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ABSTRACT OF THE DISSERTATION

Mathematical Modeling and Computational Methods for Electrostatic
Interactions with Application to Biological Molecules

by

Jiayi Wen

Doctor of Philosophy in Mathematics

University of California, San Diego, 2015

Professor Bo Li, Chair

In this dissertation, I combine physical modeling, mathematical analysis,

and numerical computation to study several problems concerning electrostatic in-

teractions in biological molecular systems. Biomolecules, such as DNAs and pro-

teins, are highly charged. They interact with each other and with the mobile

ions and the polarized solvent to generate strong forces that affect crucially many

molecular processes, such as molecular conformational changes, recognition, and

self-assembly. My goal is to develop rigorous theories and efficient computational

tools to understand some of the principles and mechanisms underlying such com-

plicated interactions.

Specifically, I study three closely related problems. The first one is the

xi



effect of ionic sizes that has been experimentally observed to be significant. Using

a size-modified mean-field model and extensive Monte Carlo simulations, I capture

details of the competitive adsorption of counterions of multiple species to charged

surfaces. The simulations confirm the crucial role of ionic valence-to-volume ratios

that had been predicted by the mean-field theory.

The second problem is how the ionic concentration dependent dielectric

coefficient can affect the equilibrium properties of charged system. I construct

a variational model, derive rigorously the first and second variations of the free-

energy functional, and prove that the functional is nonconvex. Numerical studies

reveal several important features that cannot be modeled with a constant dielectric

coefficient.

Finally, I study a general problem of the solvation of charged molecules,

aiming at understanding how electrostatic interactions contribute to the shape of

underlying molecules. I develop a phase-field implicit-solvent approach to mini-

mize a free-energy functional that couples the interfacial energy, van der Waals

solute-solvent interaction energy, and electrostatic energy. I also design numerical

methods to implement this approach.

A common theme of my dissertation work is the variational approach. Many

physical effects such as ionic size effects, solvent entropy, concentration dependent

dielectric response can be incorporated into a mean-field free-energy functional

of ionic concentrations coupled with the Poisson equation for electrostatics. The

techniques of analysis developed in this work may help improve the understanding

of the underlying physical properties of charged systems and provide new ways of

studying analytically and numerically other problems in the calculus of variations.

xii



Chapter 1

Introduction

Electrostatic interactions play an important role in many complex charged

systems, such as biological molecules, soft matter material, nanofluids, and electro-

chemical devices [And95,BKN+05,DM90,FBM02,FPP+10,Lev02,McC09,SH90b].

The subject of this dissertation is to develop mathematical theories and computa-

tional methods to understand such interactions, particularly in charged biological

molecular systems. The main contributions of my dissertation work include:

(1) Theoretical studies of mean-field variational models of ionic solution and that

of molecular surfaces with the Poisson–Boltzmann electrostatics;

(2) Design and implementation of the corresponding computational algorithms,

and conduct extensive Monte Carlo simulations and numerical solutions of

partial differential equations for charge-charge interactions;

(3) Discovery of various interesting properties of charged molecules, validate

some experimental results, and clarify some confusion in literature.

It is hoped that the mathematical and numerical methods developed here can be

used to solve other problems in the calculus of variations; and that the physi-

cal properties discovered here, relative new to the community, are of interest in

application and for future investigations.

In this introductory chapter, I will first describe the background of electro-

static interactions in biological molecular systems, and indicate the importance of

and challenges in studying such interactions. I will then describe the main theories

and methods that have been used to study some of the electrostatics problems and

1
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that are related to my dissertation work. In particular, I will describe the classical

Poisson–Boltzmann theory, its limitations, and its modifications. Finally, I will

present my main research results and describe their significance.

1.1 Background

A biological molecule such as a DNA or protein consists of many charged

atoms. (When two neutral atoms share an electron, each of them is then slightly

positively charged.) Such charged molecules induce an electric field that polarizes

the surrounding solvent (water or salted water) by deforming the structure of each

water molecule. In addition to charged molecules, there are often mobile ions, such

as Sodium (Na+) and Chlorine (Cl−) in the solvent. See Figure 1.1 for a schematic

description of a charged molecular system. In the figure, the white region is a

charged molecular region and the blue region is the solvent region. Small circles

represent mobile ions with + and - indicating ions of positive charge or negative

charge, respectively.

Figure 1.1: A typical charged molecular system in aqueous solvent.
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The electrostatic interactions among the charged molecules, mobile ions,

and polarized solvent, together with covalent bonding and dispersive van der Waals

forces that are short-ranged repulsion and long-ranged attraction, generate strong

molecular forces that determine the molecular conformations and dynamics, and

further cellular functions. Examples of electrostatics mediated and controlled bio-

logical molecular processes include: protein folding [Dil90, LO06] where a misfold

can lead a fatal disease; flow of ions through ion channels [Hil01] that maintain our

immunity; protein-ligand binding [ACI+09, CWS+09, SWC+09] and protein asso-

ciation [SNH00,McC09] that are the key of drug effectiveness. Figure 1.2 shows a

recent computational result of the two-domain protein BphC, indicating a strong

charge effect [WCC+12]. Without charges (left of Figure 1.2), a dry region (a re-

gion of no water molecules) exists near the connection of the two domains. But it

is gone after charges are added numerically (right of Figure 1.2).

Figure 1.2: Computer simulated different conformations of the protein BphC.
The color indicates curvature.

Accurate and efficient modeling and computations of electrostatic interac-

tions in a real biological system have been challenging due to the inhomogeneity,

complicated geometry, multiple scales, and the nature of many-body interaction of

an underlying charged system. In recent years, there have been growing needs and

interest in developing rigorous mathematical theories and efficient computational

methods to study such molecular systems. My dissertation concerns mathemati-

cally problems in the calculus of variations, such as the convexity of a free-energy
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functional and its first and second variations. Some of the problems involve geo-

metrical flows. My work also concerns numerical computations, including Monte

Carlo simulations and numerical solutions to partial differential equations.

1.2 Models and Methods

There are in general two types of modeling approaches to understanding

electrostatic interactions in charged systems. The first one is a particle-like method,

such as molecular dynamics (MD) simulations, Brownian dynamics simulations,

and Monte Carlo (MC) simulations [FS02]. In such an approach, each particle

(such as an atom or ion) in the system is treated as an explicit object. Simulations

are usually very accurate but time consuming due to the large number of degrees

of freedom. The second one is a field-like method, e.g. a mean-field model [And95]

that is often in the form of differential equations. By replacing all interactions

to any object in the system with an average or effective interaction, a mean-field

method can efficiently provide some insight into the phenomena of the system.

In this dissertation, I will focus on the development of mean-field meth-

ods, mainly the Poisson–Boltzmann theory, and the application of Monte Carlo

simulations to study the properties of charged systems.

1.2.1 Monte Carlo simulations

Monte Carlo (MC) simulations are very useful to describe the equilibrium

properties of a system with many degrees of freedom. In such simulations, many

different states of an underlying system are randomly sampled to provide statistical

quantities, such as the averages or probability densities. MC simulations have

many applications in computational physics, chemistry, and biology, particularly

for strongly coupled solids, charged molecular system, and cellular structures.

The Metropolis–Hastings algorithm

In this dissertation, I use the Metropolis–Hastings algorithm to study the

electrostatic interaction and ionic concentrations in charged system. The Metropolis–
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Hasting algorithm is a Markov Chain Monte Carlo method. Here I briefly describe

how to apply Metropolis–Hasting algorithm to study a many-particle system.

Consider a system with N particles. Denote the location of ith particle by

xi, where i = 1, · · · , N . Let U = U(x1, · · · ,xN) be an interaction potential of

all the particles. It is often defined as the sum of all pairwise interaction energies

among all the particles. MC simulations consist of a sequence of single-particle

moves with some boundary conditions (for example, periodical, or reflection, or

sink). The algorithm of each move is as follows:

Step 1. Select randomly an individual particle and move it randomly.

Step 2. Compute the Unew, the potential of the system, where the selected particle

is located at the new position.

Step 3. If Unew < Uold (where Uold is the potential before the particle was moved),

accept the move; else compute s = e−β∆U where β is a constant (often

inversely proportional to temperature) of the system and ∆U = Unew−Uold,
then generate a random number t uniformly from [0, 1]. If s > t, accept the

move, otherwise reject it.

After many moves, the system is considered to have reached an equilibrium

when the accept rate is small enough. Then one can start to compute the ensemble

average and study the property of the system. The algorithm is usually very time

consuming. More details about the MC acceleration are discussed in Chapter 2.

1.2.2 The Poisson–Boltzmann theory

In recent years, many theoretical studies of electrostatic interactions have

based on the classical, mean-field, Poisson–Boltzmann (PB) theory [Cha13,DH23,

Fix79, Gou10]. Such a theory has been successfully applied in biomolecular mod-

eling and colloidal science [And95,DM90,GT08,LZHM08,SH90b]. In the classical

PB theory, electrolytes are treated as ideal ionic gases, and the ionic concentrations

are related to the electrostatic potential by the Boltzmann distributions. This the-

ory, often very efficient, thus works well for monovalent ions, low surface charge

densities, and high solvent dielectric coefficients. The mathematical form of the PB

theory is the PB equation. This is Poisson’s equation for the electrostatic potential
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with the equilibrium ionic concentrations given by the Boltzmann distributions via

the electrostatic potential. In a variational setting, such distributions result from

the equilibrium conditions for a mean-field electrostatic free-energy functional of

ionic concentrations, where the electrostatic potential is determined by Poisson’s

equation [CDLM08,FB97,Li09a,Li09b,RR90].

Let me briefly introduce the formulation of the classical PB theory. Con-

sider an electrolyte (i.e., ionic solution) occupying a region Ω ⊂ R3. Assume there

are M ionic species in the solution. For the ith ionic species, denote its valence

by Zi and its charge by qi = zie, where e is the elementary charge. Let us also

denote by ci = ci(x) the concentration of the ith ionic species at x ∈ Ω. Assume

ρf : Ω → R to be a given function that represents the density of fixed charges.

Then the total charge density is

ρ = ρf +
M∑
i=1

qici in Ω, (1.1)

where the summation part is the density of charges from all the ions. Let us denote

by ψ = ψ(x) the electrostatic potential at x ∈ Ω. This is the primary quantity in

describing the electrostatic properties. It is governed by Poisson’s equation

−∇ · ε∇ψ = ρ, (1.2)

where ε = ε(x) is the dielectric coefficient, often a known quantity. Note that other

useful quantities are the electric field ~E = −∇ψ and electrostatic displacement

~D = ε ~E.

The key in the classical PB theory is the following Boltzmann distributions

that connect the local ionic concentrations ci to the electrostatic potential ψ:

ci = c∞i e
βqiψ, i = 1, · · · ,M. (1.3)

Here β = (kBT )−1 with kB the Boltzmann constant and T the absolute tempera-

ture, and c∞i is the bulk concentration of ith ionic species. Combining the charge

density (1.1), Poisson’s equation (1.2), and the Boltzmann distributions (1.3) we

then obtain the nonlinear partial differential equation

−∇ · ε∇ψ = ρf +
M∑
i=1

qic
∞
i e

βqiψ. (1.4)
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This is the celebrated PB equation. It, together with some boundary conditions,

determines the electrostatic potential ψ and in turn also determines the ionic con-

centration ci by the Boltzmann distributions.

The classical PB theory is in fact variational. It is based on the following

electrostatic free-energy functional:

F [c1, · · · , cM ] =

∫
Ω

{
1

2
ρψ + β−1

M∑
i=1

ci[log(Λ3ci)− 1]−
M∑
i=1

µici

}
dx. (1.5)

Here Λ is the thermal de Broglie wavelength and µi the chemical potential of ith

ionic species, which is often experimentally measurable. The first part is the elec-

trostatic potential energy, the electrostatic potential ψ is determined by Poisson’s

equation (1.2) together with some boundary conditions. The second part is the

ideal-gas entropy of ionic concentrations. The last part is the chemical potentials

of all the ionic species. Note that the concentrations c1, · · · , cM are the direct

variables but ψ is not. Now, at equilibrium concentrations c1, · · · , cM , all the first

variation vanish: δciF = 0 (i = 1, · · · ,M). These are exactly the Boltzmann

distributions (1.3).

Despite the overall success of the classical PB theory made in recent two

decades, it has several well-known limitations. Mostly it is caused by ignoring

the ion-ion correlations and ion specific properties. Thus the theory will provide

accurate descriptions of the ionic solution when the system only has monovalent

ions and low-charged surfaces. But it fails to provide reasonable descriptions where

ions are crowded and surfaces are highly charged. Without including the ionic size

effect, the classical PB theory predicts unreasonably high ionic concentration near

a charged surface. In a system with multiple species of ions, the result from

classical PB indicates that all ions will stack near the surface, which is impossible

in a highly charged system. Moreover, scenarios of crowded ions are often seen in

a system with highly charged object. This will cause the reduction of the relative

permittivity of the solvent [KD09, BYAP11]. The assumption that the relative

permittivity is a constant in a mean-field theory, is not accurate for such a system.

This results in another inaccurate factor in the PB mean-field description.

In this dissertation, I mainly study two modified PB mean-field models.



8

The first model includes finite ionic sizes and concentration of solvent molecules

into the PB model. This improvement overcomes one of the major issues of PB

theory, i.e., it cannot provide reasonable description near highly charged surface

with multiple species of ions. The improved model has been studied theoretically

by Li [Li09a], and numerically by Zhou, Wang, and Li [ZWL11]. The model

with non-uniform sizes captures the counterion stratification phenomena. It is

confirmed by Monte Carlo simulations in this work. The second one is a mean-field

model with a self-consistent dielectric response. The constant dielectric coefficient

works well in a system with low ionic concentration. But it decreases when the

ionic concentration increases. This is confirmed by experiment and simulations

[KD09]. Frydel [Fry11] has considered a modified effective dielectric constant and

the Boltzmann distribution, and studied a polarizable PB theory. Andelman et al.

also studied a simple system with the dielectric constant which depends linearly on

the concentration [BYAP11]. Moreover, Ma and Xu proposed a self-consistent field

model for inhomogeneous dielectric media [MX14]. Their modeling results agree

with related simulations [FXH14]. My analysis reveals that the widely used free-

energy functional is in fact nonconvex in this case. My numerical computations

confirm some of the experimental observations.

1.2.3 Phase-field models

The phase-field theories and methods have been widely used in studying

interface problems arising in many scientific areas, such as materials physics, com-

plex fluids, and biomembranes, cf. e.g., [AMW98,BKM05,BWBK02,Che02,CL85,

DLW04, DLRW05, Emm03, Gla03, GGHW65, KKL01, Lan86, TCC06, VvdVM01,

SRL10,YFLS04] and the references therein. The idea of phase-field modeling is to

represent a sharp interface by a smooth function φ, which takes the value 1 on one

side of the interface and 0 on the other side, and transitions from 1 to 0 crossing the

interface; see Figure 1.3 for an example of an one-dimensional phase-field function.

To determine the phase-field function φ, one can solve the question

∂φ

∂t
= ξ∆φ− 1

ξ
W ′(φ).
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1

0

Interface Location

ξ

Figure 1.3: The phase-field function.

This is the gradient flow of the energy functional

Fξ[φ] =

∫
Ω

[
ξ

2
|∇φ|2 +

1

ξ
W (φ)

]
dx,

i.e., ∂tφ = −δφFξ[φ], where W (t) = ct2(1 − t)2 is a double well potential with a

suitable prefactor c > 0 minimized at 0 and 1, ξ > 0 is a small numerical parame-

ter that characterizes the width of the transition layer, and Ω is a computational

domain. If Fξ[φ] is small then the term (1/ξ)W (φ) makes that φ ≈ 0 or φ ≈ 1 in

the region. When ξ becomes smaller and smaller, the transition characterized by

the phase-field function becomes a sharp interface; and the corresponding integral

value becomes proportional to the interracial area. The advantage of phase-field

approach is the capability of handling interfacial topological changes and fluctua-

tions, which are crucial in the transition of one equilibrium conformation to another

in biomolecular systems. Existing studies have shown that interfacial fluctuations

can be described in a phase-field approach [KR99,BRP05]. One can also couple the

dielectric boundary PB equation into this framework by assuming the dielectric

coefficient ε = ε(φ) to depend on the phase-field function φ. Here, ε(0) and ε(1)

should be set as the dielectric coefficient in water and solute regions, respectively.

1.3 Summary of the Dissertation Work

This dissertation consists of three parts. In the first part, I study the modi-

fied mean-field theory with ionic size effects. I also design a MC simulation method
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to investigate in depth the ionic size effect. In the second part of the work, I con-

struct a mean-field model with ionic concentration dependent dielectric. Moreover,

I analyze the governing free-energy functional. Through my computations, I also

observe interesting phenomena described by this modification. In the third part, I

combine the PB electrostatics with a phase-field model to study charged molecules

in water.

1.3.1 Monte Carlo simulations of ionic size effects

In the first part of my dissertation work (cf. Chapter 2), I investigate the

size-modified mean-field model. I summarize the theoretical results and numerical

algorithms of this model. I then design a specific Monte Carlo (MC) simulation

technique for a system of a mixture of crowded mobile ions with different sizes and

valences. I simulate the competition of multiple species of ions near the surface.

Through the extensive MC simulations and mean-field computations, I obtain the

following results:

(1) For a low surface charge density, the adsorption of counterions with a higher

valence is preferable. This agrees with previous studies in existing the lit-

erature. For a highly charged surface, both of the mean-field theory and

MC simulations show that the counterions bind tightly around the charged

surface, forming stratification or layering of counterions of different species.

(2) The ionic valence-to-volume ratios, instead of ionic valences alone, are the

key parameters that determine the binding of counterions to the charged

surface. Due to the ionic size effect, counterions with the largest valence-to-

volume ratio form the first layer of stratification, while those with the second

largest valence-to-volume ratio form the second layer, and so on. I shall call

this the “criterion of valence-to-volume rations” in ionic stratification. My

MC simulations confirm the validity of this criterion that was discovered in

the previous mean-field calculations [ZWL11].

(3) The MC simulations predict the charge inversion for ionic systems with salt.

Moreover, I find that the over-charging is more significant for a system with

monovalent coions than for a system with divalent coions. The mean-field
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theory, however, fails in predicting the charge inversion, since it does not

include the ion-ion correlation.

1.3.2 Theory and computation of electrostatics with ionic

concentration dependent dielectrics

In this part (cf. Chapter 3), I construct a mean-field variational model to

study how the dependence of dielectric coefficient on local ionic concentrations

affects the electrostatic interaction in an ionic solution near a charged surface.

Experiment and simulations have indicated the relation between the coefficient and

ionic concentration [HRC48,LZ98]. Figure 1.4 shows the experimentally measured

dependence of the dielectric coefficient on the concentration of NaCl and fitted

curve.
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Figure 1.4: The dielectric coefficient for NaCl solution.

I study theoretically and numerically the variational problem of minimizing

the free-energy functional (1.5) together with Poisson’s equation (1.2). But the

dielectric coefficient ε is assumed now to depend on the total concentration c̄ =∑M
i=1 ci as in Figure 1.4. My main results are as follows:

(1) I derive the first and second variations of the electrostatic free-energy func-

tional (3.1). Setting the first variation to zero, I obtain the following gen-

eralized Boltzmann distributions that relate the equilibrium concentrations
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c1, . . . , cM to the corresponding electrostatic potential ψ :

ci = c∞i exp

{
−β
[
qiψ +

1

2
ε′(c̄)ε0|∇ψ|2

]}
, i = 1, . . . ,M,

where c∞i is the bulk concentration of the ith ionic species.

(2) I show by numerical calculations that there are possibly multiple values of

concentrations c = (c1, . . . , cM) that can depend on the same potential ψ

through the generalized Boltzmann distributions. I also construct some ex-

amples to prove that the free-energy functional can be indeed nonconvex.

(3) I minimize numerically the electrostatic free-energy functional for a radially

symmetric system of both counterions and coions., and find several interest-

ing properties of the electrostatic interactions attributed to the dependence

of dielectric on ionic concentrations. These include the depletion of ions near

a charged surface, the non-monotonicity of ionic concentrations near such a

surface, and the shift of peaks of the ionic concentration profiles due to the

increase of surface charges or bulk concentrations.

1.3.3 Phase-field modeling and computation of charged

molecules

Electrostatics are crucial to determining the solvent-solute interface in bio-

logical systems. In the third part of my dissertation (cf. Chapter 4), I develop

a phase-field variational implicit-solvent approach for the solvation of charged

molecules. I employ the free-energy minimization framework with surface energy,

van dar Walls interactions, and the electrostatic interactions. The main results are

as follows:

(1) I theoretically study the phase-field model with the Poisson–Boltzmann (PB)

electrostatics and the free-energy functional.

(2) I design a semi-implicit numerical scheme coupled with a Poisson’s equation

solver to obtain the minimizing phase-field function φ. In order to remove

the singularity of the Poisson equation with point charge, I incorporate the

reaction field ψreac to solve the equation.
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(3) I investigate a spherical model system numerically. The comparison of my

model with sharp interface results indicates that my model is reliable and

accurate. I can clearly see the convergence when ξ → 0. When the point

charge Q at the center is larger, the surface will be pushed in due to the

strong contribution of the electrostatic energy.

1.4 Outline for the Rest of Dissertation

In Chapter 2, I summarize the mean-field theory and computation, and then

investigate the counterion stratification phenomena by MC simulations. In Chap-

ter 3, I develop a rigorous mean-field theory for electrostatics with concentration

dependent dielectric. Then I study a model system using numerical computation

by minimizing the free-energy functional. In Chapter 4, I study the phase-field

modeling of charged molecules. Finally, in Chapter 5, I draw conclusions.



Chapter 2

Theory and Computation of Ionic

Size Effects

2.1 Introduction

A common scenario of electrostatic interactions is a mixture of crowded

mobile ions of multiple species with different valences and sizes in an electrolyte

surrounding an external charged surface. Excluded-volume effects or size effects of

such mobile ions, in particular effects of different ionic sizes, contribute significantly

to the electrostatic free energy and forces, which in turn determine the structure

and stability of an underlying system. For instance, the size of monovalent cations

can influence the stability of RNA tertiary structures [LLSD09]; and differences in

ionic sizes can also affect how mobile ions bind to nucleic acids [BTC+07,BAR80].

Concentrations of ions in an ion channel can reach as high as dozens of mol/L

(about 30 M in calcium and sodium channels), and the ionic sizes can affect the

ion transport and channel selectivity [Eis11]. The charge densities in active sites of

enzymes and DNAs are also found very high, and the sizes of surrounding mobile

ions can affect many biological functions of these macromolecules. In ionic liquids

at room temperature, charged electrode/solution interfaces contain electric double

layers (EDL) with a nominal specific capacitance of 25 µF/cm2 [Con99]. The effect

of non-uniform ionic sizes to the EDL structure can be significant. Detailed density-

14
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functional theory calculations, Monte Carlo simulations, and integral equations

calculations confirm some of these experimentally observed properties due to the

non-uniformity of ionic sizes [HPP10,Kor07,QPMMHÁ04,VBG07,WYGL05].

For years, attempts have been made to include ionic size effects, particularly

nonuniform ionic size effects, into a PB-like efficient approach [BAO97, BAO00,

BD12, CBL+07, KII96, Li09a, Tre08, ZWL11]. See also [ABH05, BSK11, BKSA09,

Bik42,EHL10,KBA07a,KBA07b,LZ11]. One of the key ideas has been to introduce

the local concentration of solvent molecules, in addition to those of ions of multi-

ple species, and to incorporate all the ionic and solvent molecular volumes in the

entropic part of a mean-field electrostatic free-energy functional. If all linear sizes

(including that of solvent molecules) are the same, such a free-energy functional

can be derived using a lattice-gas model [BAO00, KII96, Tre08]. Moreover, there

are explicit formulas, the generalized Boltzmann distributions, relating equilibrium

ionic concentrations and the corresponding electrostatic potential. These distri-

butions, together with Poisson’s equation, lead to the generalized PB equation for

the case of a uniform ionic size [Li09a,Li09b,SBHF10]. For a system of three ionic

species with two different ionic sizes, Chu et al. [CBL+07] derived a different size-

modified PB equation from a similar lattice-gas model and applied this equation

to study the ionic size effect in the binding of ions to DNA. For a general system,

Tresset [Tre08] derived an expression of the free energy with an effective volume

fraction of free space, under the assumption that the ionic excluded volumes are

dispersed from each other to a reasonable extent.

For the general case of multiple ionic species with different valences and

sizes, Li [Li09a] proposed and analyzed a semi-phenomenological free-energy func-

tional of ionic concentrations with Poisson’s equation as a constraint for the elec-

trostatic potential. This functional is obtained simply by using different individ-

ual ionic sizes instead of a uniform size in the previous functional derived from

a lattice-gas model. Equilibrium conditions for the new and general free-energy

functional are nonlinear algebraic equations for the equilibrium concentrations. It

is shown that such conditions determine completely the dependence of equilibrium

ionic concentrations on the corresponding electrostatic potential [Li09a]. Explicit
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formulas of such dependence and hence Boltzmann-like distributions for the equi-

librium concentrations, however, seem unavailable. Therefore, there is no explicit

PB-like equation of the electrostatic potential in the general case.

Nevertheless, Zhou et al. [ZWL11] developed a robust numerical method for

minimizing such a functional to obtain the equilibrium ionic concentrations and the

corresponding electrostatic potential. The starting point there is to reformulate

the variational problem as a constrained optimization problem [BSD09,MR02]. An

augmented Lagrange multiplier method is then constructed and implemented to

solve this constrained optimization problem. Extensive numerical results reported

in [ZWL11] demonstrate that the new mean-field, size-effect included model can

describe many detailed properties of ionic concentrations, including the stratifica-

tion of concentrations, that have been predicted by other refined models but not

by the classical PB theory; cf. [BD12, Tre08]. In particular, it is found that the

ionic valence-to-volume ratio is the key parameter in the stratification [ZWL11].

In this part of my dissertation work, I study the ionic size or excluded vol-

ume effect to the structure of electrical double layer in the vicinity of a highly

charged surface, using both the mean-field model and Monte Carlo (MC) simula-

tions. My goal is two-fold. First, I would like to understand how counterions with

different valences and sizes compete in the adsorption to the charged surface, and

how the ionic valence-to-volume ratio affect the ordering of ion packing near such

a surface. Second, I would like to examine the validity of the mean-field theory

with nonuniform size effects by comparing it with the MC simulations.

The adsorption of counterions to a charged surface is determined by the

competition between the entropic and energetic contributions of an underlying

system of electrolyte. The ionic size effect is quite significant in such adsorption,

since the excluded volume of crowded ions reduces the mixed entropy, and thus

increases the Helmholtz free energy of the total system. The competition of en-

tropy and energy results in a stratification of counterions of different species in the

electrical double layer, as revealed in both experimental investigations [TVTW06]

and theoretical predictions [AGV06, TSYT05, Tre08, ZWL11]. For a low surface

charge density, the electrostatic interaction dominates and the ions with higher
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valence are most likely to stay closest to the charged surface. For a highly charged

surface, smaller counterions are stronger in competition to form the first layer of

the stratification [TSYT05, VBG07]. My mean-field numerical computations and

MC simulations reproduce these results. In particular, my MC simulations vali-

date the prediction by the mean-field theory of the role of ionic valence-to-volume

ratios in the counterion stratification.

My simulation system consists of a spherical macroion immersed centrally in

an electrolyte system. There are counterions of multiple species in the electrolyte.

The entire system is assumed to be neutral in charge. The parameters of the system

include the linear size of the simulation box, the radius and constant surface charge

density of the macroion, and the valence, volume, and total number of each species

of (micro) mobile ions. The same set of parameters are used in my MC simulations

and mean-field computations. I use unrestrictive primitive models of ionic system,

treating ions as hard spheres. Based on such a model, I use canonical ensemble MC

simulations with Metropolis criterion. I plot the radial particle density function for

each species of mobile ions. Such functions are compared with the corresponding

equilibrium ionic concentrations predicted by my mean-field theory.

The rest of this chapter is organized as follows: In Section 2.2, I introduce

the mean-field theory and numerical method for nonuniform ionic size effects. In

Section 2.3, I describe my MC simulations method. In Section 2.4, I present

and discuss the results of my MC simulations and mean-field computations. In

Section 2.5, I make several remarks.

2.2 Mean-Field Theory and Method

Let us consider an electrolyte with M species of ions. For each i (1 ≤
i ≤ M), let us denote by zi the valence and vi the volume of an ion of the ith

species. Let us also denote by Ni the total number of ions of the ith species. The

total number of all ions is N =
∑M

i=1Ni. We assume that there is a spherical

colloidal particle—a charged macroion—of radius R inside the electrolyte solution

and that its charge effect is described effectively by a constant surface charge
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density, denoted σ. We assume the system charge neutrality

z e+
M∑
i=1

Nizie = 0, (2.1)

where z = 4πR2σ/e is the valence of the macroion and e is the elementary charge.

Assume that the entire system occupies the cubical region (−L/2, L/2)3

with the linear size L > 2R and that the macroion occupies the spherical region

BR of radius R centered at the origin. Therefore all the ions are in the region

Ω = (−L/2, L/2)3 \ BR. Denote by Γ = ∂BR the boundary of the sphere BR, i.e.,

the spherical surface of the macroion.

2.2.1 A mean-field theory with nonuniform size effects

For each i (1 ≤ i ≤ M), let us denote by ci(r) the local concentration at

a spatial point r ∈ Ω of ions of the ith species. The charge density of solution is

then given by
∑M

i=1 zieci(r) (r ∈ Ω). All the concentrations ci(r) are constrained

by ∫
Ω

ci dV = Ni, i = 1, . . . ,M. (2.2)

We also denote by v0 the volume of a solvent molecule. The local concentration

c0 = c0(r) of the solvent molecules is defined by

c0(r) = v−1
0

[
1−

M∑
i=1

vici(r)

]
for all r ∈ Ω.

For a given set of ionic concentrations c = (c1, . . . , cM), a mean-field ap-

proximation of the electrostatic free energy is given by

F [c] = Fpot[c] + Fent[c]. (2.3)

The first part Fpot[c] is the electrostatic potential energy, defined by

Fpot[c] =

∫
Ω

1

2

(
M∑
i=1

zieci

)
Φ dV +

∫
Γ

1

2
σΦ dS, (2.4)

where Φ is the electrostatic potential. It is determined by Poisson’s equation

∇ · εε0∇Φ = −
M∑
i=1

zieci in Ω, (2.5)
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together with the boundary condition

εε0
∂Φ

∂n
=

σ on Γ,

0 on Γbox,
(2.6)

where ε0 is the vacuum permittivity, ε is the relative permittivity or dielectric

coefficient of the solution, and n is the exterior unit normal at the boundary of

Ω that consists of the spherical surface Γ and the boundary, Γbox, of the box

(−L/2, L/2)3. We shall assume that ε is a constant in the entire solution region

Ω. Notice that Φ is not an independent variable of the functional F [c].

The second part Fent[c] is the entropic contribution. It is given by [Li09a,

ZWL11]

Fent[c] = kBT
M∑
i=0

∫
Ω

ci [log(vici)− 1] dV, (2.7)

where kB is the Boltzmann constant and T is the absolute temperature. Notice that

the summation index starts from i = 0. Notice also that in the variational approach

to the classical PB equation, the solvent entropy is not included and all the ionic

linear sizes v
1/3
i are replaced by the de Broglie wave length [CDLM08,FB97,Li09b];

cf. (1.5). The set of equilibrium ionic concentrations c = (c1, . . . , cM) is defined

to minimize the free-energy functional (2.3), subject to the constraint (2.2). The

equilibrium electrostatic potential is determined by the corresponding equilibrium

ionic concentrations through Poisson’s equation (2.5) and the boundary condition

(2.6).

Alternatively, we can introduce for each i the chemical potential µi for ions

of the ith species, and add the following term

−
M∑
i=1

∫
Ω

µici dV (2.8)

to the free energy F [c] in (2.3). The chemical potentials µi (i = 1, . . . ,M) can

be regarded as Lagrange multipliers accounting for the constraint (2.2). With

these chemical potentials, one minimizes the new, total electrostatic free-energy

functional that now consists of all the integral terms in (3.10), (3.11), and (2.8),

without the constraint (2.2).
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Taking the variational derivative with respect to each concentration field

ci(r) of the new, total free energy and setting it to 0, we obtain with suitable

boundary conditions for Poisson’s equation (2.5) the conditions for equilibrium

concentrations c1, . . . , cM [Li09a]

vi
v0

log(v0c0(r))− log(vici(r)) =
1

kBT
[zieΦ(r)− µi] for all r ∈ Ω, i = 1, . . . ,M.

(2.9)

In the special case that v0 = v1 = · · · = vM , one can solve this system of non-

linear algebraic equations to obtain explicit formulas of ci(r) = ci(Φ(r)) (i =

1, . . . ,M). These are the generalized Boltzmann distributions. For the general

case, it is known that the conditions (2.9) determine uniquely ci(r) = ci(Φ(r))

(i = 1, . . . ,M); but explicit formulas for such dependence seem unavailable. See

[Li09a,Li09b].

2.2.2 A constrained optimization method

By integration by parts, Poisson’s equation (2.5), and the boundary con-

ditions (2.6), we can rewrite the free-energy functional (2.3), which is the sum of

Fpot[c] given in (3.10) and Fent[c] given in (3.11), as

F [Φ, c] =

∫
Ω

{
εε0

2
|∇Φ|2 + kBT

M∑
i=0

ci [log(vici)− 1]

}
dV,

where Φ solves the boundary-value problem of Poisson’s equation (2.5) and (2.6).

Notice that the dependence of F on Φ is now explicitly indicated. One can verify

mathematically that the minimization of F [c] defined in (2.3) over all c subject to

(2.2) is equivalent to that of F [Φ, c] over all (Φ, c) subject to (2.2), (2.5), and (2.6).

Introduce the Bjerrum length lB = e2/(4πεε0kBT ). Define Φ′ = eΦ/(kBT ),

c′i = 4πlBci and v′i = (4πlB)−1vi (0 ≤ i ≤ M), N ′i = 4πlBNi (1 ≤ i ≤ M),

σ′ = 4πlBσ/e, and ω′ = (4πlB)−1/3ω for ω = Γ, Γbox, or Ω. Then F [Φ, c] =

εε0(kBT/e)
2F ′[Φ′, c′], where

F ′[Φ′, c′] =

∫
Ω′

{
1

2
|∇Φ′|2 +

M∑
i=0

c′i [log(v′ic
′
i)− 1]

}
dV, (2.10)
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and c′0 is defined similarly using the primed quantities. The constraint (2.2), Pois-

son’s equation (2.5), and the boundary condition (2.6) become now∫
Ω′
c′i dV = N ′i , (2.11)

∆Φ′ = −
M∑
i=1

zic
′
i in Ω′, (2.12)

∂Φ′

∂n′
=

σ′ on Γ′,

0 on Γ′box,
(2.13)

respectively, where n′ is the unit exterior normal at the boundary of Ω′.

For simplicity, we will drop all the primes in what follows.

We apply an augmented Lagrange multiplier method [Ber82,NW99] to nu-

merically minimize the functional F [Φ, c] defined in (2.10) subject to (2.11)–(2.13)

(with all the primes dropped). Our method is an improved version of that devel-

oped in our previous work [ZWL11] for minimizing numerically a similar functional

formulated using (E, c) instead of (Φ, c), where E = −∇Φ is the electric field. In

the augmented Lagrange multiplier formulation, we solve the corresponding saddle-

point problem

min
(Φ,c)

max
(Ψ,Λ)

L̂(Φ, c, ψ,Λ, s), (2.14)

where Λ = (λ1, . . . , λM) ∈ RM , s = (s1, . . . , sM) ∈ RM with each si ≥ 0, and

L̂(Φ, c,Ψ,Λ, s) = F [Φ, c] +

∫
Ω

Ψ

(
∆Φ +

M∑
i=1

zici

)
dV

+
M∑
i=1

λi

(∫
Ω

ci dV −Ni

)
+

M∑
i=1

si
2

(∫
Ω

ci dV −Ni

)2

=

∫
Ω

{
1

2
|∇Φ|2 +

M∑
i=0

ci [log(vici)− 1]

}
dV

+

∫
Ω

Ψ

(
∆Φ +

M∑
i=1

zici

)
dV

+
M∑
i=1

λi

(∫
Ω

ci dV −Ni

)
+

M∑
i=1

si
2

(∫
Ω

ci dV −Ni

)2

.

The function Ψ is the Lagrange multiplier for Poisson’s equation (2.5). It satisfies

the same boundary conditions as for Φ, cf. (2.13) (no primes). The numbers
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λ1, . . . , λM are the Lagrange multipliers for the constraint (2.11) (no primes). The

last summation term is a penalty term. It is added to stabilize and accelerate our

numerical iterations.

The solution (Φ, c,Ψ,Λ, s) to the saddle-point problem (2.14) is determined

by the following equations:

∂L̂

∂Φ
= −∆ (Φ−Ψ) = 0 in Ω, (2.15)

∂L̂

∂Ψ
= ∆Φ +

M∑
i=1

zici = 0 in Ω, (2.16)

∂L̂

∂ci
= log (vici)−

vi
v0

log

(
v0

(
1−

M∑
j=1

vjcj

))
+ ziΨ + λi + si

(∫
Ω

ci dV −Ni

)
= 0 in Ω, i = 1, . . . ,M, (2.17)

∂L̂

∂λi
=

∫
Ω

ci dV −Ni = 0, i = 1, . . . ,M. (2.18)

Since both Φ and Ψ satisfy the same boundary conditions, Eq. (2.15) implies

that they differ by an additive constant. We may choose this constant to be 0

and assume that Ψ = Φ in Ω. Notice that Eq. (2.16) is Poisson’s equation (2.12)

(no primes) and Eq. (2.18) is the constraint (2.11) (no primes). As pointed out

before, the nonlinear system of algebraic equations (2.17) has a unique solution

c = (c1, . . . , cM) but its explicit solution formulas seem unavailable [Li09a].

The entire system of equations is equivalent now to the three sets of equa-

tions (2.16)–(2.18) with Ψ in (2.17) replaced by Φ. We solve these equations by

the following algorithm:

Algorithm.

Step 0. Distribute the total surface charge 4πR2σ uniformly on the spherical sur-

face by interpolation onto the nearest grids [BSD09, ZWL11]. Initialize

Φ(0), c(0) =
(
c

(0)
1 , . . . , c

(0)
M

)
, Λ(0) = (λ

(0)
1 , . . . , λ

(0)
M ), and s(0) = (s

(0)
1 , . . . , s

(0)
M ).

Choose a parameter γ > 1. Set l = 0.

Step 1. Solve Eq. (2.16) with ci replaced by c
(l)
i , together with the boundary con-

dition (2.13), to obtain the solution Φ(l+1).

Step 2. Use Newton’s method to solve Eq. (2.17) (where Ψ is replaced by Φ) with
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Φ, Λ, and s replaced by Φ(l+1), Λ(l), and s(l), respectively, to obtain the

solution c(l+1).

Step 3. Update the Lagrange multipliers

λ
(l+1)
i = λ

(l)
i + s

(l)
i

(∫
Ω

c
(l+1)
i dV −Ni

)
, i = 1, . . . ,M.

Update the penalty parameters s
(l+1)
i = γs

(l)
i (i = 1, . . . ,M).

Step 4. Test convergence. If not, set l← l + 1 and go to Step 1.

The parameter γ > 1 is used only for updating si (i = 1, . . . ,M). Various

kinds of approximations can be used to solve the boundary-value problem of Pois-

son’s equation. For instance, we can use the periodic boundary condition instead,

and apply the fast Fourier transform. In this case, we have the linear complexity in

terms of the number of unknowns of resulting system of linear equations. We note

that the matrix-vector multiplication can be avoided in Newton’s iteration scheme

for solving the system (2.17) (with Ψ replaced by Φ), since the exact formula of

the inverse of related Jacobian matrix can be obtained.

2.3 Monte Carlo Simulations

We consider the same system described in the previous section: A macroion

occupying the sphere BR of radius R centered at the origin, with a constant surface

charge density σ, is immersed in an electrolyte in the box (−L/2, L/2)3. There

are M species of (micro) ions in the region Ω = (−L/2, L/2)3 \ BR. For each

i (1 ≤ i ≤ M), an ion of the ith species has valence zi and volume vi. The

number of ions of the ith species is Ni; and the total number of all (micro) ions is

N =
∑M

i=1Ni.

We use an unrestricted primitive model for our underlying electrolyte sys-

tem; and apply the canonical ensemble Monte Carlo (MC) simulations with the

Metropolis criterion [AAN09,AGV06,BV92,FS02,MRR+53,VC80].

In a primitive model of electrolytes, the mobile ions are represented by

charged hard spheres and the solvent is modeled through its dielectric permittivity

ε. We label all the (micro) ions by k = 1, . . . , N . We denote by ẑk and R̂k the
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valence and radius of the kth ion. If the kth ion is of the ith type (1 ≤ i ≤ M),

then its valence is ẑk = zi and its volume is 4πR̂3
k/3 = vi. For convenience, we

label the spherical macroion by 0 and denote R̂0 = R, the radius of the macroion.

We also denote its valence by ẑ0 = z = 4πR2σ/e.

For a given configuration of the system, the Hamiltonian is defined to be

the work needed to bring all the ions from infinity to their current positions. It

is the sum of all pairwise interaction energies between all the ions, including the

macroion.

We only consider the hard-sphere contribution and the Coulomb interaction.

Therefore, we define the total potential energy of the system to be

U =
∑

0≤j<k≤N

ujk,

where

βujk =


lB ẑj ẑk
rjk

if rjk ≥ R̂j + R̂k,

∞ if rjk < R̂j + R̂k.

(2.19)

Here, β = (kBT )−1, lB = e2β/(4πεε0) is the Bjerrum length, and rjk is the center-

center distance between the jth and kth ions. Notice that, in the case rjk ≥ R̂j+R̂k,

ujk is just the Coulomb interaction energy between the jth and kth ions in the

solvent with the relative dielectric permittivity ε. We shall consider the water

solvent at room-temperature and thus take lB = 7 Å.

Our MC simulations consist of a sequence of single-particle moves with the

periodical boundary condition. In each move, we randomly select an individual

particle (i.e., mobile ion). Let us assume that the selected particle is centered at

p. We then randomly generate a positive number, denoted a, from the interval

[0,∆max] for some parameter ∆max > 0. We finally place the (center of) selected

particle randomly on the sphere of radius a centered at p. We use the L-periodical

boundary condition in each direction, so that all the ions remain in the region Ω

of electrolyte.

The parameter ∆max can change during the MC moves. The acceptance

or rejection of the move is determined by the Metropolis criterion. We calculate

the difference ∆U = Unew − Uold of the energies of the previous (old) and current
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(new) configurations. If ∆U ≤ 0, the move is accepted. Otherwise, it is accepted

if exp (−β∆U) is greater than a randomly generated number in [0, 1].

The entire sequence of our MC moves are divided into three parts: accel-

eration, equilibration, and statistics. Typically, our simulation system consists of

M = 3 or 4 ionic species; and the number of ions in each of these species can vary

from 25 to 50 and to 200. With these parameters, we usually perform 12× 105N

MC moves in total, with the first 105N moves for acceleration, the next 105N

moves for equilibrating the system, and the last 106N moves for statistics, where

N is the total number of mobile ions.

We introduce a parameter l̃B to replace lB in the definition of interaction

(2.19), and dynamically change l̃B in the first part of moves, a total of 105N of

them, to speed up the thermal equilibration of the crowded system of particles.

We generate a geometrical sequence of 105N terms with the first and last terms

being 1 and lB = 7 Å, respectively. In the mth MC move with m ≤ 105N , the

parameter l̃B is taken to be the mth term in the geometrical sequence. After the

first 105N moves, we fix l̃B = lB for all of the rest MC moves. We run another

105N moves so that the system can reach an equilibrium.

Throughout the entire simulation, we keep the percentage of acceptance

of MC moves between 20% and 50% by adaptively adjusting the value of the

maximum length ∆max. Initially, we set ∆max = 2 Å. We then change it after every

100 moves. If the acceptance rate is larger than 50% in current 100 moves, we

increase ∆max by multiplying it by 1.05 but always keep the new value of ∆max to

be less than or equal to l̃B. If the acceptance rate is smaller than 20% in current

100 moves, we decease ∆max by multiplying it by 0.95, and we keep the new ∆max

to be greater than 0.001 l̃B. In the last part of MC moves, a total of 106N of

them, we calculate the bulk densities of ions of different species by deriving the

production statistics for the macroion-microion radial particle density (RPD). The

RPD of the ith ionic species is defined by

ρi(r) =
〈Ni(r, r + ∆r)〉

(4/3)π[(r + ∆r)3 − r3]
, (2.20)

where Ni(r, r + ∆r) is the number of ions of the ith species whose centers are

in the spherical shell between r and r + ∆r, and the bracket 〈·〉 represents an
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ensemble average over the shell. Notice that the denominator in the definition

(2.20) is the volume of the shell. We choose ∆r to be 1 Å. In our implementation,

we approximate 〈Ni(r, r + ∆r)〉 in (2.20) by the total number of ions of the ith

species that move (in the last part of moves for statistics) into the shell between

r and r + ∆r, multiplied by the total number Ni of ions of ith species, divided

by the total number of moves (in the last part of moves) in which an ion of ith

species is displaced. The charge density for the ith ionic species is then defined as∑N
i=1 ziNi(r, r + ∆r).

We remark that the use of periodic boundary condition effectively intro-

duces a spatial cut-off of the underlying system region. In principle this can affect

the accuracy of the calculation of electrostatic interactions. However, we have tried

simulations on boxes with different linear sizes and found almost no differences in

the results. In fact, we find that averagely only in one out of 10, 000 moves an ion

has to “leave” through one side of the box and “come back” to the box through

the opposite side. The reason for this is that most of the ions are crowded around

the charged sphere, away from the boundary of simulation box.

In Figure 2.1, we display our typical MC simulations results for a salt free

system with counterions of valences and radii +1 and 3 Å (black), +2 and 2.5 Å

(red), and +3 and 3.5 Å (green), and for a system of salt solvent with coions (blue),

and counterions of valences and radii +1 and 2 Å (black), +2 and 3 Å (red), and

+3 and 4 Å (green), respectively. Notice that the counterions with smaller valence-

to-volume ratios have less possibility to be adsorbed to the charged surface.

2.4 Results and Discussions

We set the linear size of our computational box (−L/2, L/2)3 to be L =

150 Å, and the radius of the spherical colloidal particle (the macroion) to be R = 15

Å. The Bjerrum length is set to be lB = 7 Å. The surface charge density σ ranges

from −0.05 to −0.21 e/Å
2
. In our simulations, we investigate mixed solutions

of three types of counterions, with their valences (z1, z2, z3) = (+1,+2,+3). We

choose their radii to range from 1 Å to 4 Å. These are within the interval of physical
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Figure 2.1: Typical Monte Carlo simulations of ions surrounding a highly charged
macroion.
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interest. For example, the hydrated radii of monovalent hydrogen, sodium and

potassium, divalent magnesium and calcium, and trivalent aluminum ions are 4.5,

2.25, 1.5, 4.0, 3.0, and 4.5 Å, respectively [Kie37]. For salt electrolytes, we choose

monovalent or divalent coions with radius 2 Å.

One of the main objectives of our study is to understand the competitive

adsorption of counterions with different valences and sizes. Such property has been

already investigated previously; see [AAN09, AGV06, BV92, GGGTd11, TSYT05,

VBG07, WYGL05] and the references therein. Most of these studies found that

the valence of counterion determines the competition in adsorption to a charged

surface with a low surface charge density and that smaller ions are stronger in

such competition for a high surface charge density. These conclusions result natu-

rally from the competition between electrostatic attraction and entropic repulsion

expressed in the free-energy functional (2.3), where the electrostatics dominates

the free energy for the low surface charge density, and the entropy dominates

otherwise. It has been recently found in our previous work [ZWL11] using the

mean-field model described in the last section that the competition between dif-

ferent ions in adsorption to a charged surface can be in fact characterized by the

ionic valence-to-volume ratios. Here, we use MC simulations to further explore this

characterization and compare our results with those from mean-field calculations.

In particular, we study a system with a crowded ionic population near a highly

charged surface, as shown in Figure 2.1.

In what follows, for an ion of the ith species (1 ≤ i ≤M), we denote by Ri

its radius and by

αi =
zi
vi

=
3zi

4πR3
i

its valence-to-volume ratio.

2.4.1 Crucial factors in the competition between counteri-

ons

We first study salt-free systems with monovalent, divalent and trivalent

counterions: z1 = +1, z2 = +2, and z3 = +3. We investigate three different
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groups of such counterions with the following order of valence-to-volume ratios:

α+2 > α+3 > α+1; α+3 > α+1 > α+2; and α+1 > α+2 > α+3. Here and below, we

use α+i to denote the valence-to-volume ratio of the counterion with valence +i.

We use the parameters:

Group 1: (R1, R2, R3) = (3.0, 2.5, 3.5) in Å, α+1 : α+2 : α+3 = 1 : 3.5 : 1.9;

Group 2: (R1, R2, R3) = (2.5, 3.5, 3.0) in Å, α+1 : α+2 : α+3 = 1.4 : 1 : 2.4;

Group 3: (R1, R2, R3) = (2.0, 3.0, 4.0) in Å, α+1 : α+2 : α+3 = 2.7 : 1.6 : 1.

For each group, we choose the same number of ions for each of the three different

species: N1 = N2 = N3. Moreover, we select three different surface charge densities

by setting N1 = N2 = N3 = 100, 50, and 25, respectively, and by using the charge

neutrality (2.1). The corresponding surface charge densities of the macroions are

−0.212, −0.106, and −0.053 e/Å
2
, all in the regime of strong surface charge.

The quantitative results are illustrated in Figures 2.2–2.4 with bar plots,

where each bar represents the averaged particle density in a spherical shell of

thickness 1 Å, converted to the units mol/L. In the systems in Figures 2.2–2.4,

all three species have the same number of ions. This number is 100 (left), 50

(middle), and 25 (right), respectively. Hence the constant surface charge density

decreases from left to right. From the figure, we observe clearly that counterions

are adsorbed tightly to the highly charged surface, and near the surface layers

of counterions of different species form, leading to the remarkable structure of

stratification. Moreover, we find that the order of layering depends on the valence-

to-volume ratio, instead of the valence or the size independently. Counterions

with the largest valence-to-volume ratio forms the first layer closest to the charged

surface, those with the second largest such ratio forms the second layer, and so on.

When the surface charge density σ becomes smaller, the role of valence is more

important in determining which ionic species form a layer closest to the surface.

These results demonstrate that the selective adsorption and layer ordering in the

stratification depend on the competition between energetics and entropy, and that

the valence-to-volume ratio is an important parameter in such adsorption and

layering for a highly charged surface.
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Figure 2.2: The histograms of radial particle density functions for three species
of counterions in Group 1: α+1 : α+2 : α+3 = 1 : 3.5 : 1.9.
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Figure 2.3: The histograms of radial particle density functions for three species
of counterions in Group 2: α+1 : α+2 : α+3 = 1.4 : 1 : 2.4.
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Figure 2.4: The histograms of radial particle density functions for three species
of counterions in Group 2: α+1 : α+2 : α+3 = 2.7 : 1.6 : 1.

In Figure 2.5, we plot the concentrations of the three counterion species with

parameters in Group 1 predicted by our mean-field theory with the nonuniform

size effect and our constrained optimization methods. The number of ions in each

system are N1 = N2 = N3 = 100 (left), 50 (middle), and 25 (right), respectively.
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Comparing these results with those in Figure 2.2, we find a qualitative agreement of

our size-effect included mean-field theory with the MC simulations. We note that

the peaks of ionic densities close to the surface predicted by the MC simulations

have a larger magnitude and are closer to the surface than those predicted by the

mean-field theory.
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Figure 2.5: Mean-field predictions of concentrations of counterions in Group 1:
α+1 : α+2 : α+3 = 1 : 3.5 : 1.9.

We now investigate the sensitivity of the ionic sizes with respect to the ionic

structure in the vicinity of charged surface. We fix the surface charge density to

be σ = −0.22e/Å
2
. We consider three species of counterions with valences zi = +i

(i = 1, 2, 3) and number of ions N1 = N2 = N3 = 100. In Figure 2.6, we plot

the ionic densities for various combinations of the ionic radii R1, R2, and R3. The

radius of the trivalent counterion is decreased from 4 Å in Figure 2.6 (left) to

3.5 Å in Figure 2.6 (middle) so that the divalent and trivalent species have almost

the same valence-to-volume ratio. The radius of the monovalent ion is decreased

from 2 Å in Figure 2.6 (middle) to 1.5 Å in Figure 2.6 (right). In both cases,

the species with the highest valence-to-volume ratio, i.e. the monovalent ionic

species, remains the strongest in the competition to form the first layer closest to

the charged surface. This indicates that the ionic competitive ability in adsorption

is greatly improved by a slight decrease of its radius, which weakens the ionic

entropic repulsion. From Figure 2.6 (middle), we also find that when two species

of counterions have close values of valence-to-volume ratios, the species with a

higher valence will have a stronger ability of adsorption. The valence-to-volume

ratios in the three systems in Figure 2.6 are: (Left) α+1 : α+2 : α+3 = 2.7 : 1.6 : 1;
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(Middle) α+1 : α+2 : α+3 = 1.8 : 1.1 : 1; (Right) α+1 : α+2 : α+3 = 6.3 : 1.6 : 1.
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Figure 2.6: The layering structure of ionic densities is very sensitive to the vari-
ation of the ionic radius of one ionic species.

Figure 2.6 (right) also illustrates an interesting phenomenon. With the

decrease of the radius of monovalent ions, the concentration of the divalent ions,

which have the second largest of the three valence-to-volume ratios, is increased.

The trivalent ions which have the smallest valence-to-volume ratio are depleted in

the vicinity of the surface. This can be interpreted that the more tightly bind-

ing of the monovalent ions to the surface decreases more the electrostatic energy

contributed by divalent and trivalent ions. The effect of the valence-to-volume ra-

tio is strengthened in the competition between the latter two species. This result

demonstrates that the nonuniform ionic size effect plays a very important role in

determining the properties of electrolyte solutions.

We now fix the numbers of ions N1 = N2 = N3 = 100, the surface charge

density σ = −0.21e/Å
2
, the ratios of radii R1 : R2 : R3 = 2 : 3 : 4, and the order

of valence-to-volume ratios α+1 > α+2 > α+3. We vary simultaneously the ionic

radii of the three species of counterions by changing a common multiplier. We use

three different sets with the radii of monovalent ions being 1.2, 2.0, and 2.4 Å,

respectively. We study how the different ionic sizes affect the layering structure

of counterions and how the competition in ionic adsorption is changed with the

change of entropy. The corresponding results are plotted in Figure 2.7. It can be

found that, with the increase of the ionic radii, the entropic contribution to the

electrostatic free energy is increased, leading to the enhancement of the counterion

repulsion. Moreover, the particle numbers of all the three ionic species in the
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layers closest to the surface are diminished. In the meantime, when ionic sizes are

increased from small to large, the entropic contribution to the free energy becomes

more significant. Hence, the valence-to-volume ratios give a clear characterization

of stratification. In fact, the monovalent counterions, which has the smallest value

of valence but largest valence-to-volume ratio, always forms the first layer closest

to the surface. It is a further evidence that the competition between electrostatic

energetics and entropy leads to the following limits: at the limit of the electrostatics

domination the valence is the main indicator of the ordering of layers, while at the

limit of the entropy domination the valence-to-volume ratio is the main indicator

of layer ordering.
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Figure 2.7: Results of varying the ionic radii of the three species with a common
factor.

2.4.2 Systems with both counterions and coions

We now add coions in the system and study the effect of coions to the

competitive adsorption and order of packing of counterions, in comparison with

the salt-free systems. We consider two cases. In the first case, we add monovalent

coions to the system. We assume that the radius of such a coion is R4 = 2 Å

and that the total number of coions is N4 = 204. In the second case, we add

divalent coions to the system. We assume that the radius of such a divalent coion

is R4 = 2 Å and that the total number of such coions is N4 = 102. In both cases,

we still have the monovalent, divalent, and trivalent counterions, with now their

radii 2, 3, and 4 Å, respectively, and their total numbers N1 = N2 = N3 = 134. We

also assume a high surface charge density σ = −0.21 e/Å
2
. The charge neutrality
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(2.1) is now satisfied with M = 4 species of counterions and coions. The system

will have an averaged 100 mM concentration of monovalent coions in the first case

and 50 mM concentration of divalent coions in the second case.
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Figure 2.8: Counterion and coion distributions from MC simulations. Top: mono-
valent coions. Bottom: divalent coions.

For these two systems with coions, we plot in Figure 2.8 the radial particle

density functions of counterions and coions obtained by our MC simulations. We

also plot the concentrations of counterions and coions obtained by our mean-field

numerical computations in Figure 2.9. In comparison with those salt free systems,

we find that the addition of coions slightly enhances the layering effect. The

concentrations of all three counterions are increased. This has a minor influence

to their layering order. It is clear that a qualitative agreement between mean-

field calculations and MC simulations is reached on the competition of counterion
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adsorption.

5 10 15 20 25 30
0

10

20

30

40

50

Distance to the charged surface (Å)
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Figure 2.9: Counterion and coion concentrations from numerical computations
based on the mean-field theory with the ionic size effect. Top: monovalent coions.
Bottom: divalent coions.

We observe from Figure 2.8 (b) and (d) that the coion distribution pre-

dicted by MC simulations is non-monotonic, while from Figure 2.9 (b) and (d)

that the coion distributions predicted by the mean-field theory is monotonic. In

Figure 2.10, we plot the total ionic charge distribution for each of the two systems

obtained by our MC simulations. We find the over-charging of the system, i.e.,

the total charge distribution is above zero that corresponds to the charge neutral-

ity [GNS02, QPGTMM+03]. Interestingly, the over-charging of the monovalent-

coion system is stronger than that in the divalent-coion system: the inverted
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charges of the monovalent-coion system and divalent-coion system are 1.86 e and

0.15 e, respectively. This is mainly due to the fact that it is easier to form anion-

cation binding pairs in the divalent-coion system than in the monovalent-coion

system. Thus the concentration of free counterions is decreased. In contrast, the

mean-field theory can only produce a monotonic profile of the total charge distri-

bution as proved mathematically in [Li09a]. Therefore, the mean-field theory with

the nonuniform size effect still fails in predicting the charge inversion.
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Figure 2.10: MC simulations of the total charge distribution for the system with
monovalent coions (marked −1) and that with divalent coions (marked −2).

2.5 Remarks

In this part, we study the competition of multiple counterions of different

valences and different sizes in binding to the surface of a spherical colloidal particle

by both a mean-field theory and Monte Carlo (MC) simulations.

Based on our MC simulations and mean-field computations, we have found

that the major factor which will effect the counterion stratification phenomena are

surface charge density, difference of ionic valence-to-volume ratios and ionic size.

Additionally, our MC simulations predict the charge inversion for ionic systems
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with salt, but mean-field theory fails in predicting this phenomenon.

In our mean-field computations, we have never found a case where our crite-

rion of valence-to-volume ratios fails for the prediction of stratification of multiple

counterions. For MC simulations, we sometimes find the criterion does not work,

when those ratios are too close and the surface charge is too low. In fact, the MC

simulation reported in Figure 6 (b) of [TSYT05] for a low surface charge density

contradicts our criterion.

While our mean-field theory and Monte Carlo simulations have both pre-

dicted the stratification of counterions near a highly charged surface and the crucial

role of the ionic valence-to-volume ratios in such stratification, we have neglected

several effects in our theory and methods.

First, in our MC simulations, we treat ions as hard spheres to describe the

short-range repulsion in the van der Waals interactions between different kinds of

ions of multiple valences and different sizes, and between the ions and the charged

macroion. We have neglected the long-range attraction in such interactions that

can contribute largely to the ion-ion correlations. For a highly charged surfaces,

counterions are crowded near the surface; and the van der Waals attraction may not

be as strong as the corresponding repulsion. While we have taken a rather common

approach in MC simulations, we understand that including the attraction part of

the van der Waals interactions is practically quite possible. We shall include such

interaction in our subsequence works.

Second, in both of our mean-field treatment and MC simulations, we use a

uniform dielectric coefficient for the ionic solution. This is only an approximation in

the description of the dielectric properties of solvent, as the water in the proximity

of a highly charged surface is not expected to behave like bulk solvent. In fact,

the dielectric coefficient can depend on the ionic concentrations [EW54, HPP10,

KSD11]. Such dependence is experimentally known to be continuous and linear; cf.

Eq. (1) and Table 1 in [BYAP11]. Near the charged surface the dielectric coefficient

is locally close to a constant; and the ion-ion interactions in such a region can be

still modeled well by our interaction energy (2.19) but with a dielectric coefficient

different from that in the bulk. We thus do not expect that this will significantly
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affect the competition of different counterions in the stratification. To further

explore the detailed consequences of the concentration dependent dielectrics, we

are currently extending our work to such dielectric systems.

Third, the size effect of solvent molecules is not directly included in our MC

simulations. This makes our comparison between the mean-field theory and MC

simulations only qualitative. There is clearly a need to develop models and algo-

rithms to include the solvent molecular size effect in MC simulations of electrolyte

systems.
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Chapter 3

Mean-Field Theory and

Computation of Electrostatics

with Ionic Concentration

Dependent Dielectrics

3.1 Introduction

A basic hypothesis in the continuum modeling of electrostatic interactions

in charged molecular systems is that such a system can be treated as a dielectric

medium characterized by its dielectric coefficient that can vary spatially. Under

normal conditions, the dielectric coefficient for water is close to 80, while that for

proteins can be as low as 1 – 4 [Has73, HRC48]. Experiment and molecular dy-

namics (MD) simulations have indicated that the dielectric coefficient can depend

on the local ionic concentrations [Has73, RDZ+14, WS90, WCS92, KD09, SGM10,

HRC48,Sch27,Lat21,DN84,LZ98,NHK97,BHB94,BHM99]. In this part of the dis-

sertation, I use a mean-field variational approach to study how such dependence

affects the equilibrium properties of electrostatic interactions in an ionic solution.

Consider an ionic solution near a charged surface. Assume there are M

ionic species in the solution. (Typically 1 ≤ M ≤ 4.) Denote by ci = ci(x) the

39
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local ionic concentration of the ith species at a spatial point x. The key modeling

assumption is that the dielectric coefficient ε depends on the sum of local ionic con-

centrations of all individual ionic (either cationic or anionic) species: ε = ε(c̄(x)),

where c̄ =
∑M

i=1 ci. This dependence is qualitatively the same as that on the salt

concentration. The latter can be constructed by fitting experimental or MD sim-

ulations data. The dependence of the dielectric coefficient on the concentration of

NaCl [HRC48,LZ98] and the fitted analytic form of such dependence are shown in

Figure 1.4. We use ε(c̄) = 70e−0.22c̄ + 10 to fit the experimental data in this figure,

and the maximum relative error at data points is 2%. In general, we assume that

the function ε = ε(c̄) is monotonically decreasing, convex, and is bounded below

by a positive constant. Examples of such a function ε = ε(c̄) are

ε(c̄) =
α0 − α1

1 + ξ c̄
+ α1 and ε(c̄) = (α0 − α1)e−ξ c̄ + α1,

where all α0, α1, and ξ are constant parameters fitting experimental or MD simula-

tions data with α0 > α1 > 0. Note that ε(0) = α0 and ε(∞) = α1. We remark that

the choice of c̄ instead of salt concentration reflects our attempt in understanding

the contribution of each individual ionic species through its concentration to the

dielectric environment, as biological properties are often ion specific (e.g., the ion

selectivity in ion channels). Using c̄ =
∑M

i=1 ci allows us to input the concentration

of each individual ionic species, and also to determine the variation of the free

energy with respect to such individual ionic species.

The dielectric coefficient measures the polarizability of a material exposed to

an external electric field. Due to their asymmetric structures, water molecules form

permanent dipoles. They orient randomly in the bulk due to thermal fluctuations.

Such orientational polarization makes the bulk water a strong dielectric medium.

In the proximity of charged particles such as ions (cations or anions), however,

water molecules are attracted by the charges, forming a hydration shell. These

dipolar water molecules in the shell are aligned to the local electric field. Such

saturation of local orientational polarizability leads to a weaker dielectric response

of water near charges to the external electric field. Consequently, the dielectric co-

efficient in a region of high ionic concentrations is expected to be smaller than that

in a region of lower ionic concentrations [HRC48, WS90, BYAP11, Fry11, DDP12].
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This dielectric decrement is one of the main properties of electrostatic interactions

that we study here.

We now let the ionic solution occupy a bounded domain Ω in R3 with

a smooth boundary ∂Ω. We assume that the boundary ∂Ω of Ω is divided into

two nonempty, disjoint, and smooth parts ΓD (D for Dirichlet) and ΓN (N for

Neumann); cf. Figure 3.1. (The case that ΓD = ∅, i.e., Γ = ΓN, can be treated

similarly.) In Figure 3.1, small circles with plus and minus signs represent cations

(positively charged ions) and anions (negatively charged ions), respectively. We

also assume that we are given a fixed charged density ρf : Ω → R, a surface

charge density σ : ΓN → R, and a boundary value of the electrostatic potential

ψ∞ : ΓD → R. We consider minimizing the following mean-field electrostatic free-

energy functional of the ionic concentrations c = (c1, . . . , cM) [Li09b, CDLM08,

RR90,FB97,ODRY09]:

F [c] =

∫
Ω

1

2
ρ(c)ψ(c) dV +

∫
ΓN

1

2
σψ(c) dS + β−1

M∑
i=1

∫
Ω

ci
[
log(Λ3ci)− 1

]
dV

−
M∑
i=1

µi

∫
Ω

ci dV. (3.1)

Here, the first two terms together represent the electrostatic potential en-

ergy. In these terms, ρ(c) is the total charge density, defined by

ρ(c) = ρf +
M∑
i=1

qici, (3.2)

where qi = zie with zi the valence of the ith ionic species and e the elementary

charge, and ψ = ψ(c) is the electrostatic potential determined as the solution to

the boundary-value problem of Poisson’s equation [Jac99,LLP93,BYAP11]
∇ · ε(c̄)ε0∇ψ = −ρ(c) in Ω,

ε(c̄)ε0
∂ψ

∂n
= σ on ΓN,

ψ = ψ∞ on ΓD,

(3.3)

where ε0 is the vacuum permittivity and ∂ψ/∂n denotes the normal derivative at

Γ with n the exterior unit normal. The third term in (3.1) represents the ionic
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Figure 3.1: A schematic view of an ionic solution. The solvent occupies the grey
region Ω.

ideal-gas entropy, where β−1 = kBT with kB the Boltzmann constant and T the

absolute temperature, log denotes the natural logarithm, and Λ is the thermal de

Broglie wavelength. The last term in (3.1), in which µi is the chemical potential for

the ith ionic species, represents the chemical potential of the system that results

from the constraint of total number of ions in each species.

The rest of the chapter is organized as follows: In Section 3.2, I derive

the first variations of the free-energy functional and the generalized Boltzmann

distributions. In Section 3.3, I derive the second variations of the free-energy

functional. In Section 3.4, I show by numerical calculations that the generalized

Boltzmann distributions can lead to multiple values of concentrations. I also show

by examples that the free-energy functional is in general nonconvex. In Section 3.5,

I minimize numerically the mean-field electrostatic free-energy functional for a

radially symmetric system. Finally, in Section 3.6, I make several remarks.
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3.2 First Variations and Generalized Boltzmann

Distributions

Unless otherwise stated, we assume the following throughout the rest of the

paper:

(A1) The dielectric coefficient function ε ∈ C1([0,∞)). It decreases monotonically

and is convex. Moreover, there are two positive numbers εmin and εmax such

that

εmin ≤ ε(c̄) ≤ εmax ∀c̄ ≥ 0; (3.4)

(A2) The set Ω ⊂ R3 is bounded, open, and connected with a smooth boundary

Γ = ∂Ω (e.g., Γ is in the class C2). The boundary ∂Ω is divided into two

disjoint, nonempty, and smooth (e.g., in the class of C2) parts ΓD and ΓN;

(A3) The functions ρf : Ω → R, σ : ΓN → R, and ψ∞ : ΓD → R are all given.

Moreover, ρf ∈ L∞(Ω), σ is the restriction of a W 1,∞(Ω)-function (also de-

noted by σ) on ΓN, and ψ∞ is the restriction of a W 2,∞(Ω)-function (also

denoted by ψ∞) on ΓD.

Note that we use standard notion for Sobolev spaces [Ada75,GT98,Eva10].

We denote

H1
D,0(Ω) =

{
φ ∈ H1(Ω) : φ = 0 on ΓD

}
,

H1
D(Ω) =

{
φ ∈ H1(Ω) : φ = ψ∞ on ΓD

}
.

Let u ∈ L1(Ω). Suppose

‖u‖ := sup
06=φ∈L∞(Ω)∩H1

D,0(Ω)

1

‖φ‖H1(Ω)

∫
Ω

uφ dV <∞.

Since L∞(Ω) ∩ H1
D,0(Ω) is dense in H1

D,0(Ω), we can identify u as an element in

H−1
D,0(Ω), the dual space of H1

D,0, and write u ∈ H−1
D,0(Ω). We denote

X =

{
(c1, . . . , cM) ∈ L1(Ω, RM) : ci ≥ 0 a.e. , i = 1, . . . ,M ;

M∑
i=1

qici ∈ H−1
D,0(Ω)

}
.

Let c = (c1, . . . , cM) ∈ X. It follows from the Lax–Milgram Lemma and the

Poincaré inequality for functions in H1
D,0(Ω) [GT98, Eva10] that the boundary-

value problem of Poisson’s equation (3.3) has a unique weak solution ψ = ψ(c),



44

defined by ψ ∈ H1
D(Ω) and∫

Ω

ε(c̄)ε0∇ψ · ∇φ dV =

∫
Ω

ρ(c)φ dV +

∫
ΓN

σφ dS ∀φ ∈ H1
D,0(Ω). (3.5)

Similarly, we define ψD = ψD(c) ∈ H1
D(Ω) to be the unique weak solution to

∇ · ε(c̄)ε0∇ψD = 0 in Ω,

ε(c̄)ε0
∂ψD
∂n

= 0 on ΓN,

ψD = ψ∞ on ΓD,

(3.6)

defined by ψD ∈ H1
D(Ω) and∫

Ω

ε(c̄)ε0∇ψD · ∇φ dV = 0 ∀φ ∈ H1
D,0(Ω). (3.7)

3.2.1 First variations

Let c = (c1, . . . , cM) ∈ X and d = (d1, . . . , dM) ∈ X. We define

δF [c][d] = lim
t→0

F [c+ td]− F [c]

t
, (3.8)

if c + td ∈ X for |t| � 1 and the limit exists, and call it the first variation of F [·]
at c ∈ X in the direction d.

Theorem 3.2.1. Let c = (c1, . . . , cM) ∈ X. Assume there exist positive numbers

δ1 and δ2 such that δ1 ≤ ci(x) ≤ δ2 for a.e. x ∈ Ω and i = 1, . . . ,M . Assume also

that d = (d1, . . . , dM) ∈ L∞(Ω,RM). Then

δF [c][d] =
M∑
i=1

∫
Ω

di δiF [c] dV,

where for each i (1 ≤ i ≤M) the function δiF [c] : Ω→ R is given by

δiF [c] =qi

[
ψ(c)− 1

2
ψD(c)

]
− 1

2
ε′(c̄)ε0∇ψ(c) · ∇ [ψ(c)− ψD(c)]

+ β−1 log
(
Λ3ci

)
− µi. (3.9)

We shall identify δiF [c] defined in (3.9) as the the first variation of F at

c in the ith coordinate direction. We note that our assumptions on ci(x) (i =
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1, . . . ,M, x ∈ Ω) are expected to hold true for a local minimizer c = (c1, . . . , cM).

This can be argued using the same analysis in [Li09b, Li09a], where perturbed,

lower energy concentrations are constructed for the usual PB free-energy func-

tional, based on the observation that the entropic change is larger than the poten-

tial change. To prove the theorem, we first prove the following:

Lemma 3.2.2. Under the assumption of Theorem 3.2.1, we have

‖ψ(c+ td)− ψ(c) ‖H1(Ω) → 0 and ‖ψD(c+ td)− ψD(c) ‖H1(Ω) → 0 as t→ 0.

Proof. Denote d̄ =
∑M

i=1 di. By the weak formulations for ψ(c + td) and ψ(c) (cf.

(3.5)), and the definition of ρ(c) (cf. (3.2)), we have for φ ∈ H1
D,0(Ω) that∫

Ω

[
ε(c̄+ td̄)− ε(c̄)

]
ε0∇ψ(c+ td) · ∇φ dV

+

∫
Ω

ε(c̄)ε0∇ [ψ(c+ td)− ψ(c)] · ∇φ dV

=

∫
Ω

ε(c̄+ td̄)ε0∇ψ(c+ td) · ∇φ dV −
∫

Ω

ε(c̄)ε0∇ψ(c) · ∇φ dV

=

∫
Ω

[ρ(c+ td)− ρ(c)]φ dV

= t
M∑
i=1

∫
Ω

qidiφ dV.

Setting φ = φt := ψ(c+ td)− ψ(c) ∈ H1
D,0(Ω), we then have by (3.4) that

εminε0

∫
Ω

|∇φt|2dV

≤
∫

Ω

ε(c̄)ε0|∇φt|2dV

= t
M∑
i=1

∫
Ω

qidiφt dV −
∫

Ω

[
ε(c̄+ td̄)− ε(c̄)

]
ε0∇ψ(c+ td) · ∇φt dV

= t

M∑
i=1

∫
Ω

qidiφt dV −
∫

Ω

[
ε(c̄+ td̄)− ε(c̄)

]
ε0|∇φt|2dV

−
∫

Ω

[
ε(c̄+ td̄)− ε(c̄)

]
ε0∇ψ(c) · ∇φt dV

≤ |t|
(

M∑
i=1

|qi|‖di‖L2(Ω)

)
‖φt‖L2(Ω) + ε0‖ε(c̄+ td̄)− ε(c̄)‖L∞(Ω)‖∇φt‖2

L2(Ω)
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+ ε0‖ε(c̄+ td̄)− ε(c̄)‖L∞(Ω)‖∇ψ(c)‖L2(Ω)‖∇φt‖L2(Ω).

Since ‖ε(c̄+ td̄)−ε(c̄)‖L∞(Ω) → 0 as t→ 0, we conclude by the Poincaré inequality

applied to φt that there exists a constant C > 0 independent of t with |t| � 1 such

that

‖φt‖H1(Ω) ≤ C(|t|+ ε0‖ε(c̄+ td)− ε(c̄)‖L∞(Ω))→ 0 as t→ 0.

This proves that ‖ψ(c+ td)− ψ(c) ‖H1(Ω) → 0 as t→ 0. The proof of the conver-

gence ‖ψD(c+ td)− ψD(c) ‖H1(Ω) → 0 as t→ 0 is similar and simpler.

Proof of Theorem 3.2.1. Let us write F [c] = Fpot[c] + Fent[c], where

Fpot[c] =

∫
Ω

1

2
ρ(c)ψ(c) dV +

∫
ΓN

1

2
σψ(c) dS, (3.10)

Fent[c] =
M∑
i=1

∫
Ω

{
β−1ci

[
log(Λ3ci)− 1

]
− µici

}
dV. (3.11)

By routine calculations (cf. [Li09a,Li09b,CDLM08]), we have

δFent[c][d] = lim
t→0

Fent[c+ td]− Fent[c]

t
=

M∑
i=1

∫
Ω

di
[
β−1 log

(
Λ3ci

)
− µi

]
dV. (3.12)

Now we have by (3.2) that for |t| � 1

Fpot[c+ td]− Fpot[c]

t

=
1

2

∫
Ω

ρ(c+ td)ψ(c+ td)− ρ(c)ψ(c)

t
dV +

1

2

∫
ΓN

σ
ψ(c+ td)− ψ(c)

t
dS

=
1

2

∫
Ω

[ρ(c+ td)− ρ(c)]ψ(c+ td)

t
dV +

1

2

∫
Ω

ρ(c)
ψ(c+ td)− ψ(c)

t
dV

+
1

2

∫
ΓN

σ
ψ(c+ td)− ψ(c)

t
dS

=
1

2

M∑
i=1

∫
Ω

qidiψ(c+ td)dV +
1

2

∫
Ω

ρ(c)
ψ(c+ td)− ψ(c)

t
dV

+
1

2

∫
ΓN

σ
ψ(c+ td)− ψ(c)

t
dS. (3.13)

By Lemma 3.2.2, we have

1

2

M∑
i=1

∫
Ω

qidiψ(c+ td) dV → 1

2

M∑
i=1

∫
Ω

qidiψ(c) dV as t→ 0. (3.14)



47

For the remaining two terms in (3.13), we have by the weak formulation

(3.5) for ψ(c) and (3.7) for ψD(c) with φ = [ψ(c+ td)− ψ(c)]/t that

1

2

∫
Ω

ρ(c)
ψ(c+ td)− ψ(c)

t
dV +

1

2

∫
ΓN

σ
ψ(c+ td)− ψ(c)

t
dS

=
1

2

∫
Ω

ε(c̄)ε0∇ψ(c) · ∇
[
ψ(c+ td)− ψ(c)

t

]
dV

=
1

2

∫
Ω

ε(c̄)ε0∇ [ψ(c)− ψD(c)] · ∇
[
ψ(c+ td)− ψ(c)

t

]
dV. (3.15)

It now follows from the weak formulations for ψ(c + td) and ψ(c) (cf. (3.5)) with

φ = ψ(c)− ψD(c), and Lemma 3.2.2 that

1

2

∫
Ω

ε(c̄)ε0∇ [ψ(c)− ψD(c)] · ∇
[
ψ(c+ td)− ψ(c)

t

]
dV

=
1

2t

∫
Ω

[
ε(c̄)− ε(c̄+ td̄)

]
ε0∇ [ψ(c)− ψD(c)] · ∇ψ(c+ td) dV

+
1

2t

∫
Ω

ε(c̄+ td̄)ε0∇ [ψ(c)− ψD(c)] · ∇ψ(c+ td) dV

− 1

2t

∫
Ω

ε(c̄)ε0∇ [ψ(c)− ψD(c)] · ∇ψ(c) dV

= −1

2

∫
Ω

ε(c̄+ td̄)− ε(c̄)
t

ε0∇ [ψ(c)− ψD(c)] · ∇ψ(c+ td) dV

+
1

2t

∫
Ω

ρ(c+ td) [ψ(c)− ψD(c)] dV − 1

2t

∫
Ω

ρ(c) [ψ(c)− ψD(c)] dV

= −1

2

∫
Ω

[
ε(c̄+ td̄)− ε(c̄)

t
ε0 −

M∑
i=1

diε
′(c̄)ε0

]
∇ [ψ(c)− ψD(c)] · ∇ψ(c+ td) dV

− 1

2

M∑
i=1

∫
Ω

diε
′(c̄)ε0∇ [ψ(c)− ψD(c)] · ∇ψ(c+ td) dV

+
1

2

M∑
i=1

∫
Ω

diqi [ψ(c)− ψD(c)] dV

→ −1

2

M∑
i=1

∫
Ω

diε
′(c̄)ε0∇ [ψ(c)− ψD(c)] · ∇ψ(c) dV

+
1

2

M∑
i=1

∫
Ω

diqi [ψ(c)− ψD(c)] dV as t→ 0.

This and (3.13)–(3.15) lead to

δFpot[c][d] = lim
t→0

Fpot[c+ td]− Fpot[c]

t
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=
M∑
i=1

∫
Ω

diqi

[
ψ(c)− 1

2
ψD(c)

]
dV

− 1

2

M∑
i=1

∫
Ω

diε
′(c̄)ε0∇ [ψ(c)− ψD(c)] · ∇ψ(c) dV. (3.16)

We finally combine (3.12) and (3.16) to obtain the desired first variation.

3.2.2 Generalized Boltzmann distributions

We call c = (c1, . . . , cM) ∈ X an equilibrium if the first variation δF [c][d] de-

fined by (3.8) exists and is equal to 0 for any d ∈ L∞(Ω,RM). If c = (c1, . . . , cM) ∈
X satisfies the assumption in Theorem 3.2.1 and is an equilibrium, then δiF [c] = 0

(i = 1, . . . ,M) by Theorem 3.2.1. Straightforward calculations then lead to

ci = c∞i exp

{
−β
{
qi

[
ψ(c)− 1

2
ψD(c)

]
− 1

2
ε′(c̄)ε0∇ψ(c) · ∇ [ψ(c)− ψD(c)]

}}
,

(3.17)

where c∞i = Λ−3eβµi (1 ≤ i ≤ M). We call these the generalized Boltzmann dis-

tributions, as they generalize the classical Boltzmann distributions ci = c∞i e
−βqiψ

(i = 1, . . . ,M) if ε does not depend on c, and ψ∞ = 0 which implies ψD = 0.

The effect of the boundary data was noted in [Li09b,Li09a]. Note that in general

ε′(c̄) 6= 0 and hence (3.17) does not explicitly determine how the concentrations ci

(i = 1, . . . ,M) depend on the potential ψ.

3.3 Second Variations

Let a, b, c ∈ X. We define

δ2F [c][a, b] = lim
t→0

δF [c+ ta][b]− δF [c][b]

t
,

if the quotient is defined when |t| � 1 and the limit exists, and call it the second

variation of the free-energy functional F at c in the directions a and b.

For c ∈ X and a = (a1, . . . , aM) ∈ X, let us denote by Ψ(c, a) the unique
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weak solution to the boundary-value problem

−∇ · ε(c̄)ε0∇Ψ(c, a) =
M∑
i=1

ai [qi +∇ · ε′(c̄)ε0∇ψ(c)] in Ω,

ε(c̄)ε0
∂Ψ(c, a)

∂n
= −ε

′(c̄)

ε(c̄)
σ on ΓN,

Ψ(c, a) = 0 on ΓD,

defined by Ψ(c, a) ∈ H1
D,0(Ω) and

∫
Ω

ε(c̄)ε0∇Ψ(c, a)·∇φ dV =
M∑
i=1

∫
Ω

ai [qiφ− ε′(c̄)ε0∇ψ(c) · ∇φ] dV ∀φ ∈ H1
D,0(Ω).

(3.18)

Similarly, let us denote by ΨD(c, a) the unique weak solution of the boundary-value

problem 
−∇ · ε(c̄)ε0∇ΨD(c, a) =

M∑
i=1

ai∇ · ε′(c̄)ε0∇ψD(c) in Ω,

ε(c̄)ε0
∂ΨD(c, a)

∂n
= 0 on ΓN,

ΨD(c, a) = 0 on ΓD,

defined by ΨD(c, a) ∈ H1
D,0(Ω) and

∫
Ω

ε(c̄)ε0∇ΨD(c, a) ·∇φ dV = −
M∑
i=1

∫
Ω

aiε
′(c̄)ε0∇ψD(c) ·∇φ dV ∀φ ∈ H1

D,0(Ω).

(3.19)

The existence and uniqueness of each of these weak solutions is guaranteed by the

Lax–Milgram Lemma. Note that Ψ(c, a) and ΨD(c, a) are linear in a.

Theorem 3.3.1. Let ε ∈ C2([0,∞)). Let c = (c1, . . . , cM) ∈ X. Assume there

exist positive numbers δ1 and δ2 such that δ1 ≤ ci(x) ≤ δ2 for a.e. x ∈ Ω and

i = 1, . . . ,M . Let a = (a1, . . . , aM), b = (b1, . . . , bM) ∈ L∞(Ω,RM). We have

δ2F [c][a, b]

=

∫
Ω

{
ε(c̄)ε0

[
∇Ψ(c, b) · ∇Ψ(c, a)− 1

2
∇Ψ(c, b) · ∇ΨD(c, a)
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− 1

2
∇ΨD(c, b) · ∇Ψ(c, a)

]
− 1

2

(
M∑
i=1

bi

)(
M∑
j=1

aj

)
ε′′(c̄)ε0∇ψ(c) · ∇ [ψ(c)− ψD(c)] +

M∑
i=1

aibi
βci

}
dV.

Note that δ2F [c][a, b] is symmetric and bilinear in (a, b). To prove this

theorem, let us denote for |t| � 1

Ψ(c, a; t) =
ψ(c+ ta)− ψ(c)

t
and ΨD(c, a; t) =

ψD(c+ ta)− ψD(c)

t
, (3.20)

where ψ(c+ta) ∈ H1
D(Ω) and ψD(c+ta) are defined by (3.5) and (3.7), respectively,

with c replaced by c+ ta. We first prove the following:

Lemma 3.3.2. Under the assumption of Theorem 3.3.1, we have Ψ(c, a; t) →
Ψ(c, a) and ΨD(c, a; t)→ ΨD(c, a) in H1(Ω) as t→ 0.

Proof. Consider |t| � 1. By the weak formulations for ψ(c+ta) and ψ(c) (cf. (3.5))

and the definition of ρ(c + ta) and ρ(c) (cf. (3.2)), we have for any φ ∈ H1
D,0(Ω)

that∫
Ω

ε(c̄+ tā)ε0∇ψ(c+ ta) · ∇φ dV −
∫

Ω

ε(c̄)ε0∇ψ(c) · ∇φ dV = t
M∑
i=1

∫
Ω

qiaiφ dV.

With our notation Ψ(c, a) and Ψ(c, a; t), and the weak formulation for Ψ(c, a)

(cf. (3.18)), this leads to∫
Ω

ε(c̄+ tā)− ε(c̄)
t

ε0∇ψ(c+ ta) · ∇φ dV +

∫
Ω

ε(c̄)ε0∇ [Ψ(c, a; t)−Ψ(c, a)] · ∇φ dV

=
M∑
i=1

∫
Ω

aiε
′(c̄)ε0∇ψ(c) · ∇φ dV.

Setting φ = ft := Ψ(c, a; t)−Ψ(c, a) ∈ H1
D,0(Ω), we then obtain∫

Ω

ε(c̄)ε0|∇ft|2 dV =
M∑
i=1

∫
Ω

aiε
′(c̄)ε0∇ψ(c) · ∇ft dV

−
∫

Ω

ε(c̄+ tā)− ε(c̄)
t

ε0∇ψ(c+ ta) · ∇ft dV

=
M∑
i=1

∫
Ω

aiε
′(c̄)ε0 [∇ψ(c)−∇ψ(c+ ta)] · ∇ft dV
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+

∫
Ω

[
M∑
i=1

aiε
′(c̄)− ε(c̄+ tā)− ε(c̄)

t

]
ε0∇ψ(c+ ta) · ∇ft dV.

Since ε′(c̄) is bounded in Ω and ε(c̄) ≥ εmin in Ω, we thus have by the assumption

on ε = ε(c̄), the Cauchy–Schwarz inequality, and Lemma 3.2.2 that

εminε0‖∇ft‖L2(Ω) ≤
(

M∑
i=1

‖ai‖L∞(Ω)

)
|ε′(0)|ε0 ‖∇ψ(c)−∇ψ(c+ ta)‖L2(Ω)

+

∥∥∥∥∥
M∑
i=1

aiε
′(c̄)− ε(c̄+ tā)− ε(c̄)

t

∥∥∥∥∥
L∞(Ω)

ε0‖∇ψ(c+ ta)‖L2(Ω)

→ 0 as t→ 0.

This and the Poincaré inequality for functions in H1
D,0(Ω) imply the convergence

Ψ(c, a; t)→ Ψ(c, a) in H1(Ω) as t→ 0. The convergence ΨD(c, a; t)→ ΨD(c, a) in

H1(Ω) as t→ 0 can be proved similarly.

Proof of Theorem 3.3.1. We first consider Fent[c] defined in (3.11). By the bound-

edness of all a, b, and c, and Lebesgue’s Dominated Convergence Theorem, we

have by (3.12) that

δ2Fent[c][a, b] := lim
t→0

δFent[c+ ta][b]− δFent[c][b]

t

= lim
t→0

M∑
i=1

∫
Ω

bi
β−1 log (Λ3(ci + tai))− β−1 log (Λ3ci)

t
dV

=
M∑
i=1

∫
Ω

biβ
−1 d

dt
log (ci + tai)

∣∣∣∣
t=0

dV

=
M∑
i=1

∫
Ω

aibi
βci

dV. (3.21)

We now consider Fpot[c] defined in (3.10). By (3.16) and using our notation

Ψ(c, a; t) and ΨD(c, a; t) (cf. (3.20)), we have

1

t
{δFpot[c+ ta][b]− δFpot[c][b]}

=
M∑
i=1

∫
Ω

biqiΨ(c, a; t) dV − 1

2

M∑
i=1

∫
Ω

biqiΨD(c, a; t) dV
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− 1

2

M∑
i=1

∫
Ω

bi

[
ε′(c̄+ tā)− ε′(c̄)

t

]
ε0∇ψ(c+ ta) · ∇ [ψ(c+ ta)− ψD(c+ ta)] dV

− 1

2

M∑
i=1

∫
Ω

biε
′(c̄)ε0∇ψ(c+ ta) · ∇ [Ψ(c, a; t)−ΨD(c, a; t)] dV

− 1

2

M∑
i=1

∫
Ω

biε
′(c̄)ε0∇Ψ(c, a; t) · ∇ [ψ(c)− ψD(c)] dV.

Consequently, since

ε′(c̄+ tā)− ε′(c̄)
t

→
M∑
j=1

ajε
′′(c̄) in L∞(Ω),

we have by Lemma 3.2.2 and Lemma 3.3.2, and by rearranging terms, that

δ2Fpot[c][a, b] := lim
t→0

1

t
{δFpot[c+ ta][b]− δFpot[c][b]}

=
M∑
i=1

∫
Ω

biqiΨ(c, a) dV − 1

2

M∑
i=1

∫
Ω

biqiΨD(c, a) dV

− 1

2

∫
Ω

(
M∑
i=1

bi

)(
M∑
j=1

aj

)
ε′′(c̄)ε0∇ψ(c) · ∇ [ψ(c)− ψD(c)] dV

− 1

2

M∑
i=1

∫
Ω

biε
′(c̄)ε0∇ψ(c) · [∇Ψ(c, a)−∇ΨD(c, a)] dV

− 1

2

M∑
i=1

∫
Ω

biε
′(c̄)ε0∇Ψ(c, a) · ∇ [ψ(c)− ψD(c)] dV

= −1

2

∫
Ω

(
M∑
i=1

bi

)(
M∑
j=1

aj

)
ε′′(c̄)ε0∇ψ(c) · ∇ [ψ(c)− ψD(c)] dV

+
M∑
i=1

∫
Ω

biqiΨ(c, a) dV − 1

2

M∑
i=1

∫
Ω

biqiΨD(c, a) dV

−
M∑
i=1

∫
Ω

biε
′(c̄)ε0∇ψ(c) · ∇Ψ(c, a) dV

+
1

2

M∑
i=1

∫
Ω

biε
′(c̄)ε0∇ψ(c) ·ΨD(c, a) dV

+
1

2

M∑
i=1

∫
Ω

biε
′(c̄)ε0∇ψD(c) ·Ψ(c, a) dV
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= −1

2

∫
Ω

(
M∑
i=1

bi

)(
M∑
j=1

aj

)
ε′′(c̄)ε0∇ψ(c) · ∇ [ψ(c)− ψD(c)] dV

+
M∑
i=1

∫
Ω

bi [qiΨ(c, a)− ε′(c̄)ε0∇ψ(c) · ∇Ψ(c, a)] dV

− 1

2

M∑
i=1

∫
Ω

bi [qiΨD(c, a)− ε′(c̄)ε0∇ψ(c) · ∇ΨD(c, a)] dV

+
1

2

M∑
i=1

∫
Ω

biε
′(c̄)ε0∇ψD(c) · ∇Ψ(c, a) dV.

By the weak formulation for Ψ(c, b) (cf. (3.18) with b replacing a) with

φ = Ψ(c, a), the weak formulation for Ψ(c, b) (cf. (3.18) with b replacing a) with

φ = ΨD(c, a), and the weak formulation for ΨD(c, b) (cf. (3.19) with b replacing a)

with φ = Ψ(c, a), we therefore obtain

δ2Fpot[c][a, b] =− 1

2

∫
Ω

(
M∑
i=1

bi

)(
M∑
j=1

aj

)
ε′′(c̄)ε0∇ψ(c) · ∇ [ψ(c)− ψD(c)] dV

+

∫
Ω

ε(c̄)ε0∇Ψ(c, b) · ∇Ψ(c, a) dV

− 1

2

∫
Ω

ε(c̄)ε0∇Ψ(c, b) · ∇ΨD(c, a) dV

− 1

2

∫
Ω

ε(c̄)ε0∇ΨD(c, b) · ∇Ψ(c, a) dV.

This and (3.21) imply the desired second variation.

3.4 Non-Convexity of the Free-Energy Functional

By Theorem 3.3.1, the second variation δ2F [c] is not necessarily positive

definite, i.e., δ2F [c][a, a] may not be positive, as ε′′(c̄) ≥ 0 by our assumption that

is based on experimental data. This indicates that the free-energy functional (3.1)

may be nonconvex. We investigate this non-convexity by examining the generalized

Boltzmann distributions. If we assume ψ∞ = 0 on ΓD, then ψD = 0 in Ω, cf. (3.7),

and hence the generalized Boltzmann distributions (3.17) become

ci = c∞i e
−βqiψeβε

′(c̄)ε0|∇ψ|2/2, i = 1, . . . ,M, (3.22)
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where ψ = ψ(c). Summing over all i and using the notation c̄ =
∑M

i=1 ci, we obtain

c̄ =

(
M∑
i=1

c∞i e
−βqiψ

)
eβε

′(c̄)ε0|∇ψ|2/2.

Based on these considerations, we define for any given s ∈ R and v ≥ 0

G(c̄) = Gs,v(c̄) =

(
M∑
i=1

c∞i e
−βqis

)
eβε

′(c̄)ε0v2/2 − c̄ ∀c̄ ≥ 0.

Notice that if c = (c1, . . . , cM) satisfies the generalized Boltzmann distributions

(3.22), s = ψ(c), and v = |∇ψ(c)|, then G(c̄) = 0 with c̄ =
∑M

i=1 ci.

We now consider an ionic solution occupying the annulus region 10 < r =

|x| < 60 (in Å) with the charge densidy σ = −0.02 e/Å
2

on r = 10. We assume

there are two ionic species in the solution with Z1 = 1, Z2 = −1, c∞1 = 0.1 M, and

c∞2 = 0.1 M. We choose ε(c̄) = 70e−0.22c̄ + 10 which we used to fit experimental

data, cf. Figure 1.4. From our numerical computational results (cf. Section 3.5 for

details), we fix a few selected values of ψ and |∇ψ| near the charged surface r = 10,

and then plot in Figure 3.2 (Left) the graph of functionG(c̄) = Gs,v(c̄) = Gψ,|∇ψ|(c̄),

where we use c instead of c̄ and φ = βeψ instead of ψ. We observe that there are

multiple solutions to the equation G(c) = 0 for some values of φ and |∇φ|, indicat-

ing that the generalized Boltzmann distributions may not determine uniquely the

concentrations through the electrostatic potential. In Figur 3.2 (Right), we plot

zeros of G(c) = 0 vs. c. We see that there are three zeros when the electrostatic

potential is large in magnitude.

We now construct two examples to show that the free-energy functional

(3.1) is in general nonconvex. For simplicity, we take ε0 to be the unity.

Example 1. Let σ, β, λ, µ ∈ R with β > 0 and λ > 0. We consider the

functional

F [c] =

∫ 1

0

1

2
cψdx+

1

2
σψ(0) +

∫ 1

0

[
β−1c log(λc)− µc

]
dx (3.23)

for functions c = c(x) ≥ 0 with x ∈ (0, 1), where the potential ψ = ψ(x) is
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G(c) vs. φ and |∇φ|. The three dots on the verticle line indicate the three zeros
of G(c).
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determined by 
(ε(c(x))ψ′(x))′ = −c(x), x ∈ (0, 1).

ψ(1) = 0,

ε(c(0))ψ′(0) = −σ,
Here, ε(c) = 70e−0.22c + 10, which was used to fit experimental data in Figure 1.4.

This model can be viewed as reduced from a three-dimensional model with the

ionic concentration and electrostatic potential only varying in the x-coordinate

direction.

If c is a constant function, then we have by simple calculations that

ψ(x) = − cx2

2ε(c)
− σx

ε(c)
+

c

2ε(c)
+

σ

ε(c)
, x ∈ (0, 1),

F [c] =
c2 + 3cσ + 3σ2

6ε(c)
+ β−1c log

( c

c∞

)
, c > 0, (3.24)

where c∞ = λ−1eβµ. The function F [c], with σ = −0.04, β−1 = 1, and c∞ = 0.1, is

plotted in Figure 3.3. We find that it has two local minima at c = 0 and c ≈ 48.4,

and that it is nonconvex. Hence, the functional F [c] defined in (3.23) is not convex

in general.

0 20 40 60 80 100
0

200

400

600

800

1000

c (M)

F
[c
]

Figure 3.3: Graph of the function F [c] defined in (3.24).
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Example 2. We consider the free-energy functional

F [c] =

∫ 1

0

(
1

2
cψ + c log c− 2c

)
dx (3.25)

for functions c = c(x) ≥ 0 with x ∈ (0, 1), where the potential ψ = ψ(x) is

determined by  (ε(c(x))ψ′(x))′ = −c(x), x ∈ (0, 1).

ψ(0) = ψ(1) = 0,

The function ε = ε(c) is defined by

ε(c) =



1025

36
− 50

9
c if 0 ≤ c < 4,

25

18
(c− 6)2 +

25

36
if 4 ≤ c < 6,

25

36
if 6 ≤ c <∞.

(3.26)

It can be verified that this is a C1-function, monotonically decreasing, convex, and

bounded above and below by positive constants. See Figure 3.4 (Left) for a plot

of this function.

For constant functions c, we have

ψ(x) = − cx2

2ε(c)
+

cx

2ε(c)
, x ∈ (0, 1),

F [c] =
c2

24ε(c)
+ c log(c)− 2c, c > 0. (3.27)

Figure 3.4 (Right) is a plot of the function F [c] defined in (3.27). We see clearly

that this function F [c] is not convex. Hence the functional F [c] defined in (3.25)

is not convex.

3.5 Numerical Study of a Model System

We minimize numerically the free-energy functional (3.1) and (3.3) with

Ω = {x ∈ R3 : RN < |x| < RD},
ΓN = {x ∈ R3 : |x| = RN}, ΓD = {x ∈ R3 : |x| = RD},
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Figure 3.4: Left: Graph of the function ε = ε(c) defined in (3.26). Right: Graph
of the function F [c] defined in (3.27).

where RD and RN are two given positive numbers such that RD < RN. We assume

that ρf = ρf(r) is a function of r = |x|, ψ∞ is a constant, and σ is also a constant.

By the radial symmetry, we assume the concentrations and potential are functions

of r = |x| and write c = c(r) and ψ = ψ(r). The free-energy functional (3.1) and

the boundary-value problem of Poisson’s equation (3.3) become now

F [c] = 4π

∫ RD

RN

{
1

2

(
ρf +

M∑
i=1

qici

)
ψ +

M∑
i=1

β−1ci

[
log

(
ci
c∞i

)
− 1

]}
r2 dr

+ 2πσR2
Nψ(RN), (3.28)

ε(c̄)ψ′′(r) + ε′(c̄)c̄′(r)ψ′(r) +
2

r
ε(c̄)ψ′(r) = − 1

ε0

[
ρf(r) +

M∑
i=1

qici(r)

]
for RN < r < RD,

−ε(c(RN))ε0ψ
′(RN) = σ,

ψ(RD) = ψ∞.

(3.29)

Here we use c∞i instead of µi (i = 1, . . . ,M) as input parameters. We have µi =

β−1 log(Λ3c∞i ) (i = 1, . . . ,M). With our radially symmetric setting, we can easily

observe and verify that the solution ψD to the boundary-value problem (3.6) is

ψD = ψ∞, a constant. By Theorem 3.2.1, the first variations of the free-energy

functional (3.28) in the coordinate directions are then given by

δiF [c](r) =qi

[
ψ(r)− 1

2
ψ∞

]
− 1

2
ε′(c̄(r))ε0ψ

′(r) [ψ′(r)− ψ∞]
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+ β−1 log

(
ci(r)

c∞i

)
, RN < r < RD, i = 1, . . . ,M. (3.30)

We employ a steepest descent method to minimize the free-energy functional

(3.28). After initializing the concentrations c = (c1, . . . , cM), we follow these steps:

Step 1. Solve Poisson’s equation (3.29) to update the potential ψ.

Step 2. Compute the first variations δiF [c] (i = 1, . . . ,M) by (3.30).

Step 3. Update the concentrations: ci ← ci− γdi (i = 1, . . . ,M), where γ > 0 is a

pre-chosen parameter.

Step 4. Check if max1≤i≤M ‖δiF [c]‖L∞(RN,RD) < εtol with a pre-chosen tolerance

εtol. If not, go back to (1).

We choose the parameter γ in Step (3) to be very small to ensure that all ci > 0

in each iteration. In case ci < 0 for some i, we can change γ to a smaller value to

update ci. Note that we only find numerically local minimizers that are sometimes

more interesting in terms of physical properties than global minimizers.

We now fix RN = 10 Å and RD = 60 Å, and vary the surface charge density

σ from −0.005 to −0.025 e/Å
2
. As surface charges generally represent the main

part of fixed charges, we set ρf = 0. Moreover, since we are mainly interested in the

counterion concentrations and electrostatic potentials near the charged surface, we

set ψ∞ = 0. We use kBT as units of energy. We consider two systems.

System I: M = 2, Z1 = 1, Z2 = −1, c∞1 = 0.1 M, and c∞2 = 0.1 M.

System II: M = 3, Z1 = 2, Z2 = 1, Z3 = −2, c∞1 = 0.1 M, c∞2 = 0.1 M,

c∞3 = 0.15 M.

In each of our numerical computations, we observe the decay of the free energy

and the convergence of concentrations in our iterations. This indicates that our

numerical method is reliable.

3.5.1 Comparison of different dielectric relations: counte-

rion depletion

We compare equilibrium concentrations and electrostatic potentials corre-

sponding to the following four different dielectric coefficient functions ε = εi(c̄) :
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(c̄ ≥ 0):

ε1(c̄) = 80; ε2(c̄) = 80− 20c̄;

ε3(c̄) =
80

1 + 0.25c̄
; ε4(c̄) = 70e−0.22c̄ + 10. (3.31)

Note that all these functions are convex and monotonically decreasing with the

maximum value 80 at c̄ = 0. In addition ε3(∞) = 0 and ε4(∞) = 10. The linear

dependence ε2(c̄) is used in [BYAP11]. The form ε3(c̄) is proposed in [KD09]. We

used ε4(c̄) to fit the experiment data in Figure 1.4.

We consider System I with the surface charge density σ = −0.005 e/Å
2
. In

Figure 3.5, we plot profiles of the equilibrium concentrations for both counterion

and coion species for the four different dielectric coefficient defined in (3.31). The

four concentration profiles for the species of coions nearly overlap and become

one. It is the curve below all the other four for the counterion concentrations.

The inset shows the graph of εi(c̄(r)) (1 ≤ i ≤ 4) as a function of the radial

variable r. We observe differences of the counterion concentrations in the vicinity

of the charged surface, even at such a relatively low surface charge density. The

counterion concentrations corresponding to ε2(c̄), ε3(c̄), and ε4(c̄) are smaller than

that predicted by the classical PB theory that corresponds to ε1(c̄). Such counterion

depletion is expected as explained in Introduction and as found in [BYAP11].

We now still consider System I but increase the surface charge density to

σ = −0.012 e/Å
2
. In Figure 3.6, we plot concentrations and potential similar to

those in Figure 3.5. We see clearly that the counterion depletion near the charged

surface is enhanced for the concentration-dependent dielectric coefficient ε = εi(c̄)

(i = 2, 3, 4). This is because that the increase of the surface charge leads to the

increase of the electric field, which in turn decreases more the concentration by

the factor eβε
′(c̄)ε0|∇ψ|2/2 in the generalized Boltzmann distributions, since ε′(c̄) < 0

and |∇ψ| is larger. We find that, for the case of linear dependence ε = ε2(c̄),

our numerical solution is quite sensitive. As the concentration becomes large, the

dielectric coefficient can be very close to zero and even negative, leading to an

unphysical situation that corresponds to the loss of ellipticity mathematically.
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Figure 3.5: The concentrations vs. radial distance to the charged surface for

System I with the surface charge density σ = −0.005 e/Å
2
. Inset: the graph of

function εi(c̄(r)) for i = 1, . . . , 4.
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C
on

ce
n
tr
at
io
n
(M

)

 

 

ε1(c̄)
ε2(c̄)
ε3(c̄)
ε4(c̄)

10 15 20 25 30
55

60

65

70

75

80

85

Distance to the charged surface (Å)
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3.5.2 Effect of surface charges and bulk concentrations:

non-monotonicity of counterion concentrations

We now consider System I with ε = ε4(c̄) defined in (3.31). We compute the

equilibrium concentration and electrostatic potential with the surface charge den-

sities σ = −0.01 e/Å
2
, −0.015 e/Å

2
, −0.02 e/Å

2
, and −0.025 e/Å

2
, respectively,

and plot our numerical results in Figure 3.7. The four counterion concentration

profiles for the four different values of the surface charge density are indicated by

the symbols. The four corresponding coion concentrations overlap and become

one curve which is the lowest one. In Figure 3.7, we observe that the counterion

concentration is non-monotonic for a large surface charge density. The dielectric

function ε(c̄(r)) is also non-monotonic. Moreover, for large surface charge densi-

ties, as the surface charge increases, the counterion concentration at the surface

(i.e., at r = RN = 10 Å) decreases, and the peak of the counterion concentra-

tion profile gets higher and moves further away from the surface. All these result

from the competition between the surface-counterion attraction and the counterion

depletion near the surface.
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ε(
c̄)

10 15 20 25 30

−12

−10

−8

−6

−4

−2

0

Distance to the charged surface (Å)
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Figure 3.7: System I with ε = ε4(c̄). Left: The ionic concentrations vs. the radial
distance to the charged surface. Right: The electrostatic potentials vs. the radial
distance to the charged surface for different values of the surface charge density.

In Figure 3.8, we plot the counterion concentration at the charged surface

and the maximum value of counterion concentration as functions of the surface

charge density. For comparison, we also plot the results predicted by the classical
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PB theory. We observe that the differences are significant for large surface charges:

the counterion concentration at the charged surface predicted using ε = ε4(c̄)

decreases but that predicted by the classical PB equation increases. Moreover, the

maximum value of counterion concentration predicted with ε = ε4(c̄) increases as

the surface charge density increases.

We also plot the electrostatic potential at the charged surface in Figure 3.8

(Right). As the surface charge density increases, the electrostatic potentials at the

charged surface predicted by the classical PB are weaker than those predicted with

ε = ε4(c̄). This is because that the screening effect with the ionic decrement is

weaker.
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Figure 3.8: Left: The Counterion concentration at the charged surface and the
maximum value of counterion concentration vs. the surface charge density. Right:
The electrostatic potential at the charged surface vs. the surface charge density.

We now fix the surface charge density σ = −0.012 e/Å
2

and vary the bulk

concentrations c∞i (i = 1, 2). From Figure 3.9 (Left), we observe that larger bulk

concentrations lead to the stronger depletion effect. From Figure 3.9 (Right), we

see that the counterion distribution is monotonic for low bulk concentrations and is

non-monotonic after bulk concentrations exceed 0.2 M. Their differences increase

as the bulk concentrations increase.

We now consider System II in which there are two species of counterions and

one species of coions. In Figure 3.10, we plot concentration profiles for different

values of surface charge density. We can again observe the ionic depletion for high

surface charges.
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Figure 3.9: Left: Concentrations vs. radial distance to the charged surface
with different ionic concentrations. Right: The counterion concentration at the
charged surface and the maximal value of counterion concentration vs. bulk ionic
concentration.

3.6 Remarks

In this chapter, we build up the theoretical foundation of the mean-field

model with concentration dependent dielectric and Poisson electrostatics. The

theory part include model setup, first and second variation, generalized Boltzmann

distribution and non-convexity of the free-energy functional. Moreover, we perform

a numerical computation in a model system and find unusual phenomena.

Our basic modeling assumption is that the dependence of the dielectric

coefficient on the sum of individual ionic concentrations is qualitatively the same

as that on the salt concentrations for which experimental data are available. Such

dependence is expressed mathematically as a continuous, monotonically decreasing,

and convex function.

Our free-energy functional (3.1) extends those in [Li09b, CDLM08, RR90,

FB97], where the dielectric coefficient is independent of concentrations, and that in

[BYAP11], where the dielectric coefficient depends linearly on the concentrations.

It should be noted that a linear dependence ε = ε2(c̄) (cf. (3.31)) leads to the

ill-posedness of Poisson’s equation (cf. (3.3)). A nonlinear dependence of dielectric

coefficient on concentrations is significant, as it can lead to the existence of multiple

equilibrium concentrations. Our numerical results show interesting phenomena,
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Figure 3.10: Ionic concentrations vs. radial distance to the charge surface with

different values of surface charge density σ. Upper left: σ = −0.005e/Å
2
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.

extending those found in [BYAP11, Fry11, KD09, LAO12, BYAHP09]. However,

the nonlinear dependence leads to the lack of compactness needed in proving the

existence of a minimizer by the usual argument of direct methods in the calculus

of variations. To prove the existence, we will then need to construct carefully

a free-energy-minimizing sequence that is weakly compact. The nonconvexity of

the functional is different from that for the classical PB functional. It will be

interesting to understand if such nonconvexity can be used to model the transition

from weak to strong interactions in an ionic solution.

Our numerical algorithm is fairly general. The key of our algorithm is

the self-consistency: In each step of relaxing the free-energy functional, we solve

Poisson’s equation with the concentration dependent dielectric coefficient. We
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update the concentrations and electrostatic potential alternatively. If one simply

uses the classical Boltzmann distributions for ci’s in ε = ε(c̄), one may not be able

to capture the ionic depletion as shown in the recent work [LL14].

One of the ion-specific properties is the ionic size effect. In recent years, the

PB-like mean-field models that account for ionic size effects have been developed

[LLXZ13,BAO97,Tre08,Li09b,Li09a,ZWL11,WZXL12,BYAP11,Fry11,BYAHP09,

LZ11]. Our experience is that a large (in terms of magnitude) surface charge

density is needed to capture the ionic size effect in such models, while only a small

charge density is needed to capture the ionic decrement near a charged surface.

It will be therefore interesting to see the transition characterized by the surface

charge density.

Another important issue that we have not addressed here is the Born solva-

tion energy of ions [MX14, Wan10,XML14]. Additional equations may be needed

to describe such energy. It is interesting to understand whether the inclusion of

the Born solvation energy will also lead to the correction term in the generalized

Boltzmann distributions. Finally, in terms of applications, how to apply our results

to modeling charged macromolecules, such as proteins, in an aqueous environment

is of great interest.
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Chapter 4

Phase-Field Model with

Poisson–Boltzmann Electrostatics

4.1 Introduction

The structure, dynamics, and function of biomolecular systems are crucially

influenced by the interaction between the biomolecules and their aqueous envi-

ronment. Such interactions can be described efficiently by implicit-solvent mod-

els [TP94, CT99, RS99, FI04], in which the solvent molecules and ions are treated

implicitly and their effects are coarse-grained; cf. Figure 4.1 for a schematic view

of two different descriptions of a solvation system. In the left part, both the so-

lute atoms (dark dots) and solvent molecules (grey dots) are degrees of freedom

in the system. In the right part, the solvent molecules are coarse-grained and the

solvent is treated as a continuum. The solvent region Ωw and the solute region

Ωm are separated by the solute-solvent interface Γ, and the solute atoms are lo-

cated x1, · · · ,xN inside Ωm. In an implicit-solvent model, the effect of solvent is

described through the interface separating the solutes and solvent, and the related

macroscopic quantities, such as the surface tension and the bulk solvent density.

These models are complementary to the more accurate but computationally ex-

pensive explicit-solvent models, such as molecular dynamics simulations, which

often provide sampled statistical information rather than direct descriptions of

67
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thermodynamics.

Implicit Solvent

Ωw

Ωm

xi

Γ

Figure 4.1: Schematic view of a solvation system. Left: a full atomistic model.
Right: an implicit-solvent model. The solute-solvent interface Γ separates the
solute region Ωm from the solvent region Ωw.

A large class of existing implicit-solvent models are based on various kinds

of predefined solute-solvent interfaces, such as the van der Waals surface (vdWS),

solvent-excluded surface (SES), or solvent-accessible surface (SAS) [LR71, Ric77,

Con83,Ric84,Con92]. In these models, the solvation free energy is approximated by

the sum of the interfacial energy and the electrostatic free energy determined by the

Poisson–Boltzmann (PB) [DM90, FB97, GT08, Li09b, SH90a] or Generalized Born

(GB) [BC00, STHH90, Bak05] theory in which the vdWS, SAS, or SES is used as

a dielectric boundary. While such fixed-surface implicit-solvent approaches have

been extensively used and successful in many cases, their accuracy and general

applicability are still questionable. It is believed that one of the main issues here

is the decoupling of surface tension, dispersion, and the polar part of the free

energy. Moreover, an ad hoc definition of vdWS, SAS, or SES can often lead

to inaccurate free-energy calculations. It is additionally well established by now

that cavitation free energies do not scale with surface area for high curvatures

[LCW99, Cha05, RHK06, WFB10], a fact of critical importance in the implicit-

solvent modeling of hydrophobic interactions at molecular scales [BN80, Tan80,

CB07,ZHMB04,BWZ09].

In recent years, a new class of implicit-solvent models—the variational

implicit-solvent model (VISM)—have been developed [DSM06a, DSM06b]. Cou-
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pled with the robust level-set numerical method, such models allow an efficient

and quantitative description of molecular solvation [CDML07,CXD+09,CWS+09,

SWC+09, CLW10, WCC+12]. Central in the VISM is a mean-field free-energy

functional of all possible solute-solvent interfaces, or dielectric boundaries, that

separate the continuum solvent from all solute atoms. In a simple setting, such

a free-energy functional consists of surface energy, solute-solvent van der Waals

interaction energy, and continuum electrostatic free energy. The minimization of

the functional determines the solvation free energy and stable equilibrium solute-

solvent interfaces. Extensive level-set numerical results with comparison with

molecular dynamics (MD) simulations have demonstrated the success of this new

approach to the solvation molecular systems in capturing the hydrophobic inter-

action, multiple equilibrium states of hydration, and fluctuation between such

states [CDML07, CWS+09, SWC+09, WCC+12]. In general, stable equilibrium

solute-solvent interfaces determined by the level-set VISM can be quite differ-

ent from vdWS, SES, or SAS, particularly when it comes to the description of

hydrophobic interactions [Cha05,BWZ09,WKBL11]. Perhaps the most significant

feature of VISM is that its free-energy functional exhibits a complex energy land-

scape with multiple local minima corresponding to different equilibrium states.

Despite the initial success of the sharp-interface VISM [CDML07,CXD+09,

WCC+12, ZCD+14, GLD+14], it remains challenging to include fluctuations into

such a model, both around the solute-solvent interface and in the bulk solvent.

Such fluctuations have strong influence in the transition between multiple equi-

libriums and in sampling different states to accurately predict the free energies of

underlying biomolecular systems. Therefore, in this part of my dissertation work,

I develop a phase-field variational implicit-solvent model, as an alternative to the

original sharp-interface model, to the solvation of charged molecules. The phase-

field approach has been widely used in studying interface problems arising in many

scientific areas, such as materials physics, complex fluids, biomembranes, and cell

motility, cf. e.g., [AMW98,CL85,DLW04,Lan86,LRV09,SRL10] and the references

therein. Moreover, It can also describe fluctuations [KR99,BRP05]

Central in the phase-field variational approach to the implicit solvation is
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a mean-field free-energy functional of all possible phase fields. The functional

couples all the surface energy, the solute-solvent van der Waals interactions, and

the electrostatic interactions through a phase field. The approximation of the

surface area in the free-energy functional is give by∫ [
ξ

2
|∇φ|2 +

1

ξ
W (φ)

]
dx,

where ξ > 0 is a small parameter characterizing the width of transition layer and

W is a properly chosen double-well potential. If a phase field φ has a low free

energy, then the W -term forces the phase field φ to be close to the two wells of

W except a thin transition layer, partitioning the underlying solvation region into

the solute and solven regions, while the gradient term penalizes such partition.

As the parameter ξ becomes smaller and smaller, the transition characterized by

φ becomes a sharp interface; and the corresponding integral value becomes the

interfacial area [Mod87, Ste88, LZ13]. This well established mathematical theory

is the foundation of the phase-filed approach. The electrostatic part of the free

energy is described through the electrostatic potential that solves the PB equation

with a phase-field dependent dielectric coefficient.

Given the atomic coordinates and point charges of solute atoms, the effec-

tive surface tension of the solute-solvent interface, the bulk solvent density, the

dielectric coefficients, and some effective Lennard-Jones parameters, one can mini-

mize the free-energy functional to obtain the minimum free energies as well as the

free-energy minimizing optimal phase fields that determine the stable equilibrium

conformations of an underlying biomolecular system.

Much of my work is devoted to the design, implement, and test of accu-

rate and efficient numerical methods for solving the gradient-flow partial differen-

tial equations of relaxing the phase-field free-energy functional. These equations

include a time-dependent diffusion equation for the phase field, where the time

presents the optimization step rather than the time of real dynamics, and the

phase-field version of the PB equation. I use semi-implicit schemes for the time

discretization. In each time step, I use the finite difference method to solve the

linear system of equations. I test the convergence of my numerical schemes using a

one-particle system which results a radially symmetric, one-dimensional problem.
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The rest of the chapter is organized as follows: In Section 4.2, I present my

phase-field variational implicit-solvent model for molecular solvation, and some of

its mathematical properties. In Section 4.3, I describe my numerical methods for

solving the systems of partial differential equations resulting from the gradient-flow

of the phase-field free-energy functional. I also present a convergence test for such

methods. Finally, in Section 4.4, I make several remarks regarding my studies.

4.2 A Variational Formulation

We consider a molecular solvation system that occupies a finite region Ω in

R3; cf. the right part of Figure 4.1. The system consists of solute atoms located

at x1, . . . ,xN in Ω, carrying charges Q1, · · · , QN , respectively, together with the

solvent that is treated as a continuum. Let ξ > 0 be a small parameter with unit

in length. In the framework of variational implicit-solvent description, we consider

the following free-energy functional of any possible phase field, also called an order

parameter, φ = φ(x) (x ∈ Ω):

Fξ[φ] = P

∫
Ω

φ2 dx + γ0

∫
Ω

[
ξ

2
|∇φ|2 +

1

ξ
W (φ)

]
dx + ρw

∫
Ω

(φ− 1)2U dx + Fele[φ].

(4.1)

The minimization of this free-energy functional leads to an optimal phase field

φ that partitions the solvation region into the solute region and the solvent re-

gion. Moreover, the minimum value of the free-energy functional provides a good

approximation of the free energy of an underlying molecular system.

In the first term of the free energy (4.1), P is the difference between the

pressure inside and outside solute moleculess. For a field φ with a low free energy,

the integral in the first term of Fξ[φ] is the volume of the solute region defined

by φ ≈ 1. Therefore, the first term describes the volumetric contribution of the

immerse of a solute molecule into the solvent.

The second term of the free energy (4.1) is the effective surface energy of

the solute-solvent interface, where γ0 is the macroscopic surface tension for a flat

solute-solvent interface. The function W = W (φ) is a double-well potential, given
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precisely by

W (φ) = 18φ2(1− φ)2,

where the factor 18 is chosen so that as ξ → 0 the integral converges to the surface

area. If ξ > 0 is very small, then the W -term forces a phase field φ with lower

free energy to be close to 1 or 0 except a thin transition layer. The gradient term

penalizes such partition. It has been proved mathematically that the integral in

the γ0-term converges to the surface area of an effective solute-solvent interface as

ξ → 0 [LZ13].

The third term of the free-energy functional (4.1) describes the solute-

solvent interaction that includes both the short-distance repulsion due to the ex-

cluded volume effect and the long-distance attraction. Here, ρw is the bulk solvent

density. The potential U = U(x) is the sum of pairwise interactions that is often

given by

U(x) =
N∑
i=1

U
(i)
LJ (|x− xi|), (4.2)

where U
(i)
LJ being the Lennard-Jones potential for the interaction of the ith solute

particle at xi and a solvent molecule or ion located at x.

Finally, the last term in (4.1) is the electrostatic free energy this is uniquely

determined by the phase field φ. It is given by [CDLM08]

Fele[φ] =
1

2

N∑
i=1

Qiψreac(xi) +

∫
Ω

(φ− 1)2

[
1

2
ψV ′(ψ)− V (ψ)

]
dx. (4.3)

Here ψreac is the reaction field, defined by

ψreac = ψ − ψvac.

The function ψvac = ψvac(x) is the electrostatic potential in the reference state,

given by

ψvac(x) =
N∑
i=1

Qi

4πεmε0|x− xi|
.

This is the unique solution to

−εmε0∆ψvac = ρf ,
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together with the boundary condition ψvac(∞) = 0, where εm is the relative permit-

tivity of the underlying charged molecule, and ε0 is the vacuum permittivity. The

fixed charge density ρf composed of all point charges Q1, · · · , QN at x1, · · · ,xN is

defined as

ρf(x) =
N∑
i=1

Qiδ(x− xi). (4.4)

The function ψ = ψ(x) is the electrostatic potential. It is the unique solution to

the PB equation in the phase-field formulation

−∇ · ε(φ)∇ψ + (φ− 1)2V ′(ψ) = ρf in Ω, (4.5)

together with some boundary conditions. This equation is equivalent to

−∇·ε(φ)∇ψreac+(φ−1)2V ′ (ψreac + ψvac) = ∇·[ε(φ)− εmε0]∇ψvac in Ω. (4.6)

Note that ε(φ) is a phase-field version of the dielectric coefficient which

satisfy following condition:

(1) ε(0) = ε0εw and ε(1) = ε0εm;

(2) ε′(0) = ε′(1) = 0;

(3) ε = ε(φ) is monotonically decreasing at φ ∈ [0, 1].

Notice the second condition is very crucial in deriving the first variation of Fξ[φ].

In computation, we approximate ε(φ) defined by

ε(φ) =
1

2
ε0(εm − εw)

(
1 + tanh

(
2φ− 1

sε

)
+ εw

)
Here sε is a small number, we choose 0.1 in computation. In this setup, ε(1) ≈ ε0εm

and ε(0) ≈ ε0εw, also ε′(0) = ε′(1) ≈ 0 (cf. Figure 4.2).

The function V = V (ψ) in (4.3) and (4.5) is determined by the Boltzmann

distributions of the ionic concentrations through the electrostatic potential ψ. More

precisely, −V ′(ψ) is the ionic charge density, i.e.,

−V ′(ψ(x)) =
M∑
j=1

qjcj(x),

where qj = zje with zj the valence of an ion of the jth ionic species and e the

elementary charge, and cj = cj(x) is the local concentration at x of the jth ionic
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Figure 4.2: A phase-field version of the dielectric coefficient (relative permittivity
ε(φ)/ε0), which takes value εw at solvent region and εm at solute region.

species. For the classical PB equation, the function V = V (ψ) is given by

V (ψ) = β−1

M∑
j=1

c∞j
(
e−βqjψ − 1

)
,

where β = (kBT )−1 with kB the Boltzmann constant and T the temperature, and

c∞j is the bulk concentration of the jth ionic species. For the linearized Poisson–

Boltzmann equation, we have

V (ψ) =
1

2
κ2εwε0ψ

2, (4.7)

where κ is the inverse Debye screening length, defined by

κ2 =
β

εwε0

M∑
j=1

c∞j q
2
j ,

and the function V is know simplified as

Note that the term (φ−1)2 in front of V (ψ) in (4.3) and in front of V ′(ψ) in

(4.5). This means that for a molecular system of low free energy, the inoic charges

are only in the solvent region defined by φ ≈ 0.

We can now rewrite Fele[φ] into

Fele[φ] =
1

2

N∑
i=1

Qi (ψ − ψvac) (xi)−
1

2

∫
Ω

(φ− 1)2ψV ′(ψ) dx
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+

∫
Ω

(φ− 1)2 [ψV ′(ψ)− V (ψ)] dx.

The sum of the first two terms, when ψvac is removed and the self-interactions are

also removed, is exactly the electrostatic potential energy of the solvated state.

The last term corresponds to the entropic contribution; cf. [CDLM08,ZCD+14].

To find stable equilibirum conformations of a molecular system, we min-

imize the free-energy functional (4.1). To do so, we begin with an initial phase

field φ0 = φ0(x) and then solve numerically the partial differential equations of the

steepest descent of the free-energy functional (4.1):

∂tφ = −δφFξ[φ],

together with the PB equation (4.6), where ∂t denotes the partial derivative with

respect to t and δφ is the variational derivative with respect to φ.

We now calculate the variational derivative δφFξ[φ]. We first rewrite the

electrostatic free energy (4.3). Multiplying both sides of (4.5) by ψ and integrating

them over Ω using the integration by parts, we obtain with appropriate boundary

conditions that ∫
Ω

[
ε(φ)|∇ψ|2 + (φ− 1)2ψV ′(ψ)

]
dx = 〈ρf , ψ〉,

where the right-hand side denotes the
∑N

i=1 Qiψ(xi), excluding self interactions.

This and (4.3) implies that

Fele[φ] = Cvac + 〈ρf , ψ〉 −
∫

Ω

ε(φ)

2
|∇ψ|2dx−

∫
Ω

(φ− 1)2V (ψ) dx, (4.8)

where Cvac = −〈ρf , ψvac〉/2 is a constant indepdent of φ. Notice that the electro-

static potential ψ depends on the phase field φ through the PB equation (4.5).

By the definition of the free-energy functional Fξ[φ] and the new form (4.8) of the

electrostatic free energy Fele[φ], and employing the integration by parts, we have

δφFξ[φ]δφ = 2P

∫
Ω

φ δφ dx + γ0

∫
Ω

[
ξ∇φ · ∇δφ+

1

ξ
W ′(φ)δφ

]
dx

+ 2ρw

∫
Ω

(φ− 1)Uδφ dx

+ 〈ρf , δφψ〉 −
∫

Ω

[
ε′(φ)

2
δφ|∇ψ|2 + ε(φ)∇ψ · ∇δφψ
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+ 2(φ− 1)δφV (ψ) + (φ− 1)2V ′(ψ)δφψ

]
dx

=

∫
Ω

[
2Pφ− γ0ξ∆φ+

γ0

ξ
W ′(φ) + 2ρw(φ− 1)U

]
δφ dx

+

∫
Ω

[
−ε
′(φ)

2
|∇ψ|2 − 2(φ− 1)V (ψ)

]
δφ dx

+ 〈ρf , δφψ〉+

∫
Ω

[
∇ · ε(φ)∇ψ − (φ− 1)2V ′(ψ)

]
δφψ dx

=

∫
Ω

[
2Pφ− γ0ξ∆φ+

γ0

ξ
W ′(φ) + 2ρw(φ− 1)U

− ε′(φ)

2
|∇ψ|2 − 2(φ− 1)V (ψ)

]
δφ dx,

where in the last step we used the weak form of the PB equation (4.5). Conse-

quently,

δφFξ[φ] = 2Pφ− γ0ξ∆φ+
γ0

ξ
W ′(φ) + 2ρw(φ− 1)U − ε′(φ)

2
|∇ψ|2 − 2(φ− 1)V (ψ).

To summarize, we shall solve numerically the following system of gradient-

flow partial differential equations of the free-energy functional for the functions

φ = φ(x, t) and ψ = ψ(x, t):

∂tφ = −2P φ+ γ0

[
ξ∆φ− 1

ξ
W ′(φ)

]
− 2ρw(φ− 1)U

+
ε′(φ)

2
|∇ψ|2 + 2(φ− 1)V (ψ), (4.9)

−∇ · ε(φ)∇ψreac + (φ− 1)2V ′ (ψreac + ψvac) = ∇ · [ε(φ)− εmε0]∇ψvac, (4.10)

with ψ = ψreac + ψvac, together with appropriate boundary conditions for both φ

and ψ, and some initial conditions for φ

4.3 Numerical Methods

4.3.1 Discretization

We choose our computational box to be Ω = (−L,L)3 and cover it by

N × N × N uniform grids. All the grid points are labeled by (i, j, k). We also

choose a time step ∆t > 0 and set tn = n∆t for n = 1, 2, . . . For a given function
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u = u(x, t), we denote by un(x) an approximation of u(x, tn) and by uni,j,k an

approximation of u(xi,j,k, tn) at the grid point xi,j,k and time tn.

The system of equations (4.9) and (4.10) can now be discretized as

φn+1 − φn
∆t

= −2Pφn+1 + γ0ξ∆φ
n+1 − A (φn) +B (φn, ψn) ,

−∇ · ε(φn+1)∇ψn+1
reac + (φn+1 − 1)2V ′

(
ψn+1

)
= ∇ ·

[
ε(φn+1)− εmε0

]
∇ψvac,

where ψn+1 = ψn+1
reac +ψvac. Since the function V from (4.7) is quadratic (as we use

the linearized PB equation) and V ′ is linear, we may rewrite the second equation

as

−∇ · ε(φn+1)∇ψn+1
reac + (φn+1 − 1)2V ′

(
ψn+1

reac

)
= ∇ ·

[
ε(φn+1)− εmε0

]
∇ψvac − (φn+1 − 1)2V ′ (ψvac)

After regrouping, we have

(1 + 2∆tP )φ(n+1) − (∆tγ0ξ)∆φ
n+1 = φ(n) + ∆t [−A (φn) +B (φn, ψn)] , (4.11)

−∇ · ε(φn+1)∇ψn+1
reac + (φn+1 − 1)2V ′

(
ψn+1

reac

)
= C

(
φn+1, ψvac

)
, (4.12)

where

A(φ) =
γ0

ξ
W ′ (φ) + 2ρw (φ− 1)U,

B(φ, ψ) =
ε′(φ)

2
|∇ψ|2 + 2(φ− 1)V (ψ),

C (φ, ψvac) = ∇ · [ε(φ)− εmε0]∇ψvac − (φ− 1)2V ′ (ψvac) .

Once φn and ψn are known, we can obtain φn+1 by solving (4.11) together with the

Dirichlet boundary conditions of φ = 0. Since we have now φn+1 and ψn, we can

then get ψn+1 by solving (4.12) together with the Dirichlet boundary conditions

of ψn+1
reac approximated by the Yukawa-field approximation [CCL11]

ψn+1
reac = ψn+1 − ψn+1

vac

=
N∑
i=1

Qi

4πεwε0(1 + κRi)
· e
−κ(|x−xi|−Ri)

|x− xi|
−

N∑
i=1

Qi

4πεmε0|x− xi|
,
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where |x − xi| is the distance from the point on the boundary to the center of

solute, and Ri is the a fitting parameter. In general, we will approximate eκRi as

1 + κRi, thus by Taylor’s expansion

ψn+1
reac =

N∑
i=1

Qie
−κ|x−xi|

4πεwε0|x− xi|
−

N∑
i=1

Qi

4πεmε0|x− xi|

on boundary of the box.

For the equation of ψreac, note that the term ∇ψvac on the right-hand side

of (4.12) goes to infinity when x approaches xi. In order to stabilize the numerical

iteration, we force φ = 1 in the neighborhood of each xi at each time step.

4.3.2 Algorithm

Step 1. Input all the parameters: P ; γ0, ρw, the atomic positions xi, and

point charges Qi of solute atoms, and the LJ parameters εi and σi (i = 1, . . . , N);

the vacuum and relative permittivities ε0 and εm, εw, and the phase-field parameter

ξ. Discretize uniformly a computational box Ω = (−L,L)3 containing x1, . . . ,xN

into N×N×N parts with the grid size h = 2L/N at least one fifth of ξ. Generate

an initial phase field φ0, usually by

φ0 = tanh

[
dis(x,∪iB(xi, ri))

ξ

]
(4.13)

where B(xi, ri) represents a ball centered at xi with radius ri. Then we solve ψ0
reac

by equation (4.6)

Step 2. Use the finite difference method to solve the equation(4.11) to

obtain φn+1. And then similarly solve the equation (4.12) to obtain ψn+1.

Step 3. Compute the free energy (4.1).

Step 4. Check if a steady state is reached. We compare (φn, ψnreac) with

(φn+1, ψn+1
reac ) and see if

‖φn+1 − φn‖L2 + ‖ψn+1
reac − ψnreac‖L2 ≤ 10−5.

After the time iteration, we take φξ = φn+1, ψreac = ψn+1
reac as our solution, and the

zero level set of φξ is treated as the solute-solvent interface. If not, set n := n+ 1,

and go back to Step 2.
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Notice that different initial phase fields may lead to different steady-state

phase fields that are local minima of the free-energy functional (4.1). To distinguish

classes of local minima, due to drying and wetting structures that are of importance

in molecular solvation, we have designed two classes of initial phase fields. One is

a “tight wrap”, a surface that tightly wraps all the points x1, . . . ,xN . The other is

a “loose wrap”, a surface that loosely contains all the points x1, . . . ,xN . Different

initial phase fields can be obtained by choose different values of ri in (4.13).

4.3.3 Convergence test

Let us consider a single point charge Q at origin immersed in an ionic

solution. This one-particle system is radially symmetric. In the sharp-interface

version of variational implicit-solvent model, the free-energy functional of this one-

particle system can be expressed as a one-variable function of the radius of sphere

centered at the origin [WCC+12]:

G[R] =
4

3
πPR3 + 4πγ0R

2 + 16πρwε

(
σ12

9R9
− σ6

3R3

)
+

Q2

8πε0R

(
1

εw

− 1

εm

)
.

(4.14)

where κ is a parameter of the ionic strength. This simple one-dimensional function

can be minimized numerically with a very high accuracy. If we take P = 0,

γ0 = 0.175 kBT/Å
2, ρw = 0.0333 Å−3, ε = 0.3 kBT and σ = 3.5 Å, then the

solute-solvent interface radius R0 = 3.0540 and the corresponding total energy

G[R0] = 17.8668.

In the phase-field model for this one-particle system, all phase fileds are

one-variable functions φ = φ(r). The free-energy functional (4.1), together with

(4.3), and the PB equation become

Fξ[φ] = 4πP

∫ ∞
0

[φ(r)]2r2 dr + 4πγ0

∫ ∞
0

[
ξ

2
|φ′(r)|2 +

1

ξ
W (φ(r))

]
r2 dr (4.15)

+ 4πρw

∫ ∞
0

(φ− 1)2ULJ(r) r2 dr

+ 4π

∫ ∞
0

{
−ε(φ(r))

2
|ψ′(r)|2 + ρf(r)ψ(r)− [φ(r)− 1]2 V (ψ(r))

}
r2 dr,

−∇ · ε(φ)∇ψ + (φ− 1)2V ′(ψ) = ρf .
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By numerically minimizing the equation (4.15) with different values of ξ,

we display in Table 1, 2, and 3 the results of our diffuse interface calculations and

those based on the exact formula (4.14) when Q = 0, Q = 0.1, and Q = 0.5,

also κ = 0.01. For the diffuse interface model, ξ = 0.5, 0.25, 0.125. Rξ represents

the corresponding radius of the solute-solvent interface; Esurf and Eelec are the

corresponding surface energy and electrostatic potential energy. In the last column,

ξ = 0.00 represents the result of sharp interface model. This table clearly indicates

the convergence of the diffuse interface model into sharp interface model for Q = 0,

Q = 0.1 and Q = 0.5.

Table 4.1: The comparison between the diffuse interface model and sharp interface
model for a solute-solvent system with a single one atom centered at the origin,
where Q = 0 and κ = 0.01.

ξ 0.5 0.25 0.125 0.00
Rξ 3.0029 3.0210 3.0349 3.0540
Esurf 19.8616 20.0853 20.2623 20.5106
Eelec 0.0000 0.0000 0.0000 0.0000

Table 4.2: The comparison between the diffuse interface model and sharp interface
model for a solute-solvent system with a single one atom centered at the origin,
where Q = 0.1 and κ = 0.01.

ξ 0.5 0.25 0.125 0.00
Rξ 2.9985 3.0181 3.0304 3.0497
Esurf 19.8050 20.0469 20.2014 20.4538
Eelec -0.9269 -0.9152 -0.9086 -0.9000

In Figure 4.3, Figure 4.4 and Figure 4.5, we can visually see that the inter-

face location approximated by φ = 0.5 is converging to the sharp interface location

for Q = 0, Q = 0.1, and Q = 0.5. Thus we can confirm the correctness of our

model and numerical method.

According our 1D results, we find the strong influence of electrostatic in

surface problem. The electrostatic potential energy is always pushing the surface

and tend to shrink the surface area. In Figure 4.6, we find out that the radius of
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Table 4.3: The comparison between the diffuse interface model and sharp interface
model for a solute-solvent system with a single one atom centered at the origin,
where Q = 0.5 and κ = 0.01.

ξ 0.5 0.25 0.125 0.00
Rξ 2.9000 2.9218 2.9373 2.9599
Esurf 18.5721 18.8130 18.9904 19.2664
Eelec -23.9864 -23.6589 -23.4362 -23.1817
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Figure 4.3: The interface of φ = 0.5 is converging to the sharp interface when
Q = 0.

the ion is decreasing when it carries larger charge.

4.4 Remarks

In this chapter, we incorporate the PB electrostatic into a phase-field vari-

ational implicit-solvent model. Related details are also studied carefully to set up

the numerical scheme. We also perform numerical experiment for a spherical ion

interface problem.

The free-energy framework is similar to the modified mean-field theory dis-

cussed in Chapters 2 and 3. This indicates that using variational approach provides

more flexibility than classical theory. Moreover, the first variation can be rigor-
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Figure 4.4: The interface of φ = 0.5 is converging to the sharp interface when
Q = 0.1.
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Figure 4.5: The interface of φ = 0.5 is converging to the sharp interface when
Q = 0.5.

ously derived by the lemmas proved in Chapter 3. The theoretical tools studied in

Chapter 3 have potential to be extended in other similar model.

Zhao et al. [KZC+13] have investigated a phase-field model with Coulomb-

field approximation (CFA). Our methodology is similar to their work. But the PB

electrostatics leads to additional challenges in the problem. The reasons are as
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Figure 4.6: The radius of ion is decreasing when it caries larger charge. Here
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follows: First, the CFA does not cover the whole region, thus the dielectric func-

tion will be much straightforward; Second, the CFA does not include a coupled

equation, which will significantly simplify the computation. One idea to use the

advantage of the CFA is to set the result of the CFA as the initial of our minimiza-

tion problem. We can expect lower computational cost to minimize the energy

functional by using a CFA initial.

It would be really interesting and challenging to implement the 3D compu-

tation and capture the multiple states of the interface using the PB electrostatics.

We expect it would be investigated in near future.

Acknowledgements

Chapter 4, in part, is taken from material as it appears in A Self-Consistent

Diffused-Interface Approach to Implicit Solvation of Charged Molecules with Poisson-

Boltzmann Electrostatics by J. Wen, Y. Zhao, H. Sun, and B. Li, which is being

prepared for submission.



Chapter 5

Conclusions and Discussions

5.1 Summary

In this dissertation, I study mainly mean-field theories and use Monte Carlo

(MC) simulation to improve our understanding of the observed phenomena of

charged system. I investigate two modified mean-field models in detail and incor-

porate the Poisson–Boltzmann (PB) electrostatics into a phase-field model.

In Chapter 2, I use a mean-field theory and MC simulations to study the

competition of multiple counterions of different valences and different sizes in bind-

ing to the surface of a spherical colloidal particle. In the mean-field approach,

I minimizee a semi-phenomenological electrostatic free-energy functional of ionic

concentrations constrained by Poisson’s equation. The different ionic sizes are

described through the entropic contributions of ions and solvent molecules. The

constrained free-energy minimization is realized numerically by an augmented La-

grange multiplier method. I also use an unrestricted primitive model and canonical

ensemble MC simulations with the Metropolis criterion to predict the ionic distri-

butions around the charged surface. Both methods correctly predict the key factor,

valence-to-volume ratio, in the competition between different species of ions near

the highly charged surface. While simulations have captured the charge inversion

for ionic systems with salt, the mean-field theory, however, fails in predicting the

charge inversion, since it does not include the ion-ion correlation.

In Chapter 3, I study a variational problem of minimizing a mean-field

84
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electrostatic free-energy functional to investigate how the ionic concentration de-

pendent dielectric response can affect the equilibrium properties of electrostatic

interactions of an ionic solution near a charged surface. I have rigorously derived

the first and second variations of the free-energy functional. From the generalized

Boltzmann distributions, one can see that the ionic depletion can occur due to the

high concentration low permittivity relation. The formula of the second variation

of the functional indicates the functional can be nonconvex. I have indeed shown

that it is so for some model systems. I have also developed a numerical method

and performed computations with a three-dimensional, radially symmetric geome-

try for a system with a single counterion species or a system with two multi-valence

counterion species. I have demonstrated that the increase of the surface charge

density will lead to the non-monotonicity of concentration profiles. These results

confirm experimental findings and also indicate that the classical PB theory does

not capture the ionic depletion and other properties.

In Chapter 4, I have introduced the PB electrostatic free energy into the

phase-field variational implicit-solvent model. The first variation of the functional

can be deduced by the lemmas in Chapter 3 using similar techniques. I have

designed the proper numerical schemes to find the minimizing phase field function.

The key point is the dielectric function, which is specifically designed based on the

first variation of the functional. I have chosen semi-implicit scheme in order to have

a larger time step. I have also studied a spherical model system numerically. By

minimizing the energy, I have found the surface location φ = 0.5. Our result shows

the convergence clearly, and each part of the free-energy functional is approaching

analytical value as well. I have observed that stronger charge cause the smaller ionic

radius, this indicates the importance of electrostatic interaction in determining the

shape of charged object.

5.2 Discussion and Future Work

I have studied two modified mean-field model based on Poisson–Boltzmann

theory with ion specific properties and self consistent environment parameter. Ac-
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cording to the numerical studies, both models have shown richer properties of the

ionic concentration profile in charged system than the classical theory. One is also

confirmed by designed Monte Carlo simulation.

In a variational approach, the ion specific properties can be incorporated

into the mean-field theory. The studies of mean-field model with ionic size effect

and concentration dependent dielectric have proven the advantage of this approach.

Moreover, the variational energy minimizing framework is more flexible and helpful

to improve the mean-field theory and apply in varies systems for finding and study-

ing the equilibriums. This is clearly demonstrated by the study of in phase-field

model with PB description. More importantly, the energy minimization frame-

work is simple and efficient and easy to implement, since the problem is reduced

to solving one or two partial differential equations.

Although the modified theories provide much more insights of the charged

system, some details might be still missing compared with particle-like methods.

Thus, a multiscale model of mean-field theory and molecular simulation may be

extremely effective for complex biological systems.

There are several future works based on my dissertation. First, it is desir-

able to apply the efficient theory and methods to large-scale modeling of biomolec-

ular systems in which nonuniform ionic size effects can be sometimes very impor-

tant. On the theoretical development, it is also necessary to derive from statistical

mechanics theory the mean-field, electrostatic free-energy functional that includes

the nonuniform ionic size effect.

Second, it is very challenging to perform Monte Carlo simulations for a sys-

tem with concentration dependent dielectric response. Recently, Fahrenberger et

al. [FXH14] have developed a Monte Carlo simulation method in space dependent

dielectric system using Harmonic interpolation method. The result is confirmed

with Maxwell equations molecular dynamics. The setup could be helpful to design

simulation in our system. It is one of the future interests, and the goal is to verify

my observation by simulation.

Regarding the phase-field work, several further theoretical studies have been

made by Li and Liu [LL15], they have shown that while phase field parameter
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ξ → 0, the surface φ = 0.5 converge to the sharp interface in this model using

asymptotic analysis. I also plan to apply the model to real 3D system with protein.

Furthermore, it is very interesting to add fluctuations into the phase-field model

with Poisson–Boltzmann electrostatics.

Lastly, some detailed mathematical treatments of the variational approach

developed in Chapter 3 still remains challenging. New analysis concepts and tools

are needed.
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