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(b) Tuned non-obtuse triangulations.

Figure 1: Tuning nonuniform meshes on curved surface elephant and homer models, successfully eliminating obtuse angles.

Abstract
We introduce an algorithmic framework for tuning the spatial density of disks in a maximal random packing, without changing
the sizing function or radii of disks. Starting from any maximal random packing such as a Maximal Poisson-disk Sampling
(MPS), we iteratively relocate, inject (add), or eject (remove) disks, using a set of three successively more-aggressive local op-
erations. We may achieve a user-defined density, either more dense or more sparse, almost up to the theoretical structured limits.
The tuned samples are conflict-free, retain coverage maximality, and, except in the extremes, retain the blue noise randomness
properties of the input. We change the density of the packing one disk at a time, maintaining the minimum disk separation
distance and the maximum domain coverage distance required of any maximal packing. These properties are local, and we
can handle spatially-varying sizing functions. Using fewer points to satisfy a sizing function improves the efficiency of some
applications. We apply the framework to improve the quality of meshes, removing non-obtuse angles; and to more accurately
model fiber reinforced polymers for elastic and failure simulations.

1. Introduction

A two-dimensional disk packing of a domain D is the arrangement
of a set of radius-r disks with center points P = {pi} within the
domain. Three quality properties are typically desired for graphics
applications. Specifically, a packing must be:
1. Conflict-free: A packing is said to be conflict-free if no disk
contains the center of another disk. That is, ∀pi, p j ∈ P, i 6= j :
‖pi− p j‖ ≥ r. For constant radii, this is equivalent to the r/2-disks
(centered at the same points) not overlapping. A violation of this
condition is called a conflict.
2. Maximal: A packing is maximal if adding any new disk would
generate a conflict. For constant radii, this is equivalent to the disks

covering the entire domain. That is, ∀p ∈ D,∃pi ∈ P : ‖p− pi‖ <
r. For many applications, maximality provides accuracy, as any
domain point is represented by a nearby disk center. The same
conflict-free and maximality conditions apply to non-uniform (spa-
tially varying radii) disk packings. Note that maximal packings are
not unique, or necessarily maximum (densest/sparsest); it is often
possible to move disks around to make room to add another disk
without generating a conflict. Conversely, it is often possible to re-
move a disk and move others to still cover the domain. We define
the density of a packing as the fraction of the domain area covered
by non-overlapping half-radius disks.
3. Random: A packing process is said to be random or bias-free
if it does not favor any specific region of the uncovered part of the
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domain when adding a new sample. This implies that the likeli-
hood of the next sample pi lying inside any uncovered subdomain
Ω is proportional to the area of that subdomain. This is equivalent
to uniform sampling from the uncovered part of the domain. That
is ∀pi,∀Ω ∈ Di−1 : prob(pi ∈ Ω) = area(Ω)/area(Di−1), where
Di−1 is the union of all the uncovered regions of the domain D at
the ith sampling attempt. The packing itself is said to be random if
it is generated by such a process. In practice, we say that a packing
is random if its spectral properties are similar to those of a typical
sampling generated by uniform sampling.

Quality Metrics: The quality of disk packings is typically mea-
sured via the shapes of the triangles in the corresponding Delaunay
triangulation. Conflict-free and maximality are often quantified us-
ing distance and angle metrics, such as minimum edge length, the
Hausdorff distance, the RMS distance, and the minimum and max-
imum angles in the Delaunay triangulation constructed around the
point set P. Randomness can be quantified through the angle distri-
bution, but is typically presented in the frequency domain. A ran-
dom (yet not maximal or conflict-free) Monte Carlo sampling, for
example, is represented by a white-noise spectrum. On the other
hand, a random, maximal and conflict-free, Maximal Poisson-disk
Sampling (MPS) is represented by a truncated blue-noise spectrum.

Density Tuning Versus Changing the Sizing Function: The siz-
ing function determines the radius of some disk given its center.
The standard approach to modify the density of a given packing
is to modify its sizing function through refinement or coarsening.
However, the problem of disk density tuning is different. Tuning
does not change the underlying sizing function, but rather moves,
places, or removes points (disks) in order to change the discrete
disk density. A packing with a tuned density will strictly satisfy
conflict-free and maximality, and maintain as much randomness as
possible. Note that coarsening a mesh for numerical simulations
usually increases the discretization error, while tuning does not.

Theoretical Density Limits: The tuning approach we present in
this paper is inspired by the prior observation that maximal pack-
ings are not maximum, and there is in fact a wide range of area
densities that are achievable by a maximal packing. For illustra-
tion, Figure 2 shows the extreme densities of a maximal packing:
(a) densest, density 0.9 and (b) sparsest, density 0.3. In both ex-
tremes, point locations are pinned. In the densest packing, moving
a point creates a conflict (but does not spoil maximality). In the
sparsest, moving a point uncovers part of the domain (but does not
spoil conflict-free). Table 1 summarizes the average point density,
corresponding area fraction ratio, and Delaunay edge length of dif-
ferent maximal samples with uniform radius r, where: 4(r) is the
point set at the corners of the lattice of equilateral triangles with
side length r, �(r) is the square lattice with side length r (diag-
onal length

√
2r), 7(r) is the hexagonal lattice with side length r

(diagonal length 2r), MPS is Maximal Poisson-disk Sampling, and
DR is Delaunay refinement (Delaunay circumcenter insertion). The
case of 4(r) corresponds to the densest sampling respecting the
conflict-free condition, while 4(

√
3r) represents the least dense

sampling that still respects the maximality condition; see Figure 2.
The aim of tuning an initial point set is to either move and place
points to obtain a density closer to that of 4(r), or move and re-
move points to obtain a density closer to that of4(

√
3r). The MPS

p p

Figure 2: Two extreme maximal packings, both equilateral triangle
tilings. In the densest case (left), p is pinned by the conflict-free
condition. Moving p creates a conflict, but it is possible to restore
conflict-free and keep coverage by ejecting it and moving its neigh-
bors to cover its void. In the sparsest case (right), p is pinned by the
maximality condition. Moving p uncovers part of the domain, but
it is possible to restore coverage keeping conflict-free by injecting
a point or more in p’s unique void.

Sample Area Delaunay
type fraction edge lengths

4(r) 0.93 {r}
�(r) 0.81 {r,

√
2r}

7(r) 0.62 {r,
√

3r,2r}

DR(r) 0.60 [r,2r)
MPS(r) 0.55 [r,2r)

�(
√

2r) 0.40 {
√

2r,r}
4(
√

3r) 0.31 {
√

3r}

Table 1: Area fraction ratio and Delaunay edge lengths of different
maximal samples with uniform radius r.

process produces a maximal packing with density in the middle of
this range, about 0.55. For packings with an intermediate density,
such as MPS, many points are not pinned and their location may be
changed without spoiling either condition. Besides movement, tun-
ing includes adding and removing points, all without violating the
maximality and disk-free constraints. It may come as a surprise that
it is also possible to tune the density without destroying the third
property, randomness. We shall see that only at the extremes, as the
density approaches 0.3 or 0.9, randomness degrades significantly.

1.1. Related Work

In many computer graphics applications, the three packing prop-
erties are required. Conflict-free provides sampling efficiency, as
nearby points are often redundant, maximality ensures full cover-
age of the graphical domain, and randomness avoids visual artifacts
including aliasing [PH04]. Furthermore, in many sampling and in-
tegration applications, blue noise sampling [JZW∗15] is desired as
randomness avoids bias [SK13]. Historically, many random pack-
ing algorithms have sacrificed maximality in order to be simple
or efficient. Today, true random maximal Poisson-disk sampling
is simple and efficient [EMP∗12]. In addition, an MPS provides
well-shaped Voronoi [EM12], Delaunay [EMD∗11], and tetrahe-
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dral [GYC∗16] meshes for both uniform and nonuniform sizing
functions [MREB12]. Several improved versions of MPS have been
introduced targeting more efficient [GYJZ15, Yuk15] and paral-
lel [IYLV13] implementations. However, one undesirable property
of MPS is that many disks are at distance nearly r from one an-
other, spoiling it from being pure truncated blue-noise. Heck et
al. [HSD13] have recently shown that it is possible to change a
random point set to tune its spectra to different profiles, includ-
ing better blue noise. We focus here on the property that MPS
produces a particular area fraction density, typically 0.55, and we
can tune that distribution to attain a different density while main-
taining all other properties. A key feature of our proposed algo-
rithm is its powerful capability to inject, eject, or relocate points
without sacrificing the sizing function or creating conflicts. Clas-
sical geometric methods either inject, eject, or relocate points to
achieve a certain objective. For example, different versions of De-
launay refinement (DR) [She98, Si08] aim at creating quality De-
launay meshes by inserting points at the circumcenters of poor-
quality triangles, increasing the density of the final triangulation.
However, DR’s quality-based strategy does not directly respect a
user-prescribed sizing function, and indirectly follows the local fea-
ture size. The DR primitive can only increase an initial density, but
not decrease it. On the other hand, Centroidal Voronoi Tessella-
tion (CVT) [DFG99, DGJ10] relocates a point to enforce the seed
of a Voronoi cell to be at its center of mass. This approach might
use some sizing function information, but does not incorporate in-
jection or ejection capabilities. It is therefore more constrained for
density tuning purposes. Similarly, mesh simplification [CMS98]
eliminates mesh points resulting from oversampled data. This can
only work for reducing the density of a mesh, but would not work
when injecting points is needed.

Contribution Summary. We introduce a novel framework for tun-
ing the discrete density of a maximal disk packing. Using planar
and curved surface models, we demonstrate the tuning capability
towards different user-desired objectives, e.g., non-obtuse triangu-
lation and accurate fiber simulations.

2. Injection of Uniform Disks

In this section, we illustrate the three successively more-aggressive
phases for injecting points. We start with a maximal disk packing.
Common to all phases, we iterate over randomly selected sample
points. For the selected sample point, we remove or move the asso-
ciated disk or its neighbors to create a void or space in the domain
that is not covered by any of the remaining disks. If the void is
large enough, we inject one or more new disks in order to increase
density. If not, we search for another candidate void for injection.

Phase I. Void Diameter Injection. In the first phase, we uniformly
randomly select a disk with center p, remove it to create a void, and
identify the intersection corners of the void. Then, we iteratively
try to cover that void with as many disks as possible, in order to in-
crease the disk density. We first find the pair of void corners that are
farthest apart, the diameter pair (a,b), and compute the Euclidean
distance between them; d(a,b). We create a new disk with a cen-
ter repositioned at either a or b, randomly selected. If d(a,b) < r,
then the entire void is covered, and no other point/disk can be in-
jected. In this case, one disk was replaced with one disk, so the

disk density did not change. Otherwise, if d(a,b) > r, a part of the
original void is still uncovered, leaving room for more points to be
placed. We repeat the previous steps for the new partial void: we
find the new longest diameter pair (a,b) of the partial void, and in-
ject a new disk centered again at one of them, randomly selected.
We stop when the original void of p is completely covered with the
new disks. An illustration of these steps is shown in Figure 3, where
disk p was replaced with 3 disks. Each of the new disks is centered
at one end of the longest diameter of p’s void or partial void.

Phase II. Neighbor Repeller Injection. In the second phase, Re-
peller Injection, we consider a local neighborhood of a randomly
selected disk with center p. The goal here is to create coverable
gaps by moving the neighbors of p away from it. To do that, we
first identify all the neighbors of p. Leaving p in place, we iterate
over its neighbors in a random order. For a neighbor q, we create
its unique void, and move q to its void corner farthest from p to
possibly create a gap. If this leaves an uncovered gap we inject a
point at a location randomly selected within this gap, just as in Void
Injection, and declare success. Otherwise, if no gap is created after
q is moved, we move the next neighbor of p. If all neighbors have
been moved and no point has been injected, we roll back to phase I
and apply Void Injection on p, moving p to one of its diameter void
corners, and injecting new points, if possible.

Phase III. Crystal Growth Injection. In the third phase, Crystal
Injection, we grow a set of void corner points that are attractors that
pull nearby disk centers towards them. We freeze disks as their cen-
ters attach to attractor points. This is analogous to crystal growth.
We start with two disks with centers at distance r apart; the disk po-
sitions are frozen and their intersection points are the first attractor
points. We iterate over the mobile (not frozen) disks; see Figure 4
for an illustration. If a mobile disk does not cover any attractor
point, then we move it as in Void Injection. For a mobile disk D(p)
covering attractor point a, we seek to move its disk center p to a.
However, a might be strictly inside some other disks, leading to a
conflict, so we first delete any such disks. If moving and/or delet-
ing disks leaves an uncovered void, we immediately inject points
to recover maximality.

2.1. Transition Between Phases

The three aforementioned phases have increasing injection capabil-
ities. However, they are complementary and are all needed to tune
to a high density close to that of4(r). The order of the phases is a
trade-off between their tuning capabilities, complexity, and main-
taining maximality, conflict-avoidance, and randomness. Void Di-
ameter Injection is the least complex as it involves only injections
and no movements, and can therefore be used for fast fine den-
sity tuning. Based on their tuning saturation levels, our injection
framework transitions between its different phases according to the
values in Table 2. Specifically, the injection framework starts in its
first phase, and once it hits its saturation area fraction value (0.75),
the framework makes a transition to the second phase. Once its sat-
uration area fraction value (0.79) is hit, a transition is made into
the third injection phase. The same idea applies to transitions be-
tween ejection phases when the saturation area fraction values of
the first and second phases are reached, as further explained in the
next section.

c© 2016 The Author(s)
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p

(a) A disk with center p is se-
lected (randomly) as the can-
didate region for injection.

(b) Disk p is removed, tem-
porarily spoiling coverage.
Void corners identified.

a1

b1

(c) A new disk is injected at
either of the two corners that
are farthest apart (a1,b1).

a2
b2

a1

(d) Update the void. If a par-
tial void remains uncovered,
repeat step (c).

a1

a2a3

(e) Stop when the void of p
is fully covered again. Here,
3 new disks were injected.

Figure 3: Void diameter injection of a uniform packing: a disk is removed and replaced with as many disks as possible. Injection stops when
added disks cover the void of the removed disk completely.

(a) Initial packing. (b) Crystals forming. (c) Crystal injection.

Figure 4: Crystal growth injection of a uniform packing. Disks
move to form “crystals” of equilateral triangles. Once a void is cre-
ated, a new disk in inserted there.

Method Phase Area Fraction

Crystal Growth 0.89
Injection Neighbor Repeller 0.79

Void Diameter 0.75

Start Simple MPS Packing 0.55

Void Diameter (Sifted Disks) 0.41
Ejection Neighbor Attractor 0.35

Crystal Growth 0.31

Table 2: Area fractions achieved by different injection and ejection
phases and maximal Poisson-disk packing.

3. Ejection of Uniform Radii Disks

We illustrate the three successively aggressive phases of the ejec-
tion process. Again, start with a maximal disk packing. Our goal
is to remove disks until the required density is reached, constantly
maintaining the conflict-free and coverage properties. Similar to the
injection case, we eject disks using a less-aggressive strategy until
the density achieves a threshold near the best density it typically
achieves (Table 2). Termination occurs as soon as the user-desired
density is achieved, or when no more points can be relocated.

Phase I. Void Diameter Ejection. In the first ejection phase, we
pick two (or more) neighboring disks a,b as candidates for re-
moval. We find their combined void corners. We find the subre-

gion of the void where a disk center covers all the corners, and
randomly select the new center p from it. This is the same as the
Sifted Disks [EMA∗13] operation.

Phase II. Neighbor Attractor Ejection. The second ejection
phase is a modification of Repeller Injection but moving disks to-
wards the candidate instead of away; see Figure 5. We start with
a randomly selected disk with center p, and consider each of its
neighboring disk centers q in sequence. We move q to q′, the point
on segment pq as close as possible to p while still covering q’s void,
and keeping it outside all other disks except perhaps p’s. The next
paragraph explains how to calculate q′. Moving q will not uncover
some part of the domain, and will likely cover some of p’s void.
Remove p as soon as its remaining void is covered. Otherwise,
we attempt to at least make some geometric progress by finding
a new position for p. Move p to the center of the minimum-radius
disk that covers its remaining-void corners. If this position is inside
some disk (which can happen because the void is not convex), then
project it to the remaining void. In rare cases there may be no new
position for p that covers its remaining void; in that case we put p
and its neighbors back in their original positions.

To find q′, we compute q’s void corners. For each corner we find
the interval of pq within r of it. We intersect all these intervals. For
each neighboring disk, we subtract the segment of pq it covers. The
endpoint of the remaining interval closest to p is q′.

Phase III. Crystal Growth Ejection. In the third phase, we find
two disks with center distance

√
3r, and move other points to also

be at distance
√

3r from them. To accomplish this, we may re-use
our prior Attractor Ejection algorithm if we enlarge these disks to
have a dilated radius of

√
3r. (In the final output these disks still

have a radius of only r.) The two intersection points of the big
√

3r
disks are attractor points. Placing a disk center at an attractor point
would create equilateral triangles of the maximum possible edge
length, while still having the center of the triangle covered by r-
disks. We pick any other sample q at random. If its disk does not
cover an attractor point, we simply move it as in Attractor Ejec-
tion. Otherwise, we move q to the (closest) attractor point that its
disk covers. If this creates a conflict, then we remove the other con-
flicted disks (not q) and resample any void to regain maximality,
then update the attractor points.

c© 2016 The Author(s)
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p

(a) A disk with center p is
selected (randomly). Identify
its unique void/corners.

p

q1

(b) Pick a neighboring disk
center q1, and find the cor-
ners of its void.

p

q1
q1'

(c) Move q1 along segment
pq1 as far as possible without
uncovering q1’s unique void.

p

(d) If any void remains, find
a neighbor q2 at a different
corner, and move it as in (c).

p

(e) Repeat (c)–(d) until p’s
whole void is covered and we
can eject p.

Figure 5: Neighbor attractor ejection of a uniform packing: ejection succeeds if attracted neighbors manage to cover the void of p completely.
Otherwise, if all neighbors have moved and p’s void is still uncovered, p is moved back to the center of its remaining void.
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Figure 6: Convergence of different tuning phases.

4. Performance Measures

Convergence and Runtime. We study the density tuning progress
if one phase is continued ad infinitum, in terms of area fraction
achieved as the number of attempts to inject/eject a point increases.
Starting at the simple MPS reference point (0.55), different phases
have rapid area fraction variation initially, and increase/decrease
until saturated at the values listed earlier in Table 2. Injection (in-
creasing area fraction) is upper-limited by the densest hex packing
4(r), while ejection (decreasing area fraction) is lower-limited by
the sparsest hex packing 4(

√
3r); where 4(r) and 4(

√
3r) were

defined in Table 1. Each phase individually can achieve better area
fraction performance, whether in injection or ejection, when com-
pared to simple MPS. However, the combined three phases of injec-
tion and ejection approach the densest/sparsest packing limits. See
Figure 6 and Figure 7 for convergence and runtime comparisons.
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(d) Ejection II.

Figure 7: Linear runtime performance of different tuning phases.

Spectral Analysis. We now take our analysis to the frequency do-
main, which is suitable for studying the tuning impact on the “ran-
domness” and blue noise properties of the tuned meshes. Although
MPS does not have perfect blue noise behavior (inter-sample dis-
tances), it gets very close and hence we use it as our test start-
ing point. We apply our tuning (injection and ejection) steps to a
2D planar unit box with periodic boundary conditions, and charac-
terize the resulting meshes at the saturation points of each phase.
Experimental results are shown in Figure 8. The middle row repre-
sents the performance of simple MPS packing, with density 0.55,
which is the starting point of the tuning framework. Going up
one row at a time, we see the performance of different injection
phases levels: 0.75, 0.79, 0.84 and 0.89, respectively. Similarly, go-
ing down one row at a time shows the performance of different
ejection phases levels 0.41, 0.35, 0.33 and 0.31, respectively. In all
rows, the first column is an arrangement of the point sets, visually
showing randomness up to the saturation level of either injection or
ejection where structured artifacts show up, indicating loss of ran-
domness, upon approaching the theoretical limits. The second and
third columns show a 2D Fourier transform and a sliced cross sec-
tion versus frequency variation. The MPS Fourier transform shows
clear circular behavior which indicates that no direction is favored
over the other in the frequency domain. This circular behavior is
similarly observed in the first two stages on injection and ejection.
Directionality is introduced as the third phase of either injection or
ejection is approached, indicating gradual loss of randomness. The
mixed circular-dotted Fourier behavior at densities 0.84 and 0.33
turns into almost an all-dotted one in the saturation cases of in-
jection and ejection at densities 0.89 and 0.31. The fourth column
presents a measure of anisotropy, which is the property of being
directionally dependent. Despite noisy, the MPS anisotropy metric
is close to flat along frequency. The same observation is valid for
the first two phases of both injection and ejection. High amplitudes
and variabilities against frequency are introduced in the third injec-
tion and ejection phases as they approach their practical saturation
limits, close to the theoretical limits, indicating directionality (and
hence: structure) is introduced.

Angle and Edge Lengths Distributions. Using the same unit
box experiment deployed for spectral analysis, the fifth and sixth
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Figure 8: Spectral analysis comparisons of the Simple MPS case, and the different phases of injection and ejection, when applied to a unit box
with periodic boundary conditions. From left to right: the sample point set, 2D Fourier spectrum, power cross section, anisotropy, Delaunay
angle distribution, and Voronoi aspect ratio.
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columns of Figure 8 examine the distributions of Delaunay angles
and Voronoi aspect ratios, respectively, in the tuned meshes. Delau-
nay angles are well distributed between 30◦ and 120◦ in the sim-
ple MPS case. As we deviate away from it, in both injection and
ejection cases, angles start to pile up, which shows up in the cor-
responding histograms in the form of peaks. As we approach the
practical limits, more equilateral triangles get formed. Therefore,
large peaks at 60◦ are introduced at the practical limits of the last
phases of injection and ejection.

5. Tuning Non-uniform Disks

We extend our methods to disks with radii that vary across the do-
main (non-uniform). The average number of neighbors per disk
tends to be larger in the case of non-uniform disks, compared to
the uniform case [MREB12]. This has a direct impact on our algo-
rithm. Intuitively, non-uniform disks can be weighted according to
their varying radii, and the relative distances between centers need
to take into consideration the corresponding weights of their disks
when finding void corners. Therefore, we consider power diagrams
and power vertices for the non-uniform analysis, instead of Voronoi
diagrams and Voronoi vertices [EMA∗13] as in uniform packing.
In specific, we define the power distance w(a,b) from a to b to
be d2(a,b)− r2(a), as in power diagrams or additively weighted
Voronoi diagrams. This distance depends on the radius associated
with the starting measurement point and is therefore asymmetric;
w(a,b) 6= w(b,a). A key choice is in the definition of conflict. We
choose a variant related to the prior-disk and smaller-disk crite-
ria [MREB12]. In particular, when we move or inject a disk we
consider it to be the latest arrival, and allow its center to be placed
anywhere not already covered by the other disks. That is, we accept
any disk center if the weighted distances of the other centers to it
are all positive. It is possible for the new disk to be large enough that
it covers the center of some other (prior) disk. This changes the ar-
rival order of the disks, but, as in smaller-disk, it ensures that no pair
of disks cover each others’ centers. Our solutions for non-uniform
injection and ejection have two phases, based on the first and sec-
ond phases of our uniform injection/ejection procedures. There are
no Crystal Injection or Crystal Ejection phases here.

Non-Uniform Disk Injection. In the first phase of injection, we
consider removing one disk and replacing it by two (or more).
However, the disk radius is potentially different at each void corner.
For each corner c, its weighted diameter is its maximum weighted
distance to another corner, maxi w(c,ci). We remove p, and replace
it with a disk at the corner with the maximum weighted diameter. If
the diameter is negative, then this disk covers all other corners and
injection failed. Otherwise, there are some uncovered corners, and
we recursively compute the new void(s) and inject the new corner
with the maximum weighted diameter. We stop when maximality is
recovered. In the second phase, we consider moving the neighbors
q of disk with center p, in sequence. We move q to its void corner
c with maximum w(c, p). If this leaves a void, then we recursively
insert a new disk at c′ with maximum w(c′, p).

Non-Uniform Disk Ejection. For the first phase, we proceed with
Void Diameter ejection. For the second phase (Attractor Ejection),
we start by assuming that the disk radius at q is invariant, and esti-
mate q’s new position q′ exactly as before. The problem is that its

new radius might be too small to cover its original void. This would
destroy maximality and require adding points. So, if that happens,
we do a simple heuristic search for an acceptable position. We try
q′′ = q+0.9 ~qq′. We try this scaling up to three times total, stopping
if the original void is covered. While this works reasonably well in
practice, many other strategies for searching for good positions are
possible, such as moving q′ farther if it covers the void by a wide
margin, or moving q′ to the corner closest to p.

6. Applications

6.1. Non-Obtuse Triangulation

A non-obtuse triangle mesh is composed of a set of triangles in
which every angle is less than or equal to 90◦. These triangles are
called non-obtuse triangles and are generally considered more de-
sirable than triangles with obtuse angles; non-obtuseness is a clas-
sical measure of mesh quality. Several methods attempt this prob-
lem without respecting the sizing function or the noise properties
of the mesh [EÜ07, LZ06]. Here we apply the tools we developed
in the previous sections to successfully modify an existing Delau-
nay mesh constructed over a well-spaced point set (e.g., generated
by MPS), and includes obtuse triangles. We tune the mesh vertices
using relocation, injection, and ejection to yield a non-obtuse tri-
angulation. Intuitively, we pursue the following strategy. Consider
an obtuse triangle in a triangulation. The circumcenter of an obtuse
triangle lies outside it. The circumcenter of this circumcircle, v, is
a Voronoi vertex. Thus, an obtuse triangle indicates that the region
near v has no nearby sample points. Moving sample points even
farther away from v, using v as a repeller in Repeller Injection, is
likely to allow the injection of a new sample point at v or nearby.
We can then locally re-triangulate using this new sample point and
eliminate the non-obtuse triangle. In Section 2 and Section 3, we
chose the point to move uniformly at random. In this application,
we instead target vertices associated with obtuse triangles, apply
the following steps in order, and re-trangulate:

1. Relocation: Moving the point associated with the obtuse angle
outside its void edge-circles (circles centered at edge’s midpoint
with diameter equals to edge length), while maintaining maxi-
mality and conflict-free conditions.

2. Ejection: If relocation fails at a point, we eject that point and
move its neighbors to reclaim coverage as described in Sec-
tion 3. If achieved, we try to further relocate them for maximal-
ity and to eliminate conflicts, e.g., moving each point toward the
furthest gap corner without re-creating an obtuse angle.

3. Injection: if both relocation and ejection fail, we remove that
point and apply our injection algorithm as described in Sec-
tion 2. In specific, we insert a point in the circumcenter of the
obtuse triangle and relocate points on its unique void bound-
ary while relocating its neighbors to maintain maximality and
conflict-free conditions.

This three-step algorithm guarantees visiting all obtuse angles in
the mesh. An example obtuse angle in a Delaunay triangulation is
shown in Figure 9, along with how either one of relocation, ejec-
tion, and injection can successfully eliminate it. However, all three
steps are necessary in our algorithm to cover every possible obtuse
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(a) A Delaunay triangulation
with a problematic obtuse angle.

(b) Relocating the point at the ob-
tuse angle.

(c) Ejecting a point at obtuse an-
gle reclaimed maximality.

(d) Injecting 2 disks at obtuse an-
gle point.

Figure 9: The elimination of obtuse angles in a triangulation, achieved by
either relocation, ejection, or injection.

p

(a) Injection needed at circum-
center of obtuse triangle. Ejec-
tion creates new obtuse angle.

p

q

(b) Ejection is needed because
p is trivalent. Injecting q would
create new obtuse angles.

Figure 10: Both injection and ejection are needed to achieve a non-obtuse
triangulation: (a) a case when only injection works, (b) a case when only
ejection works. In both cases, relocation would not work.

angle. The need for relocation and ejection might be obvious, but
there are cases where only injection would work for getting rid of
an obtuse angle; see Figure 10 for an example where only one of
injection and ejection succeeds. Note that the extension of our algo-
rithm from 2D to curved surfaces is straightforward: a local “void”
is restricted to the input triangulation.

6.1.1. Experimental Examples

Our tuning framework successfully eliminates all obtuse angles in
uniform and non-uniform 2D domains, as well as curved surfaces.
To illustrate the capability of the non-obtuse tuning algorithm, we
apply it to a few meshes of some standard domains in different
cases. We plot the angle histogram before and after the tuning pro-
cess to highlight the elimination of the angle histogram tail beyond

90◦. Figure 11 shows the successful elimination of obtuse trian-
gles in non-convex 2D domains including some sharp corners (cat,
wedge, bat), for the case of a uniform sizing function (equal-radius
packing), and a dolphin-shaped domain for the case of non-uniform
(varying radii) packing. In Figure 12, we show the successful elim-
ination of obtuse triangles when our tuning algorithm is applied
to a set of curved surfaces (bimba, Ramesses, elk, and fertility),
for the case of a uniform sizing function (equal-radius packing).
For comparison with other non-obtuse triangulation methods, Fig-
ure 13 illustrates the capability of our algorithm in comparison with
the gap processing algorithm of Yan and Wonka [YW13]. Yan and
Wonka’s algorithm did not eliminate all obtuse angles; it rather
reduced the maximum angle in a uniform curved bunny-shaped
mesh from ∼116◦ to ∼110◦. In contrast, our tuning framework
eliminated all obtuse angles, making the maximum angle equal to
90◦. Starting with an MPS mesh with non-uniform sizing func-
tions, Figure 1 shows the successful elimination of obtuse trian-
gles when our tuning algorithm is applied to curved surfaces (ele-
phant and homer), for the case of a non-uniform sizing function
(varying-radius packing). The resulting tuned meshes are all De-
launay meshes with no angles greater than 90◦. Their vertices form
a point set that maintains maximality, conflict-free, and random-
ness properties. All tuned triangulations are less dense than their
initial versions, indicating most obtuse angles are resolved via ejec-
tion. Table 3 presents numerical comparisons between initial and
tuned triangulations of some of the uniform and non-uniform mod-
els listed above, using standard mesh quality metrics including the
number of vertices v, the minimum and maximum angles (θmin and
θmax), the minimum edge length as a fraction of the maximum edge
length (Lmin), the Hausdorff distance (dH ); the maximum distance
from a point set (initial/tuned) to the nearest point in a reference
point set, and the root mean square distance dRMS between a point
set (initial/tuned) to the nearest point in a reference point set, as a
% of the diagonal length of the bounding box.

6.2. Modeling Fiber Materials

In this application, we use tuning to improve the fidelity of model-
ing the micro-structure of a unidirectional E-glass fiber reinforced
epoxy material. The composite consists of a random arrangement
of fibers embedded in a matrix material. The fibers have circular
cross sections of about the same diameter. For this unidirectional
material, the fibers are aligned in roughly the same direction. Fig-
ure 14a shows a cross-sectional image of the actual material, show-
ing that they resemble a packing of non-overlapping disks. Taking
any maximal packing of overlapping disks and halving the radii of
its disks results in a maximal packing of non-overlapping disks;
see Figure 14b. To accurately model the stress-strain and failure of
the bulk fiber material, a model must match the fiber in terms of
the density of the fiber—the fraction of the domain area covered
by fiber disks—and the randomness of fiber disks. Both factors
are critical for fidelity. The density is critical because the fiber is
much stronger than the epoxy, so the material strength is propor-
tional to the cross-sectional area of the fibers, to first order. The
randomness provides a second level of accuracy, and is especially
critical for the failure strength. Many have tried to characterize ma-
terial strength and stress response using deterministic structures,
such as hexagonal or square lattices [LBM00, BAC05, Mal08].
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Figure 11: Initial (top) and tuned (down) uniform meshes of cat-, wedge-, and bat-shaped domains, along with nonuniform meshes of a
dolphin-shaped domain. Meshes and corresponding histograms clearly show the elimination of obtuse (red) triangles.
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Figure 12: Initial (up) and tuned (down) uniform meshes of curved surface models (bimba, Ramesses, and Moai). Meshes and corresponding
histograms clearly show the elimination of obtuse (red) triangles.
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Figure 13: A bunny model: (a) initial MPS packing surface, θmax = 116.17◦; (b) mesh generated using the gap processing algorithm
in [YW13], max angle only reduced to θmax = 109.61◦; and (c) tuned non-obtuse triangulation, θmax = 90◦.
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Mesh Model
v θmin θmax Lmin dH dRMS

Initial Tuned %change Initial Tuned Initial Tuned Initial Tuned Initial Tuned Initial Tuned

Uniform

Bunny 11.5K 10.5K -8.7 30.56 30.06 116.18 90.00 0.501 0.501 0.5008 0.5695 0.0429 0.0449
Loop 10.7K 9.9K -7.48 30.14 30.05 117.41 90.00 0.502 0.500 0.4388 0.4388 0.0612 0.063
Moai 12K 10.9K -9.17 30.36 30.06 118.80 90.00 0.500 0.500 0.4718 0.5266 0.0736 0.0772

Bimba 6.5K 5.9K -9.23 30.03 30.16 114.80 89.99 0.501 0.500 0.6566 0.6566 0.0926 0.0972
Ramesses 11.5K 10.5K -8.7 30.16 30.05 117.39 90.00 0.500 0.500 0.518 0.518 0.0754 0.0789
Fertility 8.4K 7.7K -8.33 30.26 30.07 116.00 90.00 0.500 0.500 0.3704 0.3864 0.0503 0.0531

Elk 20.4K 18.7K -8.32 30.20 30.02 118.04 90.00 0.500 0.500 0.3311 0.328 0.0518 0.0541

Non-uniform
Bunny 6.6K 5.8K -12.12 19.05 19.89 126.99 90.00 0.162 0.149 0.4091 0.4091 0.0636 0.0689
Homer 4.4K 3.9K -11.36 21.39 21.33 126.14 90.00 0.092 0.087 0.467 0.54 0.1058 0.1146

Elephant 12.7K 11.2K -11.81 21.92 18.35 123.43 90.00 0.053 0.05 0.5349 0.5789 0.0819 0.0906

Table 3: Mesh quality measures of initial and tuned non-obtuse triangulations: v is the number of vertices, θmin and θmax are the minimum and maximum
angles, Lmin is the minimum edge length (as fraction of maximum edge length), dH is the Hausdorff distance, and dRMS is the root mean square distance (as a
% of the diagonal length of the bounding box).

(a) A cross-section of a
fiber micrograph.

(b) Nonoverlapping fiber
disks model.

(c) Tuned MPS model
at peak load.

(d) Tuned MPS model
post fracture.
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Figure 14: Modeling fiber structures: (a) Scanning electron micrograph of a fiber composite cross-section; (b) r/2 nonoverlapping fibers are
modeled using MPS disks of radius r, representing a composite fiber material with an area fraction of 67%, tuned MPS performance at (c)
peak load, and (d) post fracture, and (e) simulated tensile responses of tuned MPS, hexagonal, and square packings. Solid lines show the
simulated stress under increasing strain, and horizontal dashed lines show the expected peak stress before failure. The green dashed line is
the experimental peak stress. Our tuned MPS simulation matches the experimental one closely.

While these produce plausible results under elastic loading, they
significantly over-predict strength and damage resistance. On the
other hand, several random packings have been tried. While these
tend to give a more plausible response curve shape, in absolute
terms they are inaccurate because they do not get the fiber den-
sity right [WCS98, TGL08, SGP06, SG06, TTL06]. This is an ac-
tive materials science challenge problem, and unfortunately, the
data available from physical experiments are inadequate to vali-
date any stress/strain or failure predictions. Physical experiments
include complex phenomena not represented in the models, and
the models include local quantities that are currently impossible to
measure in experiments. The state-of-the-art in this field is to judge
models by first principles, how accurately they represent the mate-
rial. By this standard, our new predictions are preferred by subject
matter experts. A clear solution for this modeling problem is a ran-
dom packing with its density adjusted to the exact density of the
fiber material. Recall that MPS and its near-maximal variants usu-
ally produce volume fractions around 55%. In fiber materials, the
volume fraction is typically larger, in the range of 60–70%. These
values are purely a result of the process used to create the packing;
recall maximal packings can vary in area fraction by a factor of 3,
from 0.3 to 0.9, without changing the coverage and conflict radii.

We use tuning of an MPS to increase its density (by injection) to the
correct fiber density, while maintaining randomness. We compare
our tuned MPS model to hexagonal and square packings. The ex-
tent of the fiber material is orders of magnitude larger than the fiber
diameter, so the material is modeled well by a periodic arrangement
of disks in a square. We start with an MPS over this square. We use
disk injection to increase the area fraction to the area fraction of the
material at hand, in our case 67%. We load the model transverse to
the fibers, to its peak value before fracture and post fracture, as il-
lustrated in Figure 14c and Figure 14d. We calculate the boundary
conditions using a multi-scale approach, solving for the relative ve-
locities at the periodic nodes, ensuring the homogenized response is
uniaxial. We ran four examples, each with a different random MPS
as input and injected disks as output. Figure 14e shows the four
simulated responses, plus their average. Note that the simulations
span a small range in the elastic range, but at fracture (peak load)
there is a wider variation in the responses. Obviously, methods that
do not capture the fiber noise properties fail to present a good peak
stress model when compared to experimental results. Poisson-disk
sampling, on the other hand, preserves the noise property but does
not represent the correct discrete density and hence needs to be
tuned using our method for a reliable physical modeling.
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7. Conclusions

We have introduced a method to tune the discrete density of a ran-
dom disk packing to a user-specified target. In contrast to prior
methods, we are able to get much closer to the densest-possible and
sparsest-possible packings. Disks are added, moved, or removed
one by one, giving very fine control. Blue noise is retained for much
of the control range, but is lost as we approach a structured tiling at
the extremes of the allowed densities. We have demonstrated the ef-
ficiency of our method using uniform sizing functions over planar
domains as well as the curved domains typical of graphics mod-
els. We also show the usefulness of our method for modeling: we
can match the density of physical materials to generate more real-
istic fracture simulations. For future work, we consider methods to
reintroduce randomness. Injected disks are exactly one disk radius
away from neighbors, while ejected disks tend to be equidistant to
several nearby disks. Both of these can be updated. We will also
explore the limits of how fast the distribution may be graded.
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