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A computationally efficient exact pseudopotential method. I. Analytic
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Los Angeles, California 90095-1569
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Even with modern computers, it is still not possible to solve the Schrödinger equation exactly for
systems with more than a handful of electrons. For many systems, the deeply bound core electrons
serve merely as placeholders and only a few valence electrons participate in the chemical process of
interest. Pseudopotential theory takes advantage of this fact to reduce the dimensionality of a
multielectron chemical problem: the Schrödinger equation is solved only for the valence electrons,
and the effects of the core electrons are included implicitly via an extra term in the Hamiltonian
known as the pseudopotential. Phillips and Kleinman �PK� �Phys. Rev. 116, 287 �1959��.
demonstrated that it is possible to derive a pseudopotential that guarantees that the valence electron
wave function is orthogonal to the �implicitly included� core electron wave functions. The PK
theory, however, is expensive to implement since the pseudopotential is nonlocal and its
computation involves iterative evaluation of the full Hamiltonian. In this paper, we present an
analytically exact reformulation of the PK pseudopotential theory. Our reformulation has the
advantage that it greatly simplifies the expressions that need to be evaluated during the iterative
determination of the pseudopotential, greatly increasing the computational efficiency. We
demonstrate our new formalism by calculating the pseudopotential for the 3s valence electron of the
Na atom, and in the subsequent paper, we show that pseudopotentials for molecules as complex as
tetrahydrofuran can be calculated with our formalism in only a few seconds. Our reformulation also
provides a clear geometric interpretation of how the constraint equations in the PK theory, which are
required to obtain a unique solution, are themselves sufficient to calculate the pseudopotential.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2218834�
I. INTRODUCTION

In principle, quantum mechanics is not hard; after all, it
requires solving only a single well-defined equation: the
Schrödinger equation. Yet, for systems where more than a
few electrons are involved, even high-power computers can-
not manage to solve this equation exactly. Therefore, to
make computational progress on many-electron systems, it is
imperative to find accurate methods for reducing the number
of electronic degrees of freedom. One of the most common
reduction methodologies is to differentiate between core
electrons and valence electrons. Broadly defined, the core
electrons are those low-energy electrons that remain rela-
tively static during most chemical processes and act essen-
tially as placeholders; by extension, the valence electrons are
those that actively participate in chemical structure and dy-
namics. The specific way in which the separation between
valence and core electrons is determined depends on the sys-
tem of interest. For atoms and molecules, the valence elec-
trons would be those in the highest energy shell and the
remaining electrons would be the core electrons. For solids,
the valence electrons would be those that contribute to the
valence and conduction bands and the core electrons would
be those that remain fixed to the atomic centers. For the
scattering of an electron off a closed-shell molecule, the va-
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lence electron would be the scattered electron and the core
electrons would be all the electrons bound to the molecule.

Given a particular choice of valence and core electrons,
our goal is to develop a means to exclude the core electrons
from the explicit calculation of the valence electron wave
function. However, to accurately calculate the properties of
the valence electrons, some implicit information related to
the presence of the core electrons must be retained. Regard-
less of how this is accomplished, the quality of the calculated
valence wave function depends on how well the implicitly
included core electron information approximates the true
many-electron potential in the region of interest. One com-
mon method for approximating the contribution of the core
electrons to the valence electron wave function is to use a
pseudopotential.1,2 There are two major strains of pseudopo-
tential theory,1 model potentials and Phillips-Kleinman �PK�-
type potentials. Model potentials are generally not derived
from a set of well-defined postulates but are adjusted empiri-
cally or semiempirically to reproduce the desired properties
of the system, e.g., the valence electron energies. In contrast,
PK pseudopotentials, which are used in a variety of fields
�see, e.g. Refs. 3–6�, are based on a rigorously derivable
quantum mechanical formalism, although such pseudopoten-
tials are still typically calculated approximately, for example,
by neglecting exchange terms.7 In fact, as far as we are

aware, there are no reports of exact PK pseudopotentials be-

© 2006 American Institute of Physics02-1
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ing calculated even for small molecules; up until now, appli-
cation of the exact PK theory has been restricted to
atoms.1,8–12

The reason that exact PK pseudopotentials have not been
calculated for molecular systems is that such calculations
have been expensive enough that additional approximations
are required, often making the model approach more desir-
able. The challenge of building accurate model potentials, in
turn, is that they require good intuition for the electronic
wave functions. For atoms, the core wave functions are rela-
tively simple and well understood; thus, very accurate mod-
els can be created, and many of these have found utility in
solid-state calculations.2 For molecules, however, the same
level of intuitive knowledge is usually not available due to
the complexity and variety of molecular wave functions.
Since the model approach becomes increasingly less reliable
for more complex systems, there is clearly a need to extend
the analytically rigorous PK pseudopotential theory to sys-
tems that it currently cannot handle.

In this paper, we introduce an analytically exact refor-
mulation of the standard PK pseudopotential theory that not
only provides a large reduction in computational effort but
also is more physically transparent. As we will show below,
our formulation allows the calculation of exact PK pseudo-
potentials without the need to evaluate the computationally
expensive potential energy operator. The rest of this paper is
organized as follows: First, a brief discussion of PK pseudo-
potential theory will be given in Sec. II A. In Sec. II B, we
will present our new computationally efficient pseudopoten-
tial formalism and provide a geometric interpretation of how
the new equations furnish a rigorous effective potential. In
Sec. II C, we discuss the computational implications of our
reformulated pseudopotential theory. In Sec. III, we demon-
strate the practicality of the new formalism by computing the
pseudopotential for the interaction of a valence electron with
a sodium cation. We finish with a few concluding remarks in
Sec. IV, and we demonstrate explicitly the connection of our
new formalism to the earlier work of Cohen and Heine8 in
the Appendix. In the subsequent paper, we work through the
details of some of the implementation issues and demon-
strate the efficiency of our new formalism by calculating the
exact PK pseudopotential for an excess electron interacting
with a molecule of tetrahydrofuran.

II. A NEW, EXACT PSEUDOPOTENTIAL FORMALISM
FOR OBTAINING UNIQUE PSEUDO-ORBITAL
SOLUTIONS

To place our work in context, in Sec. II A we present a
derivation of the PK pseudopotential formalism, which can
be applied to any system where the core/valence electron
separation is a good approximation. We will focus our dis-
cussion on the development of the pseudopotential for the
case of only one valence electron, but the formalism can be
extended to treat multiple valence electrons in a straightfor-
ward manner �see, e.g., Ref. 1 and references therein�. We
introduce and provide a geometric interpretation of our new
formalism in Sec. II B, and we conclude this section by dis-
cussing the computational advantages gained through our re-

formulation in Sec. II C
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A. Basic PK pseudopotential theory

For a given multielectron Hamiltonian �e.g., the Hartree-

Fock �HF� Hamiltonian�, Ĥ= T̂+ Û, where T̂ is the kinetic

energy operator and Û is the potential energy operator, the
core electron wave functions �of which there are ncore� are
defined by the Schrödinger equation

Ĥ��i� = �i��i� �i = 1,ncore� . �1�

The valence electron wave function for this same Hamil-
tonian is given by

Ĥ��v� = ���v� . �2�

Of course, the valence electron wave function is orthogonal
to all of the core electron wave functions ���v ��i�=0 for all
i�, and this orthogonality must always be preserved, even if
the core electrons are no longer treated explicitly. One way
to guarantee this orthogonality is to write the valence elec-
tron wave function in a basis set that is a priori orthogonal-
ized to the core electrons. This preorthogonalization is the
foundation of pseudopotential theory. Using this idea, we can
orthogonalize any arbitrary basis set ��fn�	 to the core elec-
tron wave functions by defining

��n� = �fn� − 

i=1

ncore

��i�fn���i� , �3�

where each member of the new basis set, ���n�	, satisfies
��n ��i�=0 for each ��i�. The valence electron wave function
can then be expressed as a linear combination of the states in
the new basis set,

��v� = 

n

cn��n� . �4�

Using the definition of the preorthogonalized ���n�	 above,
we can reexpress Eq. �4� as

��v� = ��� − 

i=1

ncore

��i���i��� � ��� − �̂��� , �5�

where we have introduced the projection operator onto the

set of core electrons wave functions, �̂,

�̂ = 

i=1

ncore

��i���i� , �6�

and a new function that results from a linear combination of
the �fn�, designated the pseudo-orbital,

��� = 

n

cn�fn� . �7�

This approach of describing the valence electron wave
function in a preorthogonalized basis set has been studied
and used extensively as a computational tool.13 It took the
insight of Phillips and Kleinman,14 however, to note that the
geometrical constraint of preorthogonalization to the core
wave functions could be expressed as an additional repulsive

potential, called the pseudopotential, and that the pseudo-
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orbital ��� has an important physical interpretation. To derive
an equation for the pseudopotential, we can substitute Eq. �5�
into Eq. �2�, resulting in a one-electron equation for ���,

Ĥ��� + 

i=1

ncore

�� − �i���i�����i� = ���� . �8�

This equation has the form of our original valence
eigenequation �Eq. �2��, but with an extra term arising from
the preorthogonalization. This extra term, the pseudopoten-

tial, V̂p�
i=1
ncore��−�i� ��i���i�, is a nonlocal operator, and the

pseudo-orbital ��� is an eigenstate of the new effective

Hamiltonian, Ĥ+ V̂p. In this paper, we refer to the pseudopo-

tential strictly as the additional term V̂p, and we use the term
“effective Hamiltonian” to refer to the original Hamiltonian
plus the pseudopotential. Equation �8� shows that the
pseudo-orbital has the same eigenenergy � as the valence
electron; moreover, this eigenenergy is the lowest in the
spectrum of the effective Hamiltonian �i.e., the core energies
have been removed�. Even though the pseudopotential is a

nonlocal operator, V̂p can easily be localized, resulting in a
potential that is completely defined by a single spatial coor-
dinate:

Vp
local�r� =

�r�V̂p���
�r���

. �9�

As we will discuss further below, because the pseudo-orbital
is a nonunique ground state solution of the effective Hamil-
tonian, it can be constructed to be nodeless, thereby avoiding
any numerical problems with singularities in the pseudopo-
tential.

The PK pseudopotential formalism thus provides a
method to solve the reduced electron problem by adding a
local potential to the original Hamiltonian that guarantees
that the valence electron wave function is orthogonal to the
�now implicitly treated� core electron wave functions. As can
be seen in Eq. �5�, ���→ ��v� in regions where ��� does not
overlap with the ��i�’s, that is, outside the core. Therefore,
the PK pseudopotential formulation allows for an accurate
calculation of the valence electron wave function as long as
the specific details of the valence electron wave function
inside the core region are not important, as is true for most
chemical and materials applications. �For cases where more
detail is required, precise information about the valence
wave function in the core region always can be backed out of
��� using Eq. �5�.� Inside the core, the nodeless ��� is much
smoother than the true valence wave function. A detailed
analysis1 shows that the effective potential energy of the va-
lence electron in the core region is largely constant because
the attractive nuclear Coulomb potential essentially is can-
celed by the large kinetic energy of the valence electron,
which results from the high-frequency oscillations required
to orthogonalize it to the core wave functions. Thus, the use
of a smooth wave function in the region of the core can be
intuitively justified if the preorthogonalization is equivalent
to adding an additional repulsive potential to balance the
nuclear attraction; Phillips and Kleinman proved this

14
equivalence. Indeed, this cancellation is a hallmark of the
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pseudopotential method, as demonstrated explicitly by Co-
hen and Heine.8 The net result is that Eq. �8� can be used to
find a reduced-dimensionality solution for the valence
electron wave function that remains orthogonal to the core
electrons.

B. A new formalism for the calculation of exact PK
pseudo-orbitals

We begin discussion of our new formalism by noting
that there exists a formal ambiguity in the solutions to the PK
pseudo-orbital expression �Eq. �8��. By removing this ambi-
guity, we will arrive at an equation for a unique PK pseudo-
orbital that is much more computationally efficient to evalu-
ate than the original PK equation.8 We then provide a
geometric interpretation as to why our new formalism is suf-
ficient to calculate exact PK pseudopotentials.

1. Derivation of the fundamental pseudo-orbital
equation

In the PK theory, the solution ��� of Eq. �8� is not
unique.8 This is because for any solution ���, the function
����, defined by

���� = ��� + 

i=1

ncore

ai��i� � ��� + ���� , �10�

is also a solution of Eq. �8� for arbitrary ai. As Cohen and
Heine pointed out, to construct a unique pseudo-orbital, one
can apply an additional constraint without affecting the phys-
ics of the problem. If we choose our constraint to extremize

the expectation value, F̄, of an arbitrary observable F̂, given
by

F̄ =
���F̂���
�����

, �11�

then the first variation15 of this expectation value, �F̄, is

�F̄����� = ����F̂ − F̄��� + c.c., �12�

and extremizing the first variation of F̂ gives

����F̂ − F̄��� = 0. �13�

Upon substituting the allowed variation, ��� � =
i=1
ncoreai��i�,

into Eq. �13�, one obtains



i=1

ncore

ai��i�F̂ − F̄��� = 0. �14�

Since the ai’s are arbitrary, Eq. �14� is true if and only if

��i�F̂ − F̄��� = 0, i = 1, . . . ,ncore. �15�

Equation �15� provides ncore constraints that will uniquely
determine the pseudo-orbital. We can recast these constraints
by multiplying each expression in Eq. �15� by its correspond-

ing core electron wave function and summing to give
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i=1

ncore

��i���i�F̂ − F̄��� = 0, �16�

where Eq. �16� uniquely determines the pseudo-orbital. To
see this, note that Eqs. �5� and �10� imply that

��� = ��v� + 

i=1

ncore

bi��i� �17�

is a valid PK pseudo-orbital for arbitrary bi, as can be veri-
fied by direct substitution of Eq. �17� into Eq. �8�. Therefore,
to uniquely determine the pseudo-orbital, we only need a
method to uniquely constrain the �bi	’s, and Eq. �16� pro-
vides the ncore constraints required to uniquely fix the
pseudo-orbital/core orbital overlaps. Thus, by solving Eq.

�16�, we directly obtain the F̂-extremized PK pseudo-orbital.
We can make the importance of Eq. �16� more transpar-

ent by inserting �̂���= ��v�− ��� �Eq. �5�� into Eq. �16� and
rearranging to get

��� = ��v� + 

i=1

ncore ��i�F̂���

F̄
��i� . �18�

The solution to Eq. �18� will give an F̂-extremized pseudo-
orbital whose overlap with the core orbitals is given by

��i��� =
��i�F̂���

F̄
. �19�

A unique PK pseudopotential can thus be determined by
using the pseudo-orbital from Eq. �18� in Eq. �9�. Although
Eq. �18� is a straightforward consequence of the structure of
the PK theory, it in fact stands on its own as the fundamental
PK pseudo-orbital equation. The identification of Eq. �18� as
being sufficient to determine the constrained PK pseudo-
orbital is the principal result of this work. In the Appendix,
we demonstrate that Eq. �18� also encompasses the previ-
ously published pseudopotential method of Cohen and
Heine.8

2. Discussion: A geometric interpretation of the new
pseudopotential formalism

Equation �5� shows that the critical piece of information
required to form the pseudo-orbital is understanding how it
overlaps with the core electron wave functions. Unfortu-
nately, there are an infinite number of ways this overlap can
occur, as can be seen from Eq. �10�. This is why it is impos-
sible to construct a unique pseudopotential in the uncon-
strained PK formalism: Eq. �8� has an infinite number of
solutions. As mentioned above, a unique solution can be
found by introducing an arbitrary constraint. The fundamen-
tal pseudo-orbital expression, Eq. �18�, can then be used to
find a unique solution for the pseudo-orbital.

Although Eq. �18� provides a new means to solve for the
unique, constrained pseudo-orbital, further examination of
the ambiguity in the unconstrained ��� is fruitful. The ambi-
guity arises because the act of preorthogonalization �which is
equivalent to writing the pseudopotential� creates a linearly

8
dependent basis set. The basis set for the original all-
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electron problem, ��fn�	, is linearly independent by construc-
tion, and preorthogonalization of this basis �Eq. �3�� creates a
one-to-one transformation of the ��fn�	 to the respective
���n�	. This process, however, involves subtracting off the
overlap of the ��fn�	 with the core wave functions, but the
core wave functions also depend on the ��fn�	. Thus, the pre-
orthogonalization transformation from the ��fn�	 to the ���n�	
destroys the linear independence of the basis set. A geomet-
ric interpretation is that pseudopotential theory acts to reduce
the dimensionality of the all-electron Hilbert space. By pre-
orthogonalizing the original basis set �Eq. �3�� and writing
the valence electron wave function in the set of preorthogo-
nalized vectors, we are by definition excluding the valence
electron wave function from occupying any part of the
Hilbert space spanned by the core electron eigenfunctions. In
other words, we are restricting the valence electron wave
function to a surface in Hilbert space that has ncore-lower
dimensionality than the full multielectron wave function.
However, due to the one-to-one nature of the basis transfor-
mation, we are using the same size basis set to describe this
lower-dimensional space; therefore, the ���n�	 must be lin-
early dependent.16 This linear dependence is why the pseudo-
orbital cannot be uniquely determined without additional
constraints.

In order to uniquely describe the pseudo-orbital, a lin-
early independent set of basis states that spans the lower-
dimensional space is required; this new basis is made to be
linearly independent by adding the set of ncore constraint
equations �Eq. �15�� to the original basis states. Moreover, as
we argued above, these constraints are fundamental: The
constraint equations themselves contain all of the essential
physics underlying PK pseudopotential theory. It is worth
noting that the form of the constraint equations is restricted
to only those variations �Eq. �10�� that are also solutions to
the original PK equation �Eq. �8��. In other words, Eq. �10�
tells us that we can choose any pseudo-orbital if it is preor-
thogonalized to the core wave functions: As long as the
pseudo-orbital is constrained to the correct surface in Hilbert
space, the choice of the reduced-dimensionality basis set is
arbitrary. Since the surface geometry is completely defined
by the core electron wave functions, it implicitly includes all
of the information about the core electrons, so the constraint
equations uniquely define how to reduce the dimensionality
for the extremization of any particular operator. Thus, as
long as the core electronic wave functions are known, they
can be projected out exactly.

C. Practical consequences of the new formalism

The principle importance of the fact that Eq. �18� is suf-
ficient to determine the PK pseudo-orbital is a dramatic im-
provement in the computational efficiency of calculating PK
pseudopotentials. To begin this section, we will discuss gen-
eral implementation issues involved in the calculation of PK
pseudopotentials. We will then show that Eq. �18� allows the
pseudo-orbital to be iteratively calculated in a computation-

ally straightforward manner.
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1. Implementation of the traditional PK
pseudopotential theory

In principle, applying the PK theory requires just the set
of core orbitals and the valence orbital �e.g., the HF lowest
unoccupied molecular orbital �LUMO��. Equation �18� then
defines the pseudo-orbital, and thus the pseudopotential via
Eq. �9�. Before the advent of modern computers, however,
there were two practical issues that limited the use of exact
PK pseudopotentials. First, the core orbitals were not always
known, prompting model potentials to be developed �see,
e.g., Refs. 17 and 18� that relied on approximations to the
pseudopotential in the core region. As mentioned in the In-
troduction, model potentials can be quite succesful for atoms
but become increasingly unreliable for higher-complexity
systems such as molecules. Fortunately, modern computa-
tional power has largely dated most concerns about obtaining
full solutions to the core electron wave functions, at least for
atoms and small molecules. Second, even if the core orbitals
were known accurately, data on the LUMO were often
absent.19 Therefore, the PK expression �Eq. �8�� typically
was solved iteratively using an initial guess of an arbitrary
smooth, nodeless pseudo-orbital until self-consistency in the
pseudo-orbital and its energy was achieved. The disadvan-
tage to this scheme is that the computationally expensive
two-electron integrals arising from the many-electron Hamil-
tonian must be evaluated at every iteration. As a result, the
only published applications of PK theory solved in this way
that we are aware of are for atoms.1,10–12 �We note that, in
principle, the iterative evaluation of the two-electron inte-
grals could be avoided by expressing the pseudo-orbital in a

basis. Solving the PK equation, �Ĥ+ V̂p����=����, could then

be sped up by evaluating the matrix elements of Ĥ+ V̂p be-
fore iteration. However, to our knowledge, such a procedure
has not been published and its numerical stability has not
been explored.�

2. Computational advantages of the new PK
formalism

Although application of the traditional PK pseudopoten-
tial theory has been hampered by computational intractabil-
ity, our new formalism presents a significant computational
improvement. The advantage of our constrained pseudopo-
tential formulation is that it allows the pseudo-orbital to be
calculated without the need to iteratively evaluate any two-
electron integrals. For example, by choosing the kinetic-

energy-minimized pseudo-orbital, F̂= T̂ �Eq. �A7��, Eq. �18�
avoids any explicit calculation of the potential energy opera-
tor with its multielectron integrals. Even though the pseudo-
orbital must still be evaluated self-consistently, avoiding nu-
merical evaluation of the two-electron integrals sidesteps the
major computational bottleneck in computing exact PK
pseudopotentials, and due to the iterative nature of solving
the equation, the computational savings are multiplied. Once
the pseudo-orbital has been calculated by solving Eq. �18�, it
is straightforward to calculate the pseudopotential, Vp�r�, us-
ing our new formalism.

For most applications, however, only the total effective
ˆ ˆ ˆ
potential, Ueff=U+Vp, rather than the isolated pseudopoten-

Downloaded 25 Aug 2006 to 128.97.34.137. Redistribution subject to
tial, is needed. Since Ĥ= T̂+ Û and the pseudo-orbital is
nodeless, we can easily obtain the localized effective poten-
tial Ueff

local from1

Ueff
local�r� =

�r��� − T̂����
�r���

. �20�

Thus, by choosing kinetic energy minimization, we not only
have avoided the iterative calculation of the troublesome
two-electron terms to determine the pseudo-orbital but we
also can find the local effective potential without ever having
to explicitly calculate the potential energy. Of course, infor-
mation about the potential energy is implicitly included
within the core electron wave functions, but once the core
electron solutions are found, the construction of the effective
potential does not require any additional potential energy
evaluations. Because kinetic energy minimization allows for
the complete exclusion of the potential energy operator, it is

difficult to imagine that any other choice of F̂ could provide
a more efficient route to calculating Ueff

local�r�. But regardless

of the choice of F̂, Eqs. �18� and �20� provide a new opera-
tional method for calculating the exact pseudo-orbital and
effective potential.

In the next section, we apply our new formalism, Eqs.
�18� and �20�, to determine the effective potential for the
interaction of a single valence electron with a sodium cation,
and we discuss the computational methods that are required
to solve Eq. �18� numerically. In the following paper,20 we
discuss several important implementation issues of this for-
malism for the calculation of pseudopotentials for large,
complex molecules. In particular, we apply our formalism to
calculate the effective potential between an excess electron
and tetrahydrofuran �THF� molecule, which, as far as we are
aware, is now the most complicated molecule for which an
exact pseudopotential has been determined. One particularly
critical issue is that the stability of the numerical solution of
Eq. �18� is sensitive to the choice of computational
methodology.20 However, with an appropriate implementa-
tion, the numerical solution of Eq. �18� is computationally
trivial: Once the core and valence wave functions were de-
termined, calculation of the excess electron-THF effective
potential via Eqs. �18� and �20� took less than 3 s on a single
1.3 GHz Athlon AMD processor.20

III. EXAMPLE: PSEUDO-ORBITAL
AND PSEUDOPOTENTIAL FOR THE SODIUM
VALENCE ELECTRON

To demonstrate that our newly developed formalism
�Eqs. �18� and �20�� can be used to efficiently calculate exact
PK pseudopotentials, we have calculated a kinetic-energy-
minimized pseudo-orbital and the corresponding localized
effective potential for the 3s valence electron of a sodium
atom. This particular atom was chosen because it has both a
single valence electron and a relatively hard core �Na+�, so
that we can apply the so-called frozen core approximation.
The frozen core approximation assumes that the presence of

the valence electron has no effect on the core eigenstates;
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therefore, the core eigenstates computed in the presence of
the valence electron are identical to those calculated in the
absence of the valence electron.

To solve Eq. �18�, we require the HF core and LUMO
�valence� orbitals for the sodium atom in the absence of its
valence electron; i.e., we need the orbitals of Na+. These
orbitals were generated from a restricted HF calculation of
Na+ using GAUSSIAN 03 Revision C.02 �Ref. 21� with a
quadruple-zeta Gaussian-type orbital �GTO� basis.22 Using
this basis, the HF total energy was calculated to be
−161.676 942 hartree, near the numerical HF value of
−161.676 963 hartree;23 the LUMO energy was calculated to
be −0.181 801 hartree, near the frozen core numerical HF
value of −0.181 802 hartree.24 Although GTOs are perhaps
not the best choice of basis to represent atomic orbitals since
they cannot recreate nuclear cusps or the correct long dis-
tance asymptotic exponential behavior,25 they are the most
efficient basis to use in molecular calculations, and their use
in this simple atomic pseudopotential calculation presents a
test of their applicability in calculating molecular pseudopo-
tentials.

To solve Eq. �18� we found that �even for complex
molecules20� we could achieve a stable numerical solution
for the pseudo-orbital using an iterative matrix-inversion
scheme to solve

��� = �I −
�̂T̂

T̄
−1

��v� � M̂−1��v� , �21�

which is a rearranged version of Eq. �18�, where T̂ is the

kinetic energy operator and where �̂=
i=1
ncore��i���i� is the

projection operator onto the occupied core MOs �Eq. �6��. To

FIG. 1. Convergence of the calculated kinetic-energy-minimized sodium
pseudo-orbital for the initial guess ���= ��3s�. The dashed curve shows the
Na+ LUMO �3s� initial guess used in the iterative solution of Eq. �21� and
the other curves show the solution after the indicated number of iterations.
Within four iterations the solution had converged such that
���new−�old ��new−�old��10−14.
iteratively solve Eq. �21�, we expanded the matrix in terms
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of our contracted Gaussian basis set, computed the average

kinetic energy T̄ using an initial guess for the pseudo-orbital,

and solved the linear matrix equation M̂���= ��v� using
LAPACK routines.26 The resulting coefficients for ��� in the
contracted Gaussian basis were then used to form the matrix

M̂ for the next iteration. �Note that because of the need to
iteratively solve Eq. �21�, the above matrix inversion is only
formal; by using the previous step’s approximate pseudo-

orbital to form M̂, only the linear matrix equation needs to be
solved on each iteration.�

Figures 1 and 2 show that the iterative matrix-inversion
method embodied in Eq. �21� converged to the pseudo-
orbital in just a few iterations regardless of the choice of
initial guess. Figure 1 shows the solution of Eq. �21� after the
indicated number of iterations for a starting guess of
���= ��3s�= ��v�, which by construction is equal to the
pseudo-orbital everywhere but inside the core. Figure 2
displays the same information for a starting guess that is
quite different from the final pseudo-orbital everywhere,
���= ��1s�. With either starting guess, the pseudo-orbital was
found within a few iterations. The overlap integrals of the
pseudo-orbital with the core orbitals, which uniquely define
the pseudo-orbital via Eq. �5�, were calculated to be
��1s ���=0.023 487 39 and ��2s ���=0.227 198 0; by con-
struction �cf. Eq. �18� and see Ref. 27�, ��3s ���=1. A com-
parison of the converged PK pseudo-orbital �solid curve� and
the valence orbital �dashed curve� displayed in Fig. 1 shows
that the pseudo-orbital exhibits the features we desire: It is
nodeless, much smoother than the valence orbital, and ex-
actly matches the valence orbital in the region outside the
core.

Once the pseudo-orbital was calculated, we generated
the localized effective potential for the sodium atom using

FIG. 2. Convergence of the calculated kinetic-energy-minimized sodium
pseudo-orbital for the initial guess ���= ��1s�. The dashed curve shows the
Na+ 1s initial guess used in the iterative solution of Eq. �21� and the other
curves show the solution after the indicated number of iterations. Within six
iterations the solution had converged such that ���new−�old ��new−�old�
�10−14. The solutions after iterations 1 and 2 are multiplied by −1 for
clarity.
Eq. �20�, as shown in Fig. 3. This effective potential
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�solid curve� also demonstrates the features we desire: It is

less attractive than the HF potential Û �i.e., the effective
potential for the LUMO; dashed curve� in the core region

due to the contribution from the repulsive pseudopotential V̂p

that accounts for the energetic cost of orthogonalizing the
valence orbital to the core orbitals. In addition, outside the

core, Ûeff approaches the HF potential, as expected.25

To our knowledge, no kinetic-energy-minimized
�Cohen-Heine,8 see the Appendix� atomic pseudo-orbital or
pseudopotential for the Na atom 3s valence electron has been
previously published; however, Szasz and McGinn10 calcu-
lated an unconstrained PK pseudo-orbital for sodium by it-
eratively solving Eq. �8� with an initial pseudo-orbital guess
of the ground state solution to the Hellmann potential �i.e., a
smooth pseudo-orbital�; their nonunique solution to Eq. �8�
therefore should be close to a rigorously kinetic-energy-
minimized PK pseudo-orbital. Indeed, there is close agree-
ment between our Figs. 1 and 3 and Figs. 1 and 2 of Ref. 10.

Finally, we note that the kinetic-energy-minimized effec-
tive potential shown in Fig. 3 varies rapidly in the core re-
gion; in many applications, such sharp variations may need
to be smoothed out. One cannot simply smooth the effective
potential, however, because solutions of Schrödinger’s equa-
tion with such a potential will not necessarily have the cor-
rect energy or shape. Instead, one must first smooth the
pseudo-orbital and insert the smoothed pseudo-orbital into
Eq. �20� to produce a slowly varying effective potential. By
smoothing the potential in this fashion, one guarantees by
construction that the resulting pseudo-orbital will have the
correct energy and shape.

IV. CONCLUSIONS

In summary, we have presented an analytically exact re-
formulation of the Phillips-Kleinman pseudopotential theory;

FIG. 3. Kinetic-energy-minimized PK effective potential for the valence
electron/Na+ interaction. The dashed curve shows the effective potential for
the LUMO calculated via Eq. �20� for ���= ��3s� �the orbital displayed as a
dashed curve in Fig. 1�; i.e., this curve is the Na+ LUMO HF potential,
which for clarity is shown only for r�0.5 a.u. The vertical dotted lines
indicate singularities in the LUMO HF potential �where the LUMO has
radial nodes�. The kinetic-energy-minimized PK effective potential, which
has no singularities, is shown by the solid curve.
as shown in the Appendix, our reformulated theory is for-
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mally the same as that of Cohen and Heine for certain
choices of extremization. Our formalism has the advantage
of furnishing a clear geometric interpretation, but its real
importance lies in its computational efficiency. We expect
that the use of Eqs. �18� and �20� will allow for the rigorous
computation of complex pseudopotentials that cannot be well
represented by model potentials and that currently lie on the
edge of computational practicality. In fact, computation of
the pseudopotential for large molecules will no longer be
limited by solving the iterative pseudopotential equation, but
instead by the generation of the core electron and LUMO
wave functions for large multielectron systems. In the subse-
quent paper,20 we will apply our method to calculate the
effective potential for an excess electron interacting with a
molecule of tetrohydrofuran �THF�. This is now the largest
molecule for which an exact pseudopotential has been calcu-
lated and, as we discuss in more detail in Ref. 20, lies well
on the low end of computational feasibility.
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APPENDIX: EQUIVALENCE OF THE NEW FORMALISM
TO THE METHOD OF COHEN AND HEINE

As described in the text, the variational flexibility of the
solutions to the PK pseudo-orbital equation �Eq. �8�� and the
consequent freedom to fix the potential by implementing ad-
ditional constraints also have been explored previously by
Cohen and Heine.8 What we demonstrate in this appendix is
that Cohen and Heine’s equations, although they produce the
correct constrained PK pseudo-orbital, are formally equiva-
lent to solving Eq. �18� alone. To make this equivalence
clear, we begin by rederiving the Cohen-Heine equations us-
ing a slight modification of their original approach. In their
paper,8 Cohen and Heine use the constraints of Eq. �16� to
derive a set of PK-type pseudo-orbital equations via direct

substitution for the specific cases of F̂= T̂ and F̂= Û+Vp.
Here, we will derive Cohen and Heine’s equations for the

general constraint operator F̂, and by doing so, we will prove
their equivalence to Eq. �18�.

We start by noting that using Eq. �2�, Eq. �8� can be
rewritten as

Ĥ��� + 

i=1

ncore

��i���i�� − Ĥ��� = ���� . �A1�

We can then add zero to Eq. �A1� in the form of Eq. �16�,
giving

Ĥ��� + 

i=1

ncore

��i���i�� − Ĥ��� + 

i=1

ncore

��i���i��F̂ − F̄����

= ���� . �A2�

ˆ
Next, using the linearity of � �Eq. �6��, we can obtain Cohen

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



074102-8 Smallwood et al. J. Chem. Phys. 125, 074102 �2006�
and Heine’s PK-type equation for the pseudo-orbital with a
generalized constraint,

Ĥ��� + 

i=1

ncore

��i���i�� − Ĥ + �F̂ − F̄���� = ���� . �A3�

The �nonlocal� pseudopotential operator with a generalized
constraint using the pseudo-orbital found from Eq. �A3� is
then given by

V̂p = �̂�� − Ĥ + �F̂ − F̄�� . �A4�

When kinetic energy minimization is used, the choice F̂= T̂
leads to a cancellation with the kinetic energy operator in the
Hamiltonian, resulting in the pseudopotential equation

Ĥ��� + �̂�� − Û − T̄���� = ���� . �A5�

Equation �A5� is identical to that derived by Cohen and
Heine;8 this expression has been used as a starting point,
along with additional approximations, to calculate pseudopo-
tentials in several examples in the literature. A common ap-

proximation has been to neglect the �̂��− T̄� terms in Eq.
�A5�, removing the need to solve self-consistently; Cohen
and Heine8 calculated the expectation value of this neglected

term and found it to be small in comparison to ��̂Û�, at least
for the pseudo-orbital of Si4+. Another common approxima-
tion has been to assume that the pseudo-orbital is constant
over the region of space where the core orbitals have ampli-
tude, thereby simplifying the operation of the core projection
operator.7,17 In their study of F centers in alkali halides,
Kübler and Friauf28 used both of the above approximations,
in addition to using an analytic approximation to the Hartree
potential and neglecting exchange. More recently, Turi and
Borgis29 generated a kinetic-energy-minimized pseudo-
orbital for a water molecule and used it to construct a model
potential for an excess electron interacting with water by
varying the model potential until the ground state wave func-
tion of the effective Hamiltonian was as close as possible to
the pseudo-orbital.

It is important to note, however, that in the derivation of
Eq. �A5�, it is assumed that the pseudo-orbital has the form
of Eq. �5�. But as we saw in the text in the derivation of Eq.
�17�, any pseudo-orbital of the form of Eq. �5� will be a
solution to Eq. �A1�. Therefore, the first two terms on the
left-hand side of Eq. �A2� are guaranteed to cancel with the
term on the right-hand side no matter what the choice of the
constraint. When these terms are subtracted off, all that re-
mains is the expression for the constraints �Eq. �18��, which
as we argued in the text, is sufficient to determine the
pseudo-orbital for any chosen extremization, provided that
��v� is known. Thus, we see that in their approach, Cohen
and Heine, by canceling terms in the pseudopotential part
�Eq. �A4�� of Eq. �A3�, obscured the actual expression that
needs to be solved. Overall, the use of the Cohen-Heine ex-
pression, Eq. �A5�, requires unnecessary computational ef-
fort to calculate terms that analytically sum to zero. Thus,
previous work based on the Cohen-Heine expression did in-
deed calculate the correct kinetic-energy-minimized pseudo-

potential, but with unnecessary computational expense.
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For completeness, we close this section by explicitly
demonstrating the equivalence of the Cohen-Heine formal-
ism, Eqs. �A2�–�A5�, to our Eq. �18� for the specific case of

kinetic energy minimization, F̂= T̂. Making use of the fact

that ��̂ , Ĥ�=0, which implies that �̂Û= T̂�̂−�̂T̂+ Û�̂

= Ĥ�̂−�̂T̂, Eq. �A5� can be rewritten as

�Ĥ − ������ − �̂���� − T̄�̂��� + �̂T̂��� = 0. �A6�

We can now substitute Eq. �5� into Eq. �A6� and make use of
Eq. �2� to obtain

��� = ��v� + 

i=1

ncore ��i�T̂���

T̄
��i� , �A7�

which is just Eq. �18� with F̂= T̂. It is worth emphasizing that
pseudo-orbital solutions obtained from either Eq. �A3� or
�A5� are perfectly correct; Eq. �A5� is just unnecessarily nu-
merically complex in comparison to the equivalent equation
�18�.
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