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ARTICLE

Environmental trade-offs of direct air capture
technologies in climate change mitigation toward
2100
Yang Qiu 1,2,8, Patrick Lamers 1,8✉, Vassilis Daioglou3,4,8, Noah McQueen5, Harmen-Sytze de Boer 4,

Mathijs Harmsen 3,4, Jennifer Wilcox5, André Bardow 6,7 & Sangwon Suh 2✉

Direct air capture (DAC) is critical for achieving stringent climate targets, yet the environ-

mental implications of its large-scale deployment have not been evaluated in this context.

Performing a prospective life cycle assessment for two promising technologies in a series of

climate change mitigation scenarios, we find that electricity sector decarbonization and DAC

technology improvements are both indispensable to avoid environmental problem-shifting.

Decarbonizing the electricity sector improves the sequestration efficiency, but also increases

the terrestrial ecotoxicity and metal depletion levels per tonne of CO2 sequestered via DAC.

These increases can be reduced by improvements in DAC material and energy use effi-

ciencies. DAC exhibits regional environmental impact variations, highlighting the importance

of smart siting related to energy system planning and integration. DAC deployment aids the

achievement of long-term climate targets, its environmental and climate performance how-

ever depend on sectoral mitigation actions, and thus should not suggest a relaxation of

sectoral decarbonization targets.
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C limate change mitigation scenarios used by the Inter-
governmental Panel on Climate Change (IPCC)1 suggest
that a rapid decarbonization in energy and material related

services is likely to be insufficient to keep global mean tempera-
ture increase well below 2 °C by the end of the 21st century. The
remaining global carbon budget of 420–1170 gigatonnes (Gt)
CO2 is expected to be depleted in 10–30 years under present
annual emission rates and projected Nationally Determined
Contributions (NDCs)2. Most IPCC emission scenarios overshoot
the carbon budget at first and then remove excess carbon via
Carbon Dioxide Removal (CDR) technologies, i.e., intentional
efforts to remove CO2 from the atmosphere and store it on land
or in the oceans on the order of 200–1200 Gt CO2 toward the
year 21002.

CDR strategies include the enhancement of natural above- and
belowground carbon sinks in plants, rock formations, and soils as
well as scalable engineering solutions designed to sequester, store,
or utilize concentrated atmospheric CO2. Direct Air Capture
(DAC), despite being at an early stage of development, is gaining
increasing attention and recognized as a promising climate
change mitigation strategy1. Given the homogeneous atmospheric
CO2 concentration levels around the world, DAC facilities can be
deployed in locations that provide abundant cheap and carbon-
free energy and/or that are close to pipeline infrastructure,
underground storage, or utilization facilities for reducing the CO2

transportation cost3. Also, compared to bioenergy with carbon
capture and storage (BECCS), an alternate CDR technology
facilitating stringent mitigation targets4, DAC is expected to have
much lower footprints in water and land uses5, reducing concerns
around food security and biodiversity loss6.

Direct Air Carbon Capture and Storage (DACCS) uses che-
mical or physical processes to separate CO2 from ambient air and
sequesters it permanently in geological storage sites. Due to the
highly dilute nature of atmospheric CO2 (currently around 415
parts per million), DACCS technologies require substantial
energy and material inputs, so their future deployment and role
in climate change mitigation will depend heavily on process-
design and resulting technoeconomic and environmental
performances3. Two types of technologies are presently con-
sidered promising from a technoeconomic perspective: solvent-
based DACCS, typically relying on aqueous hydroxide solutions
(potassium hydroxide, sodium hydroxide) for capturing CO2

7–10,
and sorbent-based DACCS, mostly using amine materials bonded
to a wide range of porous solid supports11–14. Solvent-based
DACCS requires dedicated high-temperature (900 °C) heat for
CO2 regeneration10. Thus, from a thermodynamic perspective,
heat supply options are largely limited to combusting energy
dense fuels such as (renewable) natural gas or (renewable)
hydrogen, while electric resistance heating and electrochemical
regeneration approaches are in development. Sorbent-based
DACCS can function with low temperature (80–120 °C) heat
for CO2 regeneration15, offering a larger variety of thermal energy
supply options (e.g., heat pump, geothermal, and industrial
waste heat).

A growing number of studies have included DACCS in inte-
grated assessment modelling (IAM) scenarios. They highlight the
critical role of DACCS in meeting stringent climate targets, but
they also reveal the trade-offs of deploying DACCS, which, on the
one hand, could reduce mitigation cost and relax the competition
for land-use. On the other hand, large scale DACCS deployment
and operation could also require large amounts of additional
energy16–19. Depending on the modeling approach and scenario,
these studies project that the DACCS deployment levels for
meeting a 2 °C or stricter climate target by 2100 can reach up to
40 Gt of annual CO2 sequestration16–18,20. At this scale, DACCS
(assuming a solvent-based process) could consume up to 12% and

60% global electric and non-electric energy by 210017,21. Evi-
dently, for DACCS facilities connected to electric power grids,
their environmental performance will depend on the electricity
system context in which they will operate. Previous studies have
shown that DACCS can achieve negative emissions, but capture
efficiencies are sensitive to the operational efficiency and the
energy source22–25. A recent life cycle assessment (LCA) of
DACCS technologies also identified potential environmental
trade-offs in increased land transformation if DACCS is operated
by solar electricity (as compared to using grid electricity)26. These
studies, however, assume DACCS is powered either by a specific
generation technology or static electricity systems. Thus, they
neither reveal how environmental impacts of DACCS might
change with energy system transitions following stringent miti-
gation scenarios1, nor do they quantify the potential broader
environmental trade-offs of power system transitions with and
without DACCS deployment in such scenarios toward 2100. Also,
these studies do not fully account for long-term potential tech-
nological improvements of DACCS, which are expected to affect
the environmental impacts of technologies by changing their
physical material and energy inputs27–29.

Here, we calculate a prospective LCA of DACCS under climate
change mitigation scenarios developed by the IMAGE 3.2 Inte-
grated Assessment Model30,31 which are consistent with the cli-
mate targets of the Paris Agreement. IMAGE 3.2 has been used to
project future energy supply, conversion, and demand toward
2100 across 26 global regions based on the demographic, eco-
nomic, technological and behavioral narratives of the Shared
Socioeconomic Pathways (SSPs)32,33. This study uses the ‘Middle
of the Road’ pathway (SSP2), which assumes future developments
in-line with historical patterns. This is then linked with climate
targets defined by the Representative Concentration Pathways
(RCPs)34 to determine required carbon prices which lead to
changes in the energy system consistent with the achievement of
specific climate targets. We use three distinct scenarios: An SSP2
baseline without any climate policies and measures to limit
radiative forcing or to enhance adaptive capacity (SSP2-baseline).
An SSP2 baseline linked with a strict climate change mitigation
effort to limit global warming to less than 1.5 °C, i.e., a radiative
forcing level of 1.9W/m2 (RCP1.9), by 2100, allowing DACCS as
a CDR option (SSP2-RCP1.9 w/ DACCS). Finally, a counter-
factual that follows the same socioeconomic and climate change
mitigation target but does not feature DACCS as a CDR option
(SSP2-RCP1.9 w/o DACCS).

In an LCA study, the technological changes in both back-
ground and foreground systems can affect the environmental
impacts of the studied object. The foreground system consists of
processes directly related to the object, while the background
system includes the upstream or downstream processes in the
supply chain that are indirectly related to the object35,36. Here, we
adapt an open-source LCA framework37,38 to modify electricity-
related data in the background LCI database using regionally and
temporally explicit IMAGE projections (on electricity mix, gen-
eration efficiency, and electricity-associated emissions) from 2020
to 2100 under the three scenarios. The regional impacts are dif-
ferentiated for the United States (US) and compared to China,
Russia, Western Europe, and a global average. Changes in the
foreground material and energy inputs of the two technologies
(solvent- and sorbent-based DACCS) over the same period are
estimated based on the IMAGE projection of global DACCS
deployment using a one-factor learning curve approach. We thus
assume a commercial-scale operation and technology improve-
ments via learning-by-doing. To capture the uncertainty related
to the specific future learning rates, we apply different rates as
part of a sensitivity analysis. Two types of heat supply options are
also considered for solvent- (natural gas or biomethane) and
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sorbent-based DACCS (biomethane or heat pump) to understand
how heat sources affect their environmental profiles. Further-
more, we also quantify the effect of DACCS deployment on the
changes in power system loads, grid mixes, and related shifts in
environmental impacts by comparing the strict mitigation sce-
nario (SSP2-RCP1.9) with and without DACCS as a CDR option.

In this work, we find that decarbonizing the electricity sector
improves the sequestration efficiency, but also increases the ter-
restrial ecotoxicity and metal depletion levels per tonne of CO2

sequestered via DACCS, but these increases can be reduced by
improving the material and energy use efficiencies of DACCS
under technology learning, indicating electricity sector dec-
arbonization and DACCS technology improvements are both
indispensable to avoid environmental problem-shifting. DACCS
exhibits regional environmental impact variations, highlighting
the importance of smart siting related to energy system planning
and integration. DACCS deployment aids the achievement of
long-term climate targets, its environmental and climate perfor-
mances however depend on sectoral mitigation actions, and its
deployment should not suggest a relaxation of sectoral dec-
arbonization targets.

Results
Prospective life-cycle environmental impacts of DACCS in the
US. DACCS achieves net negative greenhouse gas (GHG) emis-
sions across all technologies and heat sources investigated per
metric tonne (1t) of atmospheric CO2 captured and geologically
sequestered in a US context by 2020. The net sequestration effi-
ciency varies by DACCS technology and heat source (Fig. 1a)
with life cycle climate change impacts ranging from −0.36 to
−0.94t CO2-eq for a baseline grid-mix in 2020 (Fig. 1a). Net
GHG negative implies that the DACCS technologies release less
GHG emissions than they capture and geologically sequester over
the plants’ life cycle (cradle-to-grave approach). The influence of
different background electricity system contexts can be seen by
comparing results for the SSP2-baseline vs. the SSP2-RCP1.9 w/
DACCS scenarios. In the SSP2-baseline, the US electricity system
reduces the share of coal generation from 31% in 2020 to 7% in
2100, while its combined share of nuclear and renewable gen-
eration increases from 35 to 61% over the same period (Fig. 2a).
As a result, the climate change impact of DACCS is further
reduced to −0.72 to −1.12t CO2-eq by 2100. The highest
sequestration efficiency is achieved by solvent-based DACCS
using biomethane as a heat source (SV+ BM). Since the process
collects and sequesters CO2 released during the heat generation
process step, using biomethane, a non-fossil, burden-free CO2

fuel, creates a negative CO2 emission profile beyond the 1t of
atmospheric CO2 sequestered.

In the SSP2-RCP1.9 w/ DACCS scenario, the US electricity
sector achieves a full decarbonization by 2035 (Fig, 2d), which is
in-line with current targets and an economy-wide decarboniza-
tion by 205039. The scenario features an earlier phase-out of coal
and natural gas (by 2050) and higher renewable energy
penetration (81%) by 2100 (Fig. 2c). In this scenario, the climate
change impact of DACCS exhibits more rapid reductions before
2050 and reaches levels of −0.91 to −1.25 t CO2-eq by 2100
(Fig. 1a).

The life cycle human toxicity, freshwater eutrophication,
terrestrial acidification, and water depletion of DACCS are
sensitive to the shares of coal and natural gas generation in the
electricity grid mix (Supplementary Fig. 9). These impacts
decrease from 2020 to 2100, showing environmental co-benefits
with decarbonizing the power sector (Fig. 1b, c, e, and h). Still, the
US electricity system decarbonization creates environmental
trade-offs for DACCS in other impact categories. We find

increases for both terrestrial ecotoxicity (by 33–80% across four
DACCS-heat source combinations for both SSP2-baseline and
SSP2-RCP1.9 w/ DACCS scenarios) and metal depletion levels
(by 23–42% and 40–73% across four DACCS-heat source
combinations for SSP2-baseline and SSP2-RCP1.9 w/ DACCS
scenario, respectively) from 2020 to 2100 given the growing
contributions from solar photovoltaic (PV) and wind energy
generation in the background electricity system (Fig. 2f, g,
Supplementary Fig. 9). The increased ecotoxicity impact in
scenarios with high renewable energy generation is largely due to
emissions from the production of silicon-based solar PV cells and
copper processing (as copper is used for wiring in solar PV and
wind turbines). The higher relative metal demand (per kW
installed) for the construction of solar PV and wind farms also
increases mineral extraction. The electricity decarbonization
barely affects the freshwater ecotoxicity of DACCS due to the
counteracting effect of increased solar and wind penetrations
(which raise the impact) and reduced coal generation (which
decreases the impact) in the grid mix (Fig. 2d, Supplementary
Fig. 9).

The life cycle environmental impacts of DACCS are affected by
the technology type and heat source. The sorbent-based
DACCS+ heat pump (SB+HP) system has the highest climate
change impact in 2020 because the heat is converted from fossil-
dominated grid electricity, which has a higher carbon intensity
than other heat supplies, but this impact is also more sensitive to
electricity-sector decarbonization, so it shows a faster decrease
over time. Under the SSP2-RCP1.9 w/ DACCS scenario, the
climate change impact of the SB+HP system becomes the lowest
compared to three other counterparts after 2040. For solvent-
based DACCS, using biomethane as a heat source leads to a lower
climate change impact than using natural gas due to the
additional biogenic carbon sequestration. Hence, the SV+ BM
exhibits a lower life cycle climate change impact compared to the
solvent-based DACCS system with natural gas (SV+NG)
(Fig. 2a).

As for other non-climate metrics, sorbent-based DACCS
generally exhibits higher impacts in human toxicity, freshwater
eutrophication and ecotoxicity, and metal depletion mainly due
to its higher unit electricity consumption. In contrast, solvent-
based DACCS shows a higher water depletion (per 1 t CO2

captured, 3–12 times more than sorbent-based DACCS), because
it captures CO2 using an aqueous hydroxide solution, which
evaporates during the operation, while sorbent-based DACCS
uses solid amine-based sorbents, which consumes much less
water during the production and use phases. It has also been
shown that, due to the affinity of amine sorbents for water,
sorbent-based DACCS even co-produces water in humid
environments, which can be used as freshwater or further
purified into drinking water15. In terms of the heat source,
solvent-based DACCS using natural gas heat has lower impacts
for all studied categories compared to biomethane except for
terrestrial ecotoxicity (higher impact due to the discarding of
toxic drilling waste during natural gas production) and water
depletion (which is more sensitive to the technology type than the
heat source). Sorbent-based DACCS exhibits a lower environ-
mental impact profile using biomethane for heat. The only
increase compared to the heat pump derived heat is terrestrial
acidification, which is mostly driven by the anaerobic digestion of
biowaste in biomethane production (Fig. 2b–h).

Our results show that continuous improvements via learning-
by-doing can mitigate some environmental impacts. Under the
SSP2-RCP1.9 w/ DACCS scenario, technology learning starts to
reduce material and energy inputs after 2050 when DACCS is
deployed on a large-scale worldwide (Supplementary Table 11).
Still, the climate change, human toxicity, and freshwater
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eutrophication impacts are mainly attributable to the electricity
consumption (Supplementary Fig. 6) and the electricity sector
decarbonization already decreases these impacts (of electricity
generation) by more than 80% until 2050 (relative to 2020 levels)
(Supplementary Fig. 9). Therefore, DACCS technology learning

contributes <10% of the total changes (over the 80 years) in these
impacts (Fig. 1a–c). While the electricity sector decarbonization
increases freshwater ecotoxicity (slightly), terrestrial ecotoxicity,
and metal depletion per tonne of CO2 sequestered via DACCS
from 2020 to 2100, improvements in material and energy
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Fig. 1 Prospective life cycle assessment results of direct air carbon capture and storage (DACCS) (per 1 t atmospheric CO2 captured and sequestered)
from 2020 to 2100 considering background electricity sector decarbonization (United States (US) grid mix) and foreground technology learning of
DACCS. Impact categories include (a) climate change impact, (b) human toxicity impact, (c) freshwater eutrophication impact, (d) freshwater ecotoxicity
impact, (e) terrestrial acidification impact, (f) terrestrial ecotoxicity impact, (g) metal depletion, (h) water depletion. Four DACCS and heat source
combinations are considered, including solvent-based DACCS with biomethane (SV+ BM), solvent-based DACCS with natural gas (SV+NG), sorbent-
based DACCS with biomethane (SB+ BM), sorbent-based DACCS with heat pump (SB+HP). In each panel, the line plot (left side of each panel) shows
the trajectory of environmental impacts due to the electricity sector decarbonization under two scenarios (excluding technological learning of DACCS).
One is a “Shared Socioeconomic Pathways – Middle of the Road pathway” (SSP2) baseline scenario (SSP2-baseline). The second scenario links the SSP2
pathway with the Representative Concentration Pathway (RCP) that aligns with a radiative forcing level of 1.9W/m2 (RCP1.9) by 2100 and allows DACCS
as a CDR option (SSP2-RCP1.9 w/ DACCS). The bar plot (right side of each panel) includes technological learning of DACCS and thus compares the effects
of the background and foreground systems (all under SSP2-RCP1.9 w/ DACCS scenario) on the environmental impacts of the four DACCS systems. The
bars without color filling (only with boarder color) mark the percentage changes of impacts in 2100 relative to the 2020 level only due to the background
electricity sector decarbonization, while the bars with color filling mark the percentage changes of impacts in 2100 relative to the 2020 level due to both
background electricity sector decarbonization and foreground technology learning (based on reference learning rates) of DACCS. The error bars
(associated to the bars with color filling) represent the results under slow and fast learning rates (Supplementary Table 10).
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RCP1.9 w/ DACCS scenarios and (d) the annual CO2 emissions of the US electricity system under the three scenarios. In the electricity mix panels (a, b, c),
the stacked area represents the market shares of the grid mix. “Solar” includes both solar PV and concentrated solar power. “Oil” combines both oil with
and without carbon capture and storage (CCS) as oil with CCS accounts for <1% of the grid mix. Other renewables include wave, tidal, and geothermal
power. In (c), the red dashed line shows the percentage of the annual electricity generation consumed by DACCS, corresponding to the secondary y-axis.
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efficiency, induced by learning effects, have the potential to offset
the increases across these categories. A sensitivity analysis
confirms the prominent effect of learning in these impacts.
Varying the learning rates between lower- and upper-bounds
(Supplementary Table 10) causes additional increases (13–23%)
or decreases (−10% to −13%) to the total changes of these
impacts, while varying the learning rates barely affects the total
impact changes for climate change, human toxicity, and fresh-
water eutrophication. Water depletion of solvent-based DACCS
shows higher sensitivity to the change of learning rates compared
to that of sorbent-based DACCS (Fig. 1h) as the solvent use
accounts for more than 80% of the total water depletion for
solvent-based DACCS (Supplementary Fig. 6). So, reducing the
water evaporation during the operation can be an important
strategy to decrease the life cycle water depletion of solvent-
based DACCS.

The impact of DACCS on the US electricity sector. The CDR
capability provided by DACCS also affects the long-term devel-
opment of the energy system. In our projections, carbon prices
are used as a proxy to promote required changes in the energy
system to limit emissions. Under the strict mitigation scenario
with DACCS (SSP2-RCP1.9 w/ DACCS), DACCS deployment in
the US starts around 2050, and its annual operational capacity
reaches 0.85 GtCO2/year by 2100 (Fig. 3), consuming about 5%
(352 TWh) of annual US electricity generation (Fig. 2c). The
availability of DACCS essentially acts as a cap on the long-term
carbon price, causing hard-to-abate sectors to offset their emis-
sions using DACCS as opposed to investing in alternative tech-
nologies (e.g., electrification, energy efficiency improvement), and
this leads to an increase in overall energy demand which is par-
tially met by additional consumption of fossil fuel (natural gas,
oil, and coal) (Supplementary Fig. 7a). Consequently, these hard-
to-abate sectors promote additional CDR deployment, which is
first met by additional CO2 sequestration from BECCS, which

starts to increase after 2050, leading to an average 15% higher
BECCS use as compared to the w/o DACCS scenario by 2080
(Supplementary Fig. 8a). Subsequently, as DACCS capacity
increases more rapidly after 2080 and gradually meets the addi-
tional CDR demand, the annual CO2 sequestration from BECCS
stabilizes around 1.3 GtCO2/year by 2100, like the levels in the
strict mitigation scenario without DACCS. It is important to note,
that on a global scale, the requirement of BECCS is lower in the
SSP2-RCP1.9 w/ DACCS scenario than in the SSP2-RCP1.9 w/o
DACCS case (Supplementary Fig. 8a).

The expansion of BECCS after 2050, peaking at 420 TWh/year
by 2080, and reaching 113 TWh/year by 2100 is noticeable in the
US generation mix when mapping out the differences between the
two mitigation scenarios (Fig. 3). With DACCS, we also see that
less electricity is generated from natural gas with carbon capture
and storage (CCS) and nuclear during the same period, and the
annual US electricity generation drops consistently during the
BECCS expansion phase until 2080 (at −160 TWh/year or −2.3%
compared to the without DACCS case). Thereafter, the rapid
increase of DACCS operational capacity and the respective
increase in electricity demand narrows the demand gap between
the two scenarios. By 2100, 35 TWh/year of additional electricity
are required under a mitigation scenario with DACCS.

The availability of DACCS barely changes the annual
decarbonization rate of the US electricity system (about 6%
across both scenarios based on the annual life cycle climate
change impact). In both strict mitigation scenarios, the US power
system reaches carbon neutrality by 2035 (Fig. 1d), which is in-
line with the present US administration’s decarbonization target
for the sector39. Beginning in 2050, the US grid mix starts to
change with increasing DACCS deployment, leading to shifts in
the long-term life cycle environmental impacts per kWh
produced. We find a decrease in climate change impact up to
−0.019 kg CO2-eq/kWh, which is mainly attributable to addi-
tional power generation from BECCS. Reductions also occur in
water depletion and human toxicity impacts per kWh. At the
same time, impacts of US power generation increase for several
other categories including freshwater eutrophication and eco-
toxicity, terrestrial acidification and ecotoxicity, and metal
depletion (bars in Fig. 4). This environmental problem-shifting
is directly attributable to the power grid mix change caused by
DACCS. Still, for most impact categories, the changes are
indiscernible compared to those caused by the electricity system
decarbonization overall (lines in Fig. 4). Exceptions are metal
depletion and terrestrial ecotoxicity, whose levels increase by
123% and 77% respectively from 2020 to 2100 due to the
decarbonization of the power sector. DACCS deployment
contributes an additional 10% (on average) after 2050 to both
impact categories (Fig. 4).

Environmental impacts of DACCS in other world regions. To
put the US-specific results in a global context, we calculate the life
cycle environmental impacts of DACCS using regionally explicit
LCI data for electricity generation in China, Western Europe, and
Russia as well as a global average under a SSP2-RCP1.9 w/
DACCS scenario (considering technology learning of DACCS).
Since the solvent- and sorbent-based DACCS systems are com-
monly associated with thermal energy supply from natural gas
(SV+NG) and heat pumps (SB+HP) respectively, these two
configurations were considered representative processes for a
global comparison. The results show that, in 2020, the climate
change impact of SV+NG systems deployed in Russia and China
are 12% and 19% higher than the same system at world level,
because the electricity grid mixes in these regions are dominated
by coal and natural gas, respectively (Fig. 5a, Supplementary
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Fig. 4 The change in life cycle impacts per unit (1 kWh) of US-based power generation with DACCS deployment. Impact categories include (a) climate
change impact, (b) human toxicity impact, (c) freshwater eutrophication impact, (d) freshwater ecotoxicity impact, (e) terrestrial acidification impact,
(f) terrestrial ecotoxicity impact, (g) metal depletion, (h) water depletion. The bar in each subplot represents the absolute change (per 1 kWh generation)
of each impact subtracting the SSP2-RCP1.9 w/o DACCS from the w/ DACCS scenario from 2020 to 2100 (primary y-axis). The lines in each subplot
represent the relative change (percentage) per impact compared to its 2020 reference level (secondary y-axis) under an RCP1.9 w/ (blue) and w/o
DACCS scenario (orange).
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Fig. 2, Supplementary Fig. 3). A higher climate change impact is
also observed for SB+HP systems deployed in these two regions
(14% and 23% for Russia and China, respectively) (Fig. 5b). Both
DACCS systems exhibit lower climate change impacts than the
2020 world level if they are deployed in the US (9% and 10% less
for SV+NG and SB+HP systems) and Western Europe (29%
and 35% less for SV+NG and SB+HP systems) given the
regions’ lower carbon-intensive electricity (Fig. 2, Supplementary
Fig. 4). With time, the climate change impacts of DACCS
decrease across all regions, and so do the regional variations. By
2100, climate change impacts barely differ across regions and the
global average level, with slightly higher numbers observed for
DACCS in Russia whose electricity mix is largely dominated by
natural gas with CCS (33% of annual generation) (Supplementary
Fig. 3). Similarly, decreasing trends of regional variations are
observed for human toxicity, freshwater eutrophication, and
terrestrial acidification impacts resulting from a worldwide dec-
arbonization of the electricity sector under the mitigation sce-
nario to limit global mean temperature change to below 1.5 °C by
2100. The ranges of regional variations remain stable for fresh-
water and terrestrial ecotoxicity and increase for metal depletion
over time due to different renewable penetration levels and grid
mix profiles across the regions. The water depletion of SB+HP
systems is more sensitive to the regional electricity system context
compared to that of SV+NG systems. Thus, SB+HP systems

can reduce their already lower water demand even further with
increasingly cleaner electricity toward 2100 (Fig. 5).

Discussion
As more IAM scenarios start to include DACCS as a critical CDR
technology for meeting stringent climate targets, the performance
of DACCS should be evaluated in the context of those targets to
better guide policy decision and deployment of DACCS in the
future. As our LCA shows, a rapid decarbonization of the power
and energy demand sectors that is consistent with the 1.5 °C
climate target can increase the net sequestration efficiency of
DACCS and facilitate its climate change mitigation potential,
suggesting DACCS deployment and electricity system dec-
arbonization should act synergistically in climate change miti-
gation efforts.

Several DACCS technologies can offset GHG emissions and aid
with long-term climate change mitigation efforts, but their net
sequestration efficiencies and holistic environmental performance
are interdependent with the energy system in which they operate.
Merely shifting to low-carbon energy sources for DACCS plant
operation could lead to environmental trade-offs. These findings
are in-line with other DACCS LCA studies22,24,26. We find that
solvent-based DACCS generally has lower impacts than sorbent-
based DACCS in five (climate change, human toxicity, freshwater
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Fig. 5 The regional variation of life cycle environmental impacts of DACCS technologies. Impacts of (a) solvent-based DACCS using natural gas
(SV+NG) and (b) sorbent-based DACCS using heat pump generated heat (SB+HP) in four regions and the world under a SSP2-RCP1.9 w/ DACCS
scenario (considering technology learning of DACCS with the reference learning rates). Per impact category, the reference (100% in 2020) is the World
level. The results of other region-year combinations are shown as a relative change to the reference. These impact changes were calculated based on
capturing and sequestering 1t atmospheric CO2 by DACCS. Since the technologies’ net negative life cycle Climate Change Impact (CCI) (in Fig. 1) would
create a positive increase in impacts relative to the 2020 world level, we do not account for the 1t CO2 captured in the CCI in this figure. Other impact
category abbreviations (from left to right): HTI Human Toxicity Impact, FEI Freshwater Eutrophication Impact, FTI Freshwater Ecotoxicity Impact, TAI
Terrestrial Acidification Impact, TTI Terrestrial Ecotoxicity Impact, MD Metal Depletion, WD Water Depletion.
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eutrophication, freshwater ecotoxicity, and metal depletion) out
of eight impact categories studied herein. This is contrary to the
conclusions of another study, which states sorbent-based DACCS
has lower environmental impacts for the impact categories con-
sidered therein (under the reference case)40. These differences
appear to be linked to the study’s optimistic electricity (180 kWh/
t CO2) and heat (2.6 GJ/t CO2) consumption assumptions for
sorbent-based DACCS (under the reference case). These are less
than half of those reported by several other studies24,26,41 and the
ones used herein (470–700 kWh/t CO2 for electricity and
5.4–5.8 GJ/t CO2 for heat). Also, the study assumed that DACCS
is powered by grid electricity in British Columbia, Canada, which
is dominated by hydroelectricity (accounting for 72% of grid
mix42) with low emissions for most impact categories. Thus, the
environmental impacts (e.g., climate change, fossil depletion) of
solvent-based DACCS were mainly driven by other factors such
as a higher heat consumption. Furthermore, the study ignored the
typical process-configuration for solvent-based DACCS in which
the CO2 released during thermal energy generation10 is also
captured and sequestered, thus artificially increasing the climate
change impact of that technology and underestimating its
potential sequestration efficiency. Neglecting this purposefully
integrated process step not only alters the technology evaluation,
it also leads to an underestimation of the storage capacity
requirements and related inputs to regional planning and inte-
gration efforts. Solvent-based DACCS requires about 30% addi-
tional storage capacity (based on the 0.05 kg CO2/MJ43, which is
the CO2 emission factor of natural gas combustion) per tonne of
CO2 sequestered compared to sorbent-based DACCS.

Electricity consumption is a major contributor to the terrestrial
ecotoxicity and metal depletion levels of DACCS, which are
mainly driven by the solar and wind penetration levels in the
background electricity system in our scenarios. Therefore, as the
decarbonization of the electricity system progresses with
expanding renewable energy generation and storage capacities,
additional efforts are needed to facilitate sustainable mining,
manufacturing, and expanding the circular economy of energy
materials used in those technologies, which will reduce these
impact levels.

Carbon management policies should consider research and
development efforts to improve process and material efficiencies
of DACCS and low-carbon energy generation technologies.
DACCS technologies have already accomplished very high reuse
rates of solvents and sorbents10,24, but our results show that
technology learning prominently reduces levels of ecotoxicity,
metal depletion, and water depletion (solvent-based DACCS
only), highlighting its important role in avoiding potential
environmental problem-shifting of DACCS deployment under a
climate change mitigation pathway. Whereas large-scale DACCS
deployment will affect the supply and demand dynamics of the
overall energy system, this effect is negligible compared to the
effects of decarbonizing the power sector. Thus, the deployment
of DACCS is complementary to the expansion of other net-zero
emission technologies as well as BECCS in stringent climate
change mitigation scenarios.

Decarbonizing the electricity system substantially reduces
regional differences of impacts, such as climate change, human
toxicity, freshwater eutrophication, and terrestrial acidification,
which are mostly driven by fossil-based energy generation. Still,
varying environmental profiles across ecotoxicity and metal
depletion persist toward 2100 under different renewable energy
deployment strategies. This stresses the need for smart siting of
DACCS, incorporating a wide range of environmental and
socioeconomic metrics in the future to assess regional trade-offs.
Given its load profile, DACCS deployment should also be inte-
grated into regional energy system planning, including

grid-connected and off-grid location assessments. DACCS could
for instance be intentionally sited in locations with high renew-
able energy potential and where grid interconnections would be
expensive.

The prospective LCA framework presented herein can inform
policy discussions around research and development prioritiza-
tion for emerging technologies that support energy sector dec-
arbonization and long-term climate change mitigation targets. By
incorporating regionally and temporally explicit electricity sector
scenarios and technology projections for grid-connected DACCS,
it captures the complex non-linear relationships between a CDR
technology and its environmental impacts, caused by either
changes in the broader energy system44–46 or its specific tech-
nology context29,47. Future capability extensions of this frame-
work will model material circularity and capture the technological
changes in broader energy and industrial sectors.

Methods
Overview. In this study, we adapt a cradle-to-grave LCA framework that evaluates
temporally- and regionally-explicit environmental impacts of DACCS technolo-
gies in future electricity systems as projected by climate change mitigation
scenarios37. The prospective framework aligns the temporal dimensions of the
foreground technology learning and the background system dynamics. The life
cycle impacts for the respective DACCS technologies are calculated using
the Python-coded LCA framework Brightway248 and life cycle inventory (LCI)
data from the ecoinvent database3.642. The (background) electricity system con-
text is provided by TIMER, the energy module of the IMAGE3.2 Integrated
Assessment Model (IAM)31. TIMER develops regionally- and temporally-explicit
projections for electricity mix, generation efficiency, and electricity-associated
emissions, and these outputs are incorporated into another python-coded frame-
work (Wurst)37 to update the electricity-related LCI data in the ecoinvent database,
which is then used by Brightway2 to calculate the impacts per DACCS technology
and time-step. The calculations are performed for 10-year timesteps from 2020
to 2100.

Models. IMAGE 3.2 is an IAM framework developed to describe the relationships
between humans and natural systems and the impacts of these relationships on the
provision of ecosystem services to sustain human development31. The energy
module of IMAGE 3.2, TIMER, is a recursive dynamic (i.e., no-foresight) energy
system model representing the global energy system, disaggregated across 26 global
regions, with projections till 210031. It includes fossil and renewable primary
energy carriers (coal, heavy/light oil, natural gas, modern/traditional biomass,
nuclear, concentrated/PV solar, onshore/offshore wind, hydropower, and geo-
thermal). Primary energy carriers can be converted to secondary and final energy
carriers (solids, liquids, electricity, hydrogen, heat) to provide energy services for
different end-use sectors (heavy industry, transport, residential, services, chemicals
and other). The model projects future (useful) energy demand for each end-use
sector (industry, transport, residential, commercial, other) based on relationships
between energy services and activity, the latter of which is related to economic
growth. For each demand sector, secondary energy carriers (including solid and
liquid biofuels) compete based on relative costs with each other to meet the useful
energy demand. The energy system representation of the IMAGE model does
include demand elasticity with carbon prices. This is represented via two distinct
mechanisms: (i) Investment in energy efficiency, and (ii) reduced demand in
energy services (i.e., reducing consumption and foregoing activities and amenities
which demand energy/emissions). The former is represented via technological
options (i.e., invest in insulation, more efficient technologies, etc.) and the latter is
represented based on econometric data. Energy prices are based on supply curves
of energy carriers49,50. For non-renewable sources, these are formulated in terms of
cumulative extraction; while for renewable sources, these are formulated in terms
of annual production51–53.

Brightway2 is an open-source framework for LCA calculations in Python48. It
consists of several modules that handle data import, managing and accessing data,
calculating, and analyzing LCA results. The combination of a modular structure,
the interactivity of Python, and tunable calculation pathways allows for flexibility
and user-defined functionalities in conducting LCA studies and offers new
possibilities compared to existing LCA tools.

Wurst is also a Python-based software that enables the systematic modification
of LCI databases with external scenario data37. Wurst supports several generic
modification types, including changing material efficiency, emissions, relative
shares of markets inputs, and separating a global dataset into multiple regions. The
current version of Wurst focuses on modifying the ecoinvent LCI database using
IMAGE scenario data. More detailed information regarding modification steps of
Wurst are discussed in the “LCI database modifications with climate scenario data”
section.
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Scenario description. The Shared Socioeconomic Pathways – Middle of the
Road baseline scenario (SSP2-baseline) projections assume no climate policy
whatsoever, thus acting as a counterfactual to which policy efforts can be com-
pared. The RCP1.9 scenarios project the required effort needed to meet a climate
target, defined as an emission budget consistent with a 1.5 °C global mean tem-
perature increase. These scenarios also include current climate policy, per region, as
defined by the NDCs54. For the RCP1.9 scenarios, the IMAGE model determines
the additional effort needed to meet the 1.5 °C target, represented by emission price
projection across all GHG emission sources (fossil fuels, industry, and land use),
applied globally, resulting in a cost-effective mitigation pathway. The emission
price can reduce emissions via two mechanisms: (i) the increase in aggregate energy
costs promotes investments in energy efficiency, (ii) by attaching this price to the
carbon content of primary energy carriers, and it affects their competitiveness at
meeting final energy demand services, thus promoting cleaner energy carriers. The
application of an emission price makes DACCS competitive as it is assumed that
sequestered carbon is renumerated, thus overcoming capital and variable costs
(which in turn are affected by the projected cost of energy supply and technological
learning). We present two RCP1.9 variations (SSP2-RCP1.9 w/ DACCS and SSP2-
RCP1.9 w/o DACCS) to determine the impact of DACCS availability on climate
change mitigation strategies. Regional cost-effectiveness in DACCS depends on
capital and O&M costs (including endogenous learning-by doing reductions),
electricity price, and CO2 transport and storage costs linked to storage potential
limitations55. A single DACCS technology (with technology parameters and cost
data based on plant capacity of 1 Mt CO2/year) is included in IMAGE, represented
by aggregate of different solvent-based technologies summarized in previous
studies8,56,57, but we assume that the DACCS deployment result estimated by
IMAGE will represents the total deployment of a wide range of DACCS technol-
ogies (including both solvent- and sorbent-based DACCS). In IMAGE, it is
assumed that DACCS is not available before 2030, and its global growth rate is
limited to 1 GtCO2/year. This growth rate limit is a binding constraint in the
projection once DACCS becomes cost effective, while in the long-term storage
potential limitation may limit its further expansion. DACCS becomes cost effective
when emission prices exceed approximately $300/tCO2. This emission price is
surpassed in 2050 for both SSP2-RCP1.9 w/ DACCS and SSP2-RCP1.9 w/o
DACCS. In the long-term, the application of DACCS limits the growth of the
emission price, projected to be $423/tCO2 and $885/tCO2 2100 for SSP2-RCP1.9
w/ DACCS and SSP2-RCP1.9 w/o DACCS respectively. By calculating the differ-
ences of electricity generation and the associated environmental impacts between
the two RCP1.9 variations, we can also evaluate the effect of DACCS deployment
on the electricity and energy demand systems.

Technology assumptions and details of DACCS systems. We focus on two
types of DACCS technologies: a solvent-based and a sorbent-based DACCS, which
rely on different capture and release mechanisms to remove CO2 from the
atmosphere.

Solvent-based DACCS applies aqueous hydroxide solutions (potassium
hydroxide, sodium hydroxide) to capture atmospheric CO2 via a chemical
reaction7–10. Here, we assume the solvent-based DACCS uses potassium hydroxide
solution for CO2 capture. In an air contactor, the potassium hydroxide solution
reacts with CO2 and forms potassium carbonate, which then, in a separate reactor,
reacts with calcium hydroxide and generates calcium carbonate. The calcium
carbonate precipitates, and potassium hydroxide solution can be regenerated and
recycled back to the air contactor. The precipitated calcium carbonate is collected,
dried, and then calcined under high temperature (about 900 °C) heat, which is
typically provided by natural gas combustion in pure oxygen, to release the CO2.
The CO2 released from calcium carbonate and the CO2 generated by natural gas
combustion are mixed and collected for further storage10. The high temperature
heat requirements limit the heat supply options for solvent-based DACCS. In this
study, we consider natural and renewable gas (biomethane) as the two heat options
for the solvent-based DACCS (Supplementary Fig. 1). Other proposed methods
include electric resistance heating and electrochemical regeneration, which were
not studied here.

Sorbent-based DACCS typically uses amine materials bonded to a wide range of
porous solid supports for CO2 capture11–14. Here, we considered the use of amine-
based silica as the solid sorbent24. The process consists of two main steps that
operate cyclically: adsorption and desorption. In the adsorption step, a fan blows
air through the air contactor, and the CO2 in the air reacts with the sorbent and
binds to it. When the solid sorbent has been saturated with CO2, the desorption
step will start in the air collector. Before heat is supplied, a vacuum is pulled to
remove residual air from the contactor and decrease the temperature required for
regeneration. Then, heat at about 100 °C will be supplied into the air contactor to
desorb the CO2. The collected CO2 will then go through a cooling unit, where extra
moisture can be removed through condensation and CO2 will be brought to
ambient temperature. In the desorption step, the temperature of heat is about
80–120 °C, so a wide variety of thermal energy sources (natural gas, heat pump,
geothermal heat, and waste heat) can be used as the heat supply. Here, we model
heat pump (with coefficient of performance of 2.524) and renewable gas
(biomethane) as the two main options (Supplementary Fig. 1).

CO2 transport and storage: Once the CO2 is released from either process, we
assume the CO2 flow will be compressed through a compressor to 11 MPa and then

transported through a pipeline to the storage site. The length of the transport
pipeline is assumed to be 50 km. At the storage site, the CO2 will be further
compressed to 15MPa and injected into a geological reservoir through wells with
the depth of 3 km each. Here, the CO2 will be permanently stored as supercritical
phase58(Supplementary Fig. 1).

Life cycle assessment. The system boundary starts at the air inlet with a CO2

concentration of 415 ppm, and is followed by CO2 capture, regeneration, com-
pression, transport, and ends with geological storage. Our analysis also accounts for
upstream emissions due to indirect energy demands for the construction of energy
conversion technologies, fuel production and handling. The functional unit is
capturing and sequestering one metric tonne (1t) of atmospheric CO2 by DACCS
technologies. The LCI data of the two studied DACCS technologies and subsequent
compression and storage were collected from literature or estimated through
bottoms-up materials requirements analysis (with the assumed plant capacities of
1 Mt CO2 and 0.1 Mt CO2 per year for solvent- and sorbent-based DACCS
respectively), which are discussed in detail in Supplementary Note 1. The LCI data
are assumed to represent the status quo material and energy consumptions over the
life cycle of the two selected DACCS technologies. ReCiPe 2016 v1.1 hierarchist
perspective is used as the characterization method to convert emissions and natural
resource extractions to environmental impact categories at mid-point level59.

In this study, when we compare the environmental impacts of DACCS under
different electricity decarbonization pathways (SSP2-baseline vs. SSP2-RCP1.9 w/
DACCS), the results are calculated based on static LCI data of DACCS that
represent their current material and energy uses without considering technology
learning. Then, we also calculated another set of LCA results for DACCS under
SSP2-RCP1.9 w/ DACCS scenario based on dynamic LCI data that are estimated
using learning curve approach, so it captures the effects of both background
electricity decarbonization and foreground technology learning. By comparing the
LCA results of DACCS calculated using static and dynamic LCI data under SSP2-
RCP1.9 w/ DACCS scenario, we can evaluate and compare the effects of
background electricity decarbonization and foreground technology learning on the
environmental impacts of DACCS.

Technology learning of DACCS systems. The learning curve approach has been
used as an empirical method to study the unit cost reduction over time with
cumulative production increases for a wide range of manufacturing60 and energy
technologies61. The learning effect can be characterized by various mechanisms,
including technology advancement, increased labor productivity, economies-of-
scale, and improved material and energy efficiency. The learning curve approach
has also been acknowledged as one critical means to explore the future expected life
cycle impacts of present-day emerging technologies62,63. Here, we apply the one-
factor learning curve approach to inform our prospective LCA. While the two
technologies under investigation are presently operating in pilot- or demonstration
scale, we assume a commercial-scale operation for both and apply constant
learning rates, affecting the future life cycle material and energy consumption. Yet,
for both technologies assessed herein, these learning effect on material and energy
consumption are missing in the published literature. Thus, we assumed changes of
material and energy consumption proportional to the changes per unit cost for the
DACCS technologies.

It has been shown that the capital costs of solvent- and sorbent-based DACCS
are likely to follow different learning rates given their different design
characteristics. The solvent-based DACCS is site-built and large-scale, benefitting
from economies-of-scale, but it is also less likely to incorporate rapid design or
manufacturing improvement, while sorbent-based DACCS is based on
standardized and modular units, and these units can be mass-produced and
deployed, which enables fast iteration and learning64. Therefore, we assumed the
average learning rates of 10% and 15% for the material and energy consumption
that are related to capital investments for solvent- and sorbent-based DACCS,
respectively. Then, as for the material and energy consumption related to
operational costs, we assumed average learning rates of 2.5% for both solvent- and
sorbent-based DACCS, respectively. We also consider variation ranges for the
learning rates to reflect their uncertainty (Supplementary Table 10), these variation
ranges are used to develop a sensitivity analysis to understand how the speed of
learning affects the environmental impacts of DACCS. Furthermore, to avoid
unrealistic reductions of material and energy consumption under technology
learning, we also set up minimum material and energy use factors of both DACCS
technologies based on expert estimations. As for the solvent-based DACCS, the
lower bound of material and energy uses related to capital and operational costs
cannot be lower than 44% and 50% of their original amounts, respectively, and the
sorbent-based DACCS, the lower bound of material and energy uses related to
capital and operational costs cannot be lower than 18% and 50% of their original
amounts in 2020, respectively. To incorporate the minimum material and energy
use factors into the learning curve formula, we adjusted the learning curve formula
into the following Eq. 1:

Di;t ¼ ðDi;0 � Di;minÞ ´ ð1� LRiÞlog2ðXt=X0Þ þ Di;min ð1Þ
In Eq. 1, X0 represents the initial DAC deployment capacity at year 0; Xt represents
the cumulative DAC deployment capacity at year t. For a specific material or
energy item i, LRi represents the learning rate of the item i; Di;0 typically represents
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the unit consumption of the material or energy item i at year 0 (corresponding to
the initial CO2 capture X0). Here our goal is to calculate the material and energy
use factors (instead of actual unit consumption) under technology learning, so we
normalize the Di;0 to be 1; Di;t is also a normalized material and energy use factors
of item i at year t (corresponding to the cumulative CO2 capture Xt); Di;min

represents the minimum material and energy use factors of item i.
Finally, we assume that solvent- and sorbent-based DACCS each account for

half of the global cumulative capacity of DACCS (IMAGE model outputs),
respectively. Then, we estimated material and energy use factors for both solvent-
and sorbent-based DACCS from 2020 to 2100 based on their cumulative capacity,
and the results are presented in Supplementary Table 11. By multiplying the
material and energy use factors at a specific year to the actual unit material and
energy consumption at the initial year, we can get the actual unit material and
energy consumption in that specific year. Assumptions on technology learning
rates and minimum material and energy use factors of solvent- and sorbent-based
DACCS are discussed in detail in Supplementary Note 2.

LCI database modifications with climate scenario data. The ecoinvent
database23 is the most widely used LCI database which offers fully interlinked unit
process supply chains for products presented in the database. It covers all relevant
environmental flows, material and energy inputs, and products of around 18,000
activities, where researchers can collect data about the supply chain to form a
comprehensive background system in an LCA study. However, since the data in
ecoinvent are usually collected in a specific year, the database describes the material
and energy flows among processes based on an existing supply chain system.
Therefore, the ecoinvent database is limited in conducting prospective LCA studies,
which assess the environmental impacts associated to future technologies or
emerging technologies that evolve over time.

Here, to evaluate the environmental impacts of DACCS technologies in a context of
a changing background electricity system, we adapt an open-source approach
(Wurst)37 that systematically integrates the IMAGE projections on electricity mix,
generation efficiency, and electricity-associated emissions with the ecoinvent database,
and change the parameters in electricity-related activity data in the ecoinvent database.
Due to the differences of generation technologies between IMAGE and ecoinvent
database, we develop a matching list to map the available technologies for both data
sources (Supplementary Note 3). More detailed information regarding parameter
modification for ecoinvent database using Wurst can be found in a previous study37.
After the parameter modification, we developed 27 versions of ecoinvent databases,
which correspond to 9 different years from 2020 to 2100 under the SSP2-baseline,
SSP2-RCP1.9 w/ DACCS, and SSP2-RCP1.9 w/o DACCS scenarios.

Limitations. In this study, we modify the background LCI database using IMAGE
projections of grid mix, generation efficiency and emissions of thermal power
plants (fossil-based sources, biomass, and nuclear), while the renewable sources
and their efficiency levels are based on existing available technologies. Technolo-
gical innovation has been observed for renewable (especially solar65,66 and wind67)
and energy storage68,69 technologies, and they will continue to evolve as they are
more widely applied in the energy system. Therefore, to better evaluate the pro-
spective environmental impacts of energy-intensive technologies, such as DACCS,
under specific climate contexts, the analysis framework could be expanded to
consider the advancement, particularly in material efficiency or circularity of
variable renewable energy and storage technologies in the background electricity
system.

Previous studies looking at the technology learning of DACCS have focused on
cost reductions64,70,71. Publicly available, empirical studies that reveal how material
and energy inputs change as DACCS scales could not be identified. Given this
limited data availability, we assume the material and energy inputs of DACCS
follow the same learning rates as the associated cost projections. In reality,
technology learning rates are likely to vary depending on processes and physical
input types29,72. Future LCA studies aiming to quantify the effects of technology
learning on environmental impacts might be able to rely on more detailed learning
data of specific physical inputs. In addition, learning rates of emerging technologies
tend to change with technology-readiness-levels (TRL)73–75. Prospective analyses
of emerging technologies ideally reflect this by applying a multi-factor learning
curve approach, differentiating between the varying learning rates at different TRL.
The technologies analyzed herein operate at demonstration scale (TRL-7) while we
apply a single-factor, constant learning rate, postulating learning-by-doing
improvements at commercial scale (TRL-9). The learning rate at commercial scale
is a research frontier and presently unknown. Yet, at the scale of our analysis, a
respective differentiation is unlikely to add accuracy or insight. The uncertainty
with respect to the specific single learning rate at commercial scale is captured by
testing how different learning rates affect our results. Using a single-factor learning
curve approach, we thus attribute the cost change and its related material and
energy consumption to the cumulative installed capacity of DACCS over time,
limiting our capability of revealing the correlation between technology progress
and other factors, such as (prior) R&D expenditure76.

The life cycle impact assessment step relates emissions and resource use to
environmental impacts through characterization factors. The framework we
adapted here applied global or European scale characterization factors. While
location-generic characterization factors are suitable for global impacts such as

climate change impact, they may lead to large uncertainty for quantifying non-
global impacts, such as acidification77, eutrophication78, and ecotoxicity79, which
are typically affected by regional meteorological, hydrological, soil conditions and
the sensitivity of ecosystems to emissions. While country-dependent
characterization models and factors have been developed for these impact
categories, they have not yet been incorporated into the LCA framework applied in
this study. Further methodological improvements are needed to enhance the
capability of the existing framework for conducting regional impact assessments.

This study shows the environmental impacts of DACCS could have different
trajectories depending on the background energy system, so it is important to keep
monitoring those environmental metrics or even considering them in the decision-
making process. Future research could explore the feasibility of incorporating life cycle
environmental metrics into IAMs for better environmental impact assessment. State-
of-the art IAMs typically include some environment-related metrics, such as GHG
emission, land and water use as constraints, but they lack many other environmental
impact dimensions. For example, metal consumption could be an important metric
given the increasing penetration of renewable and battery storage in the energy system,
which are resource intensive. Furthermore, life cycle environmental metrics capture the
emissions from all life cycle phases (e.g., construction, transport, operation, and end-
of-life, etc.), and IAMs evaluate the interrelationship among different sectors.
Therefore, the integration of life cycle environmental metrics and IAMs should
carefully allocate the emissions of different life cycle phases to the corresponding
sectors/energy carriers in IAM to avoid double counting80.

Data availability
The complete LCI data for the two DACCS technologies are provided in
the Supplementary Information document (Table 6 to Table 9). The IMAGE outputs of
the three scenarios considered in this study are documented and provided in the
“Data_source” file in the Supplementary Dataset. The LCI data of some electricity
generation technologies (wave, fossil fuel with CCS), biomethane heat supply, and
amine-base sorbent are incorporated into the modified ecoinvent database during the
LCA modeling process, these LCI data are also provided in the same “Data_source” file in
the Supplementary Dataset. A permanent reference of our data provided in GitHub
repository is also accessible through https://doi.org/10.5281/zenodo.651334381.

Code availability
All the R and Python codes used in this study are documented and provided in the
“Code” file in the Supplementary Dataset. R Programming is used to make the figures in
this study, and all the results used to make figures are documented and provided in the
“R_code_result_export” file in the Supplementary Dataset. To rerun the LCA model
calculations, Brightway2, Wurst (two python coding frameworks), and the Ecoinvent 3.6
database (license required) are needed. A permanent reference of our code provided in
GitHub repository is also accessible through https://doi.org/10.5281/zenodo.651334381.
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