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Higher dimensional foliated Mori theory

by

Calum Spicer

Doctor of Philosophy in Mathematics

University of California San Diego, 2017

Professor James McKernan, Chair

We develop some foundational results in a higher dimensional foliated Mori

theory, and show how these results can be used to prove a structure theorem for

the Kleiman-Mori cone of curves in terms of the numerical properties of KF for

rank 2 foliations on threefolds. We also make progress toward realizing a minimal

model program for rank 2 foliations on threefolds.
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Chapter 1

Introduction

1.1 Statement of main results

We first state the main results to be proven here, a more complete introduction

follows in the next section.

We will always work over C. By a foliation on a normal variety X we mean a

saturated subsheaf F ⊂ TX closed under Lie bracket. Given such a pair X,F we

define −c1(F) = KF to be the canonical divisor of the foliation. In recent years

much work has been done understanding the birational geometry of the foliation

in terms of KF when the rank of F is 1, especially in the case of rank 1 foliations

on surfaces.

The goal of this paper is to extend this work to the case of co-rank 1 foliations,

especially in the case of threefolds. An essential first step in understanding the

birational geometry of a variety or foliation is a structure theorem on the closed

cone of curves NE(X). Here we prove the following foliated cone theorem:

Theorem 1.1.1. Let X be a klt, Q-factorial threefold and F a co-rank 1 foliation

with canonical and non-dicritical foliation singularities. Then

NE(X) = NE(X)KF≥0 +
∑

R+[Li]

where Li are curves.

1
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Furthermore either Li is contained in sing(X) or Li may be taken to be a

rational curve with KF · Li ≥ −6.

In particular, the KF -negative extremal rays are locally discrete in the KF < 0

portion of the cone.

One can always find a resolution of singularities π : X ′ → X such that X ′ is

smooth and the transformed foliation has canonical singularities. In this case all

the hypotheses of the theorem are satisfied, and so each foliation-negative extremal

ray in X ′ is spanned by the class of a rational curve.

With the cone theorem in hand we then turn to the question of constructing

minimal models. That is, given a pair (X,F) is there a sequence of birational

modifications that can be performed resulting in a model (Y,G) with KG nef?

In general we are unable to prove the existence of minimal models, however

we are able to provide partial results which may warrant optimism as well as

pinpointing the difficulties in establishing existence.

In particular we are able to prove the existence of minimal models in two classes

of foliations:

Theorem 1.1.2. A minimal model for (X,F) exists if either

1) F is a smooth rank 2 foliation on a smooth 3-fold X.

2) F is a co-rank 1 toric foliation on a toric variety (no restriction on the

dimension of the ambient variety).

We are also able to prove the existence of flips for a natural class of singularities:

Theorem 1.1.3. Terminal foliation flips exist.

In contrast to the classical situation where one can always arrange for a variety

to be terminal after a resolution, this is not possible in the foliated situation, indeed

the best one can hope for is canonical singularities. Thus, in many questions of

practical interest in the study of foliations it would be preferable to know the

existence of canonical flips. We are able to construct canonical flips in several

cases and hope that the construction of a general flip can be reduced to one of

these cases.
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As we will see, there is an analogue in the classical setting for this argument

whereby a “special” termination of flips allows one to reduce the existence of

general flips to a “special” flipping case. We will show that this “special” foliated

termination also holds.

We sketch the proofs of our main results: First, we explain the proof of the

cone theorem:

For simplicity, let us assume that X is smooth. Let R be an extremal ray of

the cone of curve NE(X) with R · KF < 0. Suppose that HR is a supporting

hyperplane of R.

HR is a nef divisor on X. If Hk
R = 0 for some k ≤ n then we can show by a

foliated bend and break result that through a general point of X there is a rational

curve tangent to the foliation spanning R.

If Hn
R 6= 0, then we may take HR to be effective, and so we see that R actually

comes from a lower dimensional subvariety S of X. The idea here is to proceed

by induction on dimension. Unfortunately, a priori the singularities of S could be

much worse than the singularities of X. Indeed, as we will see the singularities in

our induction are sometimes worse than log canonical. The bulk of our work is

therefore to work around these difficulties. In short, our two main techniques are

an extension of an adjunction type result of Kawamata to the foliated setting and

an algebraicity criterion whereby one can deduce the compactness of leaves of the

foliation from numerical data about KF . These results seem to be useful outside

of their place in the proof of the cone theorem.

Our results on the foliated MMP and existence and termination of flips all rely

on the following observation: If S is a smooth leaf of a smooth foliation, then

KF |S = (KX + S)|S = KS.

This suggests that it might be possible to run a foliated MMP as a well chosen

log-MMP. There are many difficulties with this approach since in general none

of X,S,F will be smooth and it is unclear if the singularities which arise in the

course of the foliated MMP will even allow a log MMP to be run. There are also

additional complications arising from that fact that in general we cannot assume
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that our leaf S is algebraic. Nevertheless we are able to handle many of these

issues and realize the foliated MMP as an appropriate log-MMP.

Finally, we present some applications of our methods to some classification

problems in foliation theory.

1.2 Introduction

A major guiding philosophy for higher dimensional geometry is that the geom-

etry of a complex projective manifold X is reflected in properties of the canonical

bundle of X, ωX = det(Ω1
X).

In the case of smooth projective algebraic curves, there is a natural trichotomy

namely, those curves which are isomorphic to P1, curves of genus = 1 and curves

of genus > 2. This can be rephrased as a classification in terms of curves by the

positivity of their canonical bundle, i.e., P1 has an anti-ample canonical bundle,

genus 1 curves have a trivial canonical bundle and genus > 2 curves have an ample

canonical bundle.

In higher dimensions such a neat classification fails, in part because the canon-

ical bundle of higher dimensional varieties can exhibit a range of behaviors beyond

anti-ample, trivial, ample. Nevertheless, one might hope that there is some way to

“construct” a general variety using simpler varieties whose canonical bundles are

either anti-ample, trivial or ample.

The goal behind the minimal model program (MMP) is to provide an algorith-

mic method of realizing such a decomposition. With that in mind one can phrase

the guiding question of the MMP as follows:

Question 1. Given a complex projective manifold X can we perform a sequence

of (birational) surgery operations on X in order to simplify the global geometry of

X?

By simplify we mean either find a birational model X ′ such that KX′ is nef or

such that X ′ → Z fibres over a lower dimensional space, and such that the fibres

are KX′-negative.

Recall that KX is any divisor such that O(KX) = ωX .
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The first step to realizing such a sequence of operations is the celebrated cone

and contraction theorem.

Definition 1. Let X be a normal variety. The Kleiman-Mori Cone NE(X) is

the closure of the cone generated by classes of effective curves modulo numerical

equivalence.

Theorem 1.2.1. Suppose that X is smooth. Then we can write

NE(X) = NE(X)KX≥0 +
∑

R≥0[Li]

where the Li are rational curves and the rays R≥0[Li] are locally discrete.

Furthermore, if R is any KX-negative extremal ray, there exists a morphism

cR : X → Z such that cR(C) is a point if and only if [C] ∈ R. This is called the

contraction of the extremal ray R.

We would like to realize our minimal model as a sequence of contractions of

KX-negative extremal rays. Indeed, in the case where X is a surface this strategy

works:

Theorem 1.2.2. Let X be a smooth surface. Then there exists a sequence of

contractions of extremal rays X → X1 → ... → Xn such that Xn is smooth and

either KXn is nef or Xn fibres over Z where dim(Z) = 0, 1 and the fibres of the

map are KXn-negative.

Notice that any sequence of contractions must terminate at some point because

each contraction drops the rank of H2(X,Z) by 1.

However, for threefolds, this approach fails. To explain we classify extremal

contractions into 3 types:

(i) Fibre type contractions: Here the contraction realizes X as a fibre space

where each fibre is KX-negative.

(ii) Divisorial contractions: Here the contraction contracts a divisor to a point

or curve.

(iii) Small contractions: Here the contraction contracts a subvariety of dimen-

sion < n− 1.
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Contractions of type (i) are a stopping point for the minimal model program,

and do not cause difficulties in higher dimensions.

Contractions of type (ii), in contrast to the surface case, can produce singular

varieties. However, these singularities are relatively mild and the cone and con-

traction theorem is still true under the assumption that X has singularities in this

class.

Contractions of type (iii) present serious difficulties. Let f : X → Z be such a

contraction. We claim that KZ is not Q-Cartier. Assume otherwise, then because

f is an isomorphism in codimension 2 we see f ∗KZ = KX . But this implies that

KX is trivial on the exceptional locus of f , a contradiction of the definition of f

as a KX-negative contraction.

If KZ is not Q-Cartier there is no obvious way to proceed. One cannot in

general define the intersection pairing of curves with KZ and so the question of

whether or not KZ is nef does not even make sense.

The solution to this problem is the flip. Given a small contraction f : X → Z,

we want to produce another variety and morphism f+ : X+ → Z such that X,X+

are isomorphic in codimension 1 and such that−KX+ is negative on the exceptional

locus of f+- notice the “flip” in the sign!

Unfortunately, from the definition of the flip it isn’t immediately obvious that

it should even exist. Even if we can show that the flip exists we run into the subtle

problem of termination. After a flip both the dimension and Picard number are

unchanged, and so one might reasonably wonder if it is possible that there is an

infinite sequence of flips.

There has been much work done on this problem, and in the case of threefolds

there is a definite answer:

Theorem 1.2.3. Let X be a smooth threefold. Then flips exist and an MMP

starting from X will have only finitely many flips. In particular, the MMP exists

and terminates.

For projective varieties over C much more than the above is known, and in

recent years there has active work on extending the MMP to both the Kahler

setting and the positive characteristic setting:
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Theorem 1.2.4. Let X be a smooth 3-fold and suppose either

(i) X is Kähler

(ii) X is projective over a field of characteristic p > 5.

Then there is an MMP starting from X.

For (i) see [HP], for (ii) see [HX].

Unlike the complex projective case, it does not seem that much is known about

the existence of the MMP beyond the 3-fold case in these settings.

In this paper we take a third approach to generalizing the classical MMP: a

foliated MMP.

Recall that a foliation is a coherent subsheaf F ⊂ TX of the tangent sheaf such

that

1) TX/F is torsion free.

2) F is closed under Lie bracket. This is sometimes stated as F is integrable.

Before getting to our main questions we present a range of examples of foliations

to highlight the ubiquity of foliations in geometry, as well as to demonstrate their

wide range of intriguing behaviors:

Example 1. Let π : X → B be a fibration. Then the relative tangent bundle

TX/B ⊂ TX defines a foliation.

Example 2. On C2 an algebraic foliation is defined by a vector field ∂ = a(x, y)∂x+

b(x, y)∂y where a, b ∈ C[x, y]. Even if a, b are both polynomials the (local) solutions

to the equation ∂f = 0 (which will be leaves of the corresponding foliation) may be

transcendental.

It is an open question whether or not there is an algorithmic method to decide

whether or not a foliation on C2 has algebraic leaves.

More generally, given a complex manifold X, a foliation can be defined by an

open cover {Ui} such that for each Ui we have a collection of vector fields {vi1, ..., vir}
which Lie commute, i.e., [vik, v

i
j] = δjk, and such that the {vij} satisfy the obvious

compatability conditions.

Where the vector fields vanish or become tangent the foliation acquires singu-

larities. If p ∈ X is not a singular point of the foliation a classical theorem of
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Frobenius states that there is a small analytic neighborhood p ∈ Up such that the

foliation is induced by a holomorphic fibration Up → Bp, i.e. F = TUp/Bp .

Example 3. Let Λ ⊂ Cn be a co-compact lattice, i.e., Cn/Λ = X is a complex

torus.

Consider the foliation ∂x1 , ..., ∂xn−1 on Cn. This foliation is invariant under-

neath the action of Λ, and so descends to a “linear” foliation on X.

The leaves of the foliation are given by the quotient of {xn = c} for c ∈ C by

Λ. Therefore the leaves are isomorphic to Ck × T where T is a complex torus. If

the leaves are are isomorphic to Cn−1 they are not compact, in this case one can

visualize the leaf as “spiraling” around the torus X. In fact such a leaf will be

dense in X.

Example 4. Let X be a projective manifold with an ample or movable class α.

Suppose that TX is slope unstable with respect to α, and let F be a maximal desta-

bilizing subsheaf. Then F defines a foliation.

The study of foliations arising in this way is intimately related with questions

relating to the uniruledness of X.

Example 5. Let F be a rank 1 foliation on a smooth complex projective surface

X. Pick some point p ∈ X and let p ∈ T be a germ of a disc transverse to the

foliation at p. If γ ∈ π1(X), then transport of T along γ induces a biholomorphism

fγ : T → T , which in turn gives a representation π1(X)→ SL2(R), the holonomy

representation.

Results of Corlette and Simpson, [CS08], imply that essentially all representa-

tions π1(X)→ SL2(R) with Zariski dense image arise in this way.

In analogy with the classical setting, we define KF = −c1(F).

Question 2. Supposing that we constrain the singularities of a foliation F in an

appropriate way, can we perform a sequence of birational modifications to F which

“simplify” its global geometry, i.e., result in a model (Y,G) with KG-nef, or G fibred

over a lower dimensional foliation?

Observe that the integrability condition is necessary:
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Example 6. [Dru, Example 1.3] points out that the null correlation bundle N on

P2n+1 for n ≥ 1 gives rise to a corank 1 subbundle D ⊂ TP2n+1 with −det(D) being

ample. D is smooth distribution, but not closed under Lie bracket.

We can embed P3 ∼= E ⊂ X
f−→ C4 as the exceptional divisor of the blow up of

C4 at a point. There exists a lift of D to a smooth distribution D′ on all of X. If

C ⊂ E we still have det(D) ·C < 0 and so there is no way to construct a nef model

without contracting curves transverse to the distribution.

As we will see later there are important technical reasons for insisitng that only

curves tangent to the foliation are contracted. However, morally speaking one can

think of a foliation as being a “fibration” X → [X/F ] where [X/F ] is the leaf space

of the foliation. In this case the foliated MMP should be thought of as a relative

MMP for this fibration, and so the MMP should only modify X “fibre-wise”.

Work by Bogomolov, McQuillan, Brunella, Mendes and others has realized the

foliated MMP in the case of rank 1 foliations on surfaces. For rank 1 foliations of

higher dimensional varieties the MMP is known thanks to [McQ].

In higher dimensions and ranks there has also been recent work in classifying

the “building block” foliations, see for example, [AD13], [PT13], [LPT].

However, little to no work has previously been done on the MMP for higher

rank foliations. The goal of what follows is to address the case of rank 2 foliations

on 3-folds. In particular we will prove a foliated cone and contraction theorem, and

provide some partial results toward the existence of the MMP, as well as exploring

the possibility of extending these methods to co-rank 1 foliations in general.

Before proceeding it is worth stopping to consider why the foliated MMP (and

indeed why the Kähler and positive characteristic MMP) is hard.

In the classical setting the cone and contraction theorem, as well as the existence

of the MMP are proven by way of theorems relating the canonical bundle to the van-

ishing and non-vanishing of certain cohomology groups, e.g., Kawamata-Viehweg

vanishing, the basepoint free theorem, etc.. Unfortunately, this cohomological

approach seems to have no hope of generalizing to the foliated/Kähler/positive

characteristic case since the relevant (non-)vanishing are simply false in these con-

texts.
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In the positive characteristic case there are results due to Keel, Hacon-Xu and

Schwede which can sometimes take the place of the usual theorems in the classical

MMP. In the Kähler setting the proof of the cone and contraction theorem relies

on several deformation theory techniques and classification results only available in

the three dimensional case, and so does not obviously (to me) generalize to higher

dimensions.

Simply put, it does not seem possible to run the foliated MMP by taking

a standard text on the MMP and replace X by F . New methods need to be

developed.

Finally, given the recent successes in the foliated MMP for rank 1 foliations

one might reasonably wonder what makes rank 2 harder than rank 1? Morally it

seems that there are two reasons.

First, the deformation theory of rank 1 foliations is simpler than rank 2 folia-

tions. Indeed, the starting point for the rank 1 MMP is a strong foliated bend and

break result which does not hold for rank 2 foliations.

Secondly, (at the cost of working on Deligne-Mumford stacks) the ambient

space X remains smooth throughout the MMP. In the rank 2 case (as in the

classical case), even working in the greater generality of Deligne-Mumford stacks,

smoothness is not preserved.



Chapter 2

A proof of the cone theorem

2.1 Set up and basic results

Definition 2. Given a normal variety X a foliation F is a coherent saturated

subsheaf of the tangent sheaf of X which is closed under the Lie bracket.

The rank of the foliation, rk(F), is its rank as a sheaf and its co-rank is

dim(X)− rk(F).

The singular locus of the foliation is the locus where F fails to be a sub-bundle

of TX . Note that sing(F) has codimension at least 2

The canonical divisor plays a central role in the birational geometry of folia-

tions, we define it as follows:

Definition 3. Let U be the locus where X and F are smooth. We can associate a

divisor to det(F|U)∗, which gives a Weil divisor on all of X, denoted KF

For the rest of this paper we will take F to be a co-rank 1 foliation over C.

Definition 4. We say W ⊂ X is tangent to F if the tangent space of W factors

through the tangent space of F along X − sing(F). Otherwise, we say that W is

transverse to the foliation.

If F factors through the tangent space of W , F|W → TW → TX |W , we say that

W is invariant.

11
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2.1.1 1-forms and pulled back foliations

Definition 5. Let ω be a rational 1-form with ω ∧ dω = 0. Then we can define

a foliation by contraction. Namely, we take F to be the kernel of the pairing of ω

with TX . Thus, given a rank 1 coherent subsheaf of ΩX , we can define a foliation

by contraction.

On the other hand, given a foliation F we can define a subsheaf of ΩX by taking

the kernel of ΩX → F∗.

Let F be a co-rank 1 foliation on X, and suppose that it is defined by the rank

1 subsheaf of the cotangent sheaf 0→ L → ΩX .

Definition 6. Let f : W → X. We have a morphism df : f ∗ΩX → ΩW . Assume

that f(W ) is is not tangent to F and that f(W ) is not contained in the singularities

of L or sing(X). Then df(f ∗L) is a rank 1 coherent subsheaf of ΩW . Observe that

if ω ∈ L is an integrable 1 form that df(ω) is still integrable.

This gives a foliation FW , called the pulled back foliation.

When f is a closed immersion we will sometimes refer to it as the restricted

foliation.

In general, even if L is a saturated subsheaf, f ∗L might not be saturated.

Definition 7. Let 0 → L → ΩX define a foliation. We call the saturation of L
in ΩX , N∗F , the conormal sheaf. On the smooth locus of X, (N∗F)|Xsm is a line

bundle represented by 1-forms with zero loci of codimension at least 2. Thus, we

can associate to N∗F a well defined Weil divisor. We will denote this divisor by

[N∗F ].

Lemma 2.1.1. Let f : W → X be a morphism such that f(W ) is not tangent

to F and not contained in sing(X). Assume that N∗F is a line bundle. Then

[N∗FW ]−Θ = f ∗(N∗F), where Θ is an effective divisor.

Proof. By assumption of non-tangency, df : f ∗(N∗F)→ ΩW is nonzero.

The result then follows since N∗FW is the saturation of the image of f ∗(N∗F) in

ΩW , i.e., on the smooth locus of W , Wsm, we have a nonzero map of line bundles

f ∗N∗F → OWsm([N∗FW ]).
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Remark 1. If W is not smooth, then N∗FW may not be Cartier, however [N∗FW ]−Θ

is Cartier.

Lemma 2.1.2. We have the following equivalence of Weil divisors: KX = KF +

[N∗F ]

Proof. Let U = X − (sing(X) ∪ sing(F)), note that the singularities of X and F
are in codimension 2. On U we actually have the following equality of line bundles,

O(KX) = O(KF)⊗N∗F , which in turn gives the result over X.

2.1.2 Foliated Pairs and Foliation singularities

Frequently in birational geometry it is useful to consider pairs (X,∆) where X

is a normal variety, and ∆ is a Q-Weil divisor such that KX + ∆ is Q-Cartier. By

analogy we define

Definition 8. A foliated pair (F ,∆) is a pair of a foliation and a Q-Weil (R-Weil)

divisor such that KF + ∆ is Q-Cartier (R-Cartier).

Foliated pairs show up in [?] and [McQ] where ∆ is assumed to have no com-

ponents which are invariant under the foliation and the coefficients of ∆ lie in the

set {n−1
n
|n = 1, 2, ...} ∪ {1}. We make no such requirements on ∆, but we will see

that these restrictions can be phrased in terms of restrictions on the singularities

of the pair (F ,∆). Note also that we are typically interested only in the cases

when ∆ ≥ 0, although it simplifies some computations to allow ∆ to have negative

coefficients.

Given any birational morphism π : X̃ → X, we get an induced foliation F̃ on

X̃. Thus, we can write, KF̃ + π−1
∗ ∆ = π∗(KF + ∆) +

∑
a(Ei,F ,∆)Ei,

Definition 9. We say that the foliation is terminal, canonical, log terminal, log

canonical if a(Ei,F ,∆) > 0, ≥ 0, > −ε(Ei), ≥ −ε(Ei), respectively, where

ε(D) = 0 if D is invariant and 1 otherwise and where π varies across all bira-

tional morphisms.

If (F ,∆) is log terminal and b∆c = 0 we say that (F ,∆) is klt.
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Notice that these notions are well defined, i.e., ε(E) and a(E,F ,∆) are inde-

pendent of π.

Observe that in the case where F = TX no exceptional divisor is invariant, i.e.,

ε(E) = 1, and so this definition recovers the usual definitions of (log) terminal,

(log) canonical.

While (log) terminal and (log) canonical are natural definitions from the per-

spective of birational geometry, a priori it is unclear what the singularities them-

selves “look like”. However, in the case of terminal foliation singularities on sur-

faces we have the following neat characterization due to [McQ08, Corollary I.2.2.]

Proposition 2.1.3. Let (X,F , 0) be the germ of a terminal foliation singularity

on a surface. Then there exists a smooth foliation on a smooth surface (Y,G) and

a cyclic quotient Y → X such that F is the quotient of G by this action.

We also make note of the following easy fact:

Proposition 2.1.4. Let π : (Y,G) → (X,F) be a birational morphism. Write

π∗(KF + ∆) = KG + Γ. Then a(E,F ,∆) = a(E,G,Γ) for all E.

Remark 2. Observe that if any subvariety of supp(∆) is foliation invariant, then

(F ,∆) is not log canonical. This suggests that one could think of invariant varieties

as being log canonical centres for the foliation.

We will also make use of the class of simple foliation singularities:

Definition 10. We say that p ∈ X with X smooth is a simple singularity for F
provided in formal coordinates around p we can write the defining 1-form for F in

one of the following two forms, where 1 ≤ r ≤ n:

(i) There are λi ∈ C∗ such that

ω = (x1...xr)(
r∑
i=1

λi
dxi
xi

)

and if
∑
aiλi = 0 for some non-negative integers ai then ai = 0 for all i.
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(ii) There is an integer k ≤ r such that

ω = (x1...xr)(
k∑
i=1

pi
dxi
xi

+ ψ(xp11 ...x
pk
k )

r∑
i=2

λi
dxi
xi

)

where pi are positive integers, without a common factor, ψ(s) is a series which is

not a unit, and λi ∈ C and if
∑
aiλi = 0 for some non-negative integers ai then

ai = 0 for all i.

We say the integer r is the dimension-type of the singularity.

Remark 3. A general hyperplane section of a simple singularity is again a simple

singularity.

By Cano, [Can04], every foliation on a smooth threefold admits a resolution by

blow ups centred in the singular locus of the foliation such that the transformed

foliation has only simple singularities.

Lemma 2.1.5. Let X be smooth, and F a co-rank 1 foliation on X. Let x ∈ X
be a smooth point of F . Then F is canonical at x.

This is proven in [AD13], we include a proof for completeness. Observe that this

is perhaps not obvious since even blowing up along smooth centres can transform

a smooth foliation into a non-smooth one.

Proof. Let F be generated at x by n − 1 commuting vector fields ∂1, ..., ∂n−1.

Suppose for contradiction that x is not canonical. Then we can find some discrete

valuation ring R in K(X) such that OX,x ↪→ R and ∂1 ∧ ... ∧ ∂n−1 = πdΘ where

Θ ∈
∧n−1 TR and π is a generator of the maximal ideal of R.

Thus, for any f1, ..., fn−1 ∈ OX,x we have

∂1 ∧ ... ∧ ∂n−1(df1 ∧ ... ∧ dfn−1) ∈ mR ∩ OX,x ⊂ mX,x

However, by assumption of smoothness, there exists x1, ..., xn−1 all distinct with

∂i(dxi) a unit, and hence ∂1 ∧ ... ∧ ∂n−1(dx1 ∧ ... ∧ dxn−1) is a unit

Canonical singularities in codimension 2 have been described in [LPT, Propo-

sition 3.4], in particular, they are simple at their generic points.
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Lemma 2.1.6. Suppose F has simple singularities. Any blow up along a strata

of sing(F) has discrepancy 0. Furthermore, any blow up of a point of sing(F) has

discrepancy at least 0.

Proof. Working in local coordinates, let Z = {x1 = ... = xk = 0} be a codimension

k strata. Let ω be a defining 1-form around Z, then write ω = (x1...xk)
∑k

i=1
dxi
xi

+

h.o.t..

Pulling back ω along the blow up of Z gives a 1-form which vanishes to order

k − 1 on the exceptional divisor, and the first claim follows. The second claim

follows by an identical computation.

Corollary 2.1.7. Simple singularities are canonical.

Proof. For divisors E whose centres are generically contained in the smooth locus,

by our above lemma a(E,F) ≥ 0.

For divisors centred over the singular locus, notice that the blow up of a simple

singularity along some point in the singular locus preserves the property of being

a simple singularity we are done by induction.

The converse of this statement is false:

Example 7. Consider the germ of the foliation (0 ∈ X,F) given by the degener-

ation of smooth surfaces to the cone over an elliptic curve. Consider the blow up

π at the point 0 with exceptional divisor E and let F ′ be the transformed foliation.

Observe that F ′ has simple singularities, and that E is invariant.

Write KF ′ = π∗KF + aE.

Denote by L the closure of a leaf in X passing through 0, and L′ its strict

transform. KF |L = KL, KF ′ |L′ = KL′ + E|L′ and KL′ = π∗KL − E|L′.
From this we see that KL′ + E|L′ = π∗KL + aE|L′ and so a = 0, hence (F , 0)

is canonical. However, (F , 0) is not simple since simple singularities are never

isolated.

We will need to define one final type of foliation singularity:

Definition 11. Given a foliated pair (X,F) we say that F has non-dicritical

singularities if for any sequence of blow ups π : (X ′,F ′)→ (X,F) and any q ∈ X
we have π−1(q) is tangent to the foliation.
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Remark 4. Observe that this implies that if W is F invariant, then π−1(W ) is

F ′ invariant.

Definition 12. Given a germ (X, 0) with a foliation F such that 0 is a singular

point for F we call a (formal) hypersurface germ (S, 0) a (formal) separatrix if it

is invariant under F .

Note that away from the singular locus of F a separatrix is in fact a leaf. Fur-

thermore being non-dicritical implies that there are only finitely many separatrices

through a singular point.

Example 8. Let λ ∈ R. Consider the foliation Fλ on C2 generated by x∂x+λy∂y.

For λ ∈ Q≥0 we can see that Fλ is dicritical, and otheriwse is non-dicrtical.

Indeed, more generally on smooth surfaces dicriticality is equivalent to having

infinitely many separatrices passing through a singular point. In higher dimensions

this characterization is false since a dicritical singularity may fail to have any

separatrices. However if we consider the set of curves γt tangent to the foliation

and passing through the singularity non-dicriticality is equivalent to
⋃
t γt being

contained in a germ of a proper closed analytic subset.

Example 9. Simple singularities are non-dicritical.

Even for simple foliation singularities it is possible that there are separatrices

which do not converge. However, as the following definition/result of [CC92] shows

there is always at least 1 convergent separatrix along a simple foliation singularity

of codimension 2.

Definition 13. For a simple singularity of type (i), all separatrices are convergent.

For a simple singularity of type (ii), around a general point of the singularity

we can write ω = pydx + qxdy + xψ(xpyq)λdy. x = 0 is a convergent separatrix,

called the strong separatrix.

2.2 Foliated MMP for surfaces

McQuillan in [McQ08] proves the existence of a foliated MMP, namely:



18

Theorem 2.2.1. Let X be a smooth surface and F a foliation with canonical

foliation singularities. Then, there is an MMP starting with X, namely a sequence

of contractions of curves π : X → Y and a foliation G on Y , birationally equivalent

to F such that either KG is nef, or it is a P1-bundle over a curve. Furthermore,

Y has rational singularities, and π can be realized as a contraction of invariant

curves C with intersect the canonical divisor of the foliation negatively.

Observe that we can make the following modifications, implicit in [McQ08]:

Corollary 2.2.2. Let f : X → U be a birational morphism of surfaces, and let

FX ,FU be foliations birationally equivalent by f . Suppose X is smooth and FX has

canonical singularities. Let ∆ be a divisor not containing any fibres of f . Then

we can run the relative MMP, i.e., there is a birational map g : X → Y and

h : Y → U and a foliation G on Y such that KG + g∗∆ is h−nef.

Proof. First, assume that ∆ = 0.

By the cone theorem for surface foliations we see that if C is a KX-negative

curve contracted by f that C is an invariant rational curve, and following [McQ08]

we can contract it to a point, notice that the contracted space still maps down to

U . Continuing inductively, and letting (Y,G) be the output of this MMP we see

that KG is nef over U .

If ∆ ≥ 0 and if C is contracted by f , then ∆ ·C ≥ 0, and so (KF + ∆) ·C < 0

implies that KF · C < 0. Thus the KF + ∆-MMP can be realized as some subset

of contractions in the KF -MMP.

2.3 Some adjunction results for foliations

We begin with a simple lemma:

Lemma 2.3.1. Let f : Y → X be a morphism of normal varieties. Let F be

a foliation on X. Suppose that f(Y ) is not tangent to F and that f(Y ) is not

contained in sing(X). Let FY be the pulled back foliation. Suppose KX + ∆X is

R-Cartier and either

(i) N∗F is a line bundle (e.g. X is smooth) or,
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(ii) we have a morphism f ∗Ω
[1]
X → Ω

[1]
Y between sheaves of reflexive differentials,

and (N∗F)∗∗ is a line bundle. Here Ω
[1]
X means (Ω1

X)∗∗.

Then

f ∗(KF + ∆X)−KFY = f ∗(KX + ∆X)−KY + Θ

where Θ ≥ 0.

Proof. Write KF = KX − [N∗F ], and KFY = KY − [N∗FY ].

In case (i) as noted earlier, f ∗N∗F = O(N∗FY −Θ) where Θ is a effective.

In case (ii) we have a morphism f ∗((N∗F)∗∗)→ Ω
[1]
Y and (N∗FY )∗∗ is the saturation

of the image of this morphism. On the smooth locus of Y this gives a morphsim

f ∗((N∗F)∗∗) → N∗FY , and hence an equality of divisors f ∗[N∗F ] = [N∗FY ] − Θ where

Θ ≥ 0.

In either case, the result follows.

Remark 5. Observe that if X is not klt the morphism f ∗Ω
[1]
X → Ω

[1]
Y does not

always exist.

Of particular interest are the cases where f is a closed immersion, f is a blow

up or f is a fibration. In these cases, we get

Corollary 2.3.2. Let X be smooth.

(1) Let ν : Dν → D ⊂ X be the normalization of a divisor transverse to the

foliation, then ν∗(KF +D) = KFD + Θ. Furthermore, ν(Θ) is either contained in

sing(D) or is tangent to F .

(2) The foliation discrepancy is less than or equal to the usual discrepancy.

(3) If the fibres of f : Y → X are all reduced, then f ∗KF−KFY = f ∗KX−KY .

Proof. The only thing that doesn’t follow immediately from the previous lemma

is the claim that if B is a component of Θ not contained in ν−1(sing(D)) then it is

tangent to the foliation. However, observe that if ω is a 1-form locally generating

N∗F , then, the pull back of ω to B vanishes. This implies that B is tangent to the

foliation.

Remark 6. In case (1), if D is smooth then Θ is supported on the tangency locus

of D and F .
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The following is a more general version of foliation adjunction that we will

need. The proof mirrors the proof of the general adjunction formula in the case of

varieties. We follow the presentation in [Fuj11].

Proposition 2.3.3. Let F be a co-rank 1 foliation, let S be a prime divisor trans-

verse to the foliation, with normalization Sν, and let FSν the foliation restricted

to Sν. Then, if KF + ∆ + S is an R-Cartier divisor,

ν∗(KF + ∆ + S) = KFSν + ∆Sν

where ∆Sν ≥ 0.

Proof. The case where X and S are smooth is proven above. So, assume that X

is normal and KF + ∆ + S is R-Cartier.

Let g : Y → X be a resolution such that Y and the strict transform of S, call

it SY , are smooth. Write

KFY + SY + ΓY = g∗(KF + ∆ + S)

Thus, (KFY + SY + ΓY )|SY = KFSY + ΓY |SY + Θ where Θ is effective. Write

ΓY |SY = ΓSY .

Let ν : Sν → S be the normalization of S. We have a factorization SY
f−→ Sν

ν−→
S. Let ∆Sν = f∗(ΓSY + Θ). Then KFSν + ∆Sν = ν∗(KF + ∆ + S).

What remains to show is that ∆Sν is effective. Since Θ ≥ 0, it suffices to show

that f∗ΓSY is effective.

By taking hyperplane cuts of X, we may assume that X is a surface, F is a

foliation by curves, and S is a curve transverse to the foliation. We can run the

foliated log MMP over X with respect to KFY + SY .

Replacing FY , SY by the output of the MMP we get that KFY + SY is f -nef.

Note that each step of the relative MMP will contract a curve with 0 > KFY ·E ≥
−1, and so we see that SY is smooth since if E meets SY we would have that

(KFY +SY ) ·E ≥ 0 and so E is not contracted. Thus, we still have a factorization

SY → Sν → S.
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We have that ΓY = −(KFY + SY ) + f ∗(KF + ∆ + S) is f -anti nef. By the

negativity lemma, ΓY is effective, hence its restriction and pushforward to Sν is

effective.

Definition 14. We will refer to ∆Sν as the foliated different.

Corollary 2.3.4. Notation as above. Let D be a prime component of ∆Sν , then

either D is supported on ν−1∆, ν−1(sing(S)∪sing(X)) or is tangent to the foliation.

Proof. As above, ∆S = f∗(ΓSY + Θ) where Θ is tangent to the foliation and where

ΓSY is supported on the strict transform of ∆ and on exceptional divisors centred

above the singular loci S and X. Since ν(f(ΓSY )) ⊂ ∆ ∪ sing(S) ∪ sing(X), we

have our result.

We also have a foliated Riemann-Hurwitz formula:

Proposition 2.3.5. Let π : Y → X be a surjective, finite morphism of normal

varieties. Let F be a co-rank 1 foliation on X, with KF Q-Cartier. Then

KFY = π∗KF +
∑

ε(D)(rD − 1)D

where the sum is over divisors with ramification index rD,

Proof. First, observe that π−1(sing(X)) is of codimension at least 2 in Y , thus, to

prove our result, it suffices to restrict to π : Y − π−1(sing(X)) → X − sing(X),

and thus we may assume that X is smooth.

Pick a neighborhood of a general point of the branch divisor such that F is

smooth, and the branch divisor consists of a single, smooth component. Let F be

locally defined by dz. If the branch locus is not invariant, then we see that π∗dz

is a non-vanishing holomorphic form.

If the branch locus is invariant we have π∗dz = kwk−1dw where k is the ramifi-

cation index. In this case the zero divisor π∗dz agrees with the ramification divisor.

Notice that the ramification divisor is also foliation invariant.

Thus N∗F = π∗N∗F ⊗O(R′) where R′ is the invariant part of the usual ramifica-

tion divisor. Using KX = KF + N∗F and the usual Riemann-Hurwitz, we get our

result.
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Remark 7. If the ramification of π : (Y,G) → (X,F) is foliation invariant then

KG = π∗KF .

Later on we will need to compute the discrepancies of pairs (F ,∆). The fol-

lowing two results will be useful in this regard.

Corollary 2.3.6. Suppose X is klt and Q-factorial. Let ∆ be an effective divisor.

Let π : Y → X be a birational morphism which extracts divisors of usual discrep-

ancy with respect to (X,∆) ≤ −1. Then if π extracts E, the discrepancy of E with

respect to (F ,∆) is ≤ −ε(E) with strict inequality if ε(E) = 0. In particular, π

only extracts divisors of foliation discrepancy < 0.

Remark 8. This result can be phrased as saying that the non-klt places of (X,∆)

are non-klt places of (F ,∆). Observe that the converse of this statement is false

since smooth varieties can admit foliations with log canonical singularities.

Proof. The statement can be checked locally on X, so consider the following dia-

gram:

Y ′ Y

X ′ X

g

π′ π

f

Here f : X ′ → X is the index 1 cover associated to N∗F , note f is etale in codi-

mension 2. Denote by F ′ the foliation on X ′.

Y ′ is the normalization of X ′ ×X Y . Observe that g is finite.

Next, note f ∗KX = KX′ and f ∗KF = KF ′ . Write ∆′ = f ∗∆

Let E be a divisor contracted by π and let E ′ a divisor contracted by π′ such

that g(E ′) = E, let r be the ramification index.

Next, write

KY + π−1
∗ ∆ = π∗(KX + ∆) + aE +D1

KFY + π−1
∗ ∆ = π∗(KF + ∆) + bE +D2

KY ′ + π′−1
∗ ∆′ = π′∗(KX′ + ∆′) + a′E ′ +D3

KFY ′ + π′−1
∗ ∆′ = π′∗(KF ′ + ∆′) + b′E ′ +D4
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where Di are divisors not involving E,E ′.

We have (N∗F ′)
∗∗ is a line bundle sub-sheaf of Ω

[1]
X′ . Next, by [GKKP11, Theorem

4.3] we have that reflexive 1-forms on X ′ pull back to reflexive 1-forms on Y ′ since

X ′ is klt, which gives a morphism dπ′ : π′[∗](N∗F ′)
∗∗ → Ω

[1]
Y ′ . (N∗FY ′)∗∗ is the

saturation of the image of dπ′, which implies that the foliated discrepancy is less

than the usual discrepancy, cf. Lemma 2.3.1, so b′ ≤ a′.

Next, by Riemann-Hurwitz,

KY ′ + π′−1
∗ ∆′ = g∗(KY + π−1

∗ ∆) + (r − 1)E ′ + F =

g∗(π∗(KX + ∆) + aE +D1) + (r − 1)E ′ + F

where F is a divisor not involving E ′. Pulling back the other way around the

diagram shows that

a′ = ra+ (r − 1).

Likewise, foliated Riemann-Hurwitz tells us that

KFY ′ + π′−1
∗ ∆′ = g∗(KFY + π−1

∗ ) + ε(r − 1)E ′ +G =

g∗(π∗(KF + ∆) + bE +D2) + ε(r − 1)E ′ +G

where ε = 0 if E ′ is invariant and = 1 otherwie. Again, pulling back the other way

around the diagram gives

b′ = rb+ ε(E)(r − 1).

Since a ≤ −1, we get that a′ ≤ −1. And so rb+ ε(E)(r − 1) = b′ ≤ a′ ≤ −1.

This gives that b ≤ −ε(E)(r−1)−1
r

≤ −ε(E) with strict inequality if ε(E) = 0.

Corollary 2.3.7. Let f : (X ′,F ′)→ (X,F) be finite. Write KF ′ + ∆′ = f ∗(KF +

∆). Suppose (F ,∆) is terminal (canonical) then (F ′,∆′) is terminal (canonical).

Proof. Let π : Y → X be birational. Consider the following diagram:

Y ′ Y

X ′ X

g

π′ π

f
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Let E ⊂ Y and let E ′ ⊂ Y ′ map to E. Exactly as above if a is the discrepancy

of E and if a′ is the discrepancy of E ′ we have that a′ = ra+ ε(E)(r− 1). If a > 0

(a ≥ 0) then a′ > 0 (a′ ≥ 0).

This next result seems to be standard in the literature, but for lack of a good

reference we include it and a proof here.

Lemma 2.3.8. Let F be a codimension 1 foliation on a X. Let π : X ′ → X be

a birational morphism. Suppose Z is a centre transverse to the foliation and Z is

generically contained in the smooth locus of X. Then the foliation discrepancy of

a divisor E centred over Z is equal to the usual discrepancy.

Furthermore, E is transverse to the foliation, and the Pr-fibration structure of

E over Z is tangent to the foliation restricted to E.

Proof. Perhaps passing to a resolution X ′′ → X ′, observe that any such exceptional

divisor can be reached by a sequence of blow ups along centres transverse to the

foliation. Thus by induction we may assume that π is a blow up with centre Z,

where Z is transverse to the foliation.

Write (analytic locally) Z = {x1 = ... = xs = 0} and let one patch of our blow

up π be given by x1 = y1, x2 = y1y2, ..., xs = y1ys, xs+1 = ys+1, ..., xn = yn

Suppose that F is locally determined by

ω = f(xs+1, ..., xn)dxn + terms featuring x1, ..., xs

An easy computation shows that ordy1(π
∗ω) = 0 where y1 is the equation of the

exceptional divisor. Thus, π∗N∗F = N∗F ′ and so by 2.3.1 the foliation disrepancy is

equal to the usual discrepancy.

To see our final claim, the exceptional divisor, E is given by y1 = 0, and the

foliation restricted to E is given by ωE = f(ys+1, ...yn)dyn 6= 0, which vanishes

when pulled back (as a 1-form) to the fibres of E → Z. In particular we see that

E is transverse to the foliation.
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2.4 A foliated bend and break result

We recall the following theorem due to [Miy87], [SB92, Theorem 9.0.2] or

[BM01]

Theorem 2.4.1. Let (X,F) be a normal foliated variety of dimension n, and

let H1, ..., Hn−1 be ample divisors. Let C be a general intersection of elements

Di ∈| miHi | where mi � 0. Suppose that C · KF < 0 Then if A is an ample

divisor through a general point of C there is a rationl curve Σ with

A · Σ ≤ 2n
A · C
−KF · C

.

Strictly speaking the proof in [SB92] does not exactly show that the curves are

tangent to F , however a slight modification to the argument gives this conclusion.

We explain it here:

Lemma 2.4.2. Let E be a semi-stable vector bundle on a smooth curve C. Suppose

that det(E) is ample. Then E is ample.

Proof. It suffices to show that every quotient E → Q → 0 has deg(det(Q)) > 0.

So suppose that Q does not have positive degree, and let K be the kernel of the

quotient. Then deg(det(K)) ≥ deg(det(E)) and rank(K) < rank(E). In particular

K is a destabilizing subbundle of E, a contradiction.

Proof. If F|C is semi-stable, then it is ample and we apply [BM01]. In fact here

we get the better bound on the degree of 2rank(F) A·C
−KF ·C

.

Otherwise, there exists a maximal destabilizing subsheaf 0→ F ′ → F , recalling

that a torsion free coherent sheaf is semi-stable if and only if its restriction to

a general complete intersection variety is semi-stable (in our case C). Notice

that F ′ is closed under Lie bracket because F is closed under lie bracket, and

Hom(
∧2F ′,F/F ′) = 0.

We have that KF ′ ·C < 0, and in fact since F|C is not ample KF ′ ·C ≤ KF ·C.

Thus, we are done by induction on the rank of F .

We make a minor modification of a lemma due to [KMM94].
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Corollary 2.4.3 (Bend and Break). Let X be a normal projective variety of di-

mension n. Let F be a foliation of rank r on X, and ∆ ≥ 0. Let M be any nef

divisor. Suppose that there are nef R-divisors D1, ..., Dn such that

(1) D1 ·D2 · ... ·Dn = 0

(2) −(KF + ∆) ·D2 · ... ·Dn > 0

Then, through a general point of X there is a rational curve Σ with D1 ·Σ = 0

and

M · Σ ≤ 2n
M ·D2 · ... ·Dn

−KF ·D2 · ... ·Dn

and Σ is tangent to F

Proof. We can pick ample Q-divisors H2, ...Hn sufficiently close to D2, ..., Dn so

that

−KF ·H2 · ... ·Hn > ∆ ·H2 · ... ·Hn > 0

Pick mi � 0 such that miHi is very ample, and let C be an intersection of general

elements in | miHi |. Then, we may take C to be contained in the smooth locus

of both X and F .

Then, apply the above theorem to give rational curves Σk tangent to the folia-

tion with

(kD1 +H) · Σk ≤ 2n
(kD1 +H) ·m2H2 · ... ·mnHn

−KF ·m2H2 · ... ·mnHn

= 2n
(kD1 +H) ·H2 · ... ·Hn

−KF ·H2 · ... ·Hn

As Hi approaches Di, the left hand side of the inequality approaches a bounded

constant. Thus, as k varies, Σk = Σ belongs to a bounded family, so for k � 0 we

may take Σ to be fixed. Letting H approach M and letting k go to infinity gives

our result.

Remark 9. Observe that this result is totally independent of either the rank of the

foliation or the dimension of the ambient variety. We recover the usual form of

bend and break when we take the rank of the foliation r = dim(X).
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2.5 The cone theorem for surfaces

We will need the following minor variant of the foliated cone theorem, which

is implicit in the existing literature. In proving it we use the following definition

and result from convex geometry:

Definition 15. Let K be a convex cone containing no lines. A ray R of K is

called exposed if there is a hyperplane meeting K exactly along R.

Lemma 2.5.1. If K is a closed convex cone containing no lines, then K is the

closure of the subcone generated by the exposed rays.

Proof. See [Roc70, Corollary 18.7.1].

Theorem 2.5.2. Let (S,F ,∆ =
∑
aiDi) be a triple of a normal surface, a fo-

liation, and an effective divisor. Assume that sing(F) ∩ sing(S) consists of non-

dicritical foliation singularities. Then

NE(X) = NE(X)KF+∆≥0 + Z−∞ +
∑

R+[Li]

where Li are invariant curves, and Z−∞ is spanned by those Di in supp(∆) with

ai > ε(Di). Furthermore, if Li is not contained in ∆ and is disjoint from the

singularities of X, then Li ∼= P1, and KF · Li ≥ −2. In particular, if H is ample,

there are only finitely many curves with extremal rays R with (KF+∆+H) ·R < 0

Proof. Let W denote the closure of the right hand side of the desired equality.

Assume that W is strictly smaller than NE(X). Then, by Lemma 5.1, if H is

a sufficiently general ample divisor, if we choose t so that HR = KF + ∆ + tH is

nef, it is zero precisely on one exposed extremal ray R, not contained in W .

We argue depending on ν(HR). If ν(HR) ≤ 1, then, as in our foliated bend and

break lemma, we set Di = HR for i ≤ ν(HR) + 1 and Di = H otherwise. Then,

D1 ·D2 = 0 and (KF + ∆) ·D2 = −tH ·D2 < 0, thus we may apply our foliated

bend and break lemma.

Thus, through a general point of S there is a rational curve Σ with D1 · Σ =

HR · Σ = 0, and bounded degree. Thus, the extremal ray is spanned by the class

[Σ].
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If ν(HR) = 2, then, writing HR = A + E where A is ample and E is effective

we see that E ·R < 0, and hence R is spanned by some component of E, call it C.

Write E = rC +E ′. If ∆ is a boundary along C, we see that there exists some

α ≥ 0 such that KF + ∆ + αE = KF + ∆′ + C where ∆′ ≥ 0. However, we have

(KF + ∆′+C) ·C < 0 which is a contradiction of adjunction if C is not invariant.

Thus C must be invariant and so R is spanned by an invariant curve, C.

If C is not contained in ∆ and disjoint from sing(X), then KF ·C ≥ 2g(C)− 2,

which if C is KF -negative implies that C ∼= P1.

Thus, we see that W and NE(X) coincide.

Standard arguments then apply to show that the right hand side of our equality

is already closed, and that the extremal rays are locally discrete.

Remark 10. Observe that Z−∞ is in fact the contribution to the cone coming from

the non-log canonical locus of (X,∆).

2.6 A foliation sub-adjunction result

[Kaw98] proves the following sub-adjunction result:

Theorem 2.6.1. Let (X,D) be klt for some D. Suppose that W is a center of log

canonical singularities for (X,∆) and let ν : W ν → W be its normalization. Then

if H is ample, there exists an effective divisor ∆W ν such that ν∗(KX + ∆ +H) =

KW ν + ∆W ν .

In this section we prove a foliated version of this sub-adjunction. We will need

the following result due to Hacon on the existence of dlt models, see for example

[Fuj11, Theorem 10.4]:

Theorem 2.6.2. Let X be a quasi projective variety, and B a boundary such

that KX + B is R-Cartier. One can construct a projective birational morphism

f : Y → X where Y is normal and Q-factorial. Furthermore, f only extracts

divisors of discrepancy ≤ −1, and if we set BY = f−1
∗ B +

∑
f−exceptionalE, then

(Y,BY ) is dlt.

We briefly recall the definition of dlt and some related results:
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Definition 16. A pair (X,∆ =
∑
ai∆i) is called dlt (divisorial log terminal) if

0 ≤ ai ≤ 1 and there exists a log resolution π : (Y,Γ) → (X,∆) such that π only

extracts divisors of discrepancy > −1.

Example 10. (C2, H1 + H2) where H1, H2 are two lines meeting at the origin is

dlt, however (C2, D) where D is a nodal cubic is not dlt. Thus being dlt is not a

local analytic property.

Lemma 2.6.3. Let (X,∆) be dlt and let S1, ..., Sk be the irreducible components

of b∆c.
(1) (X,∆) is log canonical.

(2) Si is normal and if we write (KX + ∆)|Si = KSi + ∆i then (Si,∆i) is dlt.

(3) If b∆c = 0 then (X,∆) is klt

Proof. Standard, see for example [KM98].

Notice that if (X,B) is log canonical along W , then writing KY +B′ = f ∗(KX+

B) we have that (Y,B′) is dlt above the generic point of W .

We will also need the following canonical bundle formula due to [Kaw98], the

formulation here is found in [Kol07, Theorem 8.5.1].

Definition 17. Let (F,R) be a sub log canonical pair (i.e., R not necessarily

effective) with KF + R = 0. Write R = R+ − R− where R+, R− ≥ 0 and have no

components in common. Then we define

p+
g = h0(F,O(dR−e)).

Theorem 2.6.4. Let f : X → Y be a fibration of normal varieties with general

fibre F . Suppose that there is a divisor R such that

(1) KX +R = f ∗D for some Q-Cartier divisor on Y .

(2) (X,R) is log canonical over the generic point of Y .

(3) p+
g (F,R|F ) = 1.

Then one can write

KX +R = f ∗(KY + J +BR)
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where

(i) J is the pushforward of a nef divisor on some model of Y , and depends only

on Y and (F,R|F ).

(ii) BR is a Q-divisor such that for Bi a divisor on Y if λ is supremum of {t :

KX + R + tf ∗Bi is log canoncical over the generic point of Bi} (the log canonical

threshold) then the coefficient of Bi in BR is 1− λ.

Remark 11. In [Kol07] (2) is phrased as “slc fibres in codimension 1 over an

open subset of Y ”. This condition is implied by our condition (2).

Definition 18. Given a fibration f : (X,F) → (Y,G) where F = f ∗G define the

ramification divisor of f as follows: for any divisor Q on Y write f ∗Q =
∑
aiPi.

Let the ramification be the sum
∑

(ai−1)Pi as Q runs over all G invariant divisors

on Y .

Definition 19. Given a pair (X,∆) or (F ,∆) we say that W is a log canonical

centre of (X/F ,∆) if (X/F ,∆) is log canonical above the generic point of W , and

there is a divisor D of discrepancy = −ε(D)1 dominating W .

Lemma 2.6.5. Let f : (X,F) → (Y,G) be a morphism with X normal and Y

smooth. Suppose that f has connected fibres, and F = f ∗G. Then (KF − f ∗KG) =

(KX − f ∗KY )−R where R is the ramification divisor.

Proof. Since Y is smooth, if ω is a 1-form which determines G, then df(ω) is a

1-form which determines F and has zero divisor = R.

Theorem 2.6.6. Let (X,D) be klt for some D ≥ 0 and Q-factorial. Suppose that

W is a log canonical centre of (F ,∆). Furthermore, suppose that W is transverse

to the foliation and generically contained in the smooth loci of X and G. Let

ν : W ν → W be the normalization and G the induced foliation on W ν. Let H be

an ample divisor. Then ν∗(KF + ∆ +H) = KG + ∆W ν where ∆W ν ≥ 0.

Remark 12. Observe that when X is smooth, this result follows immediately from

Kawamata’s subadjunction.
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Proof. First, notice that since W is transverse to the foliation and generically

contained in the smooth loci of X and F , that if E is a divisor such that the

centre of E on X is W we have that a(E,F ,∆) = a(E,X,∆), and therefore W is

a log canonical centre of (X,∆).

Let f : (Y,H)→ (X,F) be a dlt modification and write f ∗(KX +∆) = KY +Γ′

and f ∗(KF + ∆) = KH + Γ. Since f only extracts divisors of usual discrepancy

≤ −1, by Corollary 2.3.6 it only extracts divisors of foliation discrepancy ≤ 0, and

so Γ ≥ 0. Furthermore, we know that Γ,Γ′ agree on divisors dominating W .

Let E → W be a divisor dominating W which has coefficient 1 in Γ,Γ′. E is

transverse to H and if we write HE for the foliation restricted to E we have that

HE is the pullback of the foliation on W ν . Let σ : E → W ν be induced map.

Write (KX +Γ′)|E = KE+Θ′ and (KH+Γ)|E = KHE +Θ. Note that Θ,Θ′ ≥ 0.

By construction (E,Θ′) is dlt above the generic point of W ν (and in particular is

log canonical above the generic point of W ν).

Let E
α−→ U

β−→ W ν be the Stein factorization of E → W ν . Let µ : U ′ → U be

a resolution of singularities of U , let µ′ : E ′ → E be a resolution of singularities

of the main component of E ×U U ′, and let τ : E ′ → U ′ be the induced map.

Let GU ′ ,GU be the pulled back foliations on U ′, U respectively and let HE′ be the

pulled back foliation on E ′.

Our picture is as follows:

(E ′,HE′) (E,HE)

(U ′,GU ′) (U,GU) (W ν ,G)

µ′

τ β
σ

µ α

Next, let KHE′ + Ψ = µ′∗(KHE + Θ). We have KHE′ + Ψ = τ ∗µ∗β∗M = τ ∗N

where N = µ∗β∗M , and µ′∗Ψ = Θ.

Write KE′ + Ψ′ = µ∗E(KE + Θ′) and let D be a divisor on E ′ dominating W .

Then the coefficient of D in Ψ is the same as the coefficient of D in Ψ′. This follows

by realizing µ′ : E ′ → E as an embedded resolution and applying adjunction:

Let g : (Z,HZ)→ (Y,H) be a log resolution and write KZ + Γ′Z = g∗(KY + Γ′)

and KHZ +ΓZ = g∗(KH+Γ). Then (KZ +Γ′Z)|E′ = KE′+Ψ′ and (KHZ +ΓZ)|E′ =

KHE′+Ψ. Again, ΓZ ,Γ
′
Z agree on divisors dominating W , and since D is transverse
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to the foliation, the foliated different along D is just the coefficient of D in ΓZ |E′
which agrees with the usual different, i.e., the coefficient of D in Γ′Z |E′ .

In particular, we see that (E ′,Ψ′) being log canonical above the generic point

of U ′ implies that (E ′,Ψ) is log canonical over the generic point of U ′.

By Lemma 2.6.5 we know

(KHE′ − τ
∗KGU′ ) = (KE′ − τ ∗KU ′)−R

where R ≥ 0. Thus, if we write N = KGU′ + N ′ we have that KHE′ + Ψ =

τ ∗(KGU′ +N ′) and so

KE′ + Ψ−R = τ ∗(KU +N ′).

Notice that no component of R dominates W , and so (E ′,Ψ−R) is log canonical

above the generic point of U ′.

Let F ′ = τ−1(x) be a general fibre and let µF : F ′ → F = α−1(µ(x)) be

the restricted map. For general x this will be birational with exceptional locus

exc(µ′) ∩ F ′.
If we write Ψ = Ψ+ − Ψ− where Ψ+,Ψ− ≥ 0 and have no components in

common, then we see that Ψ− is µ′ exceptional, and so Ψ−|F ′ is µF -exceptional.

Choosing F ′ to be disjoint from −R we see that

p+
g (F ′, (Ψ−R)|F ′) = h0(F ′,O(dΨ−e)) = h0(F, µF∗O(dΨ−e)) = 1.

Thus we can apply the canonical bundle formula to write N ′ = J+BΨ−R where

J is the pushforward of a nef divisor and so µ∗β∗M = KGU′ + J +BΨ−R. We now

show that µ∗BΨ−R is effective.

Let B be a divisor on U ′ such that µ∗B 6= 0. Write τ ∗B =
∑
wjQj so that

R =
∑

(wj−1)Qj +R′ where Qj 6⊂ supp(R′). Since µ is an isomorphism along the

generic point of B and since µ′∗Ψ ≥ 0, if we write Ψ =
∑
ajQj + Ψ′ we see that if

µ′∗Qj 6= 0 then aj ≥ 0, and so aj ≥ 0 for some j.

Thus, the log canonical threshold of

KE′ + Ψ−R + tτ ∗B = KE′ +
∑

(aj + 1− wj + twj)Qj + Ψ′ +R′
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is ≤ 1, and so the coefficient of B in BΨ−R is non-negative and so µ∗BΨ−R ≥ 0.

Pushing forward along µ gives us that β∗M = KGU + µ∗J + B where B ≥ 0.

By foliated Riemann-Hurwitz we know that KGU = β∗KG + R̃ where R̃ ≥ 0, and

so β∗M = β∗KG + µ∗J +B′ where B′ ≥ 0.

Pushing forward by β and then dividing by deg(β) gives M = KG + J + B

where J is the pushforward of a nef divisor and B is effective.

If H is ample on X, then ν∗H is ample, and so µ∗J
′ + ν∗H is Q-equivalent to

an effective divisor, and our result follows.

We will only need the above result in the case where dim(X) = 3 and dim(W ) =

1. In this case G is just a foliation by points and so we have (KF + ∆) ·W ≥ 0.

In many ways it would be preferable to have a truly “foliated” proof of the above

result, i.e., without making reference to Kawamata’s canonical bundle formula. We

are able to do this in the case where dim(X) = 3 (which as mentioned suffices for

our purposes), but are unable to prove the result in the generality above. For the

interested reader we explain the proof here:

The argument up until the use of Kawamata’s canonical bundle formula is

exactly the same. We replace the use of that canonical bundle formula with the

following foliated version, whose proof makes no use of Kawamata’s result:

Proposition 2.6.7. Let π : (X,F)→ (Y,G) a fibration where π∗G = F . Suppose

that dim(X) = 2 and that we have a pair (F ,∆) with ∆ ≥ 0 such that

1) KF + ∆ = π∗M

2) (F ,∆) is log canonical above the generic point of Y .

Then M = J +B where

(i) J is nef and

(ii) The coefficient of Bi in B is ε(Bi)−λ where λ is the log canonical threshold

of KF + ∆ + tπ∗Bi.

Proof. Notice that since G is a foliation by points on Y ε(Bi) = 0.

Replacing ∆ by ∆− π∗B we may assume that B = 0. We still have that ∆ ≥ 0.

Suppose for sake contradiction that M is not nef.
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Then KF + ∆ is negative on some extremal ray R and we can apply the cone

theorem for foliations to deduce that R is spanned by some curve tangent to F or

contained in supp(b∆c).
(KF+∆)·C = 0 for any C tangent to the foliation, and so C must be contained

in a component of b∆c dominating Y . If we write ∆ = C+∆′ we see that foliation

adjunction tells us that that (KF + C + ∆′) · C ≥ 0. Thus M must be nef.

Remark 13. The formulation above is meant to suggest the generalization of this

result to the setting where X is not necessarily a surface and Y is not necessarily

a curve.

2.6.1 Some applications of foliation subadjunction

In this section we present a simple application of foliation subadjunction which

will nevertheless be very useful later on.

Lemma 2.6.8. Let X be a Q-factorial threefold and suppose X is klt. Let F be a

co-rank 1 foliation, and let C be a curve transverse to the foliation not contained

in sing(X) with KF ·C < 0. Let S be a reduced divisor such that S ·C < 0. Then

S is smooth at the generic point of C. In particular if ν∗(KF + S) = KFSν + Θ,

then C is not contained in supp(Θ).

Proof. Suppose the contrary holds. Perhaps replacing S by S + εH where ε is

sufficiently small and C ⊂ H, we may assume that S · C < 0, and that the log

canonical threshold of S along C is λ < 1, so C is a log canonical centre of (F , λS).

Notice that the foliated log canonical threshold along C is the same as the usual

log canonical threshold.

Since C is transverse to the foliation we have by Theorem 2.6.6 (KF + λS +

A) ·C ≥ 0 where A is any ample Q-divisor. However, this is a contradiction of the

negativity of KF and S along C.

Corollary 2.6.9. Let (X,F , S) be a triple of a Q-factorial threefold a co-rank 1

foliation, and a surface transverse to the foliation. Suppose that (X,D) is klt for

some D. Let R be an extremal ray of X such that KF and S are negative on R.
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Then R is spanned by the class of a curve C which is either tangent to the foliation,

or contained in sing(F) ∪ sing(X).

Proof. Let ν : Sν → S be the normalization of S Write ν∗(KF + S) = KFSν + ∆.

Since R · S < 0, there exists an extremal ray R′ in NE(S) such that ν∗R
′ = R

in NE(X).

By the cone theorem for surface foliations, R′ is spanned by a curve C and so

R is spanned by ν(C). Furthermore either C is contained in the support of ∆, or

R is spanned by a curve tangent to the foliation.

We know that ∆ is supported on ν−1(sing(S)∪sing(X)∪sing(F)) and on curves

invariant by the foliation. Suppose that ν(C) is transverse to the foliation. Then

C must be contained in ν−1(sing(S) ∪ sing(X)), however by the above lemma S

is smooth at the generic point of ν(C). So C is contained in ν−1(sing(X)) or is

tangent to the foliation, and the result follows.

2.7 On the convergence of separatrices and germs

of leaves

As noted it is a subtle question whether or not a separatrix is convergent on a

smooth variety, it is perhaps a bit more subtle in the case of a singular variety. The

goal of this section is to understand the convergence of separatrices of the foliation,

and in particular understand the convergence of separatrices along points of a curve

C tangent to the foliation.

Cano and Cerveau in [CC92] prove the following:

Theorem 2.7.1. Let (X,F , 0) be the germ of a 3-dimensional complex manifold

with a co-rank 1 foliation. Suppose that F has non-dicritical singularities. Let γ be

a curve tangent to the foliation and not contained in sing(F). Then γ is contained

in a unique convergent separatrix.

In what follows we adapt their techniques and ideas to work in the setting

where X is singular.
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We will use the following fact about simple foliation singularities found in

[CC92, Proposition II.5.5]:

Lemma 2.7.2. Let (X, 0) be a foliated germ with simple foliation singularities.

Let Qi → 0. Suppose that at each Qi there is a germ of a separatrix SQi such that

the SQi agree on overlaps. Then there is a convergent germ of a separatrix at 0

which agrees with with the SQi.

Lemma 2.7.3. Let X be smooth, F a foliation with simple singularities and E

a compact invariant divisor. Let γ be a germ of a curve tangent to F meeting E

but not contained in E. Then there exists a neighborhood U of E and a closed

F-invariant hypersurface S ⊂ U such that γ ⊂ S.

Proof. Without loss of generality we may assume that γ ∩ E = Q, a single point.

Furthermore, by passing to a resolution, π : X ′ → X, and letting E ′ = π−1E,

we may assume that each point of sing(F) ∩ E has at most 1 (formal) separatrix

not contained in exc(π).

Let W = sing(F ′) ∩ E ′, Let V be those components of W with exactly one

separatrix not contained in exc(π), let γ′ be the strict transform of γ and let V0

be the connected component of V containing γ′ ∩ E ′.
We let A be the locus of points P ∈ V0 such that

(a) there exists an open set P ∈ UP and separatrix P ∈ S ′P
(b) for every R ∈ E ′− V0 there exists an open set containing R that is disjoint

from S ′P .

This set is open, and by the above lemma, we see that it is closed, and therefore

is all of V0.

There exist finitely many Pi such that UPi cover V0. For all R ∈ E ′ − V0 there

exists an open WR disjoint from all the S ′Pi . The WR, UPi form an open cover of a

neighborhood of E ′, call it U . Let S ′ = ∪S ′Pi , noting that these separatrices agree

on overlaps.

Finally, there exists a V ⊂ X such that π−1(V ) ⊂ U . Since π is proper, by

the proper mapping theorem we have that S = π(S ′) ⊂ V is still an (invariant)

hypersurface.
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Corollary 2.7.4. Let C be a compact curve tangent to a foliation with non-

dicritical singularities on X such that C is not contained in sing(F) ∪ sing(X).

Then there is a germ of an analytic surface containing C, call it S, such that S is

tangent to the foliation.

Proof. If P ∈ C is disjoint from sing(F)∪sing(X), then there is a (unique) germ of

a leaf containing P and C. Thus, it suffices to construct around the points where

C meets the singular loci of X and F a germ of a separatrix containing C. Let Q

be one such point. Without loss of generality, we may assume that C is irreducible

near Q.

Perhaps replacing X by a germ around Q, we can find a resolution of singular-

ities of both X and the foliation, π : (X ′,F ′) → (X,F) such that X ′ is smooth,

F ′ has simple foliation singularities. Furthermore, we may assume that π−1(Q) is

an invariant divisor, call it E.

Let C ′ be the strict transfrom of C. Then C ′ meets E, and by our above

extension lemma, there is an open subset containing E call it U and analytic

foliation invariant hypersurface S ′ ⊂ U containing C ′. By the proper mapping

theorem we have that SQ = π(S ′) is our desired germ of an invariant hypersurface.

There exist finitely many Qi such that C ⊂ ∪SQi , and thus there is an open set

containing C such that S = ∪SQi is an analytic hypersurface in this open subset

containing C.

Remark 14. Observe that in contrast to the smooth case where every non-dicritical

singularity admits at least one convergent separatrix, if X is singular it possible for

there to be no separatrices (formal or otherwise) through a particular point x ∈ X.

In the case of surfaces an example is given by considering the contraction of an

elliptic Gorenstein leaf. In these cases, however, there are no germs of curves

tangent to F passing through x.

Corollary 2.7.5. Suppose F has canonical and non-dicritical singularites and

suppose that C ⊂ sing(F) but not contained in sing(X). Then there exists a germ

of a separatrix S containing C such that S agrees with the strong separatrix along

C.
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Proof. Through a general point of C there is a germ of a curve γ tangent to F ,

meeting C at a point and such that γ is contained in a strong separatrix along

C. As above, let π : (X ′,F ′) → (X,F) be a resolution of singularities such that

π−1(C) is a divisor, and in particular, since C is contained in the singular locus,

this divisor must be invariant. By our extension lemma there exists an extension

of γ to a separatrix S ′. Taking π(S ′) gives our desired separatrix.

Corollary 2.7.6. Suppose that F has canonical and non-dicritical singularities

and supose that C ⊂ sing(X). Suppose that F is terminal at the generic point of

C. Then there exists a germ of a separatrix S containing C.

Proof. Since F is terminal, taking a general hyperplane section meeting C we see

that through a general point of C there exists a germ of a curve γ tangent to F ,

meeting C transversely. As above let π be a resolution, and since C is both terminal

for F and contained in sing(X), π−1(C) is invariant, and our result follows.

Corollary 2.7.7. Let D be a divisor transverse to F such that FD is induced by

a fibration D → Z. Let C be a curve tangent to the foliation and S a separatrix

around C. Then S has an extension to a neighborhood of D.

Proof. Let f1, ..., f` be the fibres of D → Z meeting C. Perhaps shrinking S a bit,

we may assume that D ∩ S ⊂ f1 ∪ ... ∪ f`.
Observe that if we can extend S to a small neighbhorhood of fi, call it Vi for

all i, then the extension to neighborhood of all of D exists. So, we claim that such

an extension exists.

Let π : Y → X be a resolution of singularities so that π−1(fi) = Ei is a divisor.

Notice that Ei is invariant. If we let S ′ be the strict transform of S, then by our

extension lemma there exists an extension of S ′ to a neighborhood of Ei for all i.

Pushing forward this extension and these open sets gives our claim.

2.8 Foliation negative curves contained in leaves

of dimension 2

We begin with an algebraicity criterion:
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Lemma 2.8.1. Let C be a compact curve, and S an analytic surface germ, sitting

inside a projective variety X and C is not contained in sing(S). Assume that

KSν + ∆ is Q-Cartier and (KSν + ∆) · C < 0, and that ∆ is a boundary along

C. Then either C is rational and (KSν + ∆) · C ≥ −2 or S is algebraic, i.e., the

Zariski closure of S is an algebraic surface.

Proof. Let Y be the Zariski closure of S with K(Y ) the field of rational functions

on Y . By observations due to [Bos01], [BM01] we see that the algebraicity of S

follows if the transcendence degree of K(Y ) over C is 2.

Let T
f−→ Sν

g−→ S be the minimal resolution of the normalization S (perhaps

after restricting S to a smaller neighborhood of C) and let C ′ be the strict transform

of C. We have KT + ∆T = f ∗(KSν + ∆) where ∆T ≥ 0.

Let T denote the formal scheme given by the completion of T along C ′ and

let K(T) be the field of formal meromorphic functions on T. Notice that K(T) is

a field extension of K(Y ), and so it suffices to bound the trascendence degree of

K(T).

Next, since T is smooth OT (C ′) is Cartier, in particular, C ′ is a local complete

intersection in T. Let ν : Cν → C ′ be the normalization.

By assumption there exists a t ≥ 0 such that KT + ∆T + tC ′ = KT + Θ + C ′

where Θ ≥ 0. By adjunction (KT + Θ +C ′) ·C ′ = 2g(Cν)−2 +dC′ , where dC′ ≥ 0.

If ν∗O(C ′) is not ample, then the left hand side of the equation is negative,

hence C ′ is rational, and (KT + ∆T ) · C ′ ≥ (KT + Θ + C ′) · C ′ ≥ −2.

On the other hand, if ν∗O(C ′) is ample, the normal bundle of C ′ in T is ample,

which by a result of Hartshorne, [Har68, Theorem 6.7], implies that K(T) has

transcendence degree at most 2 over C, and our result follows.

We briefly explain the idea behind the proof of Hartshorne’s result in our case.

If L is a line bundle on T we want to bound the growth rate h0(T, nL) ≤ Dn2.

However, we also know that h0(T, nL) ≤
∑∞

m=0 h
0(C ′,−mC ′ + nL). Since C ′ is

ample, we know that H0(C ′,−mC ′+nL) = 0 for m ≥ D′n for some D′ depending

only on C ′ and L, and h0(C ′,−mC ′ + nL) ≤ D′′n where D′′ depends only on

L. Putting these together, we get a bound on the above sum by
∑D′n

m=0D
′′n =

D′D′′n2.
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We can prove the above algebraicity criterion in a different way which suggests

an algebraicity criterion in higher dimensions. First, recall the following fact about

the deformation theory of curves [Kol96]

Theorem 2.8.2. Let X be a l.c.i. n-dimensional (analytic) variety and C ⊂ X

a projective curve. Then the dimension of the component of the chow variety

containing [C] is at least −KX · C + (n − 3)(1 − g(Cν)) where Cν → C is the

normalization.

Corollary 2.8.3. Let C ⊂ S ⊂ X where X is a projective 3-fold, and S is a

complex analytic surface with (KS + ∆) · C < 0. Suppose that C is not contained

in sing(S) or supp(∆). Then one of the following holds:

1) C ∼= P1 and (KS + ∆) · C ≥ −1

2) S is algebraic

3) C moves in a family covering X.

Proof. Let π : T → S be the minimal resolution and write KT + Γ = π∗(KS + ∆)

where Γ ≥ 0. Let C ′ be the strict transform of C By the above theorem, the

dimension of the deformation space of C ′ ⊂ T , and hence the deformation space

of C ⊂ S, is positive dimensional if either C is not rational, or C is rational and

(KS + ∆) < −1. If the deformation space of C in S is positive dimensional, the

same is true of the deformation space of C in X.

Let Z denote the subvariety of X swept out by the images of the deformations

of C, notice that dim(Z) ≥ 2 and that S ⊂ Z. If Z = X then we are in case 3. If

dim(Z) = 2, then since S ⊂ Z, we have that S must be a component of Z, and is

therefore algebraic.

Corollary 2.8.4. Let C ⊂ Y ⊂ X where X is a projective 4-fold and Y is an

(analytic) 3-fold with KY · C < 0. Then either

1) Y contains an algebraic surface,

2) Y is algebraic or,

3) C moves in a family covering X.

In the following proof we will make use of the following definition:



41

Definition 20. Given a reflexive sheaf L and a positive integer q ≤ dim(X) a

Pfaff field of rank q is a non-zero morphism Ωq
X → L. Given foliation of F of rank

q, by taking the q-th wedge power of Ω1
X → F∗ we get a Pfaff field Ωq

X → O(KF)

of rank q.

Lemma 2.8.5. Let X be 3-fold. Suppose that KF is Q-Cartier and F has only

non-dicritical singularities. Let C be a compact curve tangent to the foliation such

that C is not contained in sing(X) ∪ sing(F).

Then there exists a germ of an analytic surface S such that C is contained in

S, and S is foliation invariant.

If ν : Sν → S is the normalization, then ν∗KF = KSν + ∆ where ∆ ≥ 0.

Proof. By our extension lemmas we get the existence of the germ S containing C.

To prove our last statement, if Ω2
X → O(KF) is the Pfaff field associated to our

foliation, since S is foliation invariant we have a morphism (Ω2
S)⊗m → OS(mKF),

where m is the Cartier index of KF . We can apply [AD14, Lemma 3.7] to see that

this lifts to a map (Ω2
Sν )
⊗m → ν∗OS(mKF). Observe that the lemma is proven

in the case where S is a variety, however the proof works just as well in the case

where S is an analytic variety. For the reader’s convenience we explain the proof

below.

Thus, we have a nonzero map O(mKSν )→ O(mν∗KF) and our result follows.

Observe that ∆ is supported on the locus where this map fails to be surjective,

which is contained within sing(X) ∪ sing(F).

Lemma 2.8.6. Let KF be a Q-Cartier divisor of Cartier index m and let S be

a germ of an analytic space tangent to the foliation, and hence invariant. Then

there is a lift of (Ω2
X)⊗m → O(mKF) to (Ω2

Z)⊗m → ν∗O(mKF) where ν : Z → S

is the normalization.

Proof. This is proven in [AD14] in the case where S is algebraic, although the

argument works in the analytic case. We sketch the argument here.

First assume that KF is Cartier. Notice that the lift can be constructed locally

so we may assume that KF = OX . Furthermore, it suffices construct the lift on

each irreducible component of S, so we may assume that S is irreducible.



42

Since S is invariant, and ν is bimeromorphic, we see that the Pfaff field on S

lifts to a meromorphic Pfaff field on Z. Thus to prove our result it suffices to show

that the lift φ : Ω2
Z →MZ is in fact holomorphic.

This can be checked on stalks. So let x ∈ Z, and our Pfaff field is equivalent

ot the data of a 2-derivation of OZ,x into MZ,x. However, by [ADK08, Proposition

4.5] , we see that this is 2-derivation actually takes values in OZ,x which is what

we wanted to show.

Now, let π : X ′ → X be the index 1 cover associated to KF , i.e., we have a

foliation F ′ such that KF ′ is Cartier. Let S ′ = π−1(S) and Z ′ be the normalization

of S ′. Let G be the Galois group of the cover. Let πS, πZ be the induced maps

from S ′ → S, Z ′ → Z

Observe that the morphsim

π∗((Ω2
Z)⊗m) = (π∗Ω2

Z)⊗m → (Ω2
Z′)
⊗m → ν ′∗O(mKF ′) =

ν ′∗π∗O(mKF) = π∗Zν
∗O(mKF)

is G-linear and therefore descends to a morphism (Ω2
Z)⊗m → ν∗O(mKF).

Example 11. In the case that X is smooth with simple singularities, the compu-

tation of ∆ is easy. ∆ is supported on ν−1(sing(F)) and if Z is a component of

sing(F) and S is a strong separatrix along Z, the coefficient of Z in ∆ is exactly

1. Otherwise the coefficient of Z is some positive integer k which depends on the

analytic type of the singularity.

Remark 15. There is the following alternative construction of ∆. Let f : (Y,G)→
(X,F) be a resolution of singularities and write KG + Γ = f ∗KF . Let S ′ be the

strict transform of S, and notice that we have a moprhism σ : S ′ → Sν.

Write (KG + Γ)|S′ = KS′ + ∆′ and take ∆ = σ∗∆
′. Then KF |Sν = KSν + ∆. It

is not hard to check that this construction of ∆ agrees with our previous one.

One can think of the above result together with Lemma 2.3.3 as being a com-

plete version of foliation adjunction, i.e.,
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Proposition 2.8.7. Let F be a co-rank 1 foliation. Suppose that KF + ∆ + ε(S)S

is Q-Cartier and log canonical. Let ν : Sν → S be the normalization. Call the

induced foliation G, so G is co-rank 1 if S is transverse to the foliation and it TSν

is S is invariant. Then ν∗(KF + ∆ + ε(S)S) = KG + ∆ where ∆ ≥ 0.

Lemma 2.8.8. Suppose that (F ,∆) is log canonical, and let S be an invariant

divisor. Write (KF + ∆)|Sν = KSν + ∆Sν . Then (Sν ,∆Sν ) is log canonical away

from sing(F) ∪ sing(X) ∪ sing(S).

Proof. Let π : (Y,G) → (X,F) be a log resolution of both X and F , i.e., F has

simple singularities and S ′∪supp(∆)∪exc(π) is snc, where S ′ is the strict transform

of S.

Write KG+Γ = π∗(KX +∆) and (KG+Γ)|S′ = KS′+∆S′ so that if σ : S ′ → Sν

is the induced map σ∗∆S′ = ∆Sν .

LetB ⊂ supp(∆S′) be such that σ∗B 6= 0 and π(B) is not contained in sing(F)∪
sing(X). If we write KG|S′ = KS′ + Θ notice that (S ′,Θ) is log canonical at the

generic point of B. If E ⊂ Y is any divisor dominating π(B) then E must be

invariant, and so the discrepancy of (F ,∆) along E is at least 0. Combining these

two observations gives our result.

We finish the section with our characterization of (KF + ∆)-negative curves

tangent to a foliation.

Lemma 2.8.9. Let C be a curve tangent to F , not contained in sing(X), with

(KF + ∆) · C < 0. Suppose that F has canonical non-dicritical singularities and

that (F ,∆) is log canonical. Then, [C] =
∑
ai[Mi] + β where (KF + ∆) · β ≥ 0

and the Mi are either

(i) rational curves tangent to the foliation 0 > KF ·Mi ≥ −4

(ii) Mi ⊂ sing(X).

Proof. If C is contained in the singular locus of the foliation, we argue as below.

Otherwise, let S be the surface germ tangent to the foliation which contains C.

Write (KF + ∆) = KSν + Θ. Since Θ is a boundary along C, by our algebraicity

criterion, we see that either C is rational, or S is algebraic, in which case we can

apply the usual cone theorem for surfaces.
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Notice that the non-log canonical locus of (Sν ,Θ) is supported on the singular

loci of X and F . The cone theorem for surfaces tells us that in NE(Sν) we can

write [C] =
∑
ai[Li]+β where the Li are curves contained in the non-log canonical

locus of (Sν ,Θ) or are rational curves with (KSν + Θ) · Li = (KF + ∆) · Li ≥ −4,

and (KF + ∆) · β ≥ 0. Pushing forward to X gives our result.

Lemma 2.8.10. Suppose that F has canonical and non-dicritical singularities.

Let C ⊂ sing(F) with (KF +∆) ·C < 0. Suppose that (F ,∆) is log canonical, then

C is rational, and KF · C ≥ −2.

Proof. First, since (F ,∆) is log canonical, C cannot be contained in the support

of ∆. Next, since F is canonical along C, there is a strong separatrix for F around

a general point of C. By our extension lemmas, this strong separatrix extends to

an analytic divisor containing C, call it S. (KF + ∆)|S = KS + aC + Θ where Θ is

effective and does not contain C. Since S is a strong separatrix we see that a = 1.

Adjunction and the inequality (KS +C + Θ) ·C < 0 imply that C is rational and

(KS + C + Θ) · C ≥ −2.

2.9 The cone theorem

With the work of the previous sections in hand, we are now in a position to

give a proof of the foliated cone theorem. The argument is similar to the one used

to prove the cone theorem for surfaces in section 5.

Theorem 2.9.1. Let X be a klt, Q-factorial threefold and F a co-rank 1 foliation

with canonical and non-dicritical foliation singularities. Then

NE(X) = NE(X)KF≥0 +
∑

R+[Li]

where Li are curves.

Furthermore either Li is contained in sing(X), or Li is a rational curve with

KF · Li ≥ −6

In particular, the KF -negative extremal rays are locally discrete in the KF < 0

portion of the cone.
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Proof. Choose H and ample divisor and t ∈ R such that HR = KF + tH is nef,

and such that HR is zero on precisely one extremal ray, R = Rα. We argue based

on the numerical dimension of D.

If ν = ν(HR) < 3 there exists a k depending on ν such that Hk
RH

3−k = 0. As

in our bend and break lemma, take Di = HR for i ≤ 3− k and Di = H otherwise.

Observe that

KF ·D2 ·D3 = D1 ·D2 ·D3 − tH ·D2 ·D3 < 0

Thus, our bend and break lemma applies to produce rational curves Σ with Σ·D1 =

Σ ·HR = 0.

Take M = mHR −KF where m� 0 so that M is ample. Our bend and break

lemma tells us that

M · Σ ≤ 2(3)
M ·D2 · ... ·Dn

−KF ·D2 · ... ·Dn

Noting that M · Σ = −KF · Σ and M ·D2 · ... ·Dn = −KF ·D2 · ... ·Dn gives our

desired bound on the degree of Σ.

So, suppose that ν(D) = 3. Since D is nef, it is also big. Then, perturbing

by some ε > 0 sufficiently small, we may take KF + (t − ε)H to still be big, and

negative on R.

Thus, there exists some effective prime divisor D such that D · α < 0. Note

that D is Q-Cartier.

For any β ∈ NE(X) close enough to α we can write β =
∑
ai[Ci] where

Ci ·D < 0. Letting β approach α, we see R comes from an extremal ray in NE(D)

Either D is invariant, in which case Lemma 7.4 applies or D is generically

transverse to the foliation, in which case, since R is KF and D-negative Lemma

6.4 applies to show that R is spanned by the class of a curve, and furthermore we

can take this curve to be contained in sing(X) or tangent to the foliation, in which

Lemma 7.4 applies again.

In any case, either R comes from sing(X), comes from a component of sing(F)

meeting a non-simple singularity or is spanned by the class of a rational curve C

tangent to the foliation with KF · C ≥ −4.

Our result then follows by standard arguments to show that the cone of curves
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indeed has the claimed structure.

Portions of the work in the above chapter is being prepared for submission for

publication.

Spicer, Calum ”Higher dimensional foliated Mori Theory”.

The dissertation author was the primary investigator and author of this mate-

rial.



Chapter 3

Some classification results

This chapter has two main goals: describing the geometry of the extremal rays

in the cone of curves and explaining how to contract these in some special cases.

We will return to question of contractions of extremal rays in the next chapter,

where many of the results in this chapter will be proven in greater generality using

results from the classical MMP. Nevertheless, the explicit classifications in this

chapter are of some interest since they allow us to contstruct the MMP for smooth

foliations, see Theorem 3.2.2.

3.1 Classifying extremal rays

In this section we provide some results classifying the structure of KF -negative

extremal rays.

Definition 21. Given an extremal ray R ⊂ NE(X) we define loc(R) to be all

those points x such that there exists a curve C with x ∈ C and [C] ∈ R.

Lemma 3.1.1. Let R be a KF -negative extremal ray. Then loc(R) is closed.

Proof. Let HR be a supporting hyperplane to R.

If ν(HR) < 3, then as in the proof of the cone theorem, X is covered by rational

curves which span R and so loc(R) = X.

47
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Otherwise HR is big and nef, and so there exists an irreducible effective divisor

S with R · S < 0 then loc(R) ⊂ S and so it remains to show that either loc(R) is

a finite collection of curves or is all of S.

We argue depending on whether S is (i) invariant or (ii) not invariant. Let

Sν → S be the normalization.

In case (i), write KF |Sν = KSν + ∆ and HR = KF +A for some ample A. Thus

(KF + A)|Sν = (KSν + ∆ + A|Sν ) and we argue based on ν(HR|Sν ). If ν = 2 then

it is big, and therefore zero on only finitely many curves. Otherwise, we can apply

bend and break to produce rational curves M through a general point of S with

M ·HR = 0.

In case (ii), let G be the foliation restricted to Sν and (KF + S)|Sν = KG + ∆.

Observe that we can write HR = (KF + S) + A for some ample divisor A, and so

HR|S = (KG + ∆) + A|S where A|S is ample. If ν(HR|Sν ) = 2 then HR is only

zero on finitely many curves. Otherwise we can apply bend and break to produce

rational curves M through a general point of S which has M ·HR = 0.

Remark 16. Observe that these arguments prove that for any extremal ray R, if

loc(R) = S where S is a surface, then S is covered by a family of rational curves

tangent to the foliation, each of which spans R.

Remark 17. In the case where KF is pseudoeffective this also follows from the

following general fact about big and nef divisors on threefolds: If D = A+E is big

and nef then the union of curves C with D · C = 0 is a closed subset. Indeed, any

such C ⊂ E, and if Ei is a component of E since L|Ei is a nef divisor on a surface,

it is either 0 or finitely many curves, or is zero on a family of curves covering Ei.

In rest of this section we assume that X is smooth and F has simple singular-

ities.

Definition 22. We say a foliation on a variety X is algebraically integrable if the

closure of a general leaf is a closed subvariety of X.

We make note of the following result, proved in [AD13, Theorem 5.1].
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Proposition 3.1.2. An algebraically integrable foliation with non-dicritical folia-

tion singularities cannot have an anti-ample canonical divisor.

Corollary 3.1.3. Let S be a normal surface, and F a foliation with non-dicritical

singularities. Then −KF is not ample.

Proof. If −KF we ample, then by [BM01] it would be algebraically integrable, a

contradiction.

Let R be an extremal ray. There are three possibilities, either loc(R) is (i) all

of X, (ii) a surface or (iii) 1-dimensional.

3.1.1 loc(R) = X

Here our arguments follow [Kol91, Section 4]

We have a diagram

U X

Z

F

p

where U is a family of rational curves over Z, Z is normal and F is dominant.

If Cz for z ∈ Z is a fibre of p and Dz is the image of Cz under F and Dgen is a

general curve, then either:

(1) Dgen intersects infinitely many other Dz

(2) Dgen does not intersect any other Dz

We tackle the case of (1) first.

Theorem 3.1.4. Assume the situation is as in (1). Either

(i) dim(N(X)) = 1; in particular F is Fano if Dgen.KF < 0 or,

(ii) dim(N(X)) = 2 and there is a map q : X → E to a smooth curve E such

that every Dz is contained in a a fibre of q. The fibres of q are all irreducible.

If Dz ·KF < 0 and F has non-dicritical foliation singularities, F is the foliation

induced by q.
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Proof. Except for the last claim, the proof is as in [Kol91]. For the last claim,

a priori F might not agree with the fibration, in which case we get an induced

foliation Fe on Xe where Xe = q−1(e) for e ∈ E. Observe that Fe has non-dicritical

foliation singularities.

If we have that KF ·Dz < 0, then Fe would be rank 1 and Fano, but this is a

contradiction.

Theorem 3.1.5. Assume that situation is as in case (2). Then, there is a mor-

phism g : X → Y where Y is a normal surface, and the fibres of g are the Dz In

particular dg(F) = G is a foliation on Y , and F is the pull back of G

Proof. Except for the last claim, this is as in [Kol91]. The last claim follows from

the observation that the fibres of g are all foliation invariant.

3.1.2 loc(R) is 2 dimensional

We make an easy observation:

Lemma 3.1.6. Let L be a an algebraic component of a leaf of F , and assume that

F has simple singularities. Then the closure of L has at worst normal crossings.

We follow the ideas in [Kol91, Theorem 2.1].

Lemma 3.1.7. Let X be a three dimensional smooth algebraic space. Let S → B

be a proper smooth minimal ruled surface with typical fibre F . Let f : S → X be

a morphism, and E the image of S, and C the image of F . Assume dim(E) =

2, C ·KF < 0, C · E < 0. Then, we are in one of the following situations:

(i) E is a smooth minimal ruled surface with typical fibres C. If E is not

foliation invariant, the foliation restricted to E agrees with the ruling.

(ii) E ∼= P2, and E is foliation invariant.

Proof. Either the image of S is invariant or it is not.

We first address the non-invariant case. By adjunction we get that KFS =

f ∗(KF + E) − ∆. Now, since F 2 = 0 and KFS · F ≤ −2 < 0, by foliation

adjunction we see that F must be invariant. For F tangent to a foliation on a
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surface we always have KFS · F ≥ −2 so we in fact get KFS · F = −2. Thus

∆ is wholly contained in the fibres of S → B, and KF · C,E · C = −1, and

the foliation agrees with the ruling on S. Notice that by non-dicriticallity of our

foliation singularities f cannot contract any section of S.

Next, notice that (KX + E) · C = KE · C = −2. Since E · C = −1, we get

that KX · C = −1. Since C is KX-negative and the classification of KX-negative

extremal rays implies that E is smooth along the image of any fibre of S → B.

Observe also that in this case not every curve in E spans the same extremal ray

in X- otherwise the foliation restricted to E would be an algebraically integrable

Fano foliation, a contradiction.

Now we handle the invariant case. First, observe by our previous lemma that E

is normal crossings. We argue depending on whether C2 = f(F )2 = 0 or C2 > 0.

Let g : T → E be the minimal desingularization. Since the image of T is normal

crossings, we see that g is just the normalization map. Observe that g∗KF =

KT + ∆ where ∆ ≥ 0.

Suppose that C2 > 0. Following [Kol91] we see that T ∼= P2 or a minimal ruled

surface.

Suppose that T ∼= P2, and that E is not normal.

Since KT + ∆ = O(−1) we see that ∆ is a (possibly singular) conic.

Let ` ⊂ E be a component of the non-normal locus of E. Note that ` ⊂ sing(F),

but we also have that KF .` < 0 since ` spans R. However, by Lemma 7.5 this

implies that ` is a smooth rational curve.

Consider the blow up π : X̃ → X at ` with exceptional divisor D. Observe

that D is a P1-bundle over `, and D meets Ẽ, the strict transform, along 2 disjoint

sections of D. In particular, since we have a factorization P2 → Ẽ → E this

implies the existence of two disjoint curves in P2- a contradiction.

Thus, we see that E is normal, and hence isomorphic to P2.

Now, suppose that T is a minimal ruled surface over B. Let ∆ = aF+bσ where

F is a fibre and σ is a section. Since KF · C < 0, we must have b ≤ 1. Thus, we

see that the non-normal locus of E is entirely contained in the fibres, otherwise,

we would have b ≥ 2.
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In the f(F )2 = 0 case, we get that T is a ruled surface and so, as before we

have ∆ = aF + bσ, and b ≤ 1, hence the non-normal locus of E is contained in the

fibres.

It remains to show that the non-normal locus is in fact empty. Let B be

contained in the non-normal locus, notice that B is the image of a fibre of S.

Observe that E is at worst normal crossings, so denote by D1, D2 the two branches

of E containing B. Passing to a small neighborhood of B we see that D1|D2 = B,

and so D1 ·B = D1|D2 ·B = B2 where the last intersection is taken in D2. Switching

the roles of D1, D2 shows that D1 ·B = D2 ·B. There is an exact sequence

0→ OB(D1)→ NB/X → OB(D2)→ 0

.

If Di ·B ≥ 0 then in fact KX ·B < 0 and the result follows by the classification

of KX-negative extremal rays. Otherwise the normal bundle of B is anti-ample, in

which case B cannot move in a family, a contradiction.

Theorem 3.1.8. Let (X,F) be a co-rank 1 foliation on a smooth threefold X, an

extremal ray R an irreducible surface E such that R · E < 0. Assume for [C] ∈ R
that C moves in a family and that KF ·C is maximal, then E is one of the surfaces

described above.

Proof. By supposition C has a non-trivial deformation. Thus, we get a morphism

from a (not necessarily minimal) ruled surface g : S → X.

Suppose that S is not minimal. Thus, it contains some reducible fibre F0 =∑
akfk with ak ≥ 0 and components fk. Let F1 denote the fibre which gets sent

to C under g. Then g(F1) ·KF = g(F0) ·KF = (
∑
akg(fk)) ·KF . But, in this case

g(fk) is a rational curve with KF · g(fk) > KF · g(F1) = KF ·C, a contradiction of

the maximality of the intersection of C with KF .

Thus, S is minimal, and we have reduced to our previous lemma.
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3.1.3 loc(R) is 1 dimensional

We begin with two examples showing that this case can really happen, see also

[BP11] for some similar examples:

Example 12. Let φ : X1 99K X2 be the threefold toric flop. We can realize Xi

as an A1-bundle over A2 blown up at a point, with exceptional curve Ci. Let G be

a foliation on A2 blown up at a point so that the exceptional curve is invariant,

meets exactly two other invariant curves and G has canonical singularities.

Let F2 be the pull back of this foliation to X2. Let F1 be the strict transform of

F2 under φ−1. C1 is the flop of C2, and observe that C1 ⊂ sing(F1), and F1 has

canonical singularities along C1

Let X0 be the blow up of Xi along Ci, with exceptional divisor E. and F0 the

transformed foliation on X0. Let πi : X0 → Xi. Let C̃1 be a P1 sitting above C1.

Observe that F0|E = KE + ∆ where ∆ consists of three of the four torus in-

variant divisors on E. Thus, KF0 · C̃1 = −1 and since π∗KF1 = KF0 we get that

KF1 · C1 = −1.

Furthermore, we can check that KF2 · C2 = 1.

Thus, we see that C1 is an isolated KF1-negative extremal ray, and the flip of

C1 exists.

Example 13. Let X0, X1, X2 be as above. Observe that X0 is the blow up at the

vertex of the cone over a quadric, Q, in P3. Let F2 be the foliation coming from

one of the projection π2 : Q→ P1.

We can lift this foliation to all of X0 in a torus invariant way, giving us a torus

invariant foliation, F̃2.

Let fi : X0 → Xi be the contraction lifting the contraction πi : Q → P1. Let

G be the pushforward of F2 along f1. Let C = π1(Q). One can compute that

KG · C = −2, however C does not move in a two dimensional family.

If we let G+ be the pushforward of F̃2 under f2 and C+ = f2(Q) we have that

KG+ · C+ = 2. Thus, φ : X1 99K X2 is a foliation flip.

Observe, however, that C is a log canonical singularity of G.

We also have following local version of Reeb stability:
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Lemma 3.1.9. Let L be a leaf of a foliation F on X and K ⊂ L a compact

subset. Suppose that K is simply connected. Then there is an open subset of X,

K ⊂ W ⊂ X and a holomorphic submersion W → U such that the leaves of F are

given by the fibres of this map.

Proof. The usual proof of Reeb stability, see for example [MM03, Theorem 2.9],

works in this case.

As a corollary of this we get the following description of isolated extremal rays:

Corollary 3.1.10. Let C span an isolated KF -negative extremal ray on a smooth

3-fold. Then C is contained in the singular locus.

Proof. Suppose the contrary. Then, we claim that C is actually disjoint from the

singular locus. Let S be a germ of a leaf containing C. Then since C is isolated,

C2 < 0 in S.

Adjunction then implies that KS ·C = −1, and thus if C is to be KF -negative

it cannot meet the singular locus. Otherwise KF |S = KS + ∆ and ∆ · C > 0.

Now apply local Reeb stability as above to see that C actually moves to near

by leaves, giving our contradiction.

J. V. Periera has given the following alternative proof: Suppose as above that

C is not contained in the singular locus. By restricting Bott’s partial connection

on the leaf to C and noting that NC/S = O(−1) we see that NC/X = O(−1)⊕O
and so C moves in X, a contradiction.

Corollary 3.1.11. Let X be a smooth 3-fold and F be a smooth rank 2 foliation

on X and suppose that F is not uniruled. If R is a KF -negative extremal ray, then

loc(R) is a divisor transverse to the foliation.

Proof. By 3.1.10 we know that loc(R) = D must be divisor. Suppose for sake of

contradiction that D is foliation invariant, then D is covered by rational curves

which by Reeb stability can be moved into nearby leaves and therefore F is unir-

uled.

As noted earlier it is a somewhat subtle question of when a separatrix converges.

The next proposition suggests the possibility of some general statement relating

the existence of flipping curves and convergence of separatrices:
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Proposition 3.1.12. Suppose that C ⊂ sing(F) is a flipping curve and that it

meets no other components of sing(F), i.e., C is a smooth connected component of

sing(F). Let S1, S2 be the formal separatrices along C, then S1, S2 are convergent.

Proof. We already know one of these separatrices, say S1, is a strong separatrix.

So consider suppose for sake of contradiction that S2 is not convergent. In this

case F must have a saddle node type singularity along KF |S2 , in fact, at a generic

point of of C in appropriate (formal) coordinates if ω is the 1-form defining F we

can write ω = y(k + λxk)dx+ xk+1dy where k ≥ 1 where x = 0 is a local equation

for S1 and y = 0 is a local equation for S2.

Replacing X by the formal completion of X along C we see that NS2/X((k +

1)C) = NF|S2 , or KF |S2 = KS2((k + 1)C), where for a formal scheme we define

KS2 = KX ⊗O(S2)|S2

We know that KF |C = KC , since C is a smooth rational curve, and since

KS2(C)|C = KC we see NC/S2 must be trivial. In this case we know that C has a

deformation over C[ε]/(εm) for any m in S2, and thus a deformation in X. But this

implies that C moves, a contradiction of the fact that it is a flipping curve.

Remark 18. This result is a bit strange. Being a flipping curve is a global condi-

tion, yet convergence of separatrices is a fundamentally a local condition. We will

come back to this point later, but a general picture is still missing for us.

3.2 Divisorial contractions

Here we will give a concrete method description KF -negative divisorial con-

tractions in the case where X is smooth and F has simple singularities. Later

on we will develop other techniques to realize these contractions when X is not

necessarily smooth (which will be necessary in order to run the MMP), therefore

the reader interested only in running the MMP may skip this section.

Let R be an extremal ray such that loc(R) is a divisor, D.

We use a version of Castelnuovo’s criterion to contract D. To this end, we want

to find a very ample divisor L such that

a) H1(X,L) = 0
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b) H1(D,OD ⊗ L(jD)) = 0 for 1 ≤ j ≤ k − 1

c) OD⊗L(kD) is globally generated, with corresponding morphism cont : D →
Dcont

In this case, L(kD) is globally generated and defines a morphism to a projective

variety which contracts all those curves spanning R.

We will proceed on a case by case basis. Let HR be a supporting hyperplane

of R.

3.2.1 D is a P1-bundle transverse to the foliation

Let HR be a sufficiently large multiple so that A = HR −KF is ample.

First, since D is a P1-bundle over a curve, π : D → B, we have that HR|D is

semi-ample, i.e., since HR · F = 0 where F is any fibre and HR ·B0 > 0 where B0

is a section, we have that HR|D is the pullback of an ample divisor on B.

Next, FD agrees with the bundle structure. For any fibre F we know that

KF · F = D · F = −1. Furthermore, by foliation adjunction, we have OD(D) =

KFD −KF + π∗Θ where Θ is effective. Next, observe that KFD − 2KF |D = π∗T ,

and so perhaps replacing HR be a sufficiently large multiple, we may assume that

HR +KFD − 2KF is globally generated.

Let L = m(A + qHR), where m, q > 0 to be chosen later. First, observe that

OD ⊗ L(mD) is isomorphic to

m(HR +KFD − 2KF |D) +mqHR +mπ∗Θ

which is globally generated for m� 0

Second, OD ⊗ L(jD) for 1 ≤ j ≤ m− 1 is isomorphic to

(m− j)(A+ qHR) + j(HR +KFD − 2KF |D) + jπ∗Θ + jqHR

choosing q � 0 we see that OD ⊗ L(jD −KD) is ample, so by Kodaira vanishing

the first cohomology of OD ⊗ L(jD) is trivial.

Finally, choosing m � 0 we have that H1(X,L) = 0 by Serre vanishing and

that L is very ample.
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We make the following useful observation:

Lemma 3.2.1. Suppose C spans the extremal ray R and that loc(R) = D is

transverse to the foliation. Then C is KX-negative. In particular, we can contract

D to a smooth 3-fold.

Proof. Following the computation in the proof of Lemma 9.7, we have that KF ·
C,C · D = −1 and that D is a P1-fibration such that D is normal along centres

transverse to the foliation. But, we also have (KX + D) · C = KD · C = −2, and

so KX · C = −1.

Theorem 3.2.2. Let X,F both be smooth. Then there is a foliated MMP for

(X,F).

Proof. If R is any KF -negative extremal ray, then by our classification above we

have that loc(R) is a P1-bundle, E trasnverse to the foliation and in fact R is

KX-negative. Contract E to a smooth curve π : (X,F) → (Y,G). We claim that

G is smooth.

Away from π(E) this immediate, and since E is transverse to the foliation we

must have that G is smooth at the generic point of E. Thus G has at worst isolated

singularities along E. By Malgrange’s theorem, see [CLN08] for example, around

any such point, call it Q, G is induced by holomorphic fibration, thus to prove

smoothness of G it suffices to show that the leaf passing through Q is smooth.

Let C = π−1(Q), and let SQ be a germ of an analytic variety in a neighborhood

of E containing C such that SQ is foliation invariant. Thus π(SQ) = T is the leaf

passing through Q. However, notice that C is a KSQ-negative rational curve, thus

we also have C2 = −1 in SQ.

Next, observe that SQ is transverse to E along C. Indeed, −1 = E · C =

E|S · C = nC2 where E|SQ = nC, and so n = 1.

This gives us that π : S → T is the contraction of a (−1)-curve and so T is

smooth.

Thus, we can perform the contraction in the category of smooth foliations on

smooth varieties, allowing us to proceed with the MMP. Since each contraction

drops the picard number by 1, this process must eventually terminate.
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Remark 19. In fact since the map X → Y is exactly the blow up along a smooth

curve π(E) = B we see that B must be everywhere transverse to G. This follows

since the blow up of a foliation along a centre generically transverse to the foliation

will acquire singularities over those points of B where B is tangent to G, but since

F is smooth this cannot happen.

Remark 20. It is perhaps a bit amusing to note that when F is rank 1 and smooth,

the MMP for F is completely trivial: either F is a fibration in rational curves or

KF is already nef.

As the above result shows if F is rank 2 and smooth the MMP takes a bit more

work, but not much.

If F is rank 3, then we are in the classical case and even starting with a smooth

F (i.e. X is smooth) the problem is hard!

3.2.2 D ∼= P2

In this case, we know HR|D = OD, KF |D = O(−a) where a ≥ 1 and D|D =

O(−b) where b ≥ 1 Let A = HR − KF and HR chosen to be a sufficiently large

multiple so that A is ample. Let L = m(A+ qHR) m, q > 0 to be chosen later.

Choose k so that ma = kb. Then OD ⊗ L(kD) is isomorphic to OD, which is

globally generated.

For 1 ≤ j ≤ k we have OD ⊗ L(jD) is ample, and hence has vanishing first

cohomology.

Finally, choosing m� 0 we have that H1(X,L) = 0

3.2.3 D is an invariant ruled surface with a section not in

R

Let π : D → B, and Σ be a section of π, with [Σ] /∈ R. Note that if g(B) ≥ 1

and D is invariant that we must be in this situation.

As above, we know that HR|D is semi-ample.

Suppose first that F meets the singular locus of F , and so KF · F = −1. In

particular, KF |D = O(−1) + π∗Θ. Let D|D = O(−c) + π∗N . Perhaps replacing
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HR by a sufficiently large multiple, we may take HR − cKF + D|D to be globally

generated.

Next, let A = HR − cKF and L = m(A+ qHR) m, q > 0 to be chosen later.

OD ⊗L(mD) is isomorphic to m(HR − cKF +D|D) +mqHR +mπ∗Θ which is

globally generated for m� 0.

For 1 ≤ j ≤ m we have that OD ⊗ L(jD) is isomorphic to

(m− j)(A+ qHR) + j(HR − cKF +D|D) + jqHR + jπ∗Θ

again, OD ⊗ L(jD − KD) is ample for q � 0 and so OD ⊗ L(jD) has vanishing

first cohomology.

Finally, choosing m� 0 we have that H1(X,L) = 0

If F does not meet sing(F), then F ·KF = F · (KX +D) and so the contraction

exists in this case.

Observe furthermore that these computations hold even in the case that B is

singular.

3.2.4 D is a P1-bundle and every curve in D spans R

This implies that KD is ample , in particular either D ∼= P1 × P1 or it is the

blow up of P2 at a point.

First, assume D is the blow up of P2 at a point, and let be E the exceptional

curve. By Reeb stability E must meet the singular locus of F . However, if E is

not contained in the singular locus, we have KF · E ≥ 0 a contradiction.

Consider the case where D ∼= P1×P1. Let F1, F2 be the classes of fibres. Again,

by Reeb stability, we have that KF · Fi = −1, and so KF |D = O(−1,−1). Let

D|D = O(−c,−c). Note that HR|D = OD
So, take A = HR − cKF , and L = m(A+ qHR).

First, OD ⊗ L(mD) is isomorphic to OD, hence is globally generated.

For 1 ≤ j ≤ D OD ⊗ L(jD) is ample, hence has vanishing first cohomology.

Taking m� 0 we get that H1(X,L) = 0.

Consider the case where D is P2 blown up at a point. Let F be the class of a
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line passing through the exceptional divisor. Then KF · F = −1. Let D · F = −c.
In particular, (−cKF + D)|D = OD. Taking A = HR − cKF the same arguments

as above work to give our contraction.

Lemma 3.2.3. Let M be a line bundle such that M restricted to loc(R) is trivial.

Then, for t� 0 tL+M where L is as in the cases above, also satisfies Casteluovo’s

criteria to define a contraction.

Proof. a) By Serre’s criterion, choosing t� 0 ensures that H1(X, tL+M) = 0.

b) Replacing the k used above with tk the arguments used above still show

that H1(D,OD ⊗O(tL+M + jD)) = 0 for 1 ≤ j ≤ tk − 1.

c) OD ⊗ O(tL + M + tkD) ∼= L(kD)⊗t is globally generated because L(kD)

is.

Corollary 3.2.4. If M is a Cartier divisor trivial on loc(R), then it is pulled back

from the contracted space.

Proof. By our previous lemma, large enough multiples of tL(tkD) +M are pulled

back from the contracted space, say r(tL(tkD) + M), (r + 1)(tL(tkD) + M) for

r � 0, hence in fact tL(tkD) +M is pulled back from the contracted space.

But, we also have L(kD) is pulled back from the contracted space, so in fact

M is as well.

Alternatively, we see that each of the contractions above is a KX + ∆-negative

extremal contraction for some klt pair (X,∆), and so the result follows from the

usual arguments of the MMP.

3.3 Contractions when loc(R) is 1-dimensional

Assume that X is Q-factorial and normal, in particular we are no longer as-

suming that X is smooth or that F has simple singularities. Let R be an extremal

ray where loc(R) is 1-dimensional.

For a Cartier divisor D let Null(D) = {P : P ∈ V, V ·Ddim(V ) = 0}, and BS(D)

denotes the stable base locus of D, i.e., ∩m≥0bs(mD) where bs(mD) is the base
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locus of mD. It is easy to see that BS(D) = bs(mD) for m sufficiently large and

divisible.

We will make use of the following result [CL14, Corollary 1]

Lemma 3.3.1. Let X be normal threefold and let L be big and nef. Let A be an

ample divisor. Then for all ε > 0 sufficiently small Null(L) = BS(L− εA).

Let HR be a supporting hyperplane to R. As we have seen HR is big and nef.

By our next lemma Null(HR) is a finite collection of curves.

Lemma 3.3.2. Let S ⊂ X be a surface. Then H2
R · S > 0.

Proof. Suppose for sake of contradiction that there is some surface S such that

H2
R · S = 0.

Let f : Sν → S be the normalization of S.

HR|S is nef and so it is pseudoeffective, and we proceed case by case on the

numerical dimension of f ∗HR.

If ν(f ∗HR) = 0 then HR is zero on a moving curve, hence is zero on infinitely

many curves, a contradiction.

If ν(f ∗HR) = 1 then write HR = KF + A where A is ample. We have that

f ∗(HR)2 = 0, and that f ∗(HR) has positive intersection with any ample divisor on

Sν (otherwise HR would be zero on a moving curve).

Thus

f ∗KF · f ∗HR = −f ∗A · f ∗HR < 0.

Perhaps rescaling HR by a positive constant we may write HR = A′ + D + S

where A′ is ample, and D is effective, and the support of D does not contain S.

Then

f ∗HR · f ∗S = −f ∗HR · f ∗(A′ +D) ≤ −f ∗HR · f ∗A′ < 0.

If S is F invariant, then f ∗KF = KSν + ∆ where ∆ ≥ 0.

We apply our bend and break result to D1 = D2 = f ∗HR. D1 · D2 = 0 by

supposition, and by our above computation (KSν + ∆) · D1 = f ∗KF · f ∗HR < 0.

Thus, we get through a general point of X a rational curve Σ with 0 = D2 · Σ =

HR · Σ a contradiction.
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If S is not F invariant then by foliation adjunction we see that f ∗(KF + S) =

KFSν + ∆, ∆ ≥ 0. Again, by our above computations we have that (KFSν + ∆) ·
f ∗HR = f ∗(KF + S) · f ∗HR < 0

Again we apply bend and break with D1 = D2 = f ∗HR. D1 · D2 = 0 by

assumption, and D1 · (KFSν + ∆) < 0. Again, through a general point of X we get

a rational curve Σ tangent to the foliation with 0 = D2 ·Σ = HR ·Σ a contradiction.

If ν(f ∗HR) = 2 then f ∗H2
R = H2

R · S > 0 and we are done.

[Art70] proves the following result on the algebraicity of certain birational mod-

ifications:

Theorem 3.3.3. Let X be a proper variety and let Y ⊂ X be a closed subscheme.

Let U be a some analytic neighborhood of Y . Let M be a complex analytic space and

a proper modification f̂ : U → M or ĝ : M → U . Then there exists an algebraic

space and a morphism f : X → Z or g : Z → X extending f̂ , ĝ respectively.

Remark 21. Artin’s result actually works even when f̂ , ĝ are only assumed to be

formal modifications.

Lemma 3.3.4. loc(R) can be contracted in the category of algebraic spaces.

Proof. By our previous lemma Null(HR) is a finite collection of curves, each of

which span R. Let A be an ample divisor and choose ε sufficiently small and m

sufficiently large so that Null(HR) = bs(m(HR − εA)) = B.

Let g : Y → X be a resolution of the base locus of m(HR− εA) so that we have

g∗(m(HR − εA)) = M + F where M is semi-ample, F is effective and g(F ) = B

and g(exc(g)) = B.

If C ⊂ F is a curve with g(C) not a point, then C · (M + F ) = g(C) ·m(HR −
εA) < 0. Thus we have F · α ≤ −mεA · α for any α ∈ NE(S) with.

Let G be an effective divisor Q-Cartier divisor supported on exc(g) such that

−G is g-ample (such a G exists because X is Q-factorial). Then for 1� δ > 0 we

see that (F + δG)|exc(g) is anti-ample.

Let N be such that N(F + δG) = D is an integral Cartier divisor. In this case

we see that D is a subscheme with an anti-ample normal bundle, and so it may be
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contracted to a point, [Art70, Theorem 6.2]. Indeed, taking f : D → p where p is

a point we have that Condition (i) of the theorem is satisfied by the ampleness of

the co-normal bundle, and Condition (ii) of the theorem is immediate because we

are contracting D to a point.

This contraction factors through g and gives a contraction X → Z. By [Art70]

this contraction may be taken in the category of algebraic spaces.

Note that we have not proven that Z is projective.

Lemma 3.3.5. Let HR be the supporting hyperplane to R. Assume that HR de-

scends to a Q-Cartier divisor on Z, then Z is projective.

Proof. By assumption, if f is the contraction, then HR = f ∗M . We claim that M

is in fact ample. First M is nef and M3 > 0. If C is any curve in Z then we also

have M · C > 0. By our above lemma if S is any surface then M2 · S > 0. Thus

the Nakai-Moishezon criterion for ampleness applies to show that M is ample, and

so Z is projective.

The question of whether HR descends to a Q-Cartier divisor on Z, or equiva-

lently, when ρ(X/Z) = 1, seems to be a difficult one which we will take up in the

next few sections.

As a point of comparison, in [HP, Theorem 7.12] the contraction of an isolated

extremal ray is constructed in the same way as above, i.e., by realizing it first as a

contraction in the category of analytic spaces. However, in the Kähler case one can

make use of the relative analytic base point free theorem to show that ρ(X/Z) = 1.

Portions of the work in the above chapter is being prepared for submission for

publication.

Spicer, Calum ”Higher dimensional foliated Mori Theory”.

The dissertation author was the primary investigator and author of this mate-

rial.



Chapter 4

Toward running the MMP

As seen earlier if X is smooth and R is a KF -negative extremal ray with loc(R)

a divisor E then R is in fact KX + ε(E)E-negative, and thus the contraction exists

by standard theorems in the classical log MMP. This is the first indication that

it might be possible to run a foliated MMP by running an appropriate log MMP.

Unfortunately, in the case of a flipping curve it is unclear if there is a good choice

of an algebraic divisor ∆ which realizes that foliated flip as a KX + ∆ flip.

Perhaps as expected the two main challenges in developing the foliated MMP

are:

Question 3. Do foliation flips exist?

and

Question 4. Do foliation flips terminate?

In the classical case, one approach to the construction of flips is to show that

existence of flips follows from the existence of “special” flips and termination of

“special” flips. This is the philosophy that we adopt here. In the first section

we will prove the existence of a “special” MMP. Then, we will show how that

existence of the “special” MMP proves the existence of flips in a wider range of

cases. Unfortunately, we are unable to prove the unqualified existence of flips.

We will also discuss some results related to an unqualified termination of flips.

64
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4.1 Some results from the classical situation

We will need the following results from the classical (log) MMP, these are

proven in [KM98], for example.

Theorem 4.1.1. Let f : X → W be a projective morphism of analytic varieties

with dim(X) ≤ 3 (we include the case where W is a point). Suppose that (X,∆)

is klt and Q-factorial. Then

NE(X/W ) = NE(X/W )KX+∆≥0 +
∑

R≥0[Li]

where the Li are rational curves and are locally discrete. Furthermore, if R is a

(KX +∆)-negative extremal ray, then there exists a morphism over W cR : X → Z

such that

(a) cR(C) is a point if and only if [C] ∈ R
(b) Let M be a Q-Cartier divisor with M · R = 0, then there exists M ′ on Z

such that c∗RM
′ = M .

(c) if cR is a flipping contraction, then the flip exists.

Theorem 4.1.2. Let f : X → W be a projective morphism of analytic varieties.

Suppose that D is a f -nef divisor and that D − (KX + ∆) is f -big and nef where

(X,∆) is klt. Then D is f -semi-ample.

Remark 22. Recall that D being f -semi-ample means that some multiple of D

defines a morphism φmD : X → PY (f∗O(mD)). In particular, φ contracts all

those curves C with D · C = 0.

Remark 23. A brief comment on Q-factoriality: Above we only require that X

is globally Q-factorial, i.e., every globally defined Weil divisor has some multiple

which is Cartier. This does not imply that X is local analytically Q-factorial.

Indeed, it is possible to have Q-factorial varieties which have singularities analyt-

ically isomorphic to the cone over a quadric, which can easily be shown to not be

Q-factorial.

We also recall the following very useful result, the so-called “negativity lemma”:
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Lemma 4.1.3. Let f : X → Y be a proper morphism of normal varieties. Let D

be a R-Cartier divisor such that −D if f -nef. Then D is effective if and only if

h∗D is effective.

Proof. Standard, see for example [KM98, Lemma 3.39]

This has the following handy corollary:

Corollary 4.1.4. Consider the following morphisms:

(X1,F1) (X2,F2)

Y

f1

f2

where fi is projective and birational and Xi, Y are normal varieties. Suppose that

KFi +∆i is Q-Cartier, and that f1∗∆1 = f2∗∆2. Suppose that −(KF1 +∆) is f1-nef

and KF2 + ∆2 is f2-nef.

Then for any exceptional divisor E

a(E,F1,∆1) ≤ a(E,F2,∆2)

. Furthermore, we have strict inequality if either

(i)−(KF1 + ∆1) is f1-ample and the centre of E is contained in exc(f1) or,

(ii) KF2 + ∆2 is f2-ample, and the centre of E is contained in exc(f2).

Proof. The proof is the same as the proof in [KM98, Lemma 3.38]. The point is

that if gi : Z → Xi extracts E then g∗2(KF2 + ∆2) − g∗(KF1 + ∆1) is nef over Y

and we apply the negativity lemma.

We now give the precise definition of a foliation flip:

Definition 23. Given a small contraction f : X → Z with ρ(X/Z) = 1 where

−KF is f -ample the flip is birational map to a projective variety φ : X 99K X+

together with a morphism f+ : X+ → Z such that KF+ is f+-ample and such that

ρ(X+/Z) = 1.
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4.2 Preliminary computations, I

For completeness we collect here a suite of relatively easy results which we

repeatedly use.

Lemma 4.2.1. Let (X,F) be a 3-fold with non-dicritical terminal foliation singu-

larities and suppose that sing(X) is tangent to F . Let H be a general hyperplane.

Then (H,FH) has terminal foliation singularities.

Proof. Let π : (X ′,F ′) → (X,F) be a resolution of singularities. Observe that

we may assume exc(π) = E is foliation invariant (otherwise (X,F) would both be

smooth along π(E)).

Write π∗(KF) = KF ′ −
∑
aiEi where ai > 0

Choose H general enough so that π∗H = π−1
∗ H = H ′, and that H ∪ E is snc.

Observe that FH′ has simple singularities. Furthermore, restricting to H, by

foliation adjunction, we have that KFH′+π
−1
∗ ∆−

∑
aiEi|H+

∑
diEi|H = π∗(KFH+

∆) where ∆ ≥ 0 and π−1
∗ ∆+

∑
diEi|H ≥ 0 are the foliation differents. Notice that

since H is transverse to Ei it is also transverse to F along Ei (since Ei is invariant)

and so di = 0. Subtracting π∗∆ = π−1
∗ ∆ + biEi where bi ≥ 0 from both sides gives

our result.

Corollary 4.2.2. Let C ⊂ sing(X), let F be terminal at the generic point of

C and suppose that C is tangent to F . Then there is a unique analytic space S

containing C which is foliation invariant.

Proof. By our extension lemmas it suffices to find a germ of curve γ not contained

in sing(X) with γ ∩ C 6= ∅ to produce the desired S.

Take a general hyperplane cut H passing through C so that (H,FH) is terminal

at p = C ∩ H. Since terminal foliation singularities on surfaces are quotients of

smooth foliations q : (Y,G)→ (H,FH), letting γ be the pushforward of a germ of

a leaf through q−1(p) gives the desired curve germ. Furthermore, γ is smooth and

is the unique germ passing through p.

Lemma 4.2.3. Let (X,F) be a foliated pair, and let S be an invariant (analytic)

divisor. Suppose that F is terminal along the codimension 2 singularities of X.
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Then writing KF |S = KS + ∆ and (KX + S)|S = KS + Θ we have that Θ,∆ have

the same coefficient along divisors contained in sing(X).

Proof. Cutting by hyperplanes, we may assume that X is a surface and S is a

curve. Since F is terminal, this implies that X has cyclic quotient singularities.

Write KG = π∗KF + A and KY + E + S ′ = π∗(KX + S) + B where π is a

resolution, E is the sum of the exceptoinal divisors with coefficient 1 and S ′ is the

strict transform of S. Notice that KG and KY +E+S ′ have the same intersection

value with exceptional curves. Thus A = B. If we write KG|S = KS +aP where P

is the singular point of G along P , since F is the quotient of a smooth foliation, we

must have a = 1. This gives us KG|S = (KY +E+S)|S and the result follows.

Remark 24. In fact the above result gives us that the coefficient of a component

C ⊂ sing(X) in ∆ is n−1
n

where (Y,G)/(Z/nZ) = (X,F), i.e., n is the order of

the local fundamental group around the singularity.

If one is willing to use stacks the above computation can be done much more

simply by results due to McQuillan:

Let π : (X ,F) → (X,F) be the index 1 covering stack so that KF is Cartier.

Suppose that F is terminal along the singularities of X. Let S ⊂ X be normal and

F-invariant and let f : S → X be the pull back of S to X . McQuillan’s stacky

adjunction formula, [McQ, I.8.7] tells us

f ∗KF = KS + sZ(f)−Ramf

where KS is the orbifold canonical bundle, sZ(f) is a contribution form the singular

locus of F and Ramf = 0 since S is normal.

Since F is terminal (hence smooth) at the stacky points of X we see that no

stacky point is contained in supp(sZ(f)). By Riemann-Hurwitz we know that KS =

π∗KS+
∑

ni−1
ni
Di where Di runs over sing(X)∩S, and so KF |S = KS+

∑
ni−1
ni
Di+∑

kiEi where Ei ⊂ sing(F) ∩ S.

Lemma 4.2.4. Suppose that F has canonical singularities and F is terminal along

sing(X) and sing(X) is tangent to F . Let D,D1, ..., Dn be a collection of F-
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invariant divisors. Suppose that D,D1, ..., Dn are Q-Cartier. Let Dν → D be the

normalization.

Write KF |Dν = KDν+Θ and (KX+D+
∑
Di)|Dν = KDν+∆. Then Θ ≥ ∆ ≥ 0

with equality along those centres contained in sing(X).

Thus, if C ⊂ D is not contained in sing(F), then KF · C < 0 implies (KX +

D +
∑
Di) · C < 0.

Suppose that D is a strong separatrix along those components of sing(F) which

are contained in D, then if C ⊂ sing(F) and Di0 is the other separatrix along C

for some i0 then KF · C < 0 implies (KX +D +
∑
Di) · C < 0.

Proof. We can write Θ =
∑
aiTi +

∑
biSi where Ti ⊂ sing(F) and Si ⊂ sing(X).

Notice that since F has canonical singularities, and canonical singularities are

simple in codimension 2, we see that D ∪D1 ∪ ...∪Dn is normal crossings in codi-

mension 2. This gives us Di|D ⊂
∑
Tk and that for Tk ⊂ supp(∆) the coefficient

of Tk is 1.

Furthermore, ai ≥ 1, with equality if D is a strong separatrix along Ti.

Observe that if D,D′ are two F invariant divisors then they cannot intersect

along sing(X) and so by 4.2.3, we see that Θ,∆ agree along the Si. Thus, for

C 6= Ti for all i, we have that 0 > (KDν + Θ) · C ≥ (KDν + ∆) · C.

If D is a strong separatrix, then we have that ai = 1 for all i, and so Θ =

∆ +
∑
Ei where Ei ⊂ sing(F) are such that the other separatrix along Ei is

not contained in
∑
Di, and so by supposition C 6= Ei for any i. Thus 0 >

(KDν + Θ) · C ≥ (KDν + ∆) · C.

The following corollary will be used extensively:

Corollary 4.2.5. Hypotheses as above. Let C be a KF -negative curve tangent to

the foliation. Suppose that all the separatrices in a neighborhood of C are con-

vergent, call them Di. Suppose that
∑
Di is Q-Cartier. Then C is KX +

∑
Di-

negative.

Proof. If C is not contained in singular locus of F , this follows from the first part

of 4.2.4. Otherwise, one of the separatrices call it D0 is the strong separatrix along

C, and the other separatrix is Di for some i, since by assumption all separatrices
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are convergent. Thus, writing KX +
∑
Di = KX +D0 +

∑
i≥1Di we can apply the

second part of 4.2.4 to get our conclusion.

Under additional hypotheses on the singularities of X (which we will see are

preserved by running the MMP), we have that the cone theorem holds without

any qualifications.

Proposition 4.2.6. Suppose (X,D) is klt for some D and that X is Q-factorial.

Suppose that F has non-dicritical canonical singularities, sing(X) is tangent to F
and F is terminal along the 1-dimensional components of sing(X). Then, every

KF -negative extremal ray is spanned by a rational curve tangent to the foliation.

Proof. The only extremal rays which are not guaranteed to be rational are those

spanned by curves in sing(X), which are by supposition tangent to the foliation.

Furthermore, we may assume that each such curve is in fact a flipping curve,

otherwise, if loc(R) = E is a divisor, we know that either KE or KFE is not

pseudoeffective (depending on whether or not E is invariant or not) and thus R

contains many rational curves.

Let S be the germ of a foliation invariant analytic divisor containing C. By

4.2.3 we know that KF |S = KS + n−1
n
C + ∆ where ∆ is effective and does not

contain C and n ≥ 2.

Let f : T → S be the minimal resolution of S and let C ′ be the strict transform

of C. We can write f ∗(KS + n−1
n
C + ∆) = KT + n−1

n
C ′ + Γ where Γ ≥ 0.

Observe that (C ′)2 ≤ 0, otherwise some multiple of C ′ would move, implying

that there are many curves in R, a contradiction. Thus (KT + C ′ + Γ) · C ′ < 0,

which by adjunction implies that C is rational.

The following lemma will imply that only curves tangent to the foliation will

be contracted in the course of the MMP.

Lemma 4.2.7. Suppose that (X,D) is klt for some D. Let X be Q-factorial and F
be non-dicritical, and suppose furthermore that the singularities of X are tangent

to the foliation.

Let R be a KF -negative extremal ray. Suppose that [C] ∈ R. Then C is tangent

to the foliation.
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Proof. Suppose not. Let E be an effective divisor such that E · R < 0. Thus

E · C < 0, and therefore E is transverse to the foliation. By assumption X is

smooth at the generic point of C, and by Lemma 2.6.8 E is smooth at the generic

point of C. Writing ν : E ′ → E for the normalization map and KG the foliation

induced on E ′ we have that KG + ∆ = ν∗(KF + E). Letting KF + E + A = HR

be a supporting hyperplane for R, with A ample, we have that KG + ∆ + ν∗A is a

nef divisor, and (KG + ∆ + (1− ε)ν∗A) · C < 0.

By foliation adjunction we see that KG + ∆ + ν∗A cannot be big. Thus (KG +

∆ + ν∗A)2 = 0 and so foliated bend and break applies to produce rational curves

tangent to the foliation which span the ray R.

By non-dicriticality of F , we see that G is the foliation induced by a fibration

in rational curves E ′ → B, in particular if f is a general fibre then [f ] ∈ R.

(In fact, we can show that R is KX-negative. On one hand since f can be taken

to be disjoint from the singularities of X and since f ·E, f ·KF < 0 we have that

both are ≤ −1. If we write (KG+∆) = ν∗(KF +E) then −2 ≤ (KG+∆) ·f ≤ −2.

This tells us that supp(∆) is tangent to the foliation, and so E is generically smooth

along centres transverse to the foliation. Thus if we write KE′ + ∆′ = ν∗(KX +E)

we have f ·∆′ = 0, and so (KE′ + ∆′) · f = −2. Thus (KX +E) · f = (KF +E) · f
which implies that KX · f = KF · f < 0.)

[f ] ∈ R implies that every component in any fibre is also in R, and so NE(E ′)

maps entirely into R and so KG + ∆ is anti-ample. The foliated cone theorem

for surfaces applies to show that every extremal ray in NE(E ′) is spanned by a

curve tangent to the foliation. But in this case, every curve class in E ′ has zero

intersection with f , a contradiction of the projectivity of E ′.

Remark 25. As mentioned (much) earlier, this result is necessary if we wish think

of the foliated MMP as being a relative MMP over the leaf space.

In more practical terms, this condition guarantees that our foliation singulari-

ties stay non-dicritical.

Corollary 4.2.8. Let R be an extremal ray with loc(R) = D let f : X → Y be a

contraction of R. Suppose that D is transverse to the foliation. Then D is con-

tracted to a curve Z. Furthermore the contraction is KX-negative, and so the con-
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tracted space and foliation will be smooth at the generic point of Z. Additionally, if

E ≥ 0 is any foliation invariant divisor, then the contraction is KX +E-negative.

Proof. By the proof above we see that the foliation on D is a P1-fibration and

that the extremal ray contracted is spanned by a general fibre f , and that f is

KX-negative. Thus Y is terminal at generic point of Z. Furthermore, observe

that if E is invariant, then a general choice of f will be disjoint from E and so

(KX + E) · f = KX · f < 0.

4.3 Running a special MMP

The goal of this section is to show how under some additional assumptions it

is possible to run the foliated MMP, what we will call a “special” MMP.

4.3.1 The induction set up and hypotheses

The going induction assumption for this section is that we have already con-

structed the first n steps of the MMP

(X1,F1)
f1
99K (X2,F2)

f2
99K ...(Xn,Fn)

where (X1,F1) is a smooth 3-fold and F1 is a foliation with simple singularities,

and each fi contracts a KFi-negative extremal ray.

Each fi contracts a divisor or it is a flip. If fi is a divisorial contraction, only

curves tangent to the foliation are contracted. If fi is a flip, then the flipping (and

hence flipped) curves are tangent to the foliation.

We will make the following three (strong!) hypotheses, what we will call the

Q-factoriality hypothesis, the convergence hypothesis and the irreducibility hy-

pothesis.

Hypothesis 4.3.1. Let p ∈ Xi and let Sp be a germ of a separatrix at p, then Sp

is Q-Cartier.

Hypothesis 4.3.2. If C is a flipping curve contained in sing(Fi) then all the

separatrices along C are convergent.
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Hypothesis 4.3.3. If C is connected component of the flipping locus, then C is

irreducible.

These three hypotheses are what make our MMP “special”.

By induction we may suppose

(1) there exists an analytic open set U1 ⊂ X1 such that U1 contains every

algebraic divisor contracted by the MMP and U1 contains exc(X1 99K Xi) for all

i.

Set Ui+1 = fi(Ui). If fi is a contraction, then since Ui contains the exceptional

divisor, Ui+1 is still open, and fi|Ui is still projective. If fi is a flip, then writing

Xi Xi+1

Wi

gi

gi+1

for the base of the flip, we see that since Ui contains the exceptional locus of gi,

gi(Ui) is open, Ui+1 = g−1
i+1(gi(Ui)) and the flip induces a rational map fi : Ui 99K

Ui+1. Again, gi|Ui , gi+1|Ui+1
are both projective.

(2) (Xi,∆i) has klt singularities for some ∆i and Fi has canonical non-dicritical

singularities. sing(Xi) is tangent to Fi and Fi is terminal along the generic points

of 1-dimensional components of sing(Xi).

(3) we have constructed reduced (analytic) divisor D1 + T1 on U1, invariant

under F1 such that if the strict transforms of D1, T1 on Xi are Di, Ti, then fi

is either a KUi + Di + Ti-negative contraction or a KUi + Di + Ti-flip. Here D1

consists of algebraic divisors contracted by the MMP and T1 consists of germs of

separatrices around flipping curves.

This extra inductive data in (3) is perhaps unusual so we explain its construc-

tion. The idea is to take D1 to be the sum of all the invariant divisors contracted

by the MMP, together with the strict transforms of the germs of invariant di-

visors around flipping curves, T1. By our earlier computation we know that a

KFi-negative contraction will be KUi +Di + Ti-negative.

Since such germs might only be analytic, we can only define this divisor on an

analytic open set. This passage to an analytic open set introduces a new subtlety

which one must be very careful about: when we contract an KF -negative extremal
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divisor, the resulting space is guaranteed to have globally Q-factorial singularities,

however these are in general not analytically Q-factorial. In particular, the analytic

F -invariant divisor we get by taking the germ of an analytic space around a flipping

curve is not guaranteed to be Q-Cartier in general.

In this set up, our aim is construct the next step of the MMP (Xn,Fn)
fn
99K

(Xn+1,Fn+1).

4.3.2 Preliminary computations, II

Proposition 4.3.4. (Ui, (1− ε)(Di + Ti)) is klt for all 1� ε > 0, i ≤ n.

Proof. Write ∆ε
i = (Di+Ti)−ε(Di+Ti) Each step of the MMP is KUi+∆ε

i-negative

for ε sufficiently small. Let E be divisor sitting over Ui. Suppose that fi is a flip.

Let Y be a log resolution of both Ui, Ui+1. Then by the negativity lemma for any

divisor E on Y , we know that a(Ui, Di + Ti, E) ≤ a(Ui+1, Di+1 + Ti+1, E). Thus

(Ui,∆
ε
i+1) is klt.

If fi is a divisorial contraction, then since fi∗(Di + Ti) = Di+1 + Ti+1, then

(KXi +Di + Ti)− f ∗i (KXi+1
+Di+1 + Ti+1) ≥ 0 by the negativity lemma. Thus for

any E sitting over Ui+1 we have a(Ui, Di + Ti, E) ≤ a(Ui+1, Di+1 + Ti+1, E).

Finally, since D1 + T1 is a normal crossings divisor (because F1 has simple

singularities) (U1, (D + T )ε1) is klt for all ε sufficiently small. The previous two

computations and induction imply the claim.

Corollary 4.3.5. (Xi, (1− ε)Di) is klt.

Proof. Follows from the fact that the MMP is an isomorphism outside of Ui and

the general fact that if (X,D + E) is klt, then (X,D) is klt.

Lemma 4.3.6. There exists a resolution of singularities of (Xn,Fn) g : Y → Xn

such that a(E,Fn) > 0 for every extracted divisor.

Proof. By induction we may assume that such a resolution exists for Xn−1, call it

h : Y ′ → Xn−1.

If fn contracts a divisor then taking Y = Y ′ and g = fn ◦ h gives our result.
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If fn is a flip, let Y be a resolution of the induced map Y ′ 99K Xn. Y might

extract a divisor E of discreapncy ≥ 0 over Xn−1, but the image of E on Xn will

be contained in the flipping locus so by the negativity lemma we have a(E,Fn) >

a(E,Fn−1) ≥ 0.

4.3.3 Constructing (Xn,Fn) 99K (Xn+1,Fn+1)

Proposition 4.3.7. Assume hypotheses 4.3.1, 4.3.2, 4.3.3. Then the next step of

the MMP (Xn,Fn) 99K (Xn+1,Fn+1) exists.

Proof. There are two cases, either our contraction of an extremal ray is a divisorial

contraction, or it is a flipping contraction.

We first consider the case of a divisorial contraction. Suppose that we contract

a divisor E.

First assume that E is contained in the support ofDn if E is invariant, and is not

contained in the support of Dn, but contained in Un. By our above computations

we see that this contraction is in fact KXn + Dn-negative, in particular we can

realize it as a klt contraction.

Furthermore, our above considerations show that only curves tangent to the

foliation are contracted to points.

In this case we see that Xn+1 is Q-factorial, and by our Q-factoriality hypothesis

we see that if we let Un+1 = π(Un) that Dn + Tn is Q-Cartier on Un+1.

Otherwise, let E1 be the strict transform of E on X1 and D′1 = D1 +E1 if E1 is

invariant, and = D1 otherwise. Let U ′1 = U1 ∪ V where V is a small neighborhood

of E1. By our extension results we see that we can extend every separatrix in T1

to U ′1

By our Q-factoriality hypothesis this extension will stay Q-Cartier, and further-

more by our above computations, each step in the MMP is KXi +D′i +Ti-negative

so our inductive hypotheses are satisfied and thus we may freely assume (replacing

D1 by D′1 that E ⊂ Un and E is a component of Dn if it is invariant and so we

have reduced to our previous assumption.

Next, we consider the case where our contraction is a flipping contraction,

Xn
gn−→ W . Let C be a connected component of the flipping locus.
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If C is contained in Dn or Tn then the flipping contraction is KUn + Dn +

Tn-negative and so we can realize the contraction g|Un : Un → g(Un) as a klt

contraction. In particular, by the base point free theorem if M is a supporting

hyperplane of the extremal ray we see that M = g∗nM
′ for some Q-Cartier divisor

on W . This gives us that ρ(Xn/W ) = 1.

We will now realize the foliation flip as the output of a log MMP:

It suffices to construct the flip for each connected component of the flipping

locus, so we may assume that gn(exc(gn)) = p is a point. Let p ∈ V ⊂ W be a

small enough neighborhood so that g−1
n (W ) ⊂ Un. Restricting to gn : Un → V we

would like to run a KFn-MMP over V .

An important issues arises here. In general, while every compact curve in

g−1
n (V ) spans the same extremal ray in NE(X), it might not be the case that

NE(g−1
n (V )/V ) is one dimensional.

Nevertheless, we still have each KFn-negative ray R′ in NE(g−1(V )/V ) is

spanned by some curve C, furthermore, each such curve KUn +Dn + Tn-negative,

and thus we can construct a KUn + Dn + Tn-flip of this extremal ray. But, since

KFn · R′ = t(KUn + Dn + Tn) · R where t > 0, we see that the log flip is also the

foliated flip. Continuing to run this MMP we see that each step is a step in the

KUn +Dn + Tn-MMP. Since the KUn +Dn + Tn-MMP terminates, eventually this

KFn-MMP must terminate with g+
n : U+

n → V and KF+
n

is g+
n -nef.

As before, by Artin’s theorem on the existence of modifications, we see that

there exists an algebraic space and a birational modification g+
n : Xn+1 → W

extending U+
n → V . Observe that Xn+1 is Q-factorial, and that we have the

strict transform of Tn is Q-Cartier on Un+1 (here we do not need our Q-factoriality

hypothesis).

Next, since Xn 99K Xn+1 is a sequence of flips we know that ρ(Xn+1) = ρ(Xn)

and so ρ(Xn+1/W ) = 1, furthermore, since all the flipping curves are irreducible,

we see that Xn+1 → W is projective. Finally, because KFn+1 is nef over W this

implies that it is KFn+1 is in fact g+
n -ample.

Since KFn+1 is g+-ample, for n � 0 we see that KFn+1 + ng+∗M ′ is ample on

Xn+1, and so Xn+1 is in fact projective.
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If C is not contained in Dn or Tn, then we claim there exists an analytic open

U ′1 containig U1 and C and an extension of T1 to U ′1 call it T ′n such that replacing

T1, U1 by T ′1, U
′
1 we have that C is now contained in Tn.

Supposing the claim, by our Q-factoriality hypothesis and the above computa-

tions we see that each step of the MMP is still KUi + Di + Ti-negative, and thus

we have reduced to our previous case.

To prove the claim let C ⊂ V be a small analytic neighborhood, and let S ⊂ V

be the union of the separatrices containing C. Let S1 ⊂ V1 be strict transform of

S, V back on X1.

If S1 meets some component of D1, then it must meet along sing(F1), and

therefore it must agree with some components of T1, and thus has an extension to

a neighborhood of D1.

If S1 meets some non-invariant divisor F contained in U1, then the same ar-

gument as before implies that S1 has an extension to a neighborhood of F . Thus

taking U ′1 = U1 ∪ V1 and taking T ′1 = T1 ∪ S1 gives our desired extensions.

Lemma 4.3.8. Xn+1, as constructed above, is Q-factorial.

Proof. First, assume that fn is a divisorial contraction. Since it is a klt contraction,

ρ(Xn/Xn+1) = 1. Let D be a divisor on Xn+1, and let D′ be its strict transform on

Xn. Since −(KXn+Dn) is fn-ample there exists some c such that D′+c(KXn+Dn)

is fn-trivial, and therefore there is some Q-Cartire divisr on Xn+1 such that f ∗nM =

D′ + c(KXn +Dn). Thus, we see that D = M − c(KXn+1 +Dn+1) is Q-Cartier.

Otherwise fn is a flip. Let D′ be a divisor Xn. We will show that the strict

transform of D′ on Xn+1, call it D is still Q-Cartier. It suffices to check that

this is so on a small neighborhood around the flipping/flipped locus, therefore we

may assume our foliation flip is given by a sequence of log flips, Xn = Y0 99K

Y1... 99K Y` = Xn+1. Let D1 be the strict transform of D′ on Y1, and let W1

be the base of the flip, and hi : Yi → W1 the corresponding contractions, both

of which are of relative picard number 1. Take −(KY0 + ∆0 is h0-ample, and so

D′ + c(KY0 + ∆0 is h0-trivial for some c, and so there exists M on W1 such that

h∗0M = D′ + c(KY0 + ∆0). Then h∗1M − c(KY1 + ∆1) is Q-Cartier and equivalent

to D1. We are therefore done by induction.
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Observe that this also proves that if T is a Q-Cartier divisor only defined in

a neighborhood of the flipping locus, that its strict transform in a neighborhood

of the flipped locus is still Q-Cartier. In particular, if a germ of a separatrix is

Q-Cartier, the flipped germ is still Q-Cartier.

Lemma 4.3.9. (Xn+1,∆n+1) has klt singularities for some ∆n+1, Fn+1 has canoni-

cal non-dicritical singularities. sing(Xn+1) is tangent to Fn+1 and Fn+1 is terminal

along the generic points of 1-dimensional components of sing(Xn+1).

Proof. The first claim follows from the fact tha (Xn+1, Dn+1 − εDn+1) is klt.

The fact that Fn+1 has canonical singularities is immediate because (log) termi-

nal/(log) canonical is preserved by steps of the MMP. Non-dicriticality is preserved

because if fn is a divisorial contraction then we only contracted curves tangent to

the foliation. If fn is a flip, and gn is the flipping contraction with base Wn then

FWn has non-diciritical singularities because the flipping curve is tangent to the

foliation, but this immediately implies that Fn+1 has non-dicritical singularities.

Next suppose that C is a 1-dimensional singularity of Xn+1. Either C is a

flipped curve, in which case the result follows from the fact that flipping curves are

tangent to the foliation, or it is in the image of a divisorial contraction, E → C.

If E is transverse to the foliation then Xn+1 must be terminal at the generic point

of C, hence smooth at the generic point of C. Thus E is foliation invariant, and

so C is tangent to the foliation.

For the last claim, suppose that fn is a flip and let C be contained in the flipped

locus. If E is a divisor dominating C then by the negativity lemma a(E,Fn+1) >

a(E,Fn) ≥ 0

Otherwise C is in the image of the contraction of foliation negative divisor E,

and KFn = f ∗nKFn+1 + aE where a > 0 and the result follows by induction.

The above lemmas, and the construction of fn imply that our inductive hy-

potheses (1)-(3) are all still satisfied, and thus we can always produce the next

step in the MMP. Unfortunately this is not enough to show that the MMP exists

since we do not know that this process will terminate. But we have shown:
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Proposition 4.3.10. Suppose hypotheses 4.3.1, 4.3.2, 4.3.3 and termination of

flips. Then the foliated MMP exists.

4.3.4 Invariant termination

In this section we prove a termination result for foliation flips:

Proposition 4.3.11. Suppose hypotheses 4.3.1, 4.3.2, 4.3.3. Let (X,F) be a

smooth variety and F have simple foliation singularities. Let D =
∑
Di be a col-

lection of F-invariant divisors. Suppose that D is snc. Let (X,F) = (X0,F0) 99K

(X1,F1)... be any sequence of steps of the F-MMP. Let Dj denote the strict trans-

form of D. Then, eventually the flipping locus is disjoint from sing(Fj) and Dj

The proof proceeds in several steps.

Step 1:

Claim. After finitely many flips no 1-dimensional components of the singular locus

are contained in the flipping locus. No intersection of two 1-dimensional compo-

nents of the singular locus is contained in the flipping locus.

Proof. By the work in the previous section we can realize the foliated MMP as a

log MMP for some dlt pair (X,
∑
Di +

∑
Tj), where by abuse of notation, Tj are

analytic divisors on some open subset of X.

If S is some invariant divisor then we can write KF |S = KS+
∑
kiCi+

∑ nj−1

nj
Bj

where ki ≥ 1 are integers and Ci ⊂ sing(Fk)
Without loss of generality we may assume that S is one of the Di, Tj and that

the separatrices around each component of the singular locus are contained in

Di, Tj, so by dlt adjunction, we can write (KX +
∑
Di +

∑
Tj) = KS +

∑
Ci +∑ nj−1

nj
Bj and (S,

∑
Ci +

∑ nj−1

nj
Bj) is dlt.

In particular, if Ci, Ci′ intersect, they must intersect at a smooth point of S.

Let Σ be a flipping curve, and let S be a germ of a separatrix around Σ. If Σ

meets the intersection of Ci, Ci′ , then we have that Σ · (
∑
kiCi +

∑ nj−1

nj
Bj) ≥ 2.

However, KS · Σ ≥ −2 since Σ is a flipping curve. But this is a contradiction of

the KF -negativity of Σ.
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Every time a curve in the singular locus is flipped, we know that F is terminal

along the flipped curve. In particular, the number of components of sing(F) drops.

This cannot hapenn infinitely often.

Step 2:

Claim. After finitely many flips, the flipping locus is disjoint from the singular

locus of F .

Proof. Let (X,F) 99K (X ′,F ′) be the flip. Let C be a components of the singular

locus. As above, by dlt adjunction we can write KF |C = KC +
∑
kiPi +

∑ nj−1

nj
Qj

where ki are integers, and Pi is supported on the intersection of C with other

components of the singular locus.

Suppose that C meets the flipping locus, and write C ′ for the strict transform

of C. Again, we can write KF ′|C′ = KC′ +
∑
k′iPi +

∑ n′j−1

n′j
Qj. By the negativity

lemma we know that
∑
k′iPi +

∑ n′j−1

n′j
Qj ≤

∑
kiPi +

∑ nj−1

nj
Qj with strict in-

equality for some coefficient. By our previous step we know that k′i = ki and since

{n−1
n
} has no infinite strictly decreasing sequence we see that the flipping locus

cannot meet C infinitely often.

Step 3:

Claim. After finitely many flips, the flipping locus is disjoint from Di.

Proof. Write S = Di. We first show that we cannot flip a curve into S infinitely

often. Let (X,F) 99K (X ′,F ′) be a flip, let S ′ be the strict transform and let C ′

be the flipped curve. Suppose that C ′ ⊂ S ′.

Writing KF |S = KS + ∆ and KF ′ |S′ = KS′ + ∆′ by our previous step we know

that C ′ is disjoint from b∆′c. Notice that the coefficient of C ′ in ∆′ is non-negative

and so the rational map S ′ → S extracts a divisor with non-positive discrepancy

with respect to KS + ∆. However, the centre of C ′ on S is always disjoint from

b∆c, and KS + ∆ is klt away from b∆c. There are only finitely many divisors of

non-positive discrepancies centred over the klt locus of (S,∆), and so we can only

flip a curve into S finitely many times.
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If we flip a curve out of S, then the picard rank of S drops, which can only

happen finitely many times.

Finally, if a flipping curve C intersects S, but is not conatined in S, then

C · S > 0 and so C ′ · S ′ < 0, which implies that C ′ ⊂ S ′.

This implies that the flipping locus must eventually be disjoint from S.

Applying the claim to all components of D we get the proof of the proposition.

4.4 Comments on the hypotheses in the special

MMP

While ultimately we hope to be able to deduce the existence of the MMP from

the special MMP and special termination, it will be useful to consider under which

circumstances the hypotheses used are true or false.

4.4.1 The irreducibility hypothesis

In the case of foliations by curves, McQuillan [McQ] has noticed that the ex-

istence of a connected component of the flipping locus which is not smooth is an

obstruction to the projectivity of the flip, and that such an obstruction really does

occur. However, in the case of foliations with canonical singularities he is able to

classify those foliations where this obstruction occurs.

One can view this obstruction as the failure for canonical models of foliations to

exist in general. Indeed, in the classical case one can reduce to the case where each

flipping curve is irreducible by running a relative MMP over a small neighborhood

of the base of the flip. This MMP results in a minimal model over the base, and

by taking the canonical model of this minimal model over the base we get the flip.

However, in our situation such a reduction is not possible. Later on we will see

how to address this problem in some situations.



82

4.4.2 The Q-factoriality hypothesis

In the case where F has terminal singularities, the Q-factoriality hypothesis is

not necessary.

We will need to make use of the following generalization of Malgrange’s theorem

due to Cerveau and Lins-Neto [CLN08, Corollary 1]

Lemma 4.4.1. Let X be a germ of an analytic variety at 0 ∈ CN of dimension n,

and let F be a holomorphic foliation on X∗ = X − sing(X). Suppose that:

1) X is a complete intersection,

2) dim(sing(X)) ≤ n− 3,

3) F is defined by a holomorphic 1 form ω such taht dim(sing(ω)) ≤ n− 3.

Then F has a holomorphic first integral.

Proposition 4.4.2. Suppose (X,∆) has klt singularities for some divisor ∆, and

that F has terminal singularities. Let C be curve tangent to the foliation and S a

germ of a leaf containing C. Then S is Q-Cartier.

Proof. The statement can be checked analytically locally around the singular

points of X along C, so replace everything by its germ around a singular point.

Next, if after passing to a finite cover π : Y → X we have that π−1(S) is

Q-Cartier, then S is Q-Cartier.

So, take an index 1 cover (ramified only over sing(X)) so that KX , KF are both

Cartier. Call this new cover (Y,G). KY = π∗KX and KG = π∗KF , since Y is log

terminal and KY is Cartier, this implies that Y is canonical.

By Lemma 2.3.7 we see that G is terminal.

Next we claim that Y is actually terminal. Notice that (N∗G)
[1] is a line bundle

being the difference of 2 Cartier divisors, and since Y is log terminal, we have that

the foliation discrepancies are less than or equal to the usual discrepacies, 2.3.1.

Thus, since G is terminal, this immediately implies that Y is terminal.

Y is terminal and index 1, which implies by [KM98] that it is a cDV hypersur-

face singularity, in particular Y is a complete intersection and sing(Y ) is isolated.

Notice also that G is smooth away from sing(Y ). We claim that G has a

holomorphic first integral.
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Observe that for any 0 ∈ sing(Y ), if we write Y ∗ = Y − 0 that G is defined by

global a 1-form on Y ∗ near 0. Indeed, take any generator ω of (N∗G)
[1] around 0.

Observe that since G is smooth away from 0 we have that sing(ω) ⊂ {0}.
Thus, 4.4.1 applies to show that G has a holomorphic first integral, i.e., there

is a holomorphic f : Y → C whose fibres determine G. In particular π−1(S) is

exactly (f = 0), which implies that π−1(S) is Cartier.

Remark 26. In fact, the above proof shows that if (X,F , 0) is a singularity aris-

ing in the course of the foliated MMP, then (X, 0) is a quotient of a terminal

Gorenstein singularity (Y, 0′), in particular, Y is cDV hypersurface. Thus the sin-

gularities arising in the course of the foliated MMP are at worst LCIQ.

In contrast to the terminal case, consider the following example which shows

that the Q-factoriality hypothesis is not always satisfied:

Example 14. Let (X,F) be a foliated Q-factorial threefold with a singularity 0

isomoprhic (in the analytic topology) to the cone over a quadric. Let X0 be the

formal completion of X along this singularity. Let Y → X0 be the resolution of

the vertex of the cone with exceptional divisor Q. Consider any foliation on Y

such that Q is invariant, and Q meets exactly two other invariant divisors each

one along a fibre in each ruling on Q.

This induces a foliation on X0 which can be chosen to extend to X. In this

case, each separatrix around 0 is not Q-Cartier, however their sum is Cartier.

4.4.3 The convergence hypothesis

The convergence hypothesis is perhaps the most mysterious. As we saw the

hypothesis is satisfied when X is smooth and the flipping curve is contained in a

smooth component of sing(F).

Nevertheless, it seems that one could do away with the convergence hypothesis.

We sketch the (potential) argument here:

Let Y→ Z be the formal completions of Y, Z along f−1(0), 0 respectively. Here

our formal separatrices now become divisors on Y.
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If we could run a formal log MMP over Z then by using [Art70] we could

realize this formal log MMP as an actual MMP over Z which would in turn be the

F -MMP, without needing our convergence hypothesis.

The existence of such an MMP would follow if we could deduce relative formal

versions of the theorems in the log MMP from the relative analytic versions of these

theorems. Unfortunately, the literature seems to be missing such statements.

4.5 A special relative MMP and an existence of

flips result

In this section we will show that invariant termination proves the existence of

the special MMP in a relative analytic situation, what we will call the “special

relative MMP”. Here our set up is a projective morphism of complex analytic

varieties π : Y → (Z, 0) where Z is the germ around a point 0. Let F be a

foliation on Y with canonical singularities. Suppose furthermore that exc(π) is

foliation invariant.

We will continue to need our convergence hypothesis, 4.3.2.

4.5.1 Existence of special relative MMP

The goal here is to prove the following:

Proposition 4.5.1. Suppose that Y is smooth and F has simple singularities.

Then there is a nef model of KF over Z, i.e., a pair (Y ′,F ′) birational to (Y,F)

with KF ′ π-nef.

Before proceeding we check the (easy) fact that the cone theorem holds in our

relative analytic situation:

Lemma 4.5.2. Suppose that π : Y → (Z, 0) is a projective morphism with

dim(Y ) = dim(Z) = 3. Let F be a foliation on Y with canonical singularities.

Suppose that exc(π) is foliation invariant. Then

NE(Y/Z) = NE(Y/Z)KF≥0 +
∑

R≥0[Li]
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where the Li are either rational curves tangent to the foliation with KF · Li ≥ −4

or are contained in sing(Y ).

Proof. Since the argument is in many ways simpler than the complete cone theo-

rem, we only sketch it here.

Notice first that if an extremal ray is spanned by a curve, then by assumption

this curve must be tangent to the foliation. Furthermore, if C ⊂ S where S is

a an invariant divisor containing C, either S → π(S) is bimeromorphic, π(S) is

a curve or π(S) is a point (in which case S is algebraic). In either case writing

KF |S = KS + ∆ and applying the (relative) cone theorem for surfaces gives our

result.

Let R be a KF -negative extremal ray, we see that there exists an effective

divisor S with S ·R < 0.

If S is invariant, then we see that R comes from a KS + ∆-negative extremal

ray, in which case we are done by the (usual) relative cone theorem.

If S is not invariant, let G be the induced foliation on S, and let T = π(S).

Notice that S → T must be birational and so we see that R comes from a KG+ ∆-

negative extremal ray contracted by π, in particular it is spanned by a curve.

Now we prove the proposition:

Proof. Suppose now that Y is smooth, and F has simple singularities. Let D =

π−1(0) and let W = sing(F) ∩ S. By assumption for each component Wi of W

(perhaps shrinking (Z, 0)) there exists an analytic divisor Ti such that Ti is a

separatrix along Wi. Write T =
∑
Ti. Perhaps passing to a higher model we may

assume that D + T is a snc divisor (not just normal crossings), so in particular

(Y,D + T ) is dlt.

We claim that running a KY +D+ T -MMP over Z will be the KF -MMP over

Z. In fact, since the separatrices around flipping curves are global divisors on Y ,

we see that the steps of the MMP will always keep T Q-Cartier, in particular,

for this MMP the Q-factoriality hypothesis is always satisfied. Furthermore, by

shrinking Z further, if needed, we may assume that the irreducibility hypothesis

is satisfied.
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Thus we can always realize each step of the KF -MMP as a step in the KY +

D + T -MMP over Z.

It is clear that there cannot be an infinite sequence of divisorial contractions,

and since any sequence of steps of the KY +D+T -MMP must eventually terminate,

any sequence of foliation flips must termiante. The output of this MMP is our

desired nef model.

For later reference we briefly summarize some of the properties of (Y ′,F ′):

Corollary 4.5.3. 1) The singularities are Y ′ are tangent to F ′ and F ′ is terminal

along the 1-dimensional singularities of Y ′

2) F ′ has canonical foliation singularities.

3) If D is a collection of F ′-invariant divisiors on Y ′, then (Y ′, D) is dlt.

4) Y ′ is projective over Z

5) Y ′ is Q-factorial.

In light of point 4, we make the following warning/definition:

Definition 24. By [Art70] we can use the above proposition to produce a “weak

flip”. Given f : (X,F) → Z a flipping contraction, there exists a morphism

f ′ : (X ′,F ′) → Z where KF ′ is f ′-nef. However, X ′ may only be an algebraic

space (not projective) and KF ′ might fail to be f ′-ample.

4.5.2 Special relative MMP implies the existence of some

flips

Proposition 4.5.4. Let π : X → Z be a flipping contraction. Suppose that

ρ(X/Z) = 1. If the “weak flip” X ′ → Z as constructed above is a projective

morphism, then the flip exists.

Proof. If HR is a supporting hyperplane in NE(X) to the ray corresponding to the

contraction, since ρ(X/Z) = 1 we see that HR = π∗M for some Q-Cartier divisor

M . M is therefore an ample divisor, and so Z (which is a priori just an algebraic

space) is in fact projective.
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Let π(exc(π)) = p ∈ Z. Let g : Y → X be a resolution of singularities,

furthermore we can choose this resolution so that a(E,F) > 0 for every divisor

extracted by g.

As above, perhaps replacing Z by a small neighborhood of p in Z, call it U , we

can run a MMP to find a nef model (W,KFW ) → U . As before, by Artin we can

find an algebraic space X+ → Z extending W → U , and a foliation KF+ which is

nef over Z.

Next, notice that X+ is Q-factorial, and so by the negativity lemma every

divisor extracted by g must be contracted in X+.

Thus we have ρ(X+) = ρ(X), and so ρ(X+/Z) = 1. But this implies that

KF+ must be ample over Z, and not just nef. Furthermore if π+ : X+ → Z is the

induced map then KF+ + mπ+∗M is ample for m � 0, and so X+ is projective,

and is therefore the flip.

The above lemma can be seen as showing that the challenge in constructing

the flip is to pass from a model over Z where KF is nef, the minimal model, to a

model over Z where KF is ample, the canonical model. As the next example, due

to McQuillan, shows this is not always possible.

Example 15. Let (X,F) be a surface foliation which has an elliptic Gorenstein

leaf (e.g.l.). F may be chosen so that KF is big and nef. However, KF is not semi-

ample. In particular, Q-Gorenstein canonical models of foliations do not always

exist.

As noted earlier, in the case where every connected component of the flipping

locus is irreducible, the “weak flip” is projective, and therefore ρ(X/Z) = 1 is

enough to guarantee the existence of the flip.

Denoting (Y ′, D′ + T ′) the output of this MMP, we see (Y ′, D′ + T ′) is dlt and

that for any C mapping to a point in Z we still have thatKF ′ ·C ≥ (KY ′+D
′+T ′)·C,

in particular KF ′ − (KY ′+D′+ T ′) is big and nef over Z. Thus, if the base point

free theorem held for the dlt pair (Y ′, D′+T ′) the F -canonical model would exist,

for example, if D′ + T ′ is LSEPD.
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Corollary 4.5.5. Suppose that (X,F) is a step of the MMP, and that F has

terminal singularities. Let f : X → Z be a flipping contraction. Then the flip

exists.

Proof. As before, we may assume that we are working in the neighborhood of a

connected component of exc(f). Let C be the connected component.

We have the following sequence

0→ Pic(Z)⊗Q f∗−→ Pic(X)⊗Q→ Q

where the last arrow is given by intersecting with C. Thus, to prove ρ(X/Z) = 1

it suffices to show that if M · C = 0 then M = f ∗M ′ for some M ′.

Let S be the germ of a separatrix around C, and let p = f(C). Let U be a small

neighborhood around p so that S is defined on W = f−1(U). As above we know

that (W,S− εS) is klt for ε sufficiently small, and that −(KW +S) is f -ample. For

n� 0 we have that nM |W − (KW +(1− ε)S) is ample, and so the relative analytic

base point free theorem applies to show that M |W is semi-ample over W , hence

for some sufficiently large n, nM is pulled back from a Cartier divisor nM ′ on U .

Since f is an isomorphism away from C, it is easy to extend nM ′ to a Cartier

divisor on all of Z, and the result follows. In particular, Z is projective.

Now let (W ′,F ′) f ′−→ V be the weak flip as constructed above, i.e. KF ′ is nef

over V , but not necessarily ample. Notice that since F is terminal every separatrix

in a neighborhood of C is convergent, and so the convergence hypothesis is satisfied.

Furthermore, we know that W 99K W ′ is an isomorphism in codimension 1.

We claim that we can construct a canonical model of KF ′ over V . Again, since

F is terminal we see that KF ·Σ = (KX +S) ·Σ for all Σ contracted by f . Indeed,

since F is terminal this implies that if we write KF |S = KS + ∆ and if we write

(KX + S)|S = KS + Θ then ∆ = Θ.

Letting S ′ be the strict transform of S we see thatKF ′−(KX′+S
′) is numerically

trivial over V , hence it is big and nef over V . We have that (W ′, S ′) is dlt, and

our goal is to be able apply the base point free theorem to KF ′ .

Write S = KF−KX , since f is a contraction of Picard rank 1, this implies that
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S =num λKF for some λ ∈ Q, and so S ′ =num λKF ′ . In particular, either S ′ is nef

or −S ′ is nef over V , and if Σ is contracted by f ′ we have KF ′ · Σ = 0 if and only

if S ′ · Σ = 0. In particular for 1� δ > 0 and m� 0 we know that mKF ′ + δS ′ is

nef over V .

Thus for large enough m, and small enough δ, mKF ′ − (KW ′ + (1− δ)S ′) is big

and nef over V , and (X ′, (1− δ)S ′) is klt. Thus, we may apply the base point free

theorem to conclude that KF ′ is semi-ample.

Let φ : W ′ → W+ be the induced map over Z such that there is an ample

divisor A over Z such that KF ′ = φ∗A.

Since W ′ → Z is small, we see that φ is small, and since KF+ = φ∗KF we get

that KF+ is ample over V .

As usual, we can realize the flip X 99K X+ in the category of algebraic spaces,

and since KF+ is ample over Z we get that X+ is in fact projective.

Remark 27. Notice that the above result does not assume any of our earlier hy-

potheses, and therefore gives an unqualified existence of flips statement.

The argument is a special case of the more general statement that if KF is

numerically equivalent over Z to KX +D where D is the sum of our separatrices,

then the flip exists. It is unclear what sort of conditions could guarantee this

numerical equivalence statement, since it is not true in general.

4.6 MMP under fewer hypotheses

Suppose that (X,F) is a smooth 3-fold and F a foliation with simple singular-

ities. Let D =
∑
Di be a collection of F -invariant divisors. Denote We know that

every divisorial contraction in the MMP is KXn +Dn-negative. If there are no flips

in the MMP, then our earlier computations show that each of these contractions

can be realized as a klt contraction.

However, a KFn-flip is not always a KXn + Dn-flip, and so we cannot see

immediately that (Xn+1, Dn+1 − εDn+1) is klt.

Lemma 4.6.1. Let (Xn,Fn) 99K (Xn+1,Fn+1) be a foliation flip. Then (Xn+1, Dn+1−
εDn+1) is klt.
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Proof. Away from the flipping locus the result is clear. In a small neighborhood

of the flipped locus, by 4.5.3 item 4 we see that (Xn+1, D − εD) is klt for any

collection of invariant divisors, in particular, (Xn+1, Dn+1 − εDn+1) is klt.

We can therefore partly summarize the work of the previous sections by

Proposition 4.6.2. Suppose X is smooth and F has simple singularities. Assume

(i) termination of flips

(ii) all flips encountered in running the MMP for (X,F) are terminal.

Then the MMP for (X,F) exists.

Remark 28. While we could have phrased this as requiring that F be terminal,

this would would have implied that F is in fact smooth, hence the reason for the

formulation of (ii).

4.6.1 Termination of flips

As noted any sequence of divisorial contractions must terminate, thus the chal-

lenge is therefore to show that flips terminate.

In the classical case, the termination of threefold flips turns out to be easy, we

sketch the argument here:

Given X a canonical threefold define d(X), the difficulty, to be the number

of divisors above X with discrepancy < 1. It is easy to see that the difficulty is

finite, and one can show that the difficulty never increases under flips, and after

enough flips must eventually go down. This implies immediately that there can be

no infinite sequence of flips.

In the case of a foliation with canonical singularities, the situation is more

subtle. If we try to define the foliated difficulty, i.e., the number of divisors above

X with discrepancy < 1, we see that any canonical non-terminal singularity with

have infinitely many divisors with discrepancy = 0. Indeed, blowing up a surface

singularity repeatedly along its singular locus furnishes such an example. One can

therefore view the problem as the fact that there is in general no way to resolve a

singular foliation into a smooth one.
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Alternatively, the challenge can be viewed as comparable to showing in the

classical case that a sequence of (X,∆) flips terminates where ∆ is log canonical,

but not klt.

In the case of rank 1 foliations, a flip must always decrease the number of

components of the singular locus, and thus any sequence of flips must terminate.

However, this is not true in general for co-rank 1 foliations. At any rate, it does

not seem like there is an easy numerical reason for termination of foliation flips.

4.6.2 Some foliated conjectures of Shokurov and termina-

tion

We make the following foliated versions of two conjectures due to Shokurov:

Conjecture 4.6.3. Let F be a co-rank 1 foliation. The function mld(x,F ,∆)

which assigns to a point the minimal foliated log discrepancy at that point is lower

semicontinuous, i.e., the function only “jumps down”.

Conjecture 4.6.4. Denote by Ln the set of all a ∈ Q such that a is the log

discrepancy of some co-rank 1 foliation on some variety of dimension n. Then Ln

satisfies the ACC.

Observe that as stated the first conjecture is false for rank 1 foliations on 3-folds

(even smooth threefolds):

Example 16. Consider the foliation L on C3 given by ∂x + z∂y. For x ∈ R ≤ 0,

mld(x,L, ∅) = −1 if x is rational and 0 otherwise.

Proposition 4.6.5. These conjectures are true for toric foliations.

Proof. This follows from the fact that the classical versions of conjectures are true

for toric varieties, and from our results on toric foliations.

Proposition 4.6.6. These conjectures are true for Q-Gorenstein surface foliations

with canonical singularities.

Proof. This follows directly from the classification of Q-Gorenstein canonical sin-

gularities due to [McQ08].
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Observe that lower semicontinuity of foliated log discrepancies immediately

implies that the minimal log discrepancy at any point is n. To see this, observe

that any point is a limit of smooth points, which have m.l.d. exactly n and the

result follows. The same result applies to generic points.

In the classical setting, these conjectures imply termination of flips. Thus, one

may wonder if the foliated versions of these conjectures imply foliated termination

of flips.

We will argue that this is true for the threefold case:

Proof. Let φi : Xi 99K Xi+1 be an infinite sequence of flips, with exceptional

locus Ei. Notice that Ei is a curve. Let ai be the log discrepancy along Ei.

Let αi = inf{aj : j ≥ i}, then αi is increasing, and by conjecture is eventually

constant, call this value a.

Let Wi = {x ∈ X : x ∈ V, dim(V ) = 1,mld(V,F ,∆) ≤ a}
Observe that the log discrepancy along any curve in Wi is at most a, with

equality for a general curve in Wi. If Wi is one dimensional for all i sufficiently

large, then in fact eventually the flipping locus cannot be contained in Wi

Thus, for i sufficiently large, we may assume that Wi 99K Wi+1 is birational.

Let Zi ⊂ Wi be those curves with minimal log discrepancy strictly less than a,

which is equal to the set of those curves with log discrepancy less than or equal

to a− ε for some ε. In particular Zi is closed. Let zi be the number of irreducible

components of Zi.

Thus zi ≥ zi+1, with equality if the flipping locus is not contained in Zi, and

for a sequence of flips whose flipping/flipped loci are all contained in Zi, eventually

strict inequality.

Indeed, the log discrepancy along the flipped locus is greater than the log

discrepancy along the flipping locus unless there is a point along the flipping locus

with mld less than the mld at the generic point of the flipping locus.

But, observing that the mld of any point along the flipped locus is greater than

the minimum mld of points on the flipping locus, we see that this issue can only

happen finitely many times, since eventually the flipping locus is disjoint from

those points with mld < a, or the number of points with mld less than a − ε for
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some ε decreases.

Thus we see that the pairs (ρ(Wi), zi) are strictly decreasing under lexicographic

order under flips. In particular, any sequence of flips must terminate.

Unfortunately, these conjectures are probably very hard. Indeed, very little

is known about them in the classical case and the cases which are known largely

proceed by explicit classification of singularities.

4.7 Toric foliated MMP

Definition 25. Let X be a toric variety. Let F be a foliation on X. We say that

F is toric provided that it is invariant under the torus action on X.

Lemma 4.7.1. Let F be a co-rank 1 toric foliation. Then KF = −
∑
Dτ where

the sum is over all the torus invariant and non-F-invariant divisors.

Proof. By passing to a toric resolution π : (X ′,F ′)→ (X,F), and noting that the

strict transform of a divisor D is torus and F ′-invariant if and only if it is torus

and F -invariant, we see that it suffices to prove the result on a resolution of X.

Thus we may assume that X is smooth.

Observe that F is defined by a rational torus invariant 1-form ω. Working in

torus coordinates x1, ..., xn, we see that ω =
∑
λi

dxi
xi

. Where λi ∈ C. λi 6= 0 if and

only if the divisor associated to {xi = 0} is foliation invariant. In particular ω has

a pole of order 1 along each torus and F -invariant divisor. Thus NF is equivalent

to the sum of the torus and foliation invariant divisors, and the result follows.

Definition 26. Let σ be a cone in a fan ∆ defining a toric variety. Let D(σ)

denote the closed subvariety corresponding to σ.

Remark 29. We note that if τ = 〈v1, ..., vn〉 is a full dimensional cone in the fan

defining X, then this argument in fact shows D(vi) is F-invariant for some i.

Furthermore, if w = 〈v1, ..., vn−1〉 is a codimension 1 cone in the fan, then D(w)

is tangent to F if and only if D(vi) is invariant for some i.

Remark 30. Let p ∈ sing(F). Observe that every separatrix at p is convergent.
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We also make the following simple observation:

Proposition 4.7.2. Suppose that F is defined by ω =
∑n

i=1 λi
dxi
xi

. If λi = 0 for

some i, then ω, and hence F , is pulled back along some dominant rational map

f : X 99K Y . In particular, if KF is not nef, then F is a pull back.

Proof. Suppose for sake of contradiction that F is not a pull back. This remains

true after passing to a resolution of singularities of X. Let F ′ be the transformed

foliation. Since F ′ is not a pull back we have that every torus invariant divisor is

also F ′ invariant, thus KF ′ , and hence KF is trivial.

We show that the cone theorem holds for co-rank 1 toric foliations in all

dimensions- first we have the following result:

Theorem 4.7.3. Let F be a toric foliation with canonical singularities. Let C be

a curve in X, and KF .C < 0, then [C] = [M ] + α where M is a torus invariant

curve tangent to the foliation, and α is a pseudo-effective class.

Proof. By [Mat02], we can write

C =
∑

tangent to F

auD(u) +
∑

not tangent to F

bwD(w)

and where u,w run over the codimension 1 subcones of the fan.

We show that some au can be taken to be non-zero. Assume the contrary, that

au = 0 for all u.

Since D(w) is not tangent to the foliation, we have that if w = 〈v1, ..., vn−1〉,
then all the D(vi) are not foliation invariant.

In order to have KF · C < 0, we must have D(w) · D(vi) > 0 for some w, vi.

Let τ, τ ′ be the two full dimensional cones which are spanned by w and vn, vn+1

respectively. Then τ ∪ τ ′ must be concave along 〈v1, ..., v̂i, ..., vn−1〉.
Thus, there must be σ1, ..., σr cones in our fan such that τ ∪ τ ′

⋃r
i=1 σi is a

convex subcone of our fan. Furthermore, we know that both D(vn) and D(vn+1)

are foliation invariant. By [Mat02] 〈v1, ..., v̂i, ..., vn−1, vn〉 or 〈v1, ..., v̂i, ..., vn−1, vn+1〉
are in the same extremal ray as D(w), and both correspond to torus invariant curve

tangent to the foliation.
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Thus, in the extremal ray spanned by D(w) there is a curve tangent to the

foliation.

Thus, we have

Corollary 4.7.4. Let F be a co-rank 1, toric foliation with non-dicritical singular-

ities. Then, NE(X)KF<0 =
∑

R+[Mi] where the Mi are torus invariant rational

curves tangent to the foliation.

Lemma 4.7.5. Let R be a KF -negative ray. Then there is a contraction corre-

sponding to this extremal ray, and falls into one of the following types:

(i) Fibre type contractions.

(ii) Divisorial contractions.

(iii) Small contractions.

Furthermore, in cases (i) and (ii) if a curve is contracted, it is tangent to the

foliation. In particular, after a contraction of type (i) or (ii) if F has non-dicritical

singularities, the resulting foliation will still have non-dicritical singularities.

Proof. We know that the contraction exists, what is unclear if the curves being

contracted are tangent to the foliation. By our cone theorem for toric foliations

we know that some curve contracted is tangent to the foliation, however, it might

be the case that there is a contracted curve transverse to the foliation.

In case (i) suppose that π : X → Z is the contraction and Y is a general fibre.

Suppose for sake of contradiction that Y is not tangent to the foliation. Then

there is an induced foliation on Y , call it KG and KG is negative on every curve

in Y and furthermore ρ(Y ) = 1. However, this implies that G must have dicritical

singularities, implying that F does as well- a contradiction. Finally, if a general

fibre is tangent to the foliation, then every fibre is.

In case (ii), if D is the divisor contracted by π, and if D is invariant, the result

is immediate. Otherwise D is transverse to the foliation, and thus we have an

induced foliation on D, keeping in mind that D · R < 0 we see that the induced

foliation is still negative on R. Thus, π induces fibre type contraction D → π(D),

and the result follows by case (i).

We now handle the flipping case:
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Lemma 4.7.6. In the case of a small contraction, the flip exists and no infinite

sequence of flips exsits. Furthermore, if F has canonical and non-dicritical singu-

larities, then the flipped foliation, F+ does as well.

Proof. The existence and termination of the flip can be seen by the fact that

toric log flips exist and terminate. Lemma 10.12 implies that F+ has canonical

singularities.

What remains to be shown is the claim about the non-dicriticalness of F+. Let

S be the flipping locus of F .

Non-dicriticalness of F+ follows easily if either S is contained in sing(F) or if

it is tangent to the foliation.

So, suppose that S is transverse to the foliation. Let f : X → Z be the

contraction, and let T be a fibre of f . Suppose for sake of contradiction that T is

transverse to the foliation. Notice that the Picard number of T is 1. Furthermore,

observe that the foliation restricted to T , FT , has −KFT ample. However, this

implies that FT is pulled back along a rational map T 99K W , a contradiction of

the non-dicritcality of F .

Thus, the foliation restricted to S is the fibration induced by f . If T is a general

fibre, then there exists an analytic germ of a hypersurface containing T which is

foliation invariant. Call this hypersurface YT . If F+ failed to be non-dicritical,

then for infinitely many fibres T , the strict transforms of YT would intersect. How-

ever, this implies that F+ is dicritical along a codimension 2 singularity, which

contradicts the fact that F+ has canonical singularities.

Putting all this together:

Theorem 4.7.7. The foliated toric MMP exists, and ends either with a foliation

where KF is nef, or with a fibration π : X → Z and F is pulled back from a

foliation on Z.

Proof. If KF is not nef, there is an extremal ray on which KF is negative. We can

contract this ray resulting in a either:

(i) a fibration, in which case we stop.
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(ii) a divisorial contraction, in which case we repeat with the new variety.

(iii) a flipping contraction, in which case we perform the flip.

Each of these steps can happen only finitely many times.

Portions of the work in the above chapter is being prepared for submission for

publication.

Spicer, Calum ”Higher dimensional foliated Mori Theory”.

The dissertation author was the primary investigator and author of this mate-

rial.



Chapter 5

Applications to classification

problems

In the Kodaira-Enriques classification, smooth projective surfaces are classied

in terms of their Kodaira dimension. For foliations on smooth surfaces Brunella,

McQuillan and Mendes have performed a similar classification in terms of the

Kodaira dimension and numerical dimension. We recall the definitions of these

quantities:

Definition 27. Let D be a R-Cartier divisor on a normal variety X. We define

the Kodaira dimension by

κ(D) = limsupm→∞
log(h0(X,O(mD)))

log(m)

If D is nef we define the numerical dimension by

ν(D) = max{k : Dk 6= 0}

. If D is not pseudo-effective we set ν(D) = −∞.

If D is not nef it is still possible to define ν(D) in a way which agrees with the

definition here, but we will not need this.

We collect the following standard facts

98
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Lemma 5.0.1. Let dim(X) = n. (i) ν(D) ≥ κ(D)

(ii) If ν(D) = n then κ(D) = n.

(iii) If h0(X,O(mD)) = 0 for all m, then κ(D) = −∞.

Definition 28. Given a variety X or a foliation F we define κ(X) = κ(KX) and

κ(F) = κ(KF), and likewise for ν.

In the course of the Kodaira-Enriques classification it turns out that κ(X) =

ν(X). Intrestingly this fails for F , in fact the subtlest point of the Brunella-

McQuillan-Mendes classification is classifying those foliations with κ(F) 6= ν(F).

In these next few subsections we will perform a partial classification of smooth

foliations in terms of κ, ν.

5.1 Smooth foliations with ν = 0

Smooth foliations with c1(KF) = 0 have been classified by Touzet [Tou08]

Theorem 5.1.1. Let X be a complex projective manifold and let F be a smooth co-

rank 1 foliation with KF =num 0. Then F fits into one of the following categories:

A) X is a P1 bundle over a manifold Y with KY = 0 and F induces a flat

connection on the bundle.

B) There is an etale cover π : A × Y → X where A is an abelian variety and

π∗F is the pull back of a co rank 1 linear foliation on A.

C) There exists a curve B with g(B) ≥ 2, a manifold Y with KY = 0 and an

etale cover π : Y ×B → X such that π∗F is induced by the fibration over B.

Corollary 5.1.2. Let (X,F) be a smooth rank 2 foliation on a smooth threefold.

Suppose that ν(F) = 0. Then F is birational to one of the foliations above.

Proof. Run the foliated MMP starting from (X,F). This exists and terminates

because F is smooth. Let (Y,G) be the output of the MMP. Then ν(G) = 0

and G is nef which implies that c1(KG) = 0. We are therefore done by Touzet’s

classification.
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Corollary 5.1.3. Let (X,F) be a smooth rank 2 foliation on a smooth threefold.

If ν(F) = 0 then κ(F) = 0.

Proof. The first claim follows from the above result and Touzet’s classification.

5.2 Smooth foliations with ν = κ = 1

We need the following simple fact:

Lemma 5.2.1. Let D be a nef divisor with ν(D) = κ(D) = 1. Then D is semi-

ample.

Proposition 5.2.2. Let (X,F) be a smooth foliation with ν(F) = 1 and κ(F) = 1.

Then (X,F) is birational to one of the following:

1) A non-isotrivial fibration of Calabi-Yau surfaces.

2) There is a fibration f : X → B with general fibre transverse to the foliation.

Furthermore, the foliation induced on a general fibre is of type A, B or C in Touzet’s

classification.

Proof. Run the foliated MMP to get (Y,G) with KG nef and ν(G) = κ(G) = 1.

By our above lemma this implies that KG is semi-ample. Let f : X → B be the

fibration coming from KG where B is a curve. We have that KG = f ∗M for some

divisor M on B.

We have two cases, either (i) G is tangent to f or (ii) it is transverse to f .

Case (i): If G is tangent to the fibration, then the two must agree. Even

though G is smooth, the fibration is not necessarily smooth due to the possibility

of non-reduced fibres. However, up to a finite cover we know that the fibration is

smooth.

If S is a general fibre, then 0 = KG|S = KS, and so G is a fibration in surfaces

with trivial canonical bundle. Notice that f cannot be isotrivial, since otherwise

c1(KG) = 0, contrary to supposition.

Case (ii): If G is transverse to the fibration, let F be a general fibre. Then there

is an induced foliation H on F . By foliation adjunction we get that KH + ∆ = 0

where ∆ ≥ 0.
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If ∆ is non-zero, then KH is not pseudoeffective, and soH is a rational fibration.

However, ∆ must also be tangent to the fibration, and this is a contradiction.

Indeed, if L is a general leaf of H then L ·∆ = 0, and so L · (KH + ∆) = −2 6= 0.

Thus, we see that for a general fibre ∆ must be zero.

If ∆ = 0, then KH = 0. In this case, we see that either a fibre is everywhere

transverse to the foliation or it is tangent to the foliation. This implies that for

a general fibre H will be smooth. By the classification of smooth foliations with

KH = 0. We apply Touzet’s classifcation to conclude.

It is possible that we have some fibres tangent to the foliation, even if the

general fibre is transverse to the foliation. In this case we know that KG|S = KS

and so S must be a Calabi-Yau surface.

Remark 31. The only essential use of smoothness of F was in using the MMP.

Indeed, assuming the complete MMP, the classification in this section still holds

true.

Remark 32. There are examples of foliations with ν = 1 and κ = −∞, it is

unclear if there are examples with ν = 1 and κ = 0.

5.3 Foliations with ν = 3

Proposition 5.3.1. Let F be a foliation with canonical singularities on a smooth

threefold X such that KF is big and nef. Suppose that there are no nonconstant

morphisms C → X where g(C) ≤ 1, then KF is ample.

Proof. Write KF = A + E where A is ample and E is effective. We have that

K3
F > 0.

Suppose that KF ·C = 0 for some curve C. Then S ·C < 0 for some component

of E. There are three cases, either (i) C 6⊂ sing(F) is tangent to the foliation, (ii)

it is transverse or (iii) C ⊂ sing(F).

In case (i) let T be the germ of a leaf containing C. Then (KX + T ) · C = 0

and (KX + T + tS) · C < 0 for all t > 0. Since (X,T ) is log terminal along C, let

t0 be the log canonical threshold of (KX + T + tS) along C, then (KX + T + t0S) ·
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C < 0. However, by Kawamata subadjunction this implies that C is rational, a

contradiction.

In case (ii) S must also be transverse to the foliation. As above, we can use

Lemma 2.6.8 to see that S is smooth at the generic point of C. Thus write

(KF + S)|Sν = KG + ∆ and notice that (KG + ∆) · C < 0.

Let (T,H)
f−→ (Sν ,G) be the foliated terminalization, i.e., a resolution followed

by an application of the relative foliated MMP for surfaces, then writing KH+Γ =

f ∗(KG + ∆) we have that T is Q-factorial and (KH + Γ) · f−1
∗ C < 0. This implies

that f−1
∗ C is a nef divisor, and so we can apply bend and break to produce rational

curves, a contradiction.

In case (iii) by our earlier computations we see that KF |C = KC + ∆ where

∆ ≥ 0, in which case C is either rational or of genus 1, in either case this is a

contradiction.

Suppose S is a surface with K2
F · S = 0. We can therefore write E = tS + E ′

where t > 0. Again, either (i) S is invariant or (ii) it is not.

In case (i) KF |S = KS. Thus K2
S = 0. By the Kodaira-Enriques classification

of surfaces, we see that S is covered by elliptic curves, a contradiction.

In case (ii) we have KF · (A + E) · S = −t(KF · S2, but since KF |S · A|S > 0

the right hand side must be strictly positive and so KF |S · S|S < 0.

Thus we can write KF |S ·(KF+S)|S < 0. But if we write (KF+S)|Sν = KG+∆

we get that KG ·M < 0 for a nef divisor M , and so we can apply bend and break

to produce rational curves, a contradiction.

As noted earlier, in general, canonical Q-Gorenstein models of foliations do not

exist, which is to say if KF is big and nef in general there is no birational morphism

(X,F) → (Y,G) such that KG is Q-Cartier and ample. Among other things, the

above result tells us (perhaps unsurprisingly) that rational and genus 1 curves are

the obstructions to a minimal model being canonical.

Portions of the work in the above chapter is being prepared for submission for

publication.

Spicer, Calum ”Higher dimensional foliated Mori Theory”.
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The dissertation author was the primary investigator and author of this mate-

rial.
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[HP] A. Höring and T. Peternell. Minimal models for Kähler threefolds.

[HX] C. Hacon and C. Xu. On the three dimensional minimal model program
in positive characteristic.

[Kaw98] Y. Kawamata. Subadjunction of log canonical divisors. II. Amer. J.
Math., 120(5):893–899, 1998.

[KM98] J. Kollár and S. Mori. Birational geometry of algebraic varieties, vol-
ume 134 of Cambridge tracts in mathematics. Cambridge University
Press, 1998.

[KMM94] S. Keel, K. Matsuki, and J. McKernan. Log abundance theorem for
threefolds. Duke Math. J., 75(1):99–119, 1994.

[Kol91] János Kollár. Extremal rays on smooth threefolds. Ann. Sci. École
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