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A B S T R A C T

The profound impact of food on health necessitates advanced nutrition-oriented food recom-
mendation services. Conventional methods often lack the crucial elements of personalization,
explainability, and interactivity. While Large Language Models (LLMs) bring interpretability and
explainability, their standalone use falls short of achieving true personalization. In this paper,
we introduce ChatDiet, a novel LLM-powered framework designed specifically for personalized
nutrition-oriented food recommendation chatbots. ChatDiet integrates personal and population
models, complemented by an orchestrator, to seamlessly retrieve and process pertinent in-
formation. The personal model leverages causal discovery and inference techniques to assess
personalized nutritional effects for a specific user, whereas the population model provides
generalized information on food nutritional content. The orchestrator retrieves, synergizes and
delivers the output of both models to the LLM, providing tailored food recommendations
designed to support targeted health outcomes. The result is a dynamic delivery of personalized
and explainable food recommendations, tailored to individual user preferences. Our evaluation
of ChatDiet includes a compelling case study, where we establish a causal personal model to
estimate individual nutrition effects. Our assessments, including a food recommendation test
showcasing a 92% effectiveness rate, coupled with illustrative dialogue examples, underscore
ChatDiet’s strengths in explainability, personalization, and interactivity.

1. Introduction

Food plays a pivotal role in our lives, exerting a profound impact on human health. Extensive studies affirm that nutrition not
only contributes to overall well-being but also plays a crucial role in disease management, sleep regulation, mood modulation,
and immune function enhancement (Hu, 2002; Mathers, 2019; Raut, Prabhu, Fatehpuria, Bangar, & Sahu, 2018). A compelling
illustration of this connection lies in the influence of dietary choices on the gut microbiome. The Mediterranean diet serves as an
exemplary model in this regard. Rich in fruits, vegetables, and cereals, and low in fat, this dietary approach emerges as instrumental
in preserving and promoting gut health (Singh et al., 2017; Valdes, Walter, Segal, & Spector, 2018).

This intricate relationship between diet and health has sparked a growing interest in leveraging technology for food rec-
ommendation services. These services provide guidance on diet plans, contributing to improved health outcomes. Regular food
recommendation services typically prioritize individual food preferences based on whether they like a particular food, with less
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emphasis on considering nutritional health aspects (Min, Jiang, & Jain, 2019). In contrast, nutrition-oriented food recommendations,
as a form of food recommendation, recognize the significant impact of dietary patterns on individual health.

Numerous studies have contributed to the development of a variety of nutrition-oriented food recommendation methods (Agapito
t al., 2018; Iwendi, Khan, Anajemba, Bashir, & Noor, 2020; Micha et al., 2017; Story, Kaphingst, Robinson-O’Brien, & Glanz, 2008).
hese approaches not only simplify the process of making dietary choices but also promote the adoption of sustainable and health-
onscious habits among users. The power of these recommendations lies in their ability to integrate the science of nutrition for
opulation or sub-population level requirements, offering an intuitive and practical guide for individuals seeking to make informed
ietary decisions.

Nonetheless, conventional nutrition-oriented food recommendation services have encountered limitations in comprehensively
nderstanding the intricate interplay between individuals’ health and well-being, encompassing physiological parameters, physical
ctivity, and sleep quality, and aligning them with personalized nutritional needs. More precisely, these systems frequently encounter
hallenges in tailoring their food suggestions to meet an individual’s specific nutritional requirements. The inherent variability
n how nutrition impacts individuals gives rise to concerns regarding the absence of genuine personalization. Moreover, there

is a prevalent reliance on population-based nutritional standards, potentially overlooking the nuanced individual differences in
nutritional response.

Furthermore, current food recommendation services lack the essential element of Explainability. These services often depend on
machine learning models that function as ‘‘black boxes’’, rendering it challenging to elucidate the rationale behind their recom-
mendations. Notably, nutrition-oriented food recommendation services grounded in population-based standards face difficulties in
elucidating recommendations tailored to individualized nutrition requirements. An additional substantial shortcoming lies in the
absence of Interactivity. These systems fall short in dynamically responding to user feedback, incorporating new preferences, and
adjusting to changes in user status, such as temporary dietary choices or restrictions related to specific foods.

We posit that current advancements in Large Language Models (LLMs) present an opportunity to overcome these limitations.
LLMs have the capability to offer both interpretable and explainable recommendations, especially when harnessed in an interactive
capacity such as acting as a chatbot (Birkun & Gautam, 2023; Jeon & Lee, 2023). However, it is essential to recognize that LLMs
alone fall short in delivering the necessary degree of personalization required for nutrition-oriented food recommendations. They lack
the ability to integrate and leverage personal data into their analysis for recommendation and user interaction. Hence, a holistic
framework is needed that utilizes LLMs for food recommendations while integrating diverse population-level and personal data
sources.

In this paper, we present an LLM-powered framework for personalized nutrition-oriented food recommender chatbots named
ChatDiet. We present an orchestrator, acting as a problem solver, to address food-related inquiries. This orchestrator analyzes input
queries and extracts relevant information through engagement with personal and population models. Subsequently, responses are
generated by feeding the information obtained to an LLM. We utilize causal discovery and inference methods to extract a causal
personal model from the user’s data, considering the impact of personal nutrition on health outcomes. We showcase the capabilities
of the framework through a case study that includes health data from an individual collected over three years using wearable and
mobile devices. We evaluate ChatDiet with a food recommendation effectiveness test to assess its ability to deliver personalized and
explainable food recommendations. We also present examples of dialogues to indicate ChatDiet interactivity.

2. Background and related work

In this section, we first outline related work on nutrition-oriented food recommendations. We then provide an overview of LLMs
implementations on recommendation tasks.

2.1. Nutrition-oriented food recommendation

Nutrition-oriented diet and food recommendation methods prioritize the nutritional content of foods when suggesting dietary
choices. This shift from retail-focused models to nutrition-oriented diets in recommender systems aligns with a broader strat-
egy toward preventive health (Min et al., 2019). In the following section, we outline recent developments in diet and food
recommendations, emphasizing the critical role of nutrition.

Recent studies have focused on customizing food recommendations to meet specific nutritional needs, particularly for the
population with health conditions. For example, Agapito et al. (2018) leverages users’ health status to suggest food beneficial for
chronic kidney disease patients, while Iwendi et al. (2020) integrates food features, biometric data, and disease-specific information
to develop patient food recommendations. Additionally, Raut et al. (2018) uses a colony algorithm considering food information,
population nutrition requirements, and daily activity to tailor recommendations for various groups of patients with diseases. Another
significant concern linked to diet, diabetes management, has been the subject of specialized research. Studies by Sapri, Abdul-
Rahman, Benjamin, et al. (2019), Zadeh, Li, and Alian (2019) focus on food recommendations for diabetes patients. Toledo,
Alzahrani, and Martinez (2019) explore a comprehensive approach that accounts for both preferences and nutritional needs,
particularly in overweight and diabetic individuals. However, it only considers personal preferences but not personal nutrition
requirements.

Extending beyond disease-specific recommendations, there are efforts to guide dietary choices in healthy populations. Elsweiler
and Harvey (2015) propose meal plans balancing taste and nutrition, while Ng and Jin (2017) introduce a toddler recipe system
2

merging nutrition guidelines with user preferences. Cioara et al. (2018), Taweel et al. (2016) develop models for older adults,
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considering their unique nutritional needs. A notable study by Ge, Ricci, and Massimo (2015) marks progress in calorie intake
recommendations focusing on calorie count. The need for nutrition-oriented food recommendations is further demonstrated by
advancements in food knowledge graphs and machine learning (Gharibi, Zachariah, & Rao, 2020; Min, Liu, Xu, & Jiang, 2021).
Incorporating factors like physiology, genetics (Sikka, 2019), and microbiomes makes dietary advice more relevant to a certain
population.

These studies highlight the importance of integrating contexts like disease status, daily activity, and biometric data. Nevertheless,
hough users may share similar health objectives, achieving those objectives may require different dietary choices based on
ndividual variations. This stems from the fact that factors such as genetics, behaviors, lifestyles, and personal preferences contribute
o variations in how people respond to specific foods. Thereby a personalized approach to nutritional recommendation acknowledges
he need to tailor dietary plans to the unique requirements of each individual.

Furthermore, the explainability in these models is limited, with a notable exception being (Iwendi et al., 2020), which provides
nsights into feature importance. However, the machine learning models operate as ‘‘black boxes’’, which means it is often
hallenging to understand the reasons behind their recommendations. The current nutrition-oriented food recommendation services
hat rely on population-based standards struggle to provide explanations tailored to an individual’s specific nutritional needs.

Interactive features, including adaptively responding to user feedback, are also generally lacking. Food recommendation systems
hould be able to adjust based on user feedback, accommodate new preferences, and adapt to changes in user status, including
emporary dietary choices or restrictions related to specific foods.

.2. Exploiting LLMs for recommendation tasks

Pre-trained LLMs exhibit remarkable adaptability across diverse recommendation tasks (Cui, Ma, Zhou, Zhou, & Yang, 2022),
articularly when personalized historical data becomes a key component. The landscape of LLM research in recommendation
cenarios can be categorized based on the LLM’s role as either the central recommendation model or a facilitator of recommendation
asks.

Numerous studies incorporate LLMs as central recommendation models or integral components. To harness LLMs’ natural
anguage prowess, data transformation into textual formats is pivotal without training (Huang et al., 2023). Prompt engineering, a
revalent technique, converts structured personal data into text-based inputs. This process entails designing informative prompts,
onverting interactions and attributes into text, and forming coherent inputs for LLM processing (Liu, Yuan, et al., 2023).

In a pilot study presented in Zhang et al. (2021), recommendation tasks are transformed into multi-token close tasks through
rompts, aimed at mitigating zero-shot learning challenges. Other works, such as Liu, Liu, et al. (2023) and Wang and Lim (2023),
mploy diverse prompts for recommendation scenarios. Geng, Liu, Fu, Ge, and Zhang (2022) introduces task-specific prompt
emplates with inserted personal data, while Dai et al. (2023) reformulates ranking tasks into prompts. LLM-rec (Lyu, Jiang, Zeng,
ia, & Luo, 2023) combines strategies for personalized content recommendation, and Tallrec (Bao et al., 2023) transcribes user
istory to instruct LLMs. Hou et al. (2023) employs LLMs as item rankers based on interaction histories. In contrast, Zhang et al.
2023) adopts instruction tuning, aligning LLMs with recommendations through templates that incorporate user interactions. A
ifferent approach emerges in Li, Wang, Chi, and Chen (2023), using soft prompts generated from user and item embeddings. These
enerated aspects act as intermediaries within LLM recommendation systems, offering an avenue to integrate abstract personal data
epresentations into LLM-based recommendations.

Existing LLM-based methodologies face limitations in directly using personal data, including historical user interactions and
references, as textual input. They often miss out on employing models or encoders that can extract meaningful representations
rom this data. In an attempt to tackle this challenge, a recent study (Li et al., 2023) proposes an approach that utilizes abstract
mbeddings as intermediaries to bridge the gap. However, it is important to note that this approach compromises explainability
ecause abstract embeddings can be opaque in nature.

In the domain of nutrition-oriented food recommendations, individual nutritional impacts are not directly observable and require
nference from the existing personal data. This situation highlights a methodological shortcoming of sole LLM: the inability to adapt
ffectively when personal data, unlike straightforward historical interactions, is implicitly relevant for recommendation purposes.
hile retrieval-augmented generation (Lewis et al., 2021) offers a method for enabling LLMs to incorporate external information

y retrieving relevant data, in the context of this study, there are no pre-existing resources available for retrieval. This raises a
eed for a more comprehensive exploration of the Personalization and Explainability aspects within the food recommendation
ystems. Incorporating abstract data on physiological parameters and health information, alongside nutritional needs, into LLMs
hile maintaining explainability is a critical aspect of delivering personalized dietary guidance.

. ChatDiet: An LLM-based framework for nutrition-oriented food recommendation

In this section, we introduce ChatDiet, a framework for personalized nutrition-oriented food recommendation chatbots. This
ramework utilizes LLMs to effectively incorporate not only population knowledge but also individual-specific data through
ugmented models. It includes an Orchestrator that interacts with personal and population models to extract relevant information
ased on users’ inquiries. It then sends the aggregated information to an LLM to be integrated with the LLM’s internal knowledge
nd offer interactions with users. Fig. 1 indicates an overview of the framework.

To clarify the functionality and definitions of the framework, we present and exemplify different components of ChatDiet via a
ase study. In the following, we initially delve into our case study, focusing on mHealth system leveraging wearable and mobile-based
3
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Fig. 1. Overview of ChatDiet Realization on N-of-1 Data.

3.1. Case study

Our case study includes data collected from an individual’s dietary habits, health metrics, and other relevant information during
three years. We focus on the intricate connection between dietary habits, physical activity, sleep, and health outcomes, aiming to
leverage it to effectively address the task of providing personalized conversational food recommendations.

3.1.1. Dataset
N-of-1 Dataset: The N-of-1 dataset was collected over a period of more than three years from a participant using multiple devices.

The user was recruited to wear an Oura ring (Oura Ring. Smart Ring for Fitness, Stress, Sleep and Health, 2024) between mid-April 2020
to mid-June 2022 to gather his/her sleep quality (Mehrabadi et al., 2020), physical activity (Niela-Vilen, Azimi, Suorsa, Sarhaddi,
Stenholm, Liljeberg, Rahmani, & Axelin, 2022), skin temperature, heart rate, and heart rate variability (HRV) (Cao et al., 2022).
Additionally, a non-invasive smart weighing scale, Arboleaf (Arboleaf is to promote a healthier lifestyle in today’s smart age, 2024),
was used from the first week of January 2020 to the first week of June 2022 to measure body fat and body composition parameters,
including body weight, body mass index (BMI), visceral fat, bone weight, among others.

To track meals consumed during breakfast, lunch, dinner, and snack times, the user used the Cronometer food-logging mobile
application (Cronometer: Eat smarter. Live better , 2024) from July 1, 2019, to mid-June 2022. We use the calorie consumption (in
kCal) along with the macronutrients and macronutrients quantities parsed from the app as a result of the user’s meal input to obtain
the calorie and nutrition intake. We also integrate the individual’s health metrics related to height, weight, and blood pressure stored
in the Apple Health Kit (HealthKit , 2024) from mid-October 2018 to mid-June 2022. This allows us to incorporate lifestyle metrics,
thereby creating a data-driven persona of a user’s overall health and well-being.

Synthetic Dataset: As it is challenging to evaluate ChatDiet on N-of-1 data, to quantitatively assess ChatDiet with a larger sample
size, we augment the dataset by generating synthetic samples. This expansion follows a structure similar to that of the collected
dataset. Specifically, we have synthesized 365 days of data for a simulated cohort comprising one hundred augmented participants.
Each augmented participant is associated with a personalized causal graph that links nutritional factors to health outcomes that are
identical to the graph of N-of-1 data. These graphs are generated with random individual treatment effects.

To simulate daily nutrition intake patterns for each participant, we have assigned random values representing their nutritional
consumption and health outcomes. These values are drawn from a Gaussian distribution that has been fitted using the N-of-1 data as
a reference to minimize deviations from factual observations. Subsequently, for each synthetic participant, we estimate the individual
treatment effects of nutrition on each health outcome. These personal nutrition effects are determined based on the participant’s
nutrition intake, the causal graph specific to that individual, and the corresponding health outcome values. This process enables us
to evaluate the performance of our framework within a satisfactory sample size.

3.2. Architecture

The ChatDiet framework includes 4 major components: Orchestrator, Personal Model, Population Model, and LLM (see Fig. 1).
In the following, we briefly outline the components, followed by their implementation using the case study.
4
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3.2.1. Orchestrator
We introduce the Orchestrator within our ChatDiet framework inspired by the Conversational Health Agents framework

openCHA) proposed in Abbasian, Azimi, Rahmani, and Jain (2023). The Orchestrator plays a central role in processing and
nhancing the effectiveness of ChatDiet’s food recommendations as it is responsible for filtering, fusing, and transcribing the outputs
enerated by personal and population Models and user queries. Within the ChatDiet framework, the Orchestrator performs three
ain processing tasks:

Retrieving : It retrieves the most relevant information from the Personal Model and Population Models based on the user’s specific
uery. This retrieval process ensures that only pertinent data is considered for generating responses. For instance, if a user’s health
ata contains extensive information, but only details related to specific health outcomes are required, the Orchestrator is responsible
or filtering and retrieving only that subset of data.

Transcribing : It transforms non-textual information into a textual format, enabling the optimal utilization of input data across
iverse modalities (e.g., time series). These converted inputs are then fed into LLMs, designed to primarily handle textual inputs.
his capability proves crucial, especially when confronted with data formats such as spreadsheets or other non-textual structures
hat the LLM cannot directly interpret.

Prompt Engineering : It performs a prompt engineering function to instruct the LLM effectively. It ensures that the LLM understands
its role and context in the conversation. Additionally, when personal food preferences and nutrition effects on health are provided,
the Orchestrator supplies prompts that instruct the language model to adhere to the provided information rather than generating
unrelated or hallucinatory responses. This step enhances the quality and relevance of the chatbot’s interactions.

The case study: For our case study, we build the Orchestrator, equipped with the Best Match 25 (BM25) retrieval algo-
rithm (Robertson, Zaragoza, et al., 2009), instructive prompts, Chain-of-Thought prompt engineering methods (Wei et al., 2022),
and a transcribing mechanism. These components collectively facilitate retrieving and transforming personal nutrition effects and
food nutrition data into suitable text formats.

We implement a two-stage retrieval process, aimed at only selecting relevant nutrition effects and foods that align with the user’s
query. The first stage is to retrieve relevant nutrition effects and food pertinent to the user’s query. For instance, if the user’s query
involves enhancing deep sleep, we leverage the BM25 (Robertson et al., 2009) algorithm to retrieve nutrients that significantly
impact deep sleep. Subsequently, the second stage focuses on retrieving food items that contain the most relevant nutrients. This is
executed by ranking all foods based on their nutrition content per calorie, subsequently selecting the top 10 entries.

Consequently, the causal impact of each nutrient on distinct health outcomes was encapsulated within this structure. For instance,
utilizing the estimated individual treatment effect (ITE), the causal effect of vitamin B1 on the duration of deep sleep was captured as
‘‘The effect of B1 (Thiamine) (mg) on Deep Sleep Duration: 14.3 per unit’’. The food ingredients are encoded as ‘‘Beet Greens, Cooked per
up contains 38.8 kcal of Energy, 128.3 g of Water, 0.16 mg of B1, 0.41 mg of B2’’. This approach ensures explainability, accessibility,
nd consistency in presenting the complex causal relationships to the LLM.

We conduct prompt engineering in Orchestor based on instruction template (Hou et al., 2023) and the concept of engagement-
uided instructions (Lyu et al., 2023). Leveraging the personal nutrition effects and food ingredients dictionary, we construct the
nstruction prompt as follows: ‘‘Please provide a food recommendation based exclusively on the nutrition effects and the provided list of
ood ingredients. Your recommendations must strictly adhere to the listed foods. You cannot generate foods that are not in the given food
ist. The relevant nutrition effects are as follows: [nutrition effects]. The foods’ ingredients are as follows: [food ingredients dictionary]’’..

Moreover, we utilize the Zero-Shot Chain-of-Thought method (Wei et al., 2022) to enhance user understanding and confidence
n the recommendation. The Zero-Shot Chain-of-Thought method elevates accuracy and clarity by constructing coherent response
equences that logically build upon one another. To this end, the orchestrator appends the explicit instruction ‘‘Explain your

recommendation step by step’’ to the instruction prompt. This not only ensures alignment with personal nutrition effects but also
facilitates detailed explanations for food recommendations.

3.2.2. Personal model
The Personal Model incorporates a range of personal data into the recommendation process. In the context of ChatDiet,

personal data encompasses unique individual-specific information, including personal food preference ratings, dietary history,
electronic health records, and physiological signals gathered from wearable devices. It might include various data formats, extracting
representations, embeddings, or textual descriptions.

An illustrative example of a Personal Model is the Biological Personal Food Model (B-PFM) and Preferential Personal Food
Model (P-PFM) as introduced in Rostami, Pandey, Nag, Wang, and Jain (2020). These models are designed to address how food
items can effectively meet nutritional needs aligned with specific goals for an individual. They prioritize the individual’s health
state, considering their nutritional requirements, taste preferences, and biological responses to various foods.

The case study: We implement ChatDiet’s Personal Model using causal discovery and causal inference methods to determine
the causal effects of nutrition on health outcomes. Causal discovery and causal inference are two main fundamental techniques
in understanding the cause-and-effect relationships that govern various phenomena (Feng, 2023). These methods go beyond mere
correlation by providing insights into how changes in one variable can lead to changes in another, allowing us to uncover the
underlying mechanisms that drive observed outcomes.

In our study, we leverage a novel NN-based causal discovery algorithm called Structural Agnostic Modeling (SAM) (Kalainathan,
Goudet, Guyon, Lopez-Paz, & Sebag, 2022). SAM learns causal generative models in an adversarial manner. It aims to combine the
advantages of exploiting conditional independence relations and leveraging distributional data asymmetries, achieving a trade-off
5

between model complexity and data fitting.
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After obtaining the output from the causal discovery algorithms, our focus shifts to estimating the causal impacts based on
he causal graph, achieved through the application of inference methods. These methods leverage statistical and computational
echniques, allowing researchers to infer the impact of one variable on another. The ATE (Shalit, Johansson, & Sontag, 2017; Yao
t al., 2021), a key concept in causal inference, quantifies the average impact of a treatment or intervention on an outcome.

To enhance the personal model’s ability to understand the complex connections between diet and well-being, we leverage insights
rom Nagesh, Azimi, Andriola, Rahmani, and Jain (2023) and apply causal discovery and causal inference techniques. These methods
elp us to assess the causal effect of different nutrients on health outcomes.

We find that our final causal graph contains a mediator path, and therefore, we use the mediator analysis to compute the
rue causal estimation. Briefly, mediator analysis in causality involves investigating the intermediate processes through which an
ndependent variable influences a dependent variable (Pearl, 2014). Statistical methods, such as regression or structural equation
odeling, are employed to assess the direct effect of the independent variable on the dependent variable and the indirect effect
ediated through the intermediate variable. Mediator analysis is crucial for illustrating the underlying processes that contribute

o observed causal relationships, providing insights into the pathways through which variables exert their influence in a causal
hain (Pearl, 2012).

For the causal discovery, we employed the Causal Discovery Tool (CDT) library (Kalainathan & Goudet, 2019) on personal data to
enerate a causal graph depicting the relationships between daily nutritional intake and subsequent day’s health outcome variables.
e then estimate the causal effects using the DoWhy library (Sharma & Kiciman, 2020) by leveraging both personal data and the

reviously constructed causal graph.

.3. Population model

A Population Model encompasses information that is not specific to a person but rather pertains to a larger group or population
in contrast to a Personal Model). Such population information is necessary to ensure that personal food recommendations are
rounded in broader dietary trends and health norms. For food recommendation, population knowledge consists of a wide array of
ata, including but not limited to food knowledge graphs (Haussmann et al., 2019), general nutritional standards, public dietary
uidelines (Zeraatkar, Johnston, & Guyatt, 2019), and nutritional and supplement facts (Cowan et al., 2023; Rossi, Ferrari, &
hiselli, 2023). The extracted information from the Population Model can take various forms, including text or non-text data,
nd is employed in downstream components within the system. This allows the ChatDiet framework to leverage more generalized
opulation knowledge to enhance its recommendations.
The case study: We introduce the Population Model as a food knowledge loader function. Its primary role is to select and load

ood’s nutrition content from the comprehensive food database created by the Cronometer Food Logger (Cronometer: Eat smarter.
Live better , 2024), which details each food item’s ingredients, nutritional content, and sensory properties like texture, smell, and
taste. There are also other databases with APIs, such as Nutritionix (Nutritionix - Largest Verified Nutrition Database, 2024), which can
be used for this purpose. The Population Model streamlines the process by directly selecting and loading this nutrition information
into the Orchestrator, eliminating the need for complex data processing steps such as embedding extraction.

One notable advantage of this approach is the seamless accessibility of data, as the population model can effortlessly load this
information without the need for additional embedding extraction processes. This efficient data retrieval ensures that ChatDiet can
tap into a rich source of general food nutrition knowledge, enhancing the chatbot’s ability to provide informative and contextually
relevant recommendations.

3.4. Generative response

The Generative Response is a key component in ChatDiet that leverages the language model to process the curated text from
the Orchestrator. The objective of the Generative Response is to generate personalized, nutrition-oriented food recommendations
by leveraging the personal context and population knowledge, along with the user’s query processed by the Orchestrator.

The case study: We employ the gpt-3.5-turbo (Brown et al., 2020) Language Model. The model is responsible for processing the
data received from the Orchestrator and generating responses.

4. ChatDiet evaluation

In the following, we outline the results of a food recommendation effectiveness test and examples showcasing ChatDiet’s
Explainability, Personalization, and Interactivity. While not exhaustive, this evaluation demonstrates the platform’s promising
potential for personalized recommendations. However, a comprehensive personalization assessment in the field of LLM-based food
recommendation depends on the development of standardized benchmarks and evaluation metrics, which are currently unavailable.
A concise demonstration video showcasing the ChatDiet framework implemented on openCHA is available at ChatDiet Demo Video
(2024).
6
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Table 1
Accuracy of personalized food recommendations and explanations.

RER

Recommendations regarding HRV 0.95
Recommendations regarding Overall Sleep Quality 0.93
Recommendations regarding REM Sleep Duration 0.85
Recommendations regarding Deep Sleep Duration 0.95

4.1. Personal model results

The primary objective of ChatDiet is to provide food recommendations based on the personal nutrition effect guided by the
ersonal Model. We begin by presenting the outcomes derived from the Personal Model, as utilized by the subsequent Orchestrator
nd Response Generator. The key findings from this Personal Model, centered on causality, highlight the complex interplay between
ietary consumption and personalized health responses. To accomplish this, we initially construct a causal graph using causal
iscovery techniques. Following that, we determine the individual treatment effects for each individual through causal inference
ethodologies.

The causal graph is shown in Fig. 8 in the Appendix section. We observe significant correlations between nutritional intake and
arious physical health indicators, including activity levels, sleep patterns, and heart health. For example, certain nutrients have
emonstrated a positive association with enhanced sleep efficiency, while others exhibit links to physical activity levels and heart
ate measurements. Notably, the graph reveals the complexity of interactions between macronutrients such as proteins, fats, and
arbohydrates, and a wide range of health metrics. For example, the intake of specific types of fats, such as omega-3 and omega-6
atty acids, intricately influences factors like heart rate variability and energy levels.

In the causal inference results, we observe notable trends in the effects of micronutrients on various health outcomes. Specifically,
icronutrients, including Vitamin D, Iron, and Magnesium, demonstrate significant effects on sleep quality, resting heart rate, etc.
e can also observe the influence of certain macronutrients, including omega-3 fatty acids, and carbohydrate show a significant

ffect on health outcomes, including HRV, sleep efficiency, activity burn, etc. This underlines the importance of not only the quantity
ut also the quality of the nutrients in an individual’s diet. These results are instrumental for the following Orchestrator and Response
enerator. They enable the Orchestrator to access and process personal nutrition effects and empower the Response Generator LLM

o craft personalized, nutrition-oriented recommendations.

.2. Quantitative validation of effectiveness

We first show that the ChatDiet can efficiently provide valid food suggestions with explanations. To this end, we conduct a
uantitative evaluation to assess the efficiency of recommendations provided by ChatDiet, while considering explanations and
ersonal data. This evaluation is based on whether the recommendations were aligned with the user’s query and if the accompanying
xplanations are consistent with the extracted personal effects.

We selected HRV, overall sleep quality, REM sleep duration, and deep sleep duration as the target health outcomes. Then, the
ser queries were constructed in the format of ‘Please suggest me a food to increase [target health outcome]’. With four target health
utcomes and 100 synthetic participants, we generated a total of 400 queries and responses from ChatDiet. We manually assessed
he explanation provided in the response to ensure it included information on the food recommendation’s nutrition content and its
ssociated nutrition effects. If the presented nutrition effects align with the individual’s personal nutrition requirements, we classify
he recommendation as ‘correct’. For instance, if Chatdiet outlines the rationale behind recommending Acai berries by stating that
his food is rich in Vitamin E, and that Vitamin E has an effect on extending deep sleep duration by 3.3408 per unit, we then manually
erify the estimated nutritional impact of Vitamin E. If both assessments align, we classify this recommendation as ‘correct’. The
ecommendation effectiveness ratio (RER) of ChatDiet is then calculated as the proportion of ‘correct’ recommendations. The results
f this evaluation are presented in Table 1.

.3. ChatDiet’s explainability demonstration

A pivotal characteristic of ChatDiet lies in its emphasis on explainability, which revolves around its ability to show the underlying
ogic and decision-making process behind recommendations. This attribute holds true for ChatDiet, as it employs personalized
utrition effects to expound upon its dietary recommendations in relation to the health outcomes of interest.

In Fig. 2, we present an example of ChatDiet’s interaction dynamics. These showcases underline how the system’s recom-
endations amalgamate personalized nutrition effects gleaned from the personal model, alongside inherent food-related expertise

mbedded in the pre-trained LLM’s weights. In this example, if a user aims to improve their REM sleep duration, ChatDiet suggests
oods abundant in Vitamin E, Valine, and Protein based on the user’s personal model. It therefore recommends foods such as
lmonds, which are rich in Vitamin E. Notably, ChatDiet substantiates this recommendation using personal nutrition effects, as
ll three of these nutrients exhibit positive impacts. This approach effectively connects individual dietary requirements with the
7
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Fig. 2. Food recommendation and explanation based on nutrition effect from ChatDiet.

Fig. 3. Personalized Feedback from ChatDiet.

4.4. ChatDiet’s personalization demonstration

Personalization denotes the system’s prowess in customizing food recommendations to align precisely with an individual’s distinct
nutrition effects. This personalized strategy aims to furnish dietary suggestions that resonate with the user’s physiological profile,
moving beyond population nutrition knowledge.

Personalization is showcased through the comparisons depicted in Figs. 3 and 4. This graphical representation exhibits how
ChatDiet transcends dependence solely on population-based knowledge and effectively integrates personal nutrition effects into
its recommendations. A compelling case study arises when we compare ChatDiet’s recommendations both with and without the
incorporation of personal data.

The system’s competence in suggesting Salmon, typically linked to the favorable effects of Omega-3 on REM sleep, acquires a new
dimension with the integration of an individual’s personal nutrition effect. ChatDiet demonstrates its advanced rationale by not only
acknowledging the adverse impact of Omega-3 but also assessing the constructive influence of protein content. This multi-model
methodology underscores ChatDiet’s proficiency in crafting suggestions that meticulously consider an individual’s unique nutritional
nuances. It is noteworthy that this personalized approach stands in contrast to the broader population knowledge, suggesting the
positive impact of Omega-3, further emphasizing ChatDiet’s capability to adapt to personal needs.

By personalizing recommendations based on personal nutrition effects, ChatDiet not only enhances the relevance of its
suggestions but also amplifies its potential to impact the user’s health and well-being positively. This tailored approach aligns dietary
choices more closely with the user’s physiological requirements, manifesting a more meaningful and effective recommendation
experience.

4.5. ChatDiet’s interactivity demonstration

ChatDiet’s strength in interactivity stands out due to LLM’s capabilities. Beyond the initial responses, ChatDiet engages in dynamic
conversations effectively, thereby addressing the challenge of accommodating evolving user preferences in real time. This dynamic
feature extends beyond static suggestions, as ChatDiet shows proficiency in responding to follow-up questions, allowing users to
seek insights, make adjustments, or express their preferences interactively.

Figs. 5 and 6 illustrate ChatDiet’s pronounced interactivity, particularly evident in its capacity to engage in follow-up questions.
In instances where the initial response from ChatDiet lacks a detailed explanation, users have the option to pose further queries
for additional clarification, thereby enabling a dynamic and interactive dialogue. The second exemplar showcases ChatDiet’s ability
8



Smart Health 32 (2024) 100465Z. Yang et al.
Fig. 4. Non-personalized Feedback from ChatGPT.

Fig. 5. ChatDiet responds the follow-up question asking for further explanation.

Fig. 6. ChatDiet responds the follow-up question regarding altered preferences.

to adapt; when a user expresses a lack of interest in the suggested food item, ChatDiet promptly offers alternative options. These
demonstrations effectively underscore the extent to which ChatDiet successfully achieves and showcases interactivity within its
recommendation process.

5. Discussion

The implementation of ChatDiet has indicated successes in explainability within the nutrition-oriented food recommendation.
Several example dialogues have shown that ChatDiet is distinguished through its strong emphasis on explainability. This key feature
enables users to gain clear insights into the rationale behind its recommendations. We show that by utilizing personalized nutrition
effects, ChatDiet demonstrates dietary suggestions in the context of health outcomes, ensuring a transparent decision-making process.
9
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Fig. 7. Hallucination: The nutrition effect statements are opposite to the shown causal effects.

Personalization in ChatDiet is shown by its ability to customize food recommendations to match an individual’s unique nutrition
effects. This personalized approach ensures dietary suggestions align with the user’s specific physiological profile, going beyond
population nutrition knowledge. By utilizing this, ChatDiet enhances relevance, promoting better health outcomes through tailored
dietary choices.

ChatDiet’s interactivity is evident through its ability to respond to users’ follow-up questions effectively. The adaptability ensures
recommendations remain pertinent as user preferences evolve, contributing to user control. Its dynamic interaction capability
extends the initial responses, which is critical for engaging users in dynamic conversations. This enables users to seek insights, make
real-time adjustments, or express their evolving preferences, ultimately fostering a highly interactive and user-centric experience.

However, ChatDiet faces certain limitations. Notably, ChatDiet’s personalized food suggestions are confined to queries related
to the factors available in the dataset, as the data is derived from a single subject and specific health outcomes from a limited set
of smart devices. In cases where a user’s query lacks explicit factor names, while the LLM can comprehend the user’s intent and
perform the task, occasional inaccuracies may arise, potentially leading to nonsensical recommendations. Our future work will focus
on incorporating counterfactual analysis of user preferences under hypothetical scenarios to predict their future engagement and
generate personalized recommendations based on these simulations. This will enable us to move beyond analyzing past behavior
and provide more accurate and effective services for our users.

One critical challenge we faced was hallucination in recommendations. In some cases, ChatDiet’s outputs contradicted the
provided personal nutrition effects, even when explicitly displayed. Fig. 7 exemplifies this issue. The language model acknowledges
the personal impact by showing the calculated nutrition values. However, it then contradicts this by mentioning Tryptophan’s
supposed link to improved sleep, leading to an inaccurate recommendation for almonds. This self-contradiction undermines the
credibility and reliability of ChatDiet’s suggestions. This highlights the crucial need to address such inconsistencies and implement
robust mechanisms to ensure the accuracy and coherence of ChatDiet’s recommendations.

6. Conclusion

In this paper, we introduced ChatDiet, an LLM-powered framework for nutrition-oriented food recommendation. By combining
Personal and Population Models with a dynamic Orchestrator, ChatDiet offered personalized and explainable food recommendations.
Additionally, we implemented a chatbot based on ChatDiet using longitudinal data collected from an individual’s dietary habits,
health metrics, and other relevant information over three years. We further demonstrated the chatbot’s practicality, achieving a
92% effectiveness rate in food recommendations. Through dialogue examples, we showcased ChatDiet’s strengths in explainability,
personalization, and interactivity. ChatDiet represents a significant step in leveraging technology to improve dietary choices and
overall well-being.
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Fig. 8 illustrates the estimated causal graph between nutrition and health outcomes derived from the N-of-1 data.

Fig. 8. The Personal Nutrition Effect Causal Graph from the Personal Model.
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