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Abstract

Background: Ambient environmental pollutants have been shown to adversely affect respiratory 

health in susceptible populations. However, the role of simultaneous exposure to multiple diverse 

environmental pollutants is poorly understood.

Objective: We applied a multidomain, multipollutant approach to assess the association between 

pediatric lung function measures and selected ambient air pollutants and pesticides.

Methods: Using data from the US EPA and California Pesticide Use Registry, we reconstructed 

three months prior exposure to ambient air pollutants ((ozone (O3), nitrogen dioxide (NO2), 

particulate matter with a median aerodynamic diameter < 2.5μm (PM2.5) and < 10μm (PM10)) and 

pesticides (organophosphates (OP), carbamates (C) and methyl bromide (MeBr)) for 153 children 

with mild intermittent or mild persistent asthma from the San Joaquin Valley of California, USA. 

We implemented Bayesian kernel machine regression (BKMR) to estimate the association 
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between simultaneous exposures to air pollutants and pesticides and lung function measures 

(forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), and forced expiratory 

flow between 25% and 75% of vital capacity (FEF25–75)).

Results: In BKMR analysis, the overall effect of mixtures (pollutants and pesticides) was 

associated with reduced FEV1 and FVC, particularly when all the environmental exposures were 

above their 60th percentile. For example, the effect of the overall mixture at the 70th percentile 

(compared to the median) was a −0.12SD (−50mL, 95% CI: −180mL, 90mL) change in the FEV1 

and a −0.18SD (−90mL, 95% CI: −240mL, 60mL) change in the FVC. However, 95% credible 

intervals around all of the joint effect estimates contained the null value.

Conclusion: At this agricultural-urban interface, we observed results from multipollutant 

analyses, suggestive of adverse effects on some pediatric lung function measures following a 

cumulative increase in ambient air pollutants and agricultural pesticides. Given the uncertainty in 

effect estimates, this approach should be explored in larger studies.

Keywords

Pediatric Asthma; Complex Mixtures; Pesticides; Air Pollution; Lung Function

1. Introduction

The effects of exposure to ambient environmental agents on respiratory health and 

pulmonary function in children have been widely reported, particularly among children with 

asthma. These studies have significantly improved the understanding of the deleterious 

effects of individual pollutants and chemicals such as criteria air pollutants including 

particulate matter, ozone, and nitrogen dioxide,1,2 and additional ambient pollutants 

including polycyclic aromatic hydrocarbons3,4 and agricultural pesticides.5,6 To date, the 

preponderance of studies on environmental risk factors for respiratory disease have largely 

employed a risk-factor epidemiological framework, which attempts to isolate the impact of 

one pollutant (or total effect within one specific chemical group), though the general 

consensus is that individuals are rarely (if ever) affected by single chemical agents in 

isolation.7,8 As the field of environmental epidemiology moves towards multipollutant 

approaches, examining the effects of simultaneous exposure to multiple diverse 

environmental chemicals is increasingly feasible, especially when these ambient mixtures 

impact common receptors and pathophysiologic pathways and share similar endpoints.7,9,10 

A multidomain approach considers the joint effect of multiple classes of environmental 

agents along the theme of the “total environment” paradigm which takes into consideration a 

more comprehensive range of concurrent exposures experienced by a population.11

Although chronic diseases of childhood are universally multifactorial and are challenged by 

adequate characterization of relevant exposures, the national burden of disease for pediatric 

asthma and the strong environmental antecedents associated with both asthma incidence and 

asthma-related morbidity result in a particularly salient example to conduct multidomain 

studies.12 Children with asthma who have spatially and temporally heterogeneous exposure 

to multiple domains of environmental chemicals may provide substantial insight into 

understanding the health effects of co-exposure to pollutants in a multidomain context.
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The relationships between pediatric asthma morbidity and exposure to ambient 

environmental chemicals and pollutants are dependent on regional characteristics.13,14 The 

San Joaquin Valley (SJV) region in California is of particular environmental and public 

health interest given the relatively high prevalence of asthma and asthma hospitalizations 

compared to state and national averages.15,16 The region is also exposed to high levels of air 

pollution: topography, rapid population growth, a developing agricultural-urban interface 

(i.e. urban areas surrounded by intense agricultural operations), and two major interstate 

highways are the main reasons the SJV experiences some of the highest levels of air 

pollution in the United States.4,17 Several studies have found associations between increased 

exposure to ambient air pollutants (including traffic-related species) and asthma-related 

morbidity in the SJV. 3,4,16,18,19 Adverse health-related outcomes have also been linked to 

agricultural-related exposures (like pesticides and agricultural dust) in the region,20-23 

though these studies focused on non-respiratory endpoints. Despite exposure to a distinctive 

mixture of ambient air pollutants and agricultural-related exposures observed in SJV, the 

nature of adverse multipollutant effects on pediatric asthma morbidity is unexplored in this 

region.

In this study, we examined the pulmonary health effects of ambient air pollutants (AAP) and 

agricultural pesticides for a group of children with asthma in the SJV region. We defined 

exposure to AAP and pesticides as region-specific, co-occurring quantitative metrics of 

interest based on the exposure prevalence in the source population, and demonstrated 

potency and adverse effects of both factors on asthma health in literature. We implemented 

Bayesian kernel machine regression (BKMR) models to explore the pulmonary health 

effects of this multipollutant exposure mixture. BKMR is a novel statistical method that 

estimates the cumulative or joint health effects of multiple pollutants,24,25 and addresses 

several statistical limitations associated with environmental mixtures analysis approaches by 

flexibly modeling exposures; handling complex structures of mixtures with highly correlated 

exposures, potentially non-linear (and non-additive) exposure-outcome associations and 

high-dimensional interactions.24,26,27 Specifically, we examined a) whether recent exposure 

(prior 3 months) to the mixture of AAP and pesticides jointly is associated with adverse 

pulmonary effects; b) the exposure–response relationships between combinations of 

environmental exposures and lung function; and c) whether the impact of an individual 

environmental exposure is more pronounced when it occurs as part of a mixture (i.e., 

whether the components of the mixture interact).

2. Materials and methods

2.1. Study Population

Data for this study were collected as part of the Fresno Asthmatic Children’s Environment 

Study (FACES), a longitudinal epidemiologic study of children with current asthma in 

Fresno, California. The details on recruitment and health evaluations have been reported 

previously.19,28 Briefly, the FACES study collected data on short- and long-term effects of 

ambient air pollution on children with asthma between 2000 and 2008. A total of 315 

children between the ages of 6 and 11 years at baseline who had a primary residence within 

20 km of the Fresno EPA Supersite Monitor29 were followed over this period. Study 
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participants provided a detailed account of their general health history and exposures to 

several factors including secondhand tobacco smoke. Participants also performed scheduled 

spirometry throughout the study period and answered questions about asthma-related 

symptoms.

For this study, we conducted analyses of first available health evaluation (typically at the 

study baseline) for children with complete information on respiratory and overall health, 

demographic data and house addresses. The Institutional Review Boards of the participating 

institutions (University of California, Berkeley, and secondarily, Colorado State University) 

approved the study protocol, and written informed consent/assent was obtained from the 

parents or legal guardians of all participants.

2.2. Pulmonary Function Measures

Spirometry was performed using the EasyOne spirometer (Medical Technologies, 

Chelmsford, MA, USA). Children were asked to complete three (up to a maximum of eight 

attempts) acceptable flow-volume loop maneuvers, in accordance with recommendations for 

spirometry performance provided by the American Thoracic Society/European Respiratory 

Society. We assessed forced expiratory volume in one second (FEV1), forced vital capacity 

(FVC) and forced expiratory flow between 25% and 75% of vital capacity (FEF25–75) as 

independent measures of pediatric lung function. In sensitivity analysis, we assessed the 

percentage of the FVC in the first second of forced expiration (FEV1/FVC ratio) to 

characterize the severity of airway obstruction among these children.

Our study made use of baseline pre-bronchodilator spirometry measures (one observation 

per participant), or the first available recorded measures when the baseline measurement was 

unavailable. We regressed FEV1, FVC, FEF25–75 and FEV1/FVC on sex, age, height and 

ethnicity using spirometric reference equations for the US population,30 and used the 

residual values as outcomes in our data analyses.31

2.3. Air Pollution Exposures

Air quality data were obtained from the EPA Air Quality System for individuals based on 

their geocoded residential address. Pollutant concentrations from the air monitoring stations 

located closest to the residential location (within 10 km) were obtained for 24-hr 

measurements of particulate matter with aerodynamic diameter < 2.5 μm (PM2.5) and <10 

μm (PM10), 8-hour maximum concentration over 24 hours for ozone (O3), and 1-hour 

maximum concentration over 24 hours for nitrogen dioxide (NO2). We summarized 

concentrations as quarterly averages for exposures 3 months prior to pulmonary function 

measurements, to be consistent with pesticide exposures which are typically reported in ≥ 3-

month cycles.32

2.4. Pesticide Exposures

We estimated agricultural pesticide exposure based on residential location and the California 

Pesticide Use Report (PUR) Data.32 The PUR, one of the most comprehensive databases of 

its kind, provides the amount (kg), date, and location (to one-square-mile sections) of 

specific pesticides (active ingredient) applied in the state quarterly. We characterized 
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potential participant exposures to three classes of pesticides (carbamates (C), methyl 

bromide (MeBr), and organophosphates (OP)) with similar toxicity profiles relevant to 

asthma morbidity.33-35 Organophosphates and carbamates are acetylcholinesterase inhibitor 

pesticides implicated in exacerbation of respiratory disease and asthma due to their 

cholinergic action on airway smooth muscle and mucus-secreting epithelial cells.33 MeBr, a 

restricted-use fumigant, has also been implicated in adverse respiratory effects; the 

toxicological mechanism of action of MeBr is poorly understood, but believed to be due to 

the high reactivity associated with alkyl halides.34 Using the purexposure package in R,36 

we created pesticide exposure measures corresponding to the 3-month period prior to 

spirometry, based on residential addresses using validated algorithms developed by Gunier et 
al.37 Pesticide exposure was estimated by calculating the percentage of land area for each 

section within a selected buffer (3km around geocoded residence); multiplying kilograms of 

active ingredient applied to each section (within the 3-month time frame) by the proportion 

of area within selected buffer, summing the area weighted mass (in kg) for all sections that 

intersect the buffer, and dividing by the buffer area. We assessed circular buffers with 

distances of 1.25km, 3km and 5km around each participant’s geocoded residence. The 

smallest buffer was based on drift models,38 and the largest buffer was selected based on the 

spatial scale most strongly correlated with MeBr fate and transport.39,40 As an intermediate 

distance for the range of drift from pesticide applications, we used 3km buffers.

2.5. Covariates

We developed a set of plausible confounders a priori based on previous studies of lung 

function and exposure to air pollution or pesticides, as well as directed acyclic graphs. As 

described above, the pre-analysis transformation of outcome variables using residual values 

included the use of age, height, sex and race/ethnicity as confounders; we also considered 

meteorological conditions (linear representations of temperature and precipitation averaged 

over three months prior to baseline spirometry measurement), season (fall/winter/spring/

summer, based on evaluation of meteorological and air pollution patterns in the Fresno 

region); as well as subject-specific characteristics potentially associated with asthma and 

asthma exacerbation: body mass index (linear BMI in kg/m2), maternal education level (≤/> 

12th grade education), household income (</≥ $30k), insurance status (yes/no), atopy (yes/

no), and a measure of asthma severity based on Global Initiative for Asthma symptom 

severity guidelines (1 [mild intermittent]/2 [mild persistent]/3 [moderate persistent]/4 

[severe persistent asthma]); and other competing deleterious exposures: smoker currently in 

home (yes/no), and self-reported residence proximity to a major roadway (</≥ 1 block 

away).

2.6. Statistical Analysis

All statistical analyses were performed in R version 3.5.0 (R Foundation for Statistical 

Computing, Vienna, Austria); BKMR analyses in R was performed using the bkmr package.
41

2.6.1. Bayesian Kernel Machine Regression—We applied BKMR to estimate the 

association between exposure to a multipollutant mixture of air pollutants and pesticides and 

each outcome measure of lung function. Extensive details on the statistical approach are 

Benka-Coker et al. Page 5

Environ Res. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



described elsewhere.24,27 BKMR offers two important advantages in the context of 

characterizing the risk from exposure to multiple pollutants. First, BKMR is able to estimate 

a flexible exposure-response surface for health-related effects of multipollutant exposures 

including potential nonlinear (such as threshold effect or polynomial effect) and non-

additive interactive (for example synergism only beyond a particular copollutant exposure 

threshold) relationships, as are prevalent in environmental epidemiology studies.42-47 

Second, BKMR performs a hierarchical variable selection (HVS) that can incorporate prior 

knowledge on the structure of the environmental mixture. In our setting, the HVS 

simultaneously estimates the posterior inclusion probability (PIP) for each domain (ambient 

air pollutants and pesticides) and for each individual pollutant within the domains. Observed 

exposure-response associations in environmental epidemiology studies may depend on only 

a subset of the mixture components;48,49 the HVS in BKMR uses methods within a 

Bayesian paradigm to identify important mixture components associated with the outcome 

while accounting for the overall structure of the mixture, and possible correlations between 

exposures.24

The hierarchical or multistep approach to variable selection first estimates the probability 

that each pre-specified pollutant group/domain be included in the model, and then assesses 

for evidence in the data that one of the components in a domain drives the group’s effect on 

the outcome. Variable selection yields posterior inclusion probabilities (PIP), representative 

of relative variable importance by magnitude. PIP values range between 0 and 1 indicating 

the level of certainty or uncertainty that the component is included in the model and is 

associated with the outcome.

For the primary analysis, the BKMR model is

yi = ℎ(xi1, … , xiM) + ziT β + ϵi .

For each subject i = 1, … , n, BKMR relates the health outcome (yi) to the M components of 

the exposure mixture xi = (x1i, … , xMi) through an unknown but smooth function h(·), 

which represents the exposure-response function that accommodates non-linearity and/or 

interaction among the mixture components, while controlling for C relevant confounders zi 

= (z1i, … , zCi). For our analyses, we implemented BKMR with the Gaussian kernel 

function, which captures an extensive range of underlying functional forms for h(·).

We ran three primary BKMR models to assess exposure association with regression-adjusted 

FEV1, FVC and FEF25-75. For each model, we used HVS formulation with exposures 

grouped into two domains: air pollutants (O3, NO2, PM2.5, PM10), and pesticides (C, MeBr, 

OP). HVS allows for variable selection both at the group level and individual pollutant level 

and provides models stability with highly correlated predictors. In sensitivity analysis, we 

created three exposure groups, splitting air pollutants into particles (PM2.5, PM10) and gases 

(O3, NO2). In addition, BKMR models were constructed to assess the effect of joint 

exposures on FEV1/FVC.

We ran the default Markov chain Monte-Carlo sampler (described in detail in Bobb et al.24) 

for 25,000 iterations after a burn in of 25,000 and every fifth sample was kept for inference. 
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Convergence of the Markov chain was monitored by inspecting trace plots of model 

parameters.

We used square root and then centering and scaling (subtracting the vector mean and 

dividing by the standard deviation) transformation for the exposure measures to account for 

the severe right-skewedness typical of pesticide concentrations.22 All other continuous 

variables (lung function measures, temperature, precipitation, and BMI) were centered and 

scaled. To account for missing data (indicator for ‘any smoking in the home’ (16%)), we 

included an indicator for each missing observation.

2.6.2. Linear Regression—We used multivariable linear regression models to estimate 

associations of individual pollutant exposures and all pollutant exposures (multipollutant 

models) with each outcome measure of lung function. We also assessed potential 

interactions among mixture components based on BKMR results.

Variance inflation factors (VIF) were estimated for multipollutant models to assess the 

extent of collinearity between component pollutants, and all linear models were adjusted for 

all cofounders used in BKMR analyses.

3. Results

3.1. Study Population Characteristics

Of the 315 children recruited for the FACES study, complete exposure, outcome, and 

covariate data were available for 153 children (48.6%, Table 1). There were no significant 

differences in sociodemographic or exposure characteristics between children included and 

those excluded from the study (Supplementary Table 1).

The majority of children included in our study were non-Hispanic White (46.4%), male 

(60.1%), and on average 9 years (SD: 1.8); the mean BMI was 18.5 kg/m2 (SD: 4.6). Over 

three-quarters of participants were atopic (defined by positive skin reaction to one or more 

allergens or physician’s diagnosis of allergic rhinitis or eczema, 78.4%), and were also more 

like to have a diagnosis of mild intermittent or mild persistent asthma (severity category < 3, 

82.3%), and be insured (94.8%). Over half (52.3%) of participants had addresses within one 

block of a freeway, and only 5.2% reported either parent as a current smoker. With regard to 

pulmonary function, 11.1%, 7.8% and 28.8% of participants had FEV1, FVC and FEF25-75 

values below 80% of the predicted reference value, respectively.

3.2. Exposure Characteristics

The distributions of pollutant metrics are presented in Table 2. The concentration of 

exposure to daily (24-hr) PM2.5 exceeded the current National Ambient Air Quality 

Standard (NAAQS) 24-hr standard of 35 μg/m3 for 14 (9.2%) children, with an observed 

maximum of 40.2 μg/m3. All other ambient air pollutants had distributions below NAAQS 

standards, with average NO2 and O3 values well below the current NAAQS annual standard 

over the entire time period (NO2 mean: 15.5 ppb, SD: 3.3; O3 mean: 35.8 ppb, SD: 12.4). As 

expected, the distribution of pesticide exposure concentrations was right skewed, with 

several participants assigned low and zero exposure values (C: 45.1%, OP: 24.2%, MeBr: 
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77.8%) based on their residential addresses. Correlations between pairs of the exposure 

variables and meteorological conditions are presented in Figure 1. In general, the strongest 

correlations among AAP are seen between NO2 and PM2.5 (ρ = 0.9), which are both 

negatively correlated with O3 (ρ = −0.6 and −0.5, respectively). OPs were moderately 

positively correlated with O3 (ρ = 0.5) and moderately negatively correlated with NO2 (ρ = 

−0.5), while temperature and precipitation were, as expected, correlated with O3 (ρ = 0.8 

and −0.7 respectively).

3.3. BKMR Analyses

The exposure domain PIPs (group PIP) and individual component PIPs (conditional PIP, the 

PIP of component inclusion conditional on domain inclusion) estimated from the BKMR 

models are presented in Table 3. We used a common threshold for “variable importance” of 

PIP > 0.5;27,50,51 values above 0.5 indicate individual component or domain importance in 

model inclusion and association with the outcome. The PIPs in each model indicated a clear 

separation between the domains, with AAPs driving the mixture in the FEV1 and FVC 

models (group PIP: 0.75 and 0.78 respectively), and pesticides driving the mixture in the 

FEF25-75 model (group PIP: 0.77). Within the exposure domains, NO2 (among AAP) and 

OP (among pesticides) were the most important drivers for both FEV1 and FVC models in 

our study (component PIP: 0.59 and 0.55 respectively). In the FEF25-75 model, MeBr was 

the most important pesticide and PM10 was the most important AAP, although both PIP 

values fell below 0.5 (component PIP: 0.46 and 0.28 respectively).

In the HVS models fit with three groups (pesticides, ambient particles, and ambient gasses) 

in sensitivity analysis, results from the main analysis persisted. The gases (driven by NO2) 

were the main drivers of the FEV1 and FVC models, while pesticides (driven by MeBr) 

remained the main drivers of the FEF25-75 model (Supplementary Table 2).

Overall, we observed mostly small changes in lung function per unit increase in exposure, 

with considerable variability especially at higher concentrations (Figure 2). For FEV1 and 

FVC models, we observed negative and approximately linear associations with lung function 

for NO2 and O3, a nonlinear, almost J-shaped exposure response curve for OP, and largely 

null trends for the other exposures. For the FEF25-75 model, we observed approximately 

negative linear effects for carbamates and MeBr, with largely null effects for the other 

exposures.

Figure 3 displays summaries of the overall effect of the mixture on the lung function 

measures. Each panel represents a numeric summary of the change in lung function 

associated with a simultaneous change in each of the seven exposures from the 25th 

percentile to 75th percentile, as compared to their median value (50th percentile). Panels A 

and B showed a consistent decrease in FEV1 and FVC with increased exposure to the AAP 

and pesticide mixture. The joint effects were particularly deleterious when all exposures 

were above their 60th percentile, though 95% credible intervals around the effect estimates 

contained the null value. For example, the effect of the overall mixture at the 30th percentile 

(compared to the median) was a 0.41 SD change in the FVC (equivalent to a 210mL change, 

95% CI: −40, 470mL), but a −0.18SD (−90mL, 95% CI: −240, 60mL) change in FVC at the 

70th percentile (compared to the median).
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For the FEF25-75 model, we see ordered effects opposite those observed for the other 

outcome measures, with higher quantiles appearing less harmful (Figure 3C). The effect 

estimates are, however, relatively smaller (all within ± 0.12 SD of the median value), and 

credible intervals indicate very small differences between quantiles.

Interaction plots show mostly parallel patterns (no interaction) but suggest certain 

component exposure interactions on lung function. We summarize suggestive interactions 

between pairs of pollutants in Supplementary Figure 1. In FEV1 and FVC models, the 

negative effects of NO2 on lung function appeared to be diminished at higher levels of 

PM2.5. Similarly, the effects of NO2 on FEV1 and FVC appear to be less steep at higher 

levels of OP exposure. In addition, the negative effects on FEF25-75 observed for MeBr were 

greatest at the highest levels of C, and less harmful at higher levels of PM10 (Supplementary 

Figure 1). Notably, most of the observed interactions were in regions with fewer 

observations and relatively wide credible intervals.

3.4. Linear Regression Analyses

Summary of linear regression (no-interaction) models assessing the associations between 

exposure to environmental agents and lung function measures are displayed in Table 4. 

When examining one exposure at a time, most component pollutants were negatively 

associated with FEV1 and FVC; NO2 and OP had associations in opposite directions with 

confidence intervals that excluded the null value (βNO2 (95% CI): −0.31SD (−0.55, −0.07); 

βOP (95% CI): 0.21SD (0.03, 0.39)). In the single-pollutant FEF25-75 models, the strongest 

effect was observed for MeBr (βMeBr (95% CI): −0.15 (−0.29, −0.00)). In no-interaction 

multipollutant models that included all seven exposure mixture components, the association 

with NO2 persisted in FEV1 (β (95% CI): −0.74SD (−1.24, −0.24)) and FVC models (β 
(95% CI): −0.81SD (−1.30, −0.32)). VIF in multipollutant models ranged from 1.40 to 

15.48, indicating some degree of multicollinearity between correlated predictors in the linear 

regression models.

We tested for interaction between exposure components suggested by BKMR interaction 

plots in multivariable linear regression models including all the main exposure effects. We 

observed statically significant interaction terms for NO2 and PM2.5 in FEV1 (p = 0.01) and 

FVC (p = 0.01) models, and carbamates and MeBr in the FEF25-75 model (p < 0.01).

3.5. Sensitivity Analysis

Results for the FEV1/FVC models are shown in Supplementary materials. Similar to FEV1 

and FVC models, AAPs were the main drivers of the effect of the mixture (group PIP: 0.65, 

Supplementary Table 3). However, O3 (among AAP) and MeBr (among pesticides) were the 

most important drivers (component PIP: 0.60 and 0.49 respectively) within exposure 

domains.

Supplementary Figure 2 indicates that an increase in exposure to the AAP and pesticide 

mixture was positively associated with participant FEV1/FVC levels. Similar to FEF25-75 

models, effect estimates were relatively small (all within ± 0.17 SD of the median value), 

and credible intervals indicated minimal differences between quantiles.
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4. Discussion

Short and long-term exposure to environmental chemicals including ambient air pollutants 

and pesticides have been shown to have negative respiratory health effects, particularly 

among people with asthma. We present a study examining the joint effects of AAPs and 

pesticides, as multipollutant exposures, on lung function among children with asthma in the 

San Joaquin Valley, a region with unique and diverse environmental exposure characteristics.

In this cross-sectional study, we observed a negative overall effect on FEV1 and FVC to 

exposure of a mixture of regionally prevalent AAPs and pesticides, and a slightly positive 

overall effect on FEF25-75. The associations with FEV1 and FVC were driven primarily by 

AAPs; NO2 in particular was identified as the most important contributor (highest 

conditional PIP). In contrast, pesticides (chiefly MeBr) were primarily driving the 

association with FEF25-75, though effect estimates were relatively smaller and less varied 

compared to the other models. Though these observations imply that the larger airways may 

be more sensitive to the environmental mixture characterized in this population compared to 

smaller airways, the null effect estimates from FEV1/FVC models suggest that the 

association between the AAP and pesticides and airway obstruction observed in this study 

was most likely marginal. In total, the analysis demonstrated substantial uncertainty 

(evidenced by credible intervals) with lack of statistical significance. However, it is critical 

to recognize the inverse relationship between the environmental pollutant mixture and lung 

volume measures, as persistently low lung function levels are associated with a risk of 

subsequent asthma morbidity, and future airway disease.52-54 These findings underscore the 

importance of reducing adverse early life environmental exposures with potential long-term 

respiratory health implications in this susceptible population.

The inconsistency in results based on outcome measure (lung volume (FEV1, FVC) versus 

expiratory flow (FEF25-75)) may be due to several factors, including small sample sizes, 

unmeasured or/and residual confounding. Differences between models could also be due to 

exposure pathway characteristics.55 For example, our findings may indicate differences in 

exposure window sensitivity: the effects of three month exposures may be different from 

traditional acute or chronic exposures.55,56 Differential findings may also be a function of 

asthma severity, as FEF25-75 and FEV1/FVC in the setting of a normal FEV1 have been 

linked to more severe asthma;18,57 a large proportion of our population had mild or moderate 

asthma at the time of outcome assessment. Finally, this difference in model results may be 

due to a difference in key exposures (pesticides vs. AAP vs. joint exposures). We observed 

that the main drivers for the FEF25-75 models differed from those for the FEV1 and FVC 

models. More refined epidemiological and toxicological analyses are required to 

conclusively relate effects of these kinds of exposures on specific spirometric measures.

Overall, our results are difficult to contextualize given the paucity of studies on ambient 

exposure mixtures and pediatric respiratory health in the multidomain context. However, 

there is some consistency between our results and several multipollutant air pollution health 

effect studies. For example, Ierodiakonou et al., recently reported negative associations 

between exposure to air pollution (O3, carbon monoxide, NO2, and sulfur dioxide 

concentrations) and lung function (including FEV1 and FVC) among children with asthma 
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in a longitudinal study.58 These effects were observed with multiple short-term exposure 

windows including four-month averages. Similarly, in a longitudinal study of school 

children, Barraza-Villarreal and colleagues showed an inverse relationship between 

pulmonary function (FEV1 and FVC) and exposures to ozone and PM2.5 among children 

with asthma.59 Both multipollutant approaches used linear mixed models which tested the 

health effect of one pollutant (as the main predictor), while adjusting for exposure to the 

other pollutants, and fail to account for the nature of correlation between environmental 

exposures and possible nonlinear effects on the health outcome.24,27,60 By using BKMR, we 

evaluated for a potentially nonlinear and/or non-additive function of pollutant concentrations 

that effectively reflects the joint association of the exposure mixture with pediatric asthma 

outcomes.

The few pesticide-respiratory health effect studies among children adopt the single-pollutant 

approach, and have shown both negative and null effects of pesticide exposure on lung 

function.6,61,62 For example, a study by Raanan et al. provides evidence of significant FEV1 

and FVC decreases with early life exposures to organophosphate pesticide in 7-year-old 

children in the Center for the Health Assessment of Mothers and Children of Salinas 

(CHAMACOS) study.6 However, the authors explored early life exposure windows of 

children with no asthma, only in single-pollutant analyses. More recently, another study on 

children from the same CHAMACOS cohort showed that exposure to agricultural fumigants 

including MeBr resulted in no adverse respiratory effects.61 The authors again only 

conducted single-pollutant analyses, and do not explore complex and nonlinear synergistic 

effects that likely exist between other environmental exposures within and outside the 

domain of pesticides.

Our results contribute to the literature focused on exploring the association between 

multidomain exposures and health outcomes.63-65 In particular, it adds to our work on health 

effects of multidomain exposures as part of the Aggravating Factors of Asthma in a Rural 

Environment (AFARE) study. We previously observed significant associations between joint 

exposure to ozone, PM2.5 and OPs, and a biomarker of lung inflammation (leukotriene E4) 

among children with asthma65. We build on the multidomain approach by including more 

plausible exposures and using a validated clinical marker of respiratory health, while 

accounting for limitations associated with multipollutant analyses.

We highlighted high correlation between components of the mixture and nonlinear 

independent (main effects) associations with lung function parameters. In addition, there 

was evidence of complex and possibly non-synergistic interactions within the overall 

mixture, such that the potentiating effects of an exposure on another may be nullified by 

antagonizing effects from a third exposure (as evidenced by the relationship between MeBr, 

carbamates and ozone on FEF25-75). These are common types of complexities in the 

environmental epidemiology field, and while traditional models like generalized 

multivariable linear regression (using ordinary least squares) are easy to implement and 

interpret, these models have shortcomings in some regards. Results from our linear 

regression models provided quantification of the association between individual exposures 

and lung function in single exposure, co-pollutant and interaction models. In general, most 

of the results mirrored the exposure-response associations observed in BKMR models. 
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However, linear regression models were unable to capture some of the non-linear 

associations; for example, the univariate effect of OP on FEV1 and FVC, or carbamates on 

FEF25-75. Further, the linear models were unable to quantitatively identify the pollutants 

driving the mixture, and the estimates obtained in multipollutant and interaction models may 

be unstable/unreliable in the presence of high correlation between exposure components, as 

observed in this study. Finally, linear regression models were also limited beyond 

quantifying the association between lung function and individual exposures; BKMR suitably 

provided answers to one of our main study objectives, evaluating the “overall” mixture effect 

on lung function.

The mechanisms for individual or joint effects of environmental exposures continue to be a 

subject of deliberation and research. Previously published studies of exposure to pesticides/

AAPs and lung function have generally suggested that airway inflammation and 

hyperresponsiveness are important mechanistic features.2,35,66 However, toxicological 

mechanisms remain poorly understood. Given the limited understanding of the mechanistic 

pathways for these exposures, it may be that any joint effects are due to simultaneously 

present but differing mechanisms of action. Nevertheless, joint exposure to AAPs and 

pesticides is not uncommon, especially in regions such as the SJV where there is a high 

prevalence of children with asthma,16,17 and thus is relevant to consider in multipollutant 

frameworks.7

There are some limitations to the current study. First, we rely on area measurements of 

exposures from central ambient air quality monitors and the California Pesticide Use Report 

(PUR) data which fail to account for individual time-activity patterns and may result in 

exposure measurement error. This error would be expected to be non-differential with 

respect to the study outcome, and independent of any other biases, would likely drive effects 

toward null values. However, the use of residential addresses to determine exposures is a 

strength compared with studies using community-level data. We also use aggregated 

measures of exposures; the health effects of component chemicals (particularly for 

pesticides and particulate matter) may vary due to toxicological (and hence 

pathophysiologic) variations.67-69 More work may be needed to provide more accurate 

exposure estimates, although several studies have highlighted the health impacts using 

aggregated measures.5,6,22,70,71

We acknowledge that missing lung function data could result in bias, but the missing 

outcome data was likely random, and demographic characteristics of participants included in 

the study and those excluded were not appreciably different.

Although our study typifies the agricultural-urban interface, recruitment into the FACES 

cohort was geared towards capturing more urban exposures (within distance of the Fresno 

Super Site monitor) than agricultural pesticide exposures. Hence, it is likely that the effects 

of pesticide exposure in this cohort are less than representative in agricultural regions. 

Further, future studies should also focus on additional agricultural pesticides that have been 

shown to adversely affect respiratory health among children and adults.62,69 Similarly, 

extending the array of outcome measures to include self-reported respiratory symptoms, 
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other measures of lung function, and biomarkers of exacerbation may help provide 

additional characterization of the respiratory effects of these multipollutant mixtures.

Lastly, as we are limited by PUR data to only 3-month exposures, we were unable to assess 

the effect of joint exposures at other short-term lags.

5. Conclusion

Our study addresses the respiratory health effects of exposure to a suite of important ambient 

air pollutants in the context of simultaneous exposure to regional agricultural pesticides, 

exploring multiple pollutant exposures in multiple exposure domains. Understanding how 

environmental exposures, particularly in the context of multidomain, multipollutant 

mixtures, influence pediatric asthma morbidity in uniquely exposed populations may 

ultimately inform regulatory policies to reduce these modifiable factors that contribute to 

disease burden.
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Highlights

• Susceptible populations are exposed to a complex mixture of ambient 

pollutants.

• We examined lung effects of simultaneous exposure to air pollutants and 

pesticides.

• The pollutant mixture was associated with some reduced lung function 

measures.

• Diverse multipollutant exposure mixtures may adversely influence asthma 

morbidity.
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Figure 1. Pairwise Pearson correlation among the seven environmental exposure measures and 
meteorological parameters.
Note: NO2, nitrogen dioxide; PM2.5, particulate matter with a median aerodynamic diameter 

< 2.5μm; PM10, particulate matter with a median aerodynamic diameter < 10μm; OP, 

organophosphates; C, carbamates and MeBr, methyl bromide.
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Figure 2. The exposure-response relationship between exposure to environmental agents and 
lung function.
Univariate relation between each exposures and outcomes, with other exposures fixed at 

their median value. The results were assessed by the BKMR model adjusted for age, height, 

sex, race/ethnicity, temperature, precipitation, season, BMI, maternal education level, 

household income, insurance status, atopy, a measure of asthma severity (based on Global 

Initiative for Asthma symptom severity guidelines), smoker currently in home, and 

proximity to a major roadway.

Note. NO2, nitrogen dioxide; PM2.5, particulate matter with a median aerodynamic diameter 

< 2.5μm; PM10, particulate matter with a median aerodynamic diameter < 10μm; OP, 

organophosphates; C, carbamates and MeBr, methyl bromide.
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Figure 3. Overall effect (95% CI) of mixtures on the 3 outcome measures.
Figures depict the effect on lung function outcomes (A. forced expiratory volume in 1s 

(FEV1); B. forced vital capacity (FVC); and C. forced expiratory flow between 25% and 

75% of vital capacity (FEF25-75)) when all the environmental exposures (ozone, nitrogen 

dioxide, particulate matter with median aerodynamic diameter < 2.5 μm, and < 10μm, 

organophosphates, carbamates and methyl bromide) at particular percentiles were compared 

to all the exposures at their 50th percentile.

The models were adjusted for age, height, sex, race/ethnicity, temperature, precipitation, 

season, BMI, maternal education level, household income, insurance status, atopy, a measure 

of asthma severity (based on Global Initiative for Asthma symptom severity guidelines), 

smoker currently in home, and proximity to a major roadway.
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Table 1.

Descriptive characteristics of study population

Characteristic N = 153

Age years, mean ± SD 9 ± 1.8

Male Gender, n (%) 92 (60.1)

Height (in), mean ± SD 52.3 ± 4.8

BMI (kg/m2), mean ± SD 18.5 ± 4.6

Ethnicity, n (%)

Non-Hispanic Black 21 (13.7)

Non-Hispanic White 71 (46.4)

Hispanic 61 (39.9)

Mother > 12th grade education, n (%) 93 (60.8)

Insured, n (%) 145 (94.8)

Atopy, n (%) 120 (78.4)

Father/Mother Smokes (Current), n (%) 8 (5.2)

Proximity to Freeway (< 1 block away), n (%) 80 (52.3)

Asthma Severity, n (%)

Mild intermittent or persistent asthma 126 (82.3)

Moderate or severe persistent asthma 27 (17.7)

FEV1 (L), mean ± SD 1.7 ± 0.4

FEV1 < 80% predicted, n (%) 17 (11.1)

FVC (L), mean ± SD 2.0 ± 0.5

FVC < 80% predicted, n (%) 12 (7.8)

FEF25-75 (L), mean ± SD 1.8 ± 0.4

FEF25-75 < 80% predicted, n (%) 44 (28.8)

FEV1 /FVC, mean ± SD 0.8 ± 0.0

FEV1/FVC < 80% predicted, n (%) 21 (14.9)

Abbreviations: BMI, body mass index; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; FEF25-75, forced expiratory flow 

between 25% and 75% of vital capacity.
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Table 2.

Ambient air pollutant and pesticide exposure data summary statistics

Pollutant/Pesticide Minimum Mean SD Median Interquartile
Range

Maximum

Nitrogen Dioxide (ppb) 9.5 15.5 3.3 14.4 5.3 23.1

Ozone (ppb) 12.3 35.8 12.4 38.0 16.4 58.2

Particulate Matter < 2.5 μm (PM2.5) (μg/m3) 6.7 16.3 9.8 11.2 8.1 40.2

Particulate Matter < 10 μm (PM10) (μg/m3) 19.5 37.9 10.7 32.5 16.9 65.9

Carbamates x 106(kg/3km2) 0.0 0.1 0.3 0.0 0.1 2.4

Methyl Bromides x 106(kg/3km2) 0.0 3.9 9.9 0.0 0.0 48.9

Organophosphates x 106(kg/3km2) 0.0 0.9 1.1 1.1 1.2 5.4
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Table 3.

Group and conditional posterior inclusion probabilities (PIPs) from BKMR using exposure domain groups for 

hierarchical variable selection.

PIPs (by outcome measure)

Exposure FEV1 FVC FEF25-75

Group Conditional Group Conditional Group Conditional

O3 0.75 0.10 0.78 0.10 0.51 0.27

NO2 0.75 0.59 0.78 0.55 0.51 0.19

PM2.5 0.75 0.25 0.78 0.29 0.51 0.25

PM10 0.75 0.06 0.78 0.06 0.51 0.28

C 0.67 0.12 0.55 0.16 0.77 0.41

MeBr 0.67 0.11 0.55 0.15 0.77 0.46

OP 0.67 0.77 0.55 0.69 0.77 0.13

Group PIPs indicate the posterior probability of an exposure domain being included in the model; conditional PIPs indicate the posterior 
probability of a single exposure within the domain to be included in the model. Both provide an illustration of the relative ranking of variable 
importance for each exposure domain as well as each exposure within a particular domain.

Bold font indicates highest PIP in column.

Abbreviations: FEV1, forced expiratory volume in 1s; FVC, forced vital capacity; FEF25-75, forced expiratory flow between 25% and 75% of 

vital capacity.

Environ Res. Author manuscript; available in PMC 2021 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Benka-Coker et al. Page 25

Ta
b

le
 4

.

A
ss

oc
ia

tio
n 

be
tw

ee
n 

en
vi

ro
nm

en
ta

l a
ge

nt
s 

an
d 

lu
ng

 f
un

ct
io

n 
ba

se
d 

on
 li

ne
ar

 r
eg

re
ss

io
n 

m
od

el
s.

F
E

V
1

F
V

C
F

E
V

25
-7

5

E
nv

ir
on

m
en

ta
l

A
ge

nt
Si

ng
le

 e
xp

os
ur

e
M

ul
ti

pl
e 

ex
po

su
re

s
Si

ng
le

 e
xp

os
ur

e
M

ul
ti

pl
e 

ex
po

su
re

s
Si

ng
le

 e
xp

os
ur

e
M

ul
ti

pl
e 

ex
po

su
re

s

β 
(9

5%
 C

I)
1

β 
(9

5%
 C

I)
1,

2
β 

(9
5%

 C
I)

1,
2,

3
β 

(9
5%

 C
I)

1
β 

(9
5%

 C
I)

1,
2

β 
(9

5%
 C

I)
1,

2,
3

β 
(9

5%
 C

I)
1

β 
(9

5%
 C

I)
1,

2
β 

(9
5%

 C
I)

1,
2,

3

O
3

−
0.

06
 (

−
0.

36
, 

0.
25

)
−

0.
19

 (
−

0.
49

, 
0.

11
)

−
0.

24
 (

−
0.

55
, 

0.
04

)
−

0.
09

 (
−

0.
39

, 
0.

22
)

−
0.

22
 (

−
0.

52
, 

0.
07

)
−

0.
29

 (
−

0.
58

, 
0.

00
)

0.
11

 (
−

0.
21

, 
0.

42
)

0.
03

 (
−

0.
30

, 
0.

35
)

−
0.

10
 (

−
0.

41
, 

0.
22

)

N
O

2
−0

.3
1 

(−
0.

55
, 

−0
.0

7)
−0

.7
4 

(−
1.

24
, 

−0
.2

4)
−0

.8
0 

(−
1.

29
, 

−0
.3

0)
−0

.3
5 

(−
0.

59
, 

−0
.1

1)
−0

.8
1 

(−
1.

30
, 

−0
.3

2)
−0

.8
7 

(−
1.

35
, 

−0
.3

8)
−

0.
02

 (
−

0.
28

, 
0.

24
)

−
0.

10
 (

−
0.

64
, 

0.
45

)
−

0.
44

 (
−

0.
97

, 
0.

09
)

P
M

2.
5

−
0.

16
 (

−
0.

42
, 

0.
11

)
−

0.
01

 (
−

0.
46

, 
0.

44
)

−
0.

26
 (

−
0.

73
, 

0.
22

)
−

0.
18

 (
−

0.
44

, 
0.

08
)

−
0.

01
 (

−
0.

45
, 

0.
44

)
−

0.
26

 (
−

0.
73

, 
0.

21
)

0.
02

 (
−

0.
26

, 
0.

30
)

−
0.

03
 (

−
0.

52
, 

0.
46

)
−

0.
22

 (
−

0.
71

, 
0.

27
)

P
M

10
−

0.
03

 (
−

0.
23

, 
0.

18
)

0.
44

 (
0.

04
, 

0.
84

)
0.

40
 (

0.
00

, 0
.8

1)
−

0.
05

 (
−

0.
26

, 
0.

15
)

0.
46

 (
0.

07
, 

0.
85

)
0.

43
 (

0.
03

, 0
.8

2)
0.

11
 (

−
0.

10
, 

0.
32

)
0.

13
 (

−
0.

30
, 

0.
56

)
0.

53
 (

0.
08

, 0
.2

7)

C
0.

01
 (

−
0.

14
, 

0.
16

)
0.

10
 (

−
0.

07
, 

0.
26

)
−

0.
04

 (
−

0.
22

, 
0.

14
)

0.
02

 (
−

0.
13

, 
0.

17
)

0.
11

 (
−

0.
05

, 
0.

27
)

−
0.

03
 (

−
0.

21
, 

0.
15

)
−

0.
06

 (
−

0.
22

, 
0.

10
)

−
0.

02
 (

−
0.

20
, 

0.
15

)
0.

10
 (

−
0.

07
, 0

.2
6)

M
eB

r
−

0.
06

 (
−

0.
20

, 
0.

08
)

−
0.

01
 (

−
0.

16
, 

0.
15

)
0.

02
 (

−
0.

12
, 0

.1
7)

−
0.

04
 (

−
0.

18
, 

0.
10

)
0.

01
 (

−
0.

13
, 

0.
16

)
0.

04
 (

−
0.

11
, 0

.1
9)

−0
.1

5 
(−

0.
29

, 
−0

.0
0)

−
0.

11
 (

−
0.

28
, 

0.
05

)
−

0.
01

 (
−

0.
16

, 
0.

15
)

O
P

0.
21

 (
0.

03
, 0

.3
9)

0.
11

 (
−

0.
09

, 
0.

31
)

0.
14

 (
−

0.
13

, 0
.4

1)
0.

21
 (

0.
03

, 0
.3

9)
0.

11
 (

−
0.

09
, 

0.
31

)
0.

14
 (

−
0.

13
, 0

.4
0)

0.
11

 (
−

0.
08

, 
0.

30
)

0.
09

 (
−

0.
12

, 
0.

31
)

0.
11

 (
−

0.
09

, 0
.3

1)

O
P

:N
O

2
−

0.
13

 (
−

0.
31

, 
0.

05
)

−
0.

13
 (

−
0.

31
, 

0.
05

)

P
M

2.
5:

N
O

2
0.

33
 (

0.
08

, 0
.5

8)
0.

34
 (

0.
09

, 0
.5

9)

C
:M

eB
r

−0
.2

9 
(−

0.
46

, 
−0

.1
3)

P
M

10
:M

eB
r

0.
17

 (
−

0.
03

, 0
.3

8)

β 
es

tim
at

es
 r

ep
re

se
nt

 th
e 

m
ea

n 
ch

an
ge

 in
 th

e 
lu

ng
 f

un
ct

io
n 

m
ea

su
re

 p
er

 u
ni

t (
z-

sc
or

e)
 in

cr
ea

se
 in

 th
e 

ex
po

su
re

 a
ge

nt
.

B
ol

d 
fo

nt
 r

ep
re

se
nt

s 
st

at
is

tic
al

 s
ig

ni
fi

ca
nc

e.

1 A
dj

us
te

d 
fo

r 
B

M
I,

 m
at

er
na

l e
du

ca
tio

n,
 c

ur
re

nt
 s

m
ok

in
g,

 in
su

ra
nc

e,
 p

ro
xi

m
ity

 to
 f

re
ew

ay
, a

to
py

 s
ta

tu
s,

 a
st

hm
a 

se
ve

ri
ty

 a
t b

as
el

in
e,

 s
ea

so
n 

of
 e

xp
os

ur
e 

te
m

pe
ra

tu
re

 a
nd

 p
re

ci
pi

ta
tio

n.

2 A
dd

iti
on

al
ly

 a
dj

us
te

d 
fo

r 
al

l t
he

 o
th

er
 e

nv
ir

on
m

en
ta

l a
ge

nt
s.

3 A
dd

iti
on

al
ly

 a
dj

us
te

d 
fo

r 
in

te
ra

ct
io

n 
be

tw
ee

n 
se

le
ct

ed
 e

nv
ir

on
m

en
ta

l a
ge

nt
s.

A
bb

re
vi

at
io

ns
: C

I,
 c

on
fi

de
nc

e 
in

te
rv

al
; O

3,
 o

zo
ne

; N
O

2,
 n

itr
og

en
 d

io
xi

de
; P

M
2.

5,
 p

ar
tic

ul
at

e 
m

at
te

r 
w

ith
 a

 m
ed

ia
n 

ae
ro

dy
na

m
ic

 d
ia

m
et

er
 <

 2
.5

μm
; P

M
10

, p
ar

tic
ul

at
e 

m
at

te
r 

w
ith

 a
 m

ed
ia

n 
ae

ro
dy

na
m

ic
 

di
am

et
er

 <
 1

0μ
m

; O
P,

 o
rg

an
op

ho
sp

ha
te

s;
 C

, c
ar

ba
m

at
es

 a
nd

 M
eB

r, 
m

et
hy

l b
ro

m
id

e;
 F

E
V

1,
 f

or
ce

d 
ex

pi
ra

to
ry

 v
ol

um
e 

in
 1

s;
 F

V
C

, f
or

ce
d 

vi
ta

l c
ap

ac
ity

; F
E

F 2
5-

75
, f

or
ce

d 
ex

pi
ra

to
ry

 f
lo

w
 b

et
w

ee
n 

25
%

 a
nd

 

75
%

 o
f 

vi
ta

l c
ap

ac
ity

.

Environ Res. Author manuscript; available in PMC 2021 November 01.


	Abstract
	Introduction
	Materials and methods
	Study Population
	Pulmonary Function Measures
	Air Pollution Exposures
	Pesticide Exposures
	Covariates
	Statistical Analysis
	Bayesian Kernel Machine Regression
	Linear Regression


	Results
	Study Population Characteristics
	Exposure Characteristics
	BKMR Analyses
	Linear Regression Analyses
	Sensitivity Analysis

	Discussion
	Conclusion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Table 1.
	Table 2.
	Table 3.
	Table 4.



