some additional motivation about
the properties of internal I/O-complexity relative to standard I/O-complexity. Let
us now prove a not-quite-additive I/O theorem with standard I/O-complexity:

Theorem 16 If G is a CDAG and A1,A2,..,Ar are vertex-disjoint subgraphs of
G and A1, A2, ..., Ar have T input and output vertices in total3, then IO(G) ≥
r∑

i=1

IO(Ai)− T .

3Relative to each Ai, as opposed to the overall graph G.

CHAPTER 4. INTERNAL I/O-COMPLEXITY 64

Proof. Let SG be a computation sequence that computes G. For 1 ≤ i ≤ r, let
Si be the restriction of SG to the vertices of Ai; that is, include into Si only the
operations of SG referring to vertices of Ai. Note that Si needn’t be a computation
sequence for Ai because input vertices of Ai are not necessarily inputted and output
vertices of Ai are not necessarily outputted. For every input vertex v of Si, replace
the operation Compute v of Si (if it occurs, i.e. if v was not also an input vertex of
G) with the operation Input v. For every output vertex w of Si add the operation
Output w to Si immediately after w is computed (or inputted) if w is not already
outputted. Now Si is a computation sequence for Ai and thus has at least as many
I/Os as IO(Ai). In modifying Si we added several I/Os: potentially one for every
input and output vertex of Ai. Thus IO(G) ≥ IO(A1) + IO(A2) + ... + IO(Ar)− T .
�

In this proof, every I/O performed when computing G corresponded to an I/O
performed when computing one of the Ai. However, due to the necessity of inputting
the input vertices and outputting the output vertices of each Ai, many additional
I/Os were added. This motivates the study of internal I/O-complexity, which ignores
these added I/Os. For simplicity, if H is a subgraph of CDAG G and SG is a
computation sequence that computes G, we define the restriction of SG to H, denoted
SG|H , to be the computation sequence for H formed as in the above proof: restrict
SG to only vertices in H, replace every computation of an input vertex of H with the
inputting of the same vertex instead, and add the outputting of every output vertex
of H immediately after its computation (or inputting), when not already outputted.

Define an internal vertex of a CDAG G to be any vertex of G that is neither an
input nor an output vertex of G.

Theorem 17 If G is a CDAG and A1,A2,..,Ar are vertex-disjoint subgraphs of G,

then IO+(G) ≥
r∑

i=1

IO+(Ai).

Proof. Again let SG be a computation sequence that computes G. The restriction
SG|Ai

of SG to Ai is a computation sequence for Ai; for every I/O in SG|Ai
, there are

three cases 4:

1. The I/O is the inputting of an input vertex v of Ai. If this is the first inputting
of v in SG|Ai

then it may have come from the operation Compute v in SG

and is not counted by internal I/O-complexity; otherwise, it must have come
from a corresponding operation Input v in SG and is counted by internal I/O-
complexity.

4This holds even if some vertices are both input and output vertices of Ai, or even of G.

CHAPTER 4. INTERNAL I/O-COMPLEXITY 65

2. The I/O is the outputting of an output vertex w of Ai. In this case the I/O
may or may not have come from an I/O operation in SG and is not counted by
internal I/O-complexity.

3. The I/O is from an internal vertex of Ai. The I/O must have come from an
I/O operation in SG and is counted by internal I/O-complexity.

Note that every I/O counted by internal I/O-complexity for one of the Ais corre-
sponds to an I/O in SG, and that each of these operations in SG is itself counted by
internal I/O-complexity (of the entire CDAG G). The number of internal I/Os per-
formed in SG|Ai

is at least IO+(Ai), so IO+(G) ≥ IO+(A1)+IO+(A2)+ ...+IO+(Ar).
Table 4.2 summarizes this logic. �

Input type in H Corresponds to in-

ternal I/O of SG

Counted by internal

I/O-complexity of H

Inputting input vertex for

first time in SG|H
Maybe No

Inputting input vertex, not

first time

Yes Yes

Outputting output vertex Maybe No
I/O of internal vertex Yes Yes

Table 4.2: Every internal I/O of SG|H – an I/O counted by the internal I/O-
complexity of H – corresponds to an internal I/O of SG. Every time an I/O is counted
by the internal I/O-complexity of H (a “yes” in the third column), it corresponds
to an internal I/O of SG (a “yes” in the second column) and is thus counted in the
internal I/O-complexity of G. From this it follows that the internal I/O-complexity
of G is at least equal to the sum of those of the Ai.

From this proof, it is apparent that Theorem 17 applies even if the input vertices
of one Ai are the same as the output vertices of another Aj; again, this reinforces the
notion that internal I/O-complexity, as its name suggests, counts only cache I/Os
occurring “internally” in the CDAG:

Corollary 3 If G is a CDAG and A1,A2,...,Ar are subgraphs of G such that for
i 6= j every vertex of Ai

⋂
Aj is either an input vertex of Ai and an output vertex of

Aj, or vice-versa, then IO+(G) ≥
r∑

i=1

IO+(Ai).

CHAPTER 4. INTERNAL I/O-COMPLEXITY 66

Applying Internal I/O-Complexity

We now show how to apply Theorem 17 to quickly prove Theorem 6. First observe
the following link between standard and internal I/O-complexity:

Claim 4 If G is a CDAG then

IO+(G) = IO(G)− (number of input and output vertices of G)

Proof. Any computation of G with respect to I/O-complexity corresponds to a
computation of G with respect to internal I/O-complexity (and vice-versa) by simply
removing the outputting of each output vertex of G and replacing the first inputting
of each input vertex by its “free” computation. The former thus contains one extra
I/O for each input and output vertex of G. �

Proof of Theorem 6 (and thus of our main theorem). By Corollary 2,
a constant fraction of the vertices of subcomputations in I are in vertex-disjoint
subcomputations of I. By Theorem 13, the internal I/O-complexity of each such
subcomputation is bounded below by Θ(M), and thus by Theorem 17 the internal
I/O-complexity of G is Ω(|I| ·M). By Claim 4, this also implies that the standard
I/O-complexity of G is Ω(|I| ·M).

�
We applied this theorem to a set of disjoint submultiplications; the same technique

can be applied in the Strassen-like case (or even to Strassen’s algorithm), but is less
necessary there because of the simpler recursive structure. This proves Theorem 6
in the case that ω(G) < 3.

4.2 Open Questions

While Theorem 17 is more elegant and applicable than the equivalent theorem using
standard I/O-complexity, it still is not sufficient to prove Theorem 6 in general,
wherein the subcomputations whose internal I/Os we hope to add are not disjoint
(and we cannot necessarily find a constant fraction of subcomputations which are).
To this end we pose the following open questions and suggest that a positive result
to either would have significant applications for computing I/O-complexities:

Question 1 Let G be a CDAG and A1,A2,..,Ar be not-necessarily-disjoint subgraphs

of G. Under what conditions is it true that IO+(G) ≥ Ω

(
r∑

i=1

IO+(Ai)

)
?

CHAPTER 4. INTERNAL I/O-COMPLEXITY 67

Question 2 More specifically, if for every 1 ≤ i < j ≤ r it holds that Ai

⋂
Aj con-

tains only input and/or output vertices of G, is it true that IO+(G) ≥ Ω

(
r∑

i=1

IO+(Ai)

)
?

Because of the difficulty associated with answering these questions in general, we
take a different approach in the remainder of this paper to prove Theorem 6 in the
case of ω ≥ 3.

68

Chapter 5

Proof of Theorem 6 in General for
Square Matrix Multiplication
Steps

We now present a significantly more involved proof of Theorem 6 – our main result
– for any ω(G), for example when some base graphs perform naive matrix multipli-
cation. In this chapter we consider matrix multiplication algorithms involving only
square matrix multiplication recursive steps; in Chapter 6 this final assumption will
be lifted.

First we summarize the Loomis-Whitney Inequality approach to proving the

Ω
(

n3
√
M

)
I/O-complexity bound for the classical matrix multiplication algorithm, as

in [12]. We then present a different, path-routing based, interpretation of this proof.
Using our interpretation of the proof, we show how to combine this idea with the
ideas of the previous chapters to prove Theorem 6 for square matrix multiplication
steps.

5.1 The Loomis-Whitney Inequality

Consider the CDAG for classical, Θ (n3)-work, matrix multiplication. The bound
of Theorem 13 still holds for any submultiplication in the CDAG of sufficient size,
but Theorem 17 cannot be used to add these I/O bounds due to potentially multi-

ply copied vertices. Instead, the canonical proof [12] of the optimal Ω
(

n3
√
M

)
I/O-

complexity lower bound for classical matrix multiplication applies a geometrical re-
sult called the Loomis-Whitney Inequality:

CHAPTER 5. PROOF OF THEOREM 6 IN GENERAL FOR SQUARE
MATRIX MULTIPLICATION STEPS 69

Theorem 18 (Loomis-Whitney Inequality (simple form)) Let S be a subset
of {(x, y, z) | x, y, z ∈ Z and 1 ≤ x ≤ l, 1 ≤ y ≤ m, 1 ≤ z ≤ n} and Sx, Sy, and Sz

be the projections of S onto coordinates 1 and 2, onto coordinates 1 and 3, and onto
coordinates 2 and 3 respectively. Then

|S| ≤
√
|Sx| · |Sy| · |Sz|

Geometrically, if S represents a set of lattice points in an l × m × n box, then
this theorem upper-bounds the size of S by the sizes of the projections of S onto 3
orthogonal faces of the box. For example, if S is a n×n×n sub-cube, then |S| = n3

and |Sx| = |Sy| = |Sz| = n2, resulting in an equality. In [12] this theorem is used to
provide a tight lower bound on the I/O-complexity of classical matrix multiplication
and further generalized in [6] to yield bounds for other problems in numerical linear
algebra. However, this technique relies on the lack of distributivity in classical matrix
multiplication, and thus does not apply to general matrix multiplication steps.

For comparison purposes we present the I/O-complexity bound for classical ma-
trix multiplication derived from the Loomis-Whitney Inequality together with its
proof (stated for square matrices, for simplicity):

Theorem 19 If G is the CDAG for classical matrix multiplication of n×n matrices,
then

IO(G) ≥ Ω

(
n3

√
M

)
as long as M ≤ O(n2).

Proof. For every 1 ≤ i, j, k ≤ n the product aijbjk is computed by G at a
multiplication vertex. Divide the computation of G into segments such that each
segment (except perhaps the last) contains

⌈
M3/2

⌉
such product vertices. Let S be

the set of products in one such complete segment. Let SA be the number of elements
of A used in the products in S, SB the number of elements of B used, and SC the
number of entries of C the computed products are required for. By Theorem 18,

|S| ≤
√
|SA| · |SB| · |SC |

The number of I/Os performed during this segment is at least |SA|+ |SB|+ |SC |−2M
(the −2M , as usual, because up to M required inputs may already be in cache, and
similarly for outputs). It is easy to see that |SA| + |SB| + |SC | takes its minimum
value subject to |SA| · |SB| · |SC | ≥ |S|2 ≥M3 when |SA| = |SB| = |SC | = |S|2/3 ≥M ,

CHAPTER 5. PROOF OF THEOREM 6 IN GENERAL FOR SQUARE
MATRIX MULTIPLICATION STEPS 70

resulting in at least M +M +M − 2M = M I/Os due to this segment. The number

of complete segments is Θ
(

n3

M3/2

)
, giving an I/O bound of

IO(G) ≥ Ω

(
n3

M3/2
·M
)

This proves the lower bound. See Figure 5.1. �

Figure 5.1: Each elementary multiplication performed within classical matrix mul-
tiplication can be associated to a unique lattice point in a three-dimensional box,
as shown. The point representing the multiplication aij · bjk lies at the intersection
defined by the elements aij, bjk, and cik on the three labeled orthogonal faces of the
box. In other words, the elementary multiplications of classical matrix multiplication
can be embedded in a box.

CHAPTER 5. PROOF OF THEOREM 6 IN GENERAL FOR SQUARE
MATRIX MULTIPLICATION STEPS 71

5.2 Motivation Behind the Proof

Following our paradigm of path routing, the above proof can be thought of in a
different way: construct an efficient routing of paths within the CDAG for classical
matrix multiplication from every multiplication vertex to the A inputs, another effi-
cient routing from the multiplications to the B inputs, and a third efficient routing
from the multiplications to the C outputs. These routings – which for classical matrix
multiplication are quite trivial, simply following the chains of vertex copying – have
the property that any Θ

(
M3/2

)
multiplication vertices composing the computation

segment S are collectively routed to at least Ω (M) input/output vertices.
This yields Ω (M) disjoint paths, each going from a multiplication vertex in S to

an input/output vertex. Each of these disjoint paths is boundary-crossing, yielding
an I/O, unless the input/output vertex ending the path happens to also lie in S.
But this can happen at most Θ(n2) times across all computation segments S, once

for each input/output vertex, which is small relative to Θ
(

n3
√
M

)
, and thus does not

impact the overall asymptotic bound.
This argument can generalize to any matrix multiplication CDAG in which rout-

ings of a similar property exist. Of course, the only reason these routings in the
classical case have this property is that the paths emanating from each multiplica-
tion vertex may be associated to a point within a 3-dimensional box, as in Figure
5.1. However, this property still holds for any classical-like matrix multiplication
step – intuitively, a matrix multiplication step that can be simplified to classical
matrix multiplication (see Definition 8 and Theorem 15). As a result of Theorem 15,
every matrix multiplication base graph either has a disjoint submultiplication – to
which we can apply the results of Chapters 2 and 3 – or else admits routings with
the desired property.

Thus to prove Theorem 6 for ω(G) ≤ 3 we will combine the path-routing results
of the preceding chapters with this new path-routing argument; the former argument
applies when ω(G1) < 3, while the latter applies when ω(G1) = 3. Combined, this
will be sufficient to prove Theorem 6. Before beginning the details of this proof, we
give a slightly more in-depth overview. The following discussion in this section is over-
simplified and imprecise, and included only to impart a more intuitive understanding
of the proof to follow.

Consider a submultiplication step in I (defined in Theorem 6), a submultipli-
cation of size just slightly larger than

√
M ×

√
M . If this submultiplication has a

child subcomputation disjoint from it, we can simply add its child’s internal I/Os
to those of the remainder of the CDAG. 1 If not, this submultiplication must have

1And by the right definition of “slightly,” we can guarantee that the child subcomputation is

CHAPTER 5. PROOF OF THEOREM 6 IN GENERAL FOR SQUARE
MATRIX MULTIPLICATION STEPS 72

n3
0 child submultiplications, if this submultiplication breaks its inputs into n0 blocks

horizontally and vertically.
We may apply the same logic to each of its child subcomputations, and so on, but

with one caveat: if a child subcomputation lower in the recursive tree is disjoint from
its parent, it’s possible that all/most of its inputs/outputs will exist in a computation
segment S simultaneously. Theorem 13 (or Theorem 9, which was simpler to prove
and more than sufficient for square matrix multiplication steps) required that at
most a constant fraction of the inputs/outputs be in S (for square matrices; for
rectangular matrices this becomes more challenging).

If most of the inputs/outputs of this disjoint submultiplication are not in S,
Theorem 10 yields an additive I/O bound. If most of the inputs/outputs are in S,
we will argue that there are many triples of the form (i, j, k) for which aij, bjk, and
cik (for this submultiplication C = AB) are all in S. In other words, if most of the
inputs/outputs of this submultiplication are in S, then this submultiplication “looks
like” classical matrix multiplication! This holds regardless of what recursive steps –
classical-like or not – are actually used within this submultiplication.

We can then use the Loomis-Whitney routing idea presented above to find enough
disjoint paths from these “terminal” disjoint submultiplications (or elementary mul-
tiplications, if every step above them is classical-like) to the layer of the CDAG our
analysis began at, the layer containing the submultiplication steps in I. If a sub-
multiplication X in I involves only classical-like subcomputations all the way down
the recursive tree, then it must have Θ

(
M3/2

)
elementary multiplications, and so

we would expect it to contribute Θ
(

M3/2
√
M

)
= Θ(M) I/Os by the Loomis-Whitney

Inequality argument described above. That is, there exist efficient routings of paths
from these elementary multiplications up to the input/output vertices of X. This
is the desired number of I/Os per subcomputation in I, and so adding this up over
all submultiplications in I would give the correct bound for Theorem 6. Of course,
if one of the subcomputations in the recursive tree beneath X is more efficient than
classical matrix multiplication it needn’t have this many elementary multiplications,
but by the above argument we can still find enough disjoint paths as if it did.

This isn’t quite enough, because the multiplications at this initial level (the level
on which the subcomputations of I lie) may still not be disjoint. We will continue this
routing of paths outward in the CDAG, either ending with an input/output to the
overall multiplication algorithm or with a non-duplicated vertex. The paths routed
through the outputs (the decoding piece of the overall CDAG) immediately hit non-
duplicated vertices, since vertex copying cannot happen within the decoding graph.
The paths routed through the inputs may pass through copied vertices, but because

large enough to apply Theorem 13 or 9 to.

CHAPTER 5. PROOF OF THEOREM 6 IN GENERAL FOR SQUARE
MATRIX MULTIPLICATION STEPS 73

only ab products can be computed using a inputs from A and b inputs from B, each
path can be associated with a unique point not in a 3-dimensional box, but within
a 2-dimensional square. Each point represents the paths emanating from vertices
beneath one submultiplication in I; geometrically, this corresponds to associating to
every point in this square the 3-dimensional box representing the (i, j, k) path-routing
triples for one submultiplication in I. To this 3-dimensional geometric structure we
can apply the Loomis-Whitney Inequality (Theorem 18); see Figure 5.4.

Thus we must add up the I/Os from three different sources:

• Disjoint child multiplications of multiplications in I (near the top level of our
analysis).

• Lower disjoint child submultiplications without too many vertices in S.

• Disjoint child submultiplications with most of their vertices in S, via efficient
(embeddable in a box) routings to the inputs/outputs of the multiplications in
I, and beyond.

See Figure 5.5. Finally, just as in the proof of Theorem 19, we must subtract the
number of input/output vertices terminating the efficient routing we constructed.
This is equal to the number of vertices among all the submultiplications in I. Unfor-
tunately, this is too large; it is on the order of the I/O bound we are trying to prove.
To fix this final problem, we will begin our analysis a constant number of recursive
levels higher, using the submultiplications a few recursive steps prior to those in I.
This decreases the number of I/Os to be subtracted from the final count. Because
the classical-like routing argument discussed above need only apply to submultiplica-

tions of size less than Θ
(√

M ×
√
M
)

, making this adjustment will not increase the

number of submultiplications to be analyzed via this classical-like routing argument,
and so the number of I/Os subtracted will become a constant fraction of the total
number of I/Os counted, proving Theorem 6. We now present this proof in full detail
for square matrix multiplication steps:

5.3 Proof of Theorem 6 for Square Matrix

Multiplication Algorithms

Let T be the set of subcomputations in G whose dimension is ≥ r
√
M and none of

whose child subcomputations have this property. The value of r will be chosen later
(in response to the multiplicative constants hidden in the asymptotic notation used
in this section). It follows by the definition of amax that every subcomputation in T

CHAPTER 5. PROOF OF THEOREM 6 IN GENERAL FOR SQUARE
MATRIX MULTIPLICATION STEPS 74

has smallest dimension ≤ ramax

√
M . Define the cutoff layer of G to consist of the

input and output vertices of the subcomputations in T .

Definition 10 Define a classical tree rooted at subcomputation X to be a tree T of
subcomputations in the recursion tree representing the computation of G (see Figure
5.2) formed as follows: Add X to the tree. If X has a child subcomputation Y
disjoint from it, add Y to the tree. Otherwise, for each child subcomputation Y of
X, recursively add the classical tree rooted at subcomputation Y to the tree.

Thus by Theorem 15, every multiplication step in a classical tree in G is classical-
like except perhaps for the recursive steps forming the leaves and those just above
the leaves. Intuitively, a classical tree is formed by following down the recursive
tree subcomputation by subcomputation until a non-classical-like subcomputation
is found (shown in black in Figure 5.2), and terminating on one of the guaranteed
disjoint children of each non-classical-like subcomputations found in this way (shown
in blue in Figure 5.2).

Figure 5.2: A classical tree rooted at subcomputation X, shown in red. Large white
vertices represent classical-like subcomputations, large black vertices represent non-
classical-like subcomputations, blue vertices represent (non-elementary) subcompu-
tations disjoint from their parents, and small black vertices represent elementary
multiplications. For simplicity only two subcomputations are shown per vertex.

CHAPTER 5. PROOF OF THEOREM 6 IN GENERAL FOR SQUARE
MATRIX MULTIPLICATION STEPS 75

In the proof of Theorem 13 we counted the number of vertices in the input/output
of an individual submultiplication. Thus in effect, the proof of Theorem 6 relied on
splitting the sequence of vertex computations into segments containing a sufficient
number of vertices on the cutoff layer of G. In this section, we will instead count the
vertices forming the leaves of the classical trees rooted at the subcomputations in
T . To this end let L be the set of leaf computations among all these classical trees,
and define the power of each such leaf computation to be m3 if the leaf computation
computes the product of m×m matrices (recall that in this section we are considering
only square matrix multiplication recursive steps):

Definition 11 If X is a square matrix multiplication algorithm of dimension m,
define the power of X to be m3.

Definition 12 If L′ ⊆ L, define the total power p(L′) to be the sum of the powers
of all submultiplications in L′.

Theorem 20 The total power p(L) of subcomputations in L within one classical tree
rooted at subcomputation X is at least m3

a3max
, if X multiplies m×m matrices.

Proof. This result follows by induction. If X is an elementary multiplication
it clearly holds. If X is disjoint from its parent, it contributes m3 total power.
If not, suppose X involves dividing its input matrices into k blocks vertically and
horizontally. Then by Theorem 15 either it has k3 submultiplications or else it has a
disjoint submultiplication. In the latter case, by the inductive hypothesis the disjoint

submultiplication has power
(
m
k

)3 ≥ m3

a3max
. In the former case, by the induction

hypothesis each of the k3 submultiplications themselves have at least 1
a3max

·
(
m
k

)3
power, for a total of at least k3 1

a3max
·
(
m
k

)3
= m3

a3max
power. Thus by induction X has

at least m3

a3max
power. �

This theorem justifies our use of power in our counting argument. We will end
up proving a bound on the total internal I/O of G proportional to the total power
of L divided by n. These I/Os come from three different sources, but each source of
I/Os yields I/Os proportional to the power of L due to vertices in the computation
segment S in subcomputations of that type.

Definition 13 If X is a square submultiplication in L of dimension m, define the
active power pS(X) of X relative to computation segment S to be the product of
m with the number of vertices of the A input matrix of X that lie in S. If L′ ⊆
L, define the total active power pS(L′) to be the sum of the active powers of all
submultiplications in L′.

CHAPTER 5. PROOF OF THEOREM 6 IN GENERAL FOR SQUARE
MATRIX MULTIPLICATION STEPS 76

As before, split the sequence of computations of G into segments; this time,
split into segments such that each segment contains Ω

(
M3/2

)
total power. Each

segment gets at most 2M “free” I/Os; for simplicity, we use the word “I/O” in the
remainder of this proof to denote any vertex that need be input or output during the
computation of S, including those already in cache before the beginning of S or in
cache after the end. Subtracting 2M from the number of I/Os gives a lower bound
on the number of “true” I/Os due to segment S. For a fixed full segment S, we now
divide the submultiplications in L into three disjoint sets with respect to S:

• Let La consist of all submultiplications in L multiplying matrices of dimension
≥
√

72amaxM .

• Let Lb consist of all submultiplications in L multiplying matrices of dimension
<
√

72amaxM with the property that less than 80% of their A inputs, less than
80% of their B inputs, or less than 80% of their C ouputs are in S.

• Let Lc consist of all submultiplications in L multiplying matrices of dimension
<
√

72amaxM such that at least 80% of their A inputs, at least 80% of their
B inputs, and at least 80% of their C outputs are in S. Include in Lc all
elementary multiplication vertices that lie in L which are computed in S.

In other words, La consists of all submultiplications that are leaves of the clas-
sical trees – and thus are disjoint from their parents – whose I/Os can be analyzed
by Theorem 13. 2 Meanwhile Lb contains the submultiplications with too few in-
puts/outputs to analyze via Theorem 13 (they are too small), but which nevertheless
have enough inputs/outputs not in S for similar path-routing logic to apply, cap-
tured by Theorem 10. Finally, Lc contains those submultiplications which cannot be
analyzed by either Theorem 13 or Theorem 10, and for good reason: most/all of their
inputs/outputs are in S, preventing the usual path-routing arguments. This final set
requires the additional Loomis-Whitney path-routing ideas mentioned above, which
will form the majority of the remainder of this proof.

The following theorem shows that regardless of how much active power due to S
lies in subcomputations of each of these three types, a proportional number of I/Os
always result:

2In this section, because of the assumption that every recursive step performs a square matrix
multiplication, we could just as well apply Theorem 9 instead of Theorem 13. However, when we
generalize the results of this section to non-square matrix multiplication recursive steps it will be
necessary to use Theorem 13.

CHAPTER 5. PROOF OF THEOREM 6 IN GENERAL FOR SQUARE
MATRIX MULTIPLICATION STEPS 77

Theorem 21 The total internal I/O of La due to S is at least Ω
(

p(La)

r
√
M

)
. The total

internal I/O of Lb due to S is at least Ω
(

p(Lb)√
M

)
. For Lc the same result holds, except

for a total of t I/Os subtracted amongst all computation segments S, where t is at
most half of the bound found in Theorem 6, assuming that r is a sufficiently large
constant.

Proof of Theorem 21 for La. Let X be a submultiplication in La. Then
the dimension m of the matrices involved in X is bounded by

√
72amaxM ≤ m ≤

ramax

√
M . The former inequality implies that Theorem 9 applies, while the latter

implies that the active power of X is at most i · ramax

√
M , where i is the number

of vertices of the A input matrix to X that lie in S. By Theorem 9 (or Theorem
13), X has internal I/O-complexity of at least Ω(i). Thus the internal I/O count

contributed by X is at least Ω
(

pS(X)

r
√
M

)
. This holds for every submultiplication X in

La, and because internal I/Os and active powers are additive thus holds for La as
well. �

Proof of Theorem 21 for Lb. Analogous to the above proof, but using Theorem
10 3. Let X be a submultiplication in Lb of dimension m. By the definition of Lb

Theorem 10 applies, yielding an I/O bound of Ω(i), where i is the number of vertices
of the A input matrix to X that lie in S 4. Since m ≤ ramax

√
M , X has active

power of at most Ω
(
i · ramax

√
M
)

, and so the internal I/O count contributed by X

is again at least ≥ Ω
(

pS(X)√
M

)
(and the smaller of a matrix multiplication X is, the

more this is an underestimate). �

Proof of Theorem 21 for Lc. This subproof is significantly more challenging and
requires the use of the Loomis-Whitney path-routing ideas mentioned above. Let X
be a submultiplication of dimension m in Lc that is not an elementary multiplication.
By the definition of Lc, Theorem 10 does not apply. However, the following claim
does hold:

Claim 5 Let A, B, and C be the inputs and output of Lc. Then there exist at least
0.4m3 triples of the form (i, j, k) for which aij ∈ S, bjk ∈ S, and cik ∈ S.

3Unfortunately, this theorem does not generalize as easily to non-square matrix multiplications.
See the above footnote. The proof of an analogue of this theorem will constitute the majority of
the next chapter.

4This bound could be far too low, if there are no vertices in the A input but are vertices in B
or C. It will prove simpler in the non-square case to count active power not by all three matrices
per subcomputation, but just by the largest matrix.

CHAPTER 5. PROOF OF THEOREM 6 IN GENERAL FOR SQUARE
MATRIX MULTIPLICATION STEPS 78

Geometrically, picture A, B, and C as three orthogonal faces of a m×m×m cube
as in Figure 5.1, as in the standard interpretation of the Loomis-Whitney Inequality.
Then this claim states that at least 40% of the m3 unit cubes within this box align
with elements of S in all three directions.

Proof. If U1, U2, and U3 are subsets of finite set T , then |U1

⋂
U2

⋂
U3| ≥ |U1| +

|U2|+|U3|−2|T | (this follows by induction for n sets, replacing 2 with n−1) 5. Let U1

be the set of all triples (i, j, k) for which aij is in S, U2 be the set of all triples (i, j, k)
for which bjk ∈ S, and U3 be the set of all triples for which cik ∈ S. By the definition
of Lc, there are at least 0.8m2 choices of (i, j) for which aij ∈ S, so |U1| ≥ 0.8m3,
and similarly for U2 and U3. Thus |U1

⋂
U2

⋂
U3| ≥ 3 · 0.8m3 − 2m3 = 0.4m3. Every

triple (i, j, k) ∈ U1

⋂
U2

⋂
U3 satisfies aij, bjk, cik ∈ S, proving the claim. �

Bottom Part of the Routing

Let Y be a classical-like matrix multiplication. By the definition of classical-like
matrix multiplication (see Definition 8), there exists an assignment from submulti-
plications performed by Y (one level down) to compatible triples (i, j, k), in the sense
that aij, bjk, and cij were used in/dependent on that submultiplication. This holds
for each matrix multiplication recursive step in the classical trees constructed above
(except the leaves and subcomputations just above the leaves).

Let X be a subcomputation in T of dimension m with input matrices A and
B and output matrix C. Suppose first that every submultiplication beneath X is
classical-like. Then by performing the aforementioned assignment at every recursive
step, the following holds: Each elementary multiplication performed beneath X can
be assigned to a unique triple (i, j, k) such that there exists a chain of dependencies
from the elementary multiplication to aij (the input to X itself), a chain to bjk, and
a chain to cik.

Intuitively, this embeds all the submultiplications beneath X as unit cubes inside
the m×m×m cube with orthogonal faces given by the input and output matrices
of X. This is exactly analogous to the case where every submultiplication performs
classical matrix multiplication (hence the name “classical-like”). This implies that
the Loomis-Whitney Inequality technique still applies: if U is a set of a3 of these
elementary multiplications, then their total projection onto the three faces is of size
at least 3a2. There thus exist at least 3a2 disjoint chains going from the elementary
multiplications in U to any of the matrices A, B, and C.

5Compare Bonferroni’s Inequality for probabilities, which states that if e1, ..., en are events,
then P (e1 and e2 and ... and en) ≥ P (e1) + P (e2) + + P (en)− n + 1.

CHAPTER 5. PROOF OF THEOREM 6 IN GENERAL FOR SQUARE
MATRIX MULTIPLICATION STEPS 79

The above analysis assumed that every submultiplication performed classical-like
matrix multiplication, but the leaves (actually the subcomputations just above the
leaves) of the classical-tree beneath X do not. Regardless, a similar construction
applies: perform the aforementioned assignment to every classical-like matrix mul-
tiplication within the classical tree rooted at X. In other words, construct chains
from the triples (i, j, k) for each subcomputation in this tree that is not a leaf (or
just above a leaf, or an elementary multiplication; in other words, for every white
vertex of Figure 5.2). Instead of forming chains from the elementary multiplications
to the inputs/outputs of X, this forms chains from the leaf matrix multiplications –
those in L – up to the inputs/outputs of X.

Let X have dimension n and let Y be a leaf subcomputation (of the classical
tree rooted at X) in Lc of dimension m beneath X that is not an elementary mul-
tiplication. Suppose Y multiplies A′ by B′ to get C ′. Each submultiplication above
Y and beneath X admits the same assignment as above, so each triple (i, j, k),
1 ≤ i, j, k ≤ m, can be assigned to a unique unit cube in the box used above with
which it is compatible relative to the vertices a′ij, b

′
jk, and c′ik. Thus one can embed

not just the elementary multiplications of this tree in this box, but the elementary
multiplications along with an appropriately large set of triples for each leaf compu-
tation.

Note that this embedding is one-to-one and fills at least 1
a3max

of the entire n×n×n
box 6; for each triple (i, j, k) with 1 ≤ i, j, k ≤ n (the dimension ofX), this embedding
assigns a unique point in the n × n × n box to every elementary multiplication or
triple (i′, j′, k′) of a leaf computation:

Theorem 22 Let X be a multiplication step C = AB. Then the embedding specified
above has the following properties:

• Every elementary multiplication in Lc beneath X is mapped to a unit cube
indexed by (i, j, k) for which there exists a chain from the multiplication to aij,,
a chain to bjk, and a chain to cik.

• Let Y ∈ Lc be a leaf subcomputation beneath X of dimension m with inputs
A′ and B′ and output C ′. For every triple (i′, j′, k′) with 1 ≤ i′, j′, k′ ≤ m,
(i′, j′, k′) is mapped to a unit cube (i, j, k) for which there exists a chain from
ai′j′ to aij, a chain from bj′k′ to bjk, and a chain from ci′k′ to cik.

6In a classical-tree leaf vertices are disjoint subcomputations, while subcomputations just above
the leaves are thus non-classical-like; this means that the other child subcomputations of non-
classical-like subcomputations are ignored, resulting in this factor of 1

a3
max

.

CHAPTER 5. PROOF OF THEOREM 6 IN GENERAL FOR SQUARE
MATRIX MULTIPLICATION STEPS 80

The geometric picture of this routing is the same as in Figure 5.1, with the
nuance that each classical-like recursive step has effectively been “simplified” to
classical matrix multiplication. Before extending this routing beyond X, we make
one remark: the above embedding argument can embed only triples (i′, j′, k′); it
cannot embed triples (a′iaja , b

′
jb,kb

, c′ic,kc), triples of arbitrary elements of A, B, C. An
arbitrary set S may however contain elements of A, B, and C for which there are no
triples (i′, j′, k′) for which ai′j′ , bj′k′ , and ci′k′ are in S. Recall that it is necessary for
all these inputs/outputs to lie in S to find enough chains emanating from S (and,
except for a small number of times, ending not in S) to yield a good I/O bound.
For this reason we analyzed submultiplications with relatively few inputs/outputs of
Y in S separately as Lb; as long as S contains many elements of A, many elements
of B, and many elements of C (as do all subcomputations in Lc), the above claim
shows that many of these (i′, j′, k′) triples must indeed exist.

Top Part of the Routing

If the submultiplications in T (the collection of all submultiplications at the cutoff
layer) were all disjoint, the above routing would be sufficient. It follows immediately
from the Loomis-Whitney Inequality that if the total active power pS(Lc) is a3, then
there exist at least 0.4 · 3a2 disjoint chains from elements of S (either elementary
multiplications, or the inputs/outputs of a leaf multiplication represented in a triple
(i′, j′, k′)) up to vertices of the cutoff layer. Were each of these vertices distinct, each
disjoint chain would yield an internal I/O, except when the cutoff vertex hit lay in
S. This happens at most once for each vertex on the cutoff layer; the total size of
the cutoff layer is smaller than the I/O bound produced by this method, and so is
asymptotically negligible. This would yield the desired I/O bound.

Unfortunately, this analysis breaks down if the vertices on the cutoff layer are
not distinct, because the above logic may overcount I/Os. To fix this issue, we will
continue the routing constructed above; each chain will continue upwards/downwards
through the overall CDAG, passing through subcomputations above the cutoff layer
T , until it either hits an overall input/output to G or hits a vertex that is distinct
from those on the next level.

Recall that every matrix multiplication step inG was assumed to compute distinct
products. Let X be the base graph for a submultiplication for C = AB, IA be a set
of linear combinations of the elements of A computed by X, and IB be similarly for
B. Then it follows that the total number of multiplications computed by X using
only inputs from IA and IB is at most |IA||IB|. In other words, submultiplications
can be embedded within a 2-dimensional rectangle, as opposed to a 3-dimensional

CHAPTER 5. PROOF OF THEOREM 6 IN GENERAL FOR SQUARE
MATRIX MULTIPLICATION STEPS 81

box, if only the A and B inputs (not the C output) are to specify the embedding.
From this simple observation comes the following theorem analogous to Theorem 22:

Theorem 23 Let X be a matrix multiplication step C = AB. If IA and IB denote
the sets of linear combinations of elements of A and of B computed in X, then there
exists an injective embedding from the submultiplications of X into IA × IB with the
following property: if the product Y is mapped to a × b, then there exists a (nearly
trivial) chain from Y to a and from Y to b.

This theorem simply states that there cannot be two identical submultiplications
performed beneath X, an assumption of Theorem 6 (which is clearly necessary for
any meaningful bound). From this claim, we see that every submultiplication of
X above the cutoff layer can be embedded not in a 3-dimensional box, but a 2-
dimensional rectangle, with edges indexed by the distinct linear combinations of A
and B computed in X. 7

Suppose that for each submultiplication with inputs A′ and B′, every element in
IA′ and in IB′ are duplicated elements from A′ and B′ (in other words, are trivial
linear combinations with coefficient 1). Then via a similar recursive construction as
before, each submultiplication in T can be associated to a distinct pair (a, b), where
a is a block of inputs of the overall input matrix A and b is a block of inputs of the
overall input matrix B to G. Alternatively, in the matrix multiplication algorithm
formed by truncating the recursive construction of G at the cutoff layer (and thus
interpreting each block of the original algorithm as a single element), each elementary
multiplication can be associated to a distinct pair (a, b), where a is an input from A
of the overall multiplication and b is an input from B of the overall multiplication.
See Figure 5.3.

If the elements of IA′ and IB′ are not necessary duplicates of the inputs, a similar
result still holds: every submultiplication in T can be associated to a distinct pair
(a, b), where a is either a block of inputs of the overall input matrix A or a block of
inputs to a matrix A′ used in some subcomputation that is distinct from the inputs to
its parent computation, and similarly for B. As before, the following property holds:
For each submultiplication in T , there exists a routing of parallel (non-intersecting)
chains from the submultiplication to the block a and a routing of chains to the block
b, where (a, b) is the associated pair to the submultiplication. For each of these sets
of chains, the “parallel” chains simply represent the fact that the A input to the

7Unlike above, the (a, b) pair associated to a submultiplication need not be internally com-
patible, in the sense that a = aij and b = bjk for the same j. All that is required is that the
submultiplication depend on a and b as inputs.

CHAPTER 5. PROOF OF THEOREM 6 IN GENERAL FOR SQUARE
MATRIX MULTIPLICATION STEPS 82

Figure 5.3: Every elementary multiplication performed within any matrix multipli-
cation algorithm (that does not duplicate work) can be associated to a unique lattice
point in a two-dimensional rectangle, dependent on the linear combinations of ele-
ments of the input matrices A and B that are multiplied. In this embedding the
outputs this submultiplication plays a part in are not considered. The point repre-
senting the multiplication a · b lies at the intersection defined by the elements a ∈ FA

and b ∈ FB, where a and b are linear combinations of the input elements of A and
B respectively.

submultiplication behaves as a block in all higher subcomputations, and similarly
for B.

Combining the Routings

We have thus constructed a set of efficient routings from the elementary multiplica-
tions and triples (i, j, k) for leaf multiplications beneath every multiplication in T up
to the inputs/outputs of T , and a set of efficient routings from the inputs/outputs of
T up to either the inputs/outputs of the entire multiplication G or to inputs/outputs
disjoint from those on the next level. Concatenate these routings. As before each
elementary multiplication or triple (i, j, k) is routed to a triple (a, b, c), where c is
an element of an output matrix on the cutoff layer (since the continuation of the
routings constructed above do not route paths through C) and a and b are either
inputs to G or are distinct values (from those on the next level). We formalize this

CHAPTER 5. PROOF OF THEOREM 6 IN GENERAL FOR SQUARE
MATRIX MULTIPLICATION STEPS 83

observation in the following theorem:

Theorem 24 Let U consist of, for each submultiplication X in Lc of dimension m
(including elementary multiplications), the set of all triples (i, j, k) with 1 ≤ i, j, k ≤
m. Let FA be the set of all distinct A input values at/above the cutoff layer, FB

be the set of all distinct B input values at/above the cutoff layer, and FC be the
set of all output values on the cutoff layer. Then there exists an injective mapping
U → FA × FB × FC

8 with the following properties:

• If (i, j, k)→ (a, b, c), then there exists a canonical chain from aij to a, a chain
from bjk to b and a chain cik to c (where aij, bjk, cik are the thusly indexed
inputs/outputs of the submultiplication (i, j, k) belongs to).

• For each a ∈ Fa, either a is an input to G itself or else is disjoint from all
the A inputs to the submultiplication above the one that a lies in. The same
holds for each b ∈ Fb, and trivially holds for each c ∈ Fc (replacing input with
output).

• Suppose (i, j, k) → (a, b, c) and (i′, j′, k′) → (a′, b′, c′). Then the chain from
(i, j, k) to a and the chain from (i′, j′, k′) to a′ are disjoint if a 6= a′ and (i, j) 6=
(i′, j′), and similarly for b with b′ and c with c′.

Informally, this theorem states that just like in the classical matrix multiplication
case, every “elementary multiplication” (which every leaf multiplication in Lc “looks
like” a cube of) can be embedded in a 3-dimensional box! The faces of this box are
labeled not by the overall inputs/outputs to G, but by the distinct linear combina-
tions of elements of A, B, and C at/above the cutoff layer (actually only the linear
combinations of elements of C on the cutoff layer itself are necessary). See Figure
5.4.

From here the proof of Theorem 21 for Lc is simple: Let US be the set of all triples
(i, j, k) ∈ S for which aij, bjk, cik ∈ S. By Claim 5, |US| ≥ 0.4pS(Lc). If US → V
under the above mapping, let VA, VB, and VC be the projections of V onto FA, FB,
and FC . Then by the Loomis-Whitney Inequality (Theorem 18),

|US| ≤
√
|VA| · |VB| · |VC |,

from which it follows that

|VA|+ |VB|+ |VC | ≥ 3|US|2/3 ≥ pS(Lc)
2/3

8Formally, consider each element of FA and FB to be the vertex, not meta-vertex in G, with
the specified value in the highest level submultiplication. This is necessary so that one may talk
about the next-higher submultiplication.

CHAPTER 5. PROOF OF THEOREM 6 IN GENERAL FOR SQUARE
MATRIX MULTIPLICATION STEPS 84

Figure 5.4: Every elementary multiplication and triple (i, j, k) in U can be associated
to a unique lattice point within a two-dimensional rectangle of three-dimensional
boxes. Overall, this forms a large box whose faces are labeled by FA, FB, and FC .
The vertices of the C faces of the embedded boxes are all distinct (and lie in FC),
so chains emanating through the C side of one of the boxes simply stop there; the
vertices of the A and B sides of the small boxes are not distinct, and so must continue
onwards to a distinct element of FA or FB via the square embedding represented in
Figure 5.3. Because this overall embedding forms a three-dimensional box – just as
in the proof for classical matrix multiplication – the Loomis-Whitney inequality still
applies!

Thus there are at least pS(Lc)
2/3 disjoint chains, each from a vertex in S (of

the form aij, bjk, or cik for some triple (i, j, k) ∈ US) to a vertex in FA, FB, or
FC . Assuming the latter vertex is not in S, this yields pS(Lc)

2/3 I/Os. If X is a
submultiplication of dimension n in Lc, then n ≤

√
72amaxM , so the active power

CHAPTER 5. PROOF OF THEOREM 6 IN GENERAL FOR SQUARE
MATRIX MULTIPLICATION STEPS 85

of X satisfies pS(X) ≤ (72amaxM)3/2, and thus pS(X)1/3 ≤
√

72amaxM . Since

pS(Lc) =
∑

X∈Lc

pS(X), this is at least pS(Lc)
2/3 ≥ pS(Lc)√

72amaxM
I/Os, as desired.

This analysis counted some I/Os that should not have been included, I/Os formed
by a path from an element in S to an element in FA, FB, or FC that was also in S. We
now upper-bound the total number of such “fake” I/Os, which are to be subtracted

in total from the Ω
(

pS(Lc)√
M

)
over all computation segments S. Each element of FA,

FB, and FC can lie in S in only one computation segment, so |FA| + |FB| + |FC | is
an upper bound for this number of fake I/Os. Recall that FA consists of all distinct
A linear combinations found at/above the cutoff layer. Each submultiplication has
at most a3max child multiplications, bounding the exponent of any submultiplication
away from 2. This implies that the total number of A linear combinations in FA is
proportional to the number of A linear combinations at the cutoff layer, and similarly
for B. For sufficiently large choice of the constant r, |FA| + |FB| + |FC | is at most
half the desired I/O bound of Theorem 6. 9 This concludes the proof of Theorem
21 for Lc.

�
From Theorem 21, the proof of Theorem 6 is simple:

Proof of Theorem 6 for Square Matrix Multiplication Steps. By Theorem
17, internal I/Os are additive. Thus each computation segment S of Ω

(
M3/2

)
total

active power contributes at least

Ω

(
pS(La)

r
√
M

+
pS(Lb)√

M
+
ps(Lc)√
M

)
I/Os, except for the t total I/Os to be subtracted at the end of this computation
(and the 2M free I/Os per segment) from the third term in this sum. Suppose that
for at least half of the s full computation segments S the first term in the above sum
comprises at least half of the total.10 In that case, for each of these computation
segments there are at least

Ω

(
pS(La)

r
√
M

)
= Ω

(
pS(L)

r
√
M

)
= Ω

(
M3/2

r
√
M

)
= Ω

(
M

r

)
9Because we used asymptotic notation for this section for simplicity, it can only be said that a

constant r resulting in a small enough I/O subtraction exists.
10This split in the argument is necessary for the following reason: the larger the constant r

is, the smaller the number of I/Os that must be subtracted from the total contribution of Lcs in
Theorem 21 over all segments S. But the larger r is, the smaller the contribution of La over all
segments S. Intuitively one would like to choose a large enough r for the former to be significantly
less than the latter, but this need not exist. Instead, we note the the contributions from La do not
overcount any I/Os, while the contributions from Lc do not have this 1

r dependence on r.

CHAPTER 5. PROOF OF THEOREM 6 IN GENERAL FOR SQUARE
MATRIX MULTIPLICATION STEPS 86

I/Os, except for the 2M values in memory before/after S. Since r is a small constant,
this is bounded below by 3M (more precisely, the constant present in the Ω

(
M3/2

)
in the definition of S can be chosen to be large enough so that this holds), resulting
in at least 3M−2M = M true I/Os from S. In this case, no I/Os need be subtracted
(only I/Os due to the Lc submultiplications may be overcounted). Thus the total
true I/O count is Ω (sM). Since every computation segment has total active power
Ω
(
M3/2

)
and the total power p(L) of all subcomputations in L is Ω

(
|I|M3/2

)
by

Theorem 20, it follows that there are s ≥ Ω (|I|) complete segments, and so the total
true I/O count is Ω (|I|M), from which the bound of Theorem 6 follows (since every

submultiplication in I has dimension ≤ Ω
(
r
√
M
)

, and r is a constant).

Suppose instead that for at least half of the s full computation segments S the
former term contributes less than half of the total. Then for each such computation
segment, there are at least

Ω

(
pS(Lb)√

M
+
ps(Lc)√
M

)
= Ω

(
pS(L)√
M

)
= Ω

(
M3/2

√
M

)
= Ω (M)

I/Os, except for the 2M values in memory before/after S and except for a total of t
I/Os total across all such segments. Thus, apart from these overcounted I/Os, each
such segment contributes at least 3M−2M = M true I/Os. The total true I/O count
is hence Ω (sM − t) = Ω (|I|M − t) = Ω (|I|M) by the definition of t, again yielding
the bound of Theorem 6. This proves Theorem 6 for square matrix multiplication
recursive steps.

�
Figure 5.5 gives a pictorial representation of the definitions of La, Lb, and Lc and

the form of the secondary routing constructed.

CHAPTER 5. PROOF OF THEOREM 6 IN GENERAL FOR SQUARE
MATRIX MULTIPLICATION STEPS 87

Figure 5.5: The definitions of La, Lb, and Lc with respect to a computation segment
S. Disjoint submultiplications above the cutoff layer lie in La (blue). Disjoint sub-
multiplications beneath the cutoff layer may either lie in Lb (green) or in Lc (purple).
Which set they lie in depends entirely on how many of their inputs are in S; if not
too many inputs are in S such a submultiplication lies in Sb and contributes an ap-
propriate number of internal I/Os by itself. If many inputs lie in S, it lies in Sc. All
elementary multiplications in L computed during S also lie in Lc. We constructed a
routing, shown in red, of sufficiently many chains from the inputs and outputs of Lc

up to either the inputs and outputs of the entire graph (not in the example shown),
or the first vertex distinct from those on the next layer. This may happen even at
a subcomputation that is not disjoint from its parent (such as the children of the
classical-like matrix multiplications shown as hollow circles), if some but not all of
its values are distinct from its parent’s.

88

Chapter 6

Modifications to the Proof of
Theorem 6 for Rectangular Matrix
Multiplication Steps

The proof of the preceding chapter assumed for simplicity that each matrix multipli-
cation step performed square matrix multiplication. This made dimension arguments
much simpler and allowed for the use of Theorem 10. In this chapter we show how
to lift this assumption. The vast majority of the above proof remains unchanged, so
we elaborate only on the details that change when rectangular matrix multiplication
steps are allowed.

6.1 Proof of Theorem 6 for General Matrix

Multiplication Algorithms

Recall that the “power” of a square matrix multiplication of dimension n was pre-
viously defined to be n3, while the “active power” was defined to be the number of
input vertices (of the A input) in S times n. Intuitively, this is a way of counting
matrix multiplications by their number of A inputs: every (at most)

√
M count

results in one new internal I/O. From the proof of Theorem 13, we see that for a
rectangular matrix multiplication of dimensions l, m, and n, we get a total internal
I/O of max(lm,mn, ln) as long as not too many of the vertices of the largest matrix
are in memory at once. This motivates the following more general definitions:

Definition 14 If X is a rectangular matrix multiplication algorithm of dimensions
l, m, and n, define the power of X to be lmn.

CHAPTER 6. MODIFICATIONS TO THE PROOF OF THEOREM 6 FOR
RECTANGULAR MATRIX MULTIPLICATION STEPS 89

Definition 15 If X is a rectangular submultiplication in L of dimension m, define
the active power pS(X) of X relative to computation segment S to be the product of
min(l,m, n) with the number of vertices of the largest input/output matrix of X that
lie in S.

Let T consist of all submultiplications inG whose smallest dimension (so min(l,m, n))
is ≥ r

√
M and none of whose child subcomputations have this same property. Let

L be as before. From these definitions the following generalized result is clear:

Theorem 25 The total power p(L) of subcomputations in L within one classical tree
rooted at subcomputation X is at least lmn

a3max
, if X multiplies matrices of dimensions

l, m, and n.

Let X be a square submultiplication of dimension n. In the previous chapter, we
considered two cases:

• Not too many of the input/output vertices of A lie in S. In this case, Theorem
9 gave a good internal I/O bound.

• Most of the input and output vertices of A lie in S. In this case, Theorem 10
showed us that X “looks like” classical matrix multiplication in the sense that
it has many (i, j, k) triples compatible with S.

For a rectangular matrix multiplication step X we require an analogous argument.
Previously the definition of “too many” was simple: if a constant fraction of the
number of inputs and/or outputs lay in S apply the second argument, while if a
constant fraction did not lie in S, apply the first argument. For rectangular matrix
multiplication algorithms, if the matrix multiplication is sufficiently large, Theorem
13 applies. If not, we will show that either a sufficiently high number of I/Os come
from a path routing within X, or else there are sufficiently many triples (i, j, k)
compatible with S in X:

Theorem 26 Let X be a submultiplication step of dimensions l ≥ m ≥ n with i
elements of the size lm matrix1 in S. Then at least one of the following holds:

1. There exist at least Ω (i) internal I/Os within X due to S.

2. There exist at least Ω (i · n) triples of the form (i, j, k) such that aij, bjk, cik ∈ U0,
and U0 satisfies the following property: for every vertex v ∈ U0, either v ∈ S or
else there exist Ω (n) chains going from v to a vertex in X that lies in S, and

1If there are multiple matrices of size lm, choose one arbitrarily.

CHAPTER 6. MODIFICATIONS TO THE PROOF OF THEOREM 6 FOR
RECTANGULAR MATRIX MULTIPLICATION STEPS 90

no vertex in X is hit more than Ω (n) times by these chains across all vertices
in U0.

The second case of this theorem is more complicated than in the square matrix
multiplication case; we defer the proof of this theorem until the following section.
Intuitively, this second case states that the vertices in U , which are those lying on
the “surface” of the box above a triple (i, j, k) (in any of the three dimensions) either
lie in S themselves or else can be routed in an almost one-to-one way to vertices
lying in S within the subcomputation X. This routing is not actually one-to-one,
but yields the same I/O count as if it were. More precisely, these m vertices not in
S have a Ω (n)-routing of Ω (m · n) chains to vertices in X that do lie in S. From
this theorem, the analogous definitions of La, Lb, and Lc are clear:

• Let La consist of all submultiplications in L multiplying matrices whose small-

est dimension is ≥ Θ
(√

M
)

.

• Let Lb consist of all submultiplications in L satisfying condition (1) of Theorem
26.

• Let Lc consist of all submultiplications in L satisfying condition (2) of Theorem
26, together with all elementary multiplication vertices that lie in L which are
computed in S.

With these definitions, the exact same result holds as in the previous chapter:

Theorem 27 The total internal I/O of La due to S is at least Ω
(

p(La)

r
√
M

)
. The total

internal I/O of Lb due to S is at least Ω
(

p(Lb)√
M

)
. For Lc the same result holds, except

for a total of t I/Os subtracted amongst all computation segments S, where t is at
most half of the bound found in Theorem 6, assuming that r is a sufficiently large
constant.

Proof of Theorem 27 for La. Let X be a submultiplication in La of dimensions

l ≥ m ≥ n. Then Θ
(√

M
)
≤ n ≤ Θ

(
r
√
M
)

. From the first inequality 9 applies;

from the second inequality, the active power of X is at most i ·Ω
(
r
√
M
)

, where i is

the number of vertices of the size lm input matrix to X that lie in S. By Theorem
13, X has at least Ω(i) internal I/Os. Thus the internal I/O count contributed by X

is at least ≥ Ω
(

pS(X)

r
√
M

)
. This holds for every submultiplication X in La, and because

internal I/Os and active powers are additive thus holds for La as well. �

CHAPTER 6. MODIFICATIONS TO THE PROOF OF THEOREM 6 FOR
RECTANGULAR MATRIX MULTIPLICATION STEPS 91

Proof of Theorem 27 for Lb. Similar to the above proof, using case (1) of
Theorem 26 instead of Theorem 13. Each submultiplication X in Lb of dimensions
l ≥ m ≥ n and i vertices of the size lm matrix in S contributes i·n active power, while

contributing Ω (i) internal I/Os. Since n ≤ Ω
(√

M
)

, it follows that the internal I/O

count contributed by X is at least ≥ Ω
(

pS(X)√
M

)
, and similarly for Lb. �

Proof of Theorem 27 for Lc. Similar proof as in the previous chapter, ap-
plying case (2) of Theorem 26 instead of Claim 5. Theorem 24 still holds, so the
same Loomis-Whitney Inequality technique yields a similar result as in the square
matrix multiplication case. Given pS(Lc)

2/3 disjoint chains from U to a vertex in
FA

⋃
FB

⋃
FC , we apply case (2) of Theorem 26. Recall that every vertex v ∈ U

lies in the set U0 of some submultiplication X. For each such submultiplication
X in Lc, every vertex v ∈ U0

⋂
S from which one of these chains emanates forms a

boundary-crossing path. If |U0

⋂
S| = m, then there are Ω (m · n) boundary-crossing

paths within X, resulting in Ω
(
m·n
n

)
= Ω (m) internal I/Os in X. Adding these two

sources of I/Os still yields at least Ω
(
pS(Lc)

2/3
)
≥ Ω

(
pS(Lc)√

M

)
I/Os, as before. Note

that |FA| + |FB| + |FC | is still (for large enough r) significantly smaller than the
bound of Theorem 6. �

From Theorem 27 the same proof of Theorem 6 applies, with a slight modification
to take into account the differing dimensions:

Proof of Theorem 6 for Rectangular Matrix Multiplication Steps. Each
computation segment S of Ω

(
M3/2

)
total active power contributes at least

Ω

(
pS(La)

r
√
M

+
pS(Lb)√

M
+
ps(Lc)√
M

)
I/Os, except for the t total I/Os to be subtracted (and the 2M “free” I/Os for each
segment S). If for at least half of the s full computation segments S the first term
in the above sum contributes at least half the total, we again have

Ω

(
pS(La)

r
√
M

)
= Ω

(
M

r

)
I/Os, except for the 2M values in memory before/after S. This again yields at least
M true I/Os per segment, for the right choice of the constant in the definition of the
“size” of S by its active power. The total power p(L) of all subcomputations in L is
now

Ω

(∑
X∈L

lXmXnX

a3max

)
= Ω

(∑
X∈I

lXmXnX

)
≥ Ω

(∑
X∈I

max(lXmX ,mXnX , lXnX)
√
M

)

CHAPTER 6. MODIFICATIONS TO THE PROOF OF THEOREM 6 FOR
RECTANGULAR MATRIX MULTIPLICATION STEPS 92

from Theorem 25 and the definition of L in terms of I (and r being a small constant).
Thus there are at least

s ≥ Ω

(∑
X∈I

max size(X)
1

M

)

complete segments, resulting in a total true I/O count of

Ω

(∑
X∈I

max size(X)

)
,

as desired.
If fewer than half of the s full computation segments have this property, then for

at least half of the s computation segments the second and third terms contribute
at least half of the total. For each such computation segment, there are at least

Ω

(
pS(Lb)√

M
+
ps(Lc)√
M

)
= Ω (M)

I/Os, except for the 2M “free” I/Os per segment and the overcounted t I/Os across
all segments. This yields M true I/Os per segment, from which the same argument
yields a total true I/O count of

Ω

(∑
X∈I

max size(X)

)
.

This proves Theorem 6 for rectangular matrix multiplication recursive steps.
�

6.2 Proof of Theorem 26

Finally, we prove Theorem 26. Recall that this theorem is the analog of Theorem
10 together with Claim 5; it allows us to analyze submultiplications X of L that
have many of their input vertices (of the largest matrix, the matrix that “counts”
for active power) in S. Just as before, in some cases X will contribute internal I/Os
due to S directly, while in other cases it will contribute many triples to the set U for
use with Theorem 24. Previously which case applied depended only on the number
of vertices of S within the desired input matrix; in this more general setting it will
additionally depend on the placement of the vertices of S within the input matrix.

CHAPTER 6. MODIFICATIONS TO THE PROOF OF THEOREM 6 FOR
RECTANGULAR MATRIX MULTIPLICATION STEPS 93

Let X be a submultiplication step multiplying l×m matrix A by m×n matrix B
to get l × n matrix C and assume without loss of generality that l ≥ m ≥ n (if not,
analogous arguments apply based on the new largest face of the three-dimensional
box described below). See Figure 6.1. Let SA consist of all the vertices of A that lie
in S.

We make the following claim:

Claim 6 At least one of the following statements holds:

• At least 1
4

of the elements of SA lie in rows of A that contain ≤ n
2

elements of
SA each.

• At least 1
4

of the elements of SA lie in columns of A that contain ≤ n
2

elements
of SA each.

• At least 1
2

of the elements of SA lie simultaneously in a row of A that contains
≥ n

2
elements of SA and in a column of A that contains ≥ n

2
elements of SA.

Proof. Suppose statements (1) and (2) both fail to hold. Let T1 be the set of all
elements of SA lying in rows of A containing ≥ n

2
elements of SA each, and let T2 be

similarly for the columns of A. Then |T1|, |T2| ≥ 3
4
|SA|, so |T1

⋂
T2| ≥ 6

4
|SA|− |SA| =

1
2
|SA|. This implies that statement (3) holds. �

In other words, either a constant fraction of SA lies in sparsely-populated rows, or
a constant fraction of SA lies in sparsely-populated columns, or a constant fraction
of S! lies at the intersections of well-populated rows with well-populated columns.

Suppose case (1) of Claim 6 holds. Let S ′A be the subset of elements of SA

having the specified property. Then by Theorem 12, there exists a n-routing R of
all guaranteed dependencies between the vertices of S ′A and vertices of C on which
they depend. In other words, for every vertex aij ∈ S ′A, there is a chain in this
routing from aij to cik for each k. Let R′ be the n2-routing constructed as follows:
for each routing from aij to cik and each routing from aij′ to cik, concatenate the
former chain with the reverse of the latter to yield a path from aij to aij′ . The paths
of this routing route aij to every aij′ .

For each row i of A containing mi ≤ n
2

elements of SA, there are at least mi · n
2

2

paths in R′ routing from a vertex of the form aij in S to a vertex of the form aij′ /∈ S
(n choices for the k in cik to route through, and ≥ n

2
elements of S in A to end at). It

thus follows that there are at least
∑
i

mi · n
2

2
= |S ′A|n

2

2
≥ |SA|n

2

8
paths from vertices

of SA to vertices in S that lie in X. There are thus Ω
(
|SA|n2/8

n2

)
= Ω (|SA|) = Ω (i)

internal I/Os within X due to S. See Figure 6.1(b).

CHAPTER 6. MODIFICATIONS TO THE PROOF OF THEOREM 6 FOR
RECTANGULAR MATRIX MULTIPLICATION STEPS 94

If case (2) of Claim 6 holds, the proof is similar, routing paths from A to B back
to A, instead of through C.

Suppose now that case (3) of Claim 6 holds. Let S ′A again be the subset of
elements of SA having this property. Let U0 be the set consisting of, for each vertex
aij ∈ S ′A, the elements of A, B, and C representing the projections of the triples
(i, j, k) for each 1 ≤ k ≤ n – that is, the elements aij, bjk, and cik. Clearly there are

at least |S ′A| · n ≥
|SA|
2
n ≥ Ω (i · n) triples as desired. Next, we show that the desired

routing property exists between U0 and vertices of S in X.
By construction, every vertex aij ∈ U0 lies in S, and so need not have any paths

routed from it. Let UB consist of all vertices of the form bjk ∈ U0. For every j,
let Vj be a set of bn

2
c vertices2 in column j of A that lie in S, if column j of A

contains at least this many vertices of S. By Theorem 12, there exists an n-routing
of all guaranteed dependencies between vertices bjk ∈ U0 and vertices in Vj. In other
words, for each bjk ∈ U0, there exist Ω (n) chains from bjk to vertices in A that lie
in S, and every vertex of X is hit at most n times by this routing. Restrict this
routing to include only chains beginning at vertices bjk that do not themselves lie in
S. Construct a similar routing of chains from vertices cjk ∈ U0 to vertices of A in S
and simply union these routings. The resulting routing has the properties specified
by case (2) of Theorem 26. See Figure 6.1(c); the blue squares denote the vertices
bjk from which paths are routed to the red squares of A in S. This proves Theorem
26.

This concludes the proof of Theorem 6, and thus the proof of our main theorem
in the serial case, Theorem 7. We now turn to adapting the arguments of this and
the preceding chapters to handle recursive matrix multiplication algorithms run in
parallel on P processors.

2If n = 1, round up.

CHAPTER 6. MODIFICATIONS TO THE PROOF OF THEOREM 6 FOR
RECTANGULAR MATRIX MULTIPLICATION STEPS 95

(a) (b)

(c)

Figure 6.1: (a) The inputs and outputs of a matrix multiplication X can be thought
of as composing three orthogonal faces of a cube consisting of triples (i, j, k). If
the dark red squares indicate the elements SA of A in S, then for this set S both
statements (1) and (3) of Claim 6 hold. (b) Because statement (1) holds, there exists
an efficient routing from the bright red squares in the indicated rows to the green
squares on the side and back to the blue squares in the indicated rows. (c) Because
statement (3) holds, there exists an efficient routing from the green squares to the
(bright and dark) red squares, and an efficient routing from the blue squares to the
(bright and dark) red squares. There are Ω (i · n) triples (i, j, k) in the corresponding
U0, represented by the n unit cubes directly beneath each bright red square.

96

Chapter 7

Parallel Divide-And-Conquer
Matrix Multiplication Algorithms

Finally, we show how to apply the logic of the preceding chapters to yield an I/O-
complexity bound for divide-and-conquer matrix multiplication algorithms computed
in parallel. Typically in the literature the bound for a parallel algorithm run on P
processors is simply 1

P
of the I/O-complexity bound in the serial case. The usual

argument goes as follows: instead of letting S be a minimum-size1 computation
segment that yields M true I/Os, let S the set of computations performed by the
processor performing the most work (performing the most vertex computations out
of a prespecified set). Usually the number of I/Os attributable to a segment S ends
up being linear in the “size” of S – not necessarily the total number of vertices of
S, but the number of vertices we “count.” As we saw, this linearity implies that in
the serial case breaking the computation into segments of size proportional to M is
sufficient. It also implies, by linearity, that the bound in the parallel case due to
S representing the computation performed by the processor with the largest “size”
computation is 1

P
of that in the serial case.

7.1 Parallel Bound

The problem at hand is no exception to the above rule. However, due to the nuance
in the preceding chapters of needing to subtract up to |FA|+ |FB|+ |FC | I/Os across
all computation segments, we give a slightly more careful proof of the 1

P
bound in the

parallel case. In the following theorem we restate the main finding of the previous
chapters that allowed us to prove Theorem 6:

1As small as possible while still guaranteeing an I/O bound of 3M .

CHAPTER 7. PARALLEL DIVIDE-AND-CONQUER MATRIX
MULTIPLICATION ALGORITHMS 97

Theorem 28 Let S1, S2, ..., Sm be a partition of the vertices of the CDAG G, let qSj

denote the total active power of Sj, and let q =
∑
j

qSj
be the total active power of

all the Sj (which depends only on G). Then at least one of the following statements
holds:

• There exists a constant c1 and a subset U ⊆ {S1, ..., Sm} such that
∑

Sj∈U
qSj
≥ 1

4
q

and for each Sj ∈ U there exist at least c1
qSj√
M

I/Os between Sj and Sj.
2

• There exists a constant c2 and a subset U ⊆ {S1, ..., Sm} such that
∑

Sj∈U
qSj
≥ 1

4
q

and for each Sj ∈ U there exist at least c2
qSj√
M
−tj I/Os between Sj and Sj where∑

Sj∈U
tj ≤ 1

8
c2

q√
M

.

Proof. See the preceding chapters. Recall that the proof of Theorem 6 required
casework because of the 1

r
dependence in the first I/O term. This results in a dif-

ferent constant in the two cases; c1 has an extra dependence on 1
r

(which is still a
constant). Instead of splitting into cases based on how many Sj have their first I/O

term (Ω
(

pS(La)

r
√
M

)
) contributing at least half of the total I/Os, split into cases based

on the sum of the active powers of segments Sj satisfying this condition versus the
sum of the active powers of segments Sj not satisfying this condition. The remainder
of the proof is analogous to the logic of the proof of Theorem 6 �

We will use this result to prove the expected 1
P

bound in the parallel case:

Theorem 29 (Main Parallel Theorem) Let G be as in Theorem 6. If G com-
putes Mult elementary multiplications, then the I/O-complexity of G (see Chapter 2
for the definition) computed in parallel by P processors is

IO(G) ≥ Ω

(
1

P
· Mult
√
M

ω(G)
·M

)

Proof. Let Si be the set of vertices of G computed by processor i. Suppose case
(1) of Theorem 28 holds. Let processor j be the processor indexed amongst U whose
Sj has the largest total active power. Then qSj

≥ 1
P
· q
4
, so processor j has at least

2That is, vertices u ∈ G for which there exists an edge (u, v) such that u and v have different
membership in Sj .

CHAPTER 7. PARALLEL DIVIDE-AND-CONQUER MATRIX
MULTIPLICATION ALGORITHMS 98

c1
1√
M
· 1
P
· q
4

= Ω
(

1
P
· q√

M

)
I/Os. As before, q√

M
≥ Ω

(
Mult√
M

ω(G) ·M
)

, proving Theorem

29.
Suppose instead that case (2) of Theorem 28 holds. We make the following claim:

Claim 7 For some j indexed by U we have c2
qSj√
M
− tj ≥ c2

8
q

P
√
M

.

Proof. Suppose not. Then for each such j it is true that c2
qSj√
M
< tj + c2

8
q

P
√
M

;
summing over all j represented by U yields

c2
4

q√
M

<
c2
8

q√
M

+
c2
8

q√
M
,

an impossibility. �
Pick j to be some processor represented in U satisfying the above claim. Then

processor j has at least c2
8

q

P
√
M

I/Os, again yielding Ω
(

Mult√
M

ω(G) ·M
)

parallel I/Os.

This proves Theorem 29.
�

7.2 Tightness of Theorem 29

The parallel algorithm in [3] shows that the parallel bound of Theorem 29 is optimal
for Strassen’s algorithm. This algorithm generalizes naturally to any square recursive
divide-and-conquer matrix multiplication algorithm, thus showing that Theorem 29
is asymptotically tight for any square matrix multiplication algorithm (See Section
6.6 of [3]). Intuitively, the CAPS algorithm in [3] is the parallel analogue of the serial
algorithm described in Section 3.2. Instead of computing the submultiplications of
the matrix multiplications of I in serial, they are computed in parallel, by assigning
to each processor a submultiplication that just barely fits entirely in the processor’s
local cache.3 For rectangular matrices this bound may not be tight, as in Section
3.2.

7.3 Conclusion

We have thus proved Theorem 6 in general, for any recursive divide-and-conquer
matrix multiplication algorithm, and shown how to generalize the logic to apply

3And it was shown in Section 3.2 that this is sufficient for each processor to compute its piece
of the computation with its limited cache size of M .

CHAPTER 7. PARALLEL DIVIDE-AND-CONQUER MATRIX
MULTIPLICATION ALGORITHMS 99

to matrix multiplication algorithms computed in parallel. In both the serial and
the parallel cases the bounds we proved are the expected, significantly stronger,
generalizations of those for Strassen-like algorithms (see [5]).

To prove these bounds we developed several new techniques based around the
idea of path routing. First we showed how to construct a routing of paths within a
small matrix multiplication graph from every input vertex to every output vertex in
a way that does not hit any vertex too many times. We argued by a simple count-
ing argument that this implies the existence of many paths crossing the boundary
between a computation segment and its complement, resulting in many I/Os due to
each computation segment S of “size” Ω (M).

We next showed how this path-routing idea generalizes in the case of rectangu-
lar matrix multiplication. When the matrix dimensions differ significantly, it may
no longer be possible to find quite as simple of a routing; instead several routings
between the vertices of S and those of S may be needed depending on the precise lo-
cations of the elements of S within the subcomputation. Each such routing, however,
is as “sparse” as possible; no vertex in the CDAG is hit any more than is necessary
simply by virtue of the guaranteed dependencies one wishes to route.

Next, we introduced the concept of internal I/O-complexity; this idea allows for
much simpler I/O addition, and better represents the true I/O difficulty of comput-
ing an algorithm by “ignoring” the first inputting/outputting of the overall inputs
and outputs of the algorithm. We proved that internal I/Os are additive for dis-
joint graphs, and conjectured that internal I/Os are additive under significantly less
restrictive conditions.

We then showed how to handle matrix multiplication algorithms involving clas-
sical (or classical-like) recursive steps. This generalization relied on the intermixing
of two ideas: adding internal I/Os due to disjoint submultiplications, and embed-
ding non-disjoint submultiplications within a three-dimensional box for use with the
Loomis-Whitney Inequality. Intuitively, this seems reasonable: if all subcomputa-
tions are disjoint, adding internal I/Os is sufficient (see Chapter 4). If all subcom-
putations have no disjoint children, then each subcomputation can be reduced to
classical matrix multiplication (Theorem 15), and the standard proof for such an
algorithm is the geometric one based on the Loomis-Whitney Inequality. This yields
a second routing of paths, this time from the elementary multiplications (or triples
of small disjoint submultiplications) up to the overall inputs/outputs of the algo-
rithm (except stopping early if they hit distinct vertices). For algorithms mixing
these steps, the Loomis-Whitney Inequality-based path routing we constructed is no
longer sufficient by itself, but applying the concept of internal I/O-complexity to the
submultiplications without too many vertices of S in them does turn out be enough.

Finally, we argued that the results of this line of reasoning also yielded a strong

CHAPTER 7. PARALLEL DIVIDE-AND-CONQUER MATRIX
MULTIPLICATION ALGORITHMS 100

bound in the parallel case. Our bounds are tight for square and near-square matrix
multiplication algorithms, in the sense that one can find an implementation of a
matrix multiplication algorithm achieving them (see [3]). We expect that the path-
routing ideas developed in these chapters will likely have applications in proving the
internal I/O-complexities of other algorithms.

101

Bibliography

[1] G. Ballard et al. “Communication lower bounds and optimal algorithms for
numerical linear algebra”. In: Acta Numerica 23 (May 2014), pp. 1–155. issn:
1474-0508. doi: 10 . 1017 / S0962492914000038. url: http : / / journals .

cambridge.org/article_S0962492914000038.

[2] Grey Ballard et al. “Brief announcement: strong scaling of matrix multipli-
cation algorithms and memory-independent communication lower bounds”.
In: Proc. 24th ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA). SPAA ’12. Pittsburgh, Pennsylvania, USA: ACM, 2012, pp. 77–
79. isbn: 978-1-4503-1213-4. doi: 10.1145/2312005.2312021. url: http:
//doi.acm.org/10.1145/2312005.2312021.

[3] Grey Ballard et al. “Communication-Optimal Parallel Algorithm for Strassen’s
Matrix Multiplication”. In: Proceedings of the 24th ACM Symposium on Par-
allelism in Algorithms and Architectures, SPAA 2012 (2012).

[4] Grey Ballard et al. “Graph Expansion Analysis for Communication Costs of
Fast Rectangular Matrix Multiplication”. In: Design and Analysis of Algo-
rithms 7659 (2012), pp. 13–36.

[5] Grey Ballard et al. “Graph Expansion and Communication Costs of Fast Ma-
trix Multiplication”. In: Journal of the ACM 59.6 (2012).

[6] Grey Ballard et al. “Minimizing Communication in Numerical Linear Algebra”.
In: SIAM J. Matrix Anal. & Appl. 32.3 (2011), pp. 866–901.

[7] G. Bilardi, A. Pietracaprina, and P. D’Alberto. “On the space and access com-
plexity of computation dags”. In: Proceedings of the 26th International Work-
shop on Graph-Theoretic Concepts in Computer Science, London, UK (2000),
pp. 47–58.

[8] D. Bini et al. “O(n2.7799) complexity for n× n approximate matrix multiplica-
tion”. In: Information processing letters 8.5 (1979), pp. 234–235.

BIBLIOGRAPHY 102

[9] Michael Christ et al. Communication Lower Bounds and Optimal Algorithms
for Programs That Reference Arrays - Part 1. Tech. rep. UCB/EECS-2013-
61. EECS Department, University of California, Berkeley, 2013. url: http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-61.html.

[10] J. W. Hong and H. T. Kung. “The red-blue pebble game”. In: STOC 1981:
Proceedings of the thirteenth annual ACM symposium on theory of computing
(1981), pp. 326–333.

[11] J. Hopcroft and L. Kerr. “On minimizing the number of multiplications nec-
essary for matrix multiplication”. In: SIAM Journal on Applied Mathematics
20.1 (1971), pp. 30–36.

[12] D. Irony, S. Toledo, and A. Tiskin. “Communication Lower Bounds for Distributed-
Memory Matrix Multiplication”. In: J. Parallel Distrib. Comput. 64.9 (2004),
pp. 1017–1026.

[13] J.M. Landsberg. Geometry and Complexity Theory. Published online, accessed
Sept. 2015. url: https://simons.berkeley.edu/sites/default/files/
simonsclass.pdf.

[14] L. H. Loomis and H. Whitney. “An Inequality Related to the Isoperimetric
Inequality”. In: Bulletin of the American Mathematical Society 55.10 (1949).

[15] John Savage. “Space-time tradeoffs in memory hierarchies”. In: Technical re-
port, Brown University, Providence, RI, USA (1994).

[16] Jacob N. Scott, Olga Holtz, and Oded Schwartz. “Matrix Multiplication I/O-
Complexity by Path Routing”. In: SPAA ’15 (2015), pp. 35–45.

[17] Volker Strassen. “Gaussian Elimination is Not Optimal”. In: Numerische Math-
ematik 13 (4 1969), pp. 354–356.

[18] Virginia Vassilevska Williams. “An overview of the recent progress on matrix
multiplication”. In: ACM SIGACT Newsletter 43.4 (), pp. 57–59.

[19] S. Winograd. “On the Number of Multiplications Required to Compute Certain
Functions”. In: Proceedings of the National Academy of Science 58.5 (1967).

[20] C.-Q. Yang and B.P. Miller. “Critical path analysis for the execution of parallel
and distributed programs”. In: Proceedings of the 8th International Conference
on Distributed Computing Systems (1988), pp. 366–373.

