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STOCHASTIC ION REA TINO BY LOWER HYBRID TURBULENCE 

J. Candy 

Abstract 

The motion of an ion in a spectrum of lower hybrid waves propagating across a constant 

magnetic field is examined. In particular, numerical simulation is used to determine the extent to 

which a turbulent spectrum of these electrostatic waves may accelerate thermal ions (T < leV). 

The significance of stochastic web development in this heating process is also discussed. 
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1 Introduction 

Consider a particle with mass m and charge e gyrating in a uniform magnetic field 

Bi and interacting with an electrostatic wave, The magnetic field in this case may 

be derived from the vector potential A = BxY. Then, if the wave has amplitude E 

and spatial frequency w, the Hamiltonian of the particle can be written as 

(1) 

where fl == eB 1m is the cyclotron frequency. Note that we have chosen the wavevec

tor k = k.x + k.i to lie in the x-z plane. That this results in no loss of generality 

should be clear, 

The Hamiltonian (1) has been studied in some detail by Smith and Kaufman 

[1], [2] . By considering the overlap of adjacent resonances, these authors obtained 

a crude estimate of the onset of global stochasticity according to the well-known 

Chirikov criterion. 

More detailed studies, however, have involved a simplified version of (1). If one 

considers the wn.ve to propagn.te transversely (kz = 0), then the previous Hamilto

nian function reduces to 

1 [ 2 2] eE 
H = 2m (mflx) + P. + T cos(kx - wt). (2) 

This Hamiltonian has been examined in the context of particle heating by a lower 

hybrid wave - the propagation of which is characterized by k. » kz and w » fl. 

Fukuyama et ILl. [3] have analysed (2) in the case where w is an integer multiple of fl, 

while Karney [4] has considered the more general case of arbitrary wave frequency. 

Futhermore, Karney has also extended some of the interesting results obtained for 

(2) to the more general Hamiltonian (1). Malkov [5] and Zaslavsky et ai. [6], finally, 
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have studied the equations of motion which result from (2) in the presence of an 

arbitrarily weak magnetic field. 

More recently, much attention has been given to the interesting dynamics which 

occur when w /0. E 71.. In this resonant case, the phase space of the system is 

covered by a stochastic web. Some interesting properties of the separatrix mesh 

were shown by Chernikov et al. [7J for one wave, and numerically by Murakami et 

al. [8] for up to 20 waves. In addition, Karimabadi and Angelopoulos [9J - using 

. first order perturbation theory - have studied invariant curves in phase space for the 

interaction of a relativistic particle with an obliquely propagating wave packet of 

arbitrary polarization. They point out certain limitations and weaknesses associated 

with the usual nonrelativistic treatment. 

Finally, by considering a wave packet composed of an infinite number of modes 

uniformly spaced in frequency, Zaslavsky et al. [10J were able to construct an exact 

mapping from the continuous Hamiltonian. The iterates of this mapping generate 

a web with remarkable symmetry properties and fractal-like structure. In fact, the 

geometry of the separatrix mesh in phase space is reminiscent of a Penrose tiling 

(see [l1J, [12]). An interesting summary of stochastic webs in general may be found 

in [13J. Unfortunately, the structure of the electric fields which give rise to such 

interesting dynamics are often difficult to justify from a physical standpoint. 
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2 A Model of Lower Hybrid Turbulence 

Particle heating in the earth's ionosphere is believed to result from the interaction 

of ions with lower hybrid waves. (see [14J and [15]). In particular, precipitating 

electron beams in this region of the ionosphere might constitute a natural free 

energy source for the generation of lower hybrid waves. Unfortunately, the general 

problem of particle heating is enormously complicated, and it is no surprise that 

many aspects of these processes are still poorly understood. In what follows, we 

will investigate a single particle model of heating which is similar in form to, but 

slightly more general than the system (2). Further, we will examine the behavior 

of our model using physical parameters which are believed to be characteristic of a 

plasma containing such lower hybrid waves. 

2.1 The Model Hamiltonian 

To begin with, we consider a spectrum of N transversely propagating electrostatic 

waves. This case is a simple generalization of (2), with the electric field now de

scribed by the wave packet 

N 

E(x, t) = L E; sin(k;x - w;t + <p;). (3) 
i=l 

The Hamiltonian for a particle subject to this more general electric field can be 

written 

(4) 

Note that we have introduced the dimensionless time T == l1t and the canonical 

momentum p == dx/dT = Pr/ml1, so that 11. has dimensions of (iengtht The pa

rameter v; is related to the temporal frequency w; of the i'h wave by the relationship 

w; 
V; == 11. 
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Furthermore, for a plasma composed of singly ionized hydrogen, the nonlinearity 

parameter Ei is defined in terms of the mode amplitude Ei according to 

eEi 
Ei = mpfP. (5) 

Also, in each wave we have included an arbitrary phase factor 'Pi which can be set 

to any value in the range 0 ~ 'Pi < 271". In principle, all that remains is to choose 

reasonable values for the parameters Ei, ki , Vi and n so that the equations of motion 

corresponding to (4) may be solved numerically. 

2.2 Limiting the Parameter Space 

At altitudes between 500 km and 2500 km the background magnetic field varies 

from about 4 x 10-5 Tesla to 2 x 10-5 Tesla. In general, we will assume that B 

assumes a constant value of 

B = 4 X 10-5 Tesla, so that n = 3.8318 x 103 S-I, 

corresponding to a lower altitude field strength. Typical measured electric field 

amplitudes are on the order of 0.01 V 1m [16J. Significantly higher amplitudes are 

indeed possible, and we consider (arguably high) maximum values on the order of 

1 V 1m for E(x, t) . This implies that the normalized ma.'(imum value of the field 

(see (5)) is 
eE(x,t) 0 

("\2 -1 m. 
mpH 

(Actually, we will consider this to be an upper bound on the RMS value of the 

normalized field. This is discussed at length in Section 3.3). Such a restriction 

provides a rough guideline for choosing the set of nonlinearity parameters Ei . 

Next, to decide upon a reasonable value for each Vi we must make use of the 
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dispersion relation for LH waves: 

where 

( 

2 ) -1/2 1/2 
W = Wpi 1 + w~. (1 + mpsin2B) , 

Wge me 

2 
2 noe 

W ---po - , 
com. 

2 
Wge =-

m. 

(6) 

and tan B = k.1 k:. These expressions show the explicit dependence of W on the 

local density no. 

The dispersion relation (6) is valid for small B (i.e., k. « k:). Also, it is true that 

the Hamiltonian (4) - to a good approximation - describes the ion motion in the 

x-y plane even for small but nonzero k •. Of course, the price of this simplification 

is to forego any detailed knowledge of the parallel motion. Fortunately, our concern 

here is wi th perpendicular acceleration only, so that this loss of information is of 

little concern. As a result, (4) affords us a valid picture of the perpendicular motion 

even beyond the k. = 0 approximation. 

Upon dividing (6) by n and squaring the result, one obtains 

(7) 

In the region of the ionosphere we are interested in, realistic densities range from 

108 m-3 to 1010 m-3
• Then, according to (7), the interval 0 :5 B :5 7r 160 corresponds 

to the following ranges in win: 

3 4 < W < S 4 r 108 - 3 . _ n -' ,or no = m, 
W 

26.8 :5 n :5 65.8 for no = 1010 m-3
. 

Using these limits as rough guidelines, we assume that Vi may lie anywhere in the 

range 

4 :5 Vi :5 30. 
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It remains to find a physically reasonable value for each wavenumber k;. Unfor

tunately, no physical measurements of the wavevectors of ionospheric lower hybrid 

waves have been obtained. It seems the best we can do is to consider possible driv

ing sources of the waves, and derive a theoretical estimate. According to Koskinen 

[16J, values of k; on the order of 1 m- I may be obtained by assuming that the LH 

waves are excited by a parallel beam of 4-keV electrons. Hence, we assume each k; 

is restricted to the interval 

2.3 Initial Conditions of Source Ions 

Using the canonical variables we defined earlier, the ion gyroradius p, defined by 

2 _ 1 dx dy 
[ ( )2 ( ) 2] 

P=lV dt +dt ' 

takes on the simple form 

(8) 

To see this, one must realize that in the derivation of (1), py was chosen to have a 

constant initial value of zero, thus implying 

dy 
py = m dt + mflx = O. 

The perpendicular kinetic energy (or temperature) T of a test Ion is, of course, 

related to the square of the gyroradi us by 

T -_ mp(r">p)2 [ VJ " in e . 
2e 

Typical ionospheric source ions have kinetic energies on the order of a fraction 

of an eV [14J . Let us assume that the ions we are consideling have, in their perpen

dicular degrees of freedom, kinetic energies between 0.25 eV and 1 eV. This range 
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in energy corresponds corresponds to gyroradii in the interval 

1.8 m ~ p ~ 3.6 m. 

2.4 Method of Integration 

To study the time evolution of p and x, we can generate a symplectic integration 

algorithm using the Hamiltonian function (4). Specifically, we will use the SIA4 

algorithm derived in [17]. This algorithm is accurate to 4'h order in the time step, 

and is one of a class of symplectic integrators devised originally by Ruth [18], [19]. 

With (4) written in the form 'H = 'Ht(p) + 'H2(x, T), the SIA uses the functions 

N 

F(x, T) ;: -8%'H2(x, T) = Lfisin(kix - viT + cpi) - x 
i=l 

and 

to construct an explicit, analytic symplectic map. This symplectic map approx

imates the exact phase flow induced by 'H, accurate to fourth order in the time 

step. The advantages of using SIA4 in place of a more common non-symplectic 

integrator are many, and are discussed at length in [17]. Further details concerning 

the integration procedure will be discussed later. 
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3 Numerical Results 

Using the SIA4 algorithm, we studied the time development of our model system 

for a variety of parameter values. A discussion of the results of this study appeaxs 

below, wi th a separate section devoted to each paxticulax simulation. Furthermore, 

a collection of figures which summarize the respective simulations appeaxs at the 

end of this paper, supplemented by captions which describe in full the associated 

paxameter spaces. 

The time steps oT used in SIA4 had the form 

In the above, 

oT = 6.T . , 
J 

211' 
where 6.T == -. 

ii 

ii == {the integer nearest to max(vI"" ,VN)}, 

(9) 

and j is an axbi trury integer chaxacterizing the smallness of the time step - and 

hence the accuracy of the symplectic integrator. Generally, j was chosen to lie 

between about 20 and 25; a size at which, loosely speaking, it is probably valid to 

forget about the original Hamiltonian and consider the system as described exactly 

by the symplectic map SIA4. 

3.1 Heating with One Mode 

3.1.1 Surfaces of Section 

We begin by studying the time evolution of a system corresponding to the Hamil

tonian (4) for the simplest case of N = 1. Figures 1 and 2 illustrate the structure 

of phase space for this case, with all parameters equal except for III ' In particular, 

the first figure has VI = 5, while the second has VI = 5.16. In both cases, the wave 
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amplitudes are relatively small, leaving much of the phase space covered by invari

ant tori. However, the two cases have clearly distinct topologies. In the first case, 

there exists a narrow channel of interconnected separatrices which form a web that 

spans the entire phase plane. This is in contrast to the picture in Figure 2, which 

displays a series of nested tori as predicted by the KAM theorem. Interestingly, 

the violation of the KAM theorem in the first case, as a consequence of VI being 

an integer, allows a theoretical diffusion along the stochastic network to arbitrarily 

large energies. However, the thickness of the web decreases rapidly with increasing 

velocity, so that diffusion is quite limited in practice. 

Next, Figures 3 and 4 illustrate the effect of increasing the strength of the 

electrostatic wave. By comparing Figure 3 to Figure 1, it becomes clear that the 

increase in wave amplitude produces a widening of the stochastic network, while 

in Figure 4, one can see that it leads to a breakup of invru·iant tori. Finally, a 

characteristic common to all of these first four figures is the existence of a sequence 

of little tori enclosing the origin which effectively trap low energy particles. We 

will comment on the significance of such barliers in inhibiting particle acceleration 

later. 

3.1.2 Ensemble Averaging 

Next, we wish to examine the average phase space population N(p) which results 

from accelerating an ensemble of low energy particles using the Hamiltonian (4). 

The steps taken to determine this quantity are described below: 

• Assign 10 ions random positions in the phase space annulus 1.8 m ~ p ~ 3.6 m 

at T = O. 

• Integrate each particle in this ensemble forward ill time to T = 20011". 



• From T = 20011" to T = 200011", record the position of each particle at successive 

time intervals 6.T = 211" Iii (see (9)). 

Figures 4 through 9 illustrate this averaging procedure for fixed values of v!, 

kl and 'PI, but with successively increasing wave amplitude EI. In the figures, 

N(p) is expressed in arbitrary units. The local depletion of particles in each case 

corresponds to the preseQ.ce of large first-order islands such as those in Figure l. 

In the limit of small wave amplitude, t.he elliptic fixed points exist at gyroradii p 

which satisfy 

As the wave amplitude grows to its maximum value, successive elliptic points are 

encircled, while the distributions around previous fixed points become smeared as 

invariant curves are destroyed. 

The same simulation, with VI = 5.16, exhibits essentially no growth in energy. 

This can be seen in Figures 10 and 11, and results from the entire ensemble remain

ing trapped by invariant tori. 

However, the situation changes if we double the wavevector kl to unity. Figure 12 

(VI = 5) and Figure 13 (VI = 5.16) illustrate the results of a simulation which 

considered only one ion averaged over the period T = 20011" to T = 600011", with 6.T 

defined as before. These results show comparable heating profiles for both values 

of VI. The increased magnitude of kl effectively reduces the phase velocity of each 

wave and, in the case of noninteger v!, destroys tori closer to the origin and allows 

stochastic diffusion of the test ion. 
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3.2 Amplitudes of Ordered and Turbulent Wave Spectra 

We claimed in Section 2.2 that the normalized maximum value of the electric field 

should not exceed roughly 10 m. We did not, however, put particular restrictions 

on the normalized mode amplitudes f;. Clearly, the maximum possible amplitude 

of a wave packet composed of N sinusoidal modes, each with amplitude f;, is simply 

N 

L 1 f ; I · . (10) 
i=l 

However, in reality, one would expect that such an amplitude would rarely be at

tained - especially in the case where N is large. 

Consider, first, the normalized electric field seen by the particle at time T: 

_ eE(x(T), T) N • 
£(x(T),T) = mpn2 =~f;sm(k;x(T)-II;T+cp;) . (11) 

The RMS value of this field, taken over time interval [0, r], is defined as 

[
1 r ]1/2 

£rm,(r);: -; J
o 

£2(x(T), T)dT . (12) 

In the limit k; -> 0, and r - 00, it is simple to calculate £rm, analytically. 

Calling this limiting value of the RMS field £rm., it is easy to show that 

(13) 

The validity of this result also requires that all II; are distinct. 

vVe numerically computed £rm,(101r/llm;n) for two different wave packets, each 

with N = 10, and compared the results with the approximate value [rm,' The 

first case, shown in Figure 14, consists of waves evenly spaced in frequency with 

constant wavenumber and amplitude. The rea.der should recognize this spectrum 

as one which will give rise to a stochastic web. It happens that £rm, for this ordered 

packet is 2.2 m - in close agreement with trm• = J5 m ~ 2.236 m. It is interesting 

11 



to note that as N --t 00 in such a packet, the electric field seen by the particle 

approaches a periodic comb of delta functions, and is then described by the mapping 

of Zaslavsky, et al. [10J. In fact, such periodic impulses, or "kicks", seem to be a 

generic aspect of chaos in Hamiltonian systems. Potential fields of this type give rise 

to many popular 2-D symplectic maps of the plane which are known to be chaotic 

- the Standard and Fermi Maps, for example. Furthermore, various approximate 

analyses-of (2) ([5J, for example) have concentrated on constructing a perturbed 

twist map of the plane which replaces the exact motion by: (i) a kick at :i: = w / k, 

and (ii) unperturbed linear oscillation everywhere else, as shown in Figure 31. In 

a qualitative sense, it can be claimed that if the kick is strong enough, the particle 

will undergo a substantial phase change which will lead to stochastic motion. For 

this reason, it seems that the study of finite and infinite mode stochastic webs may 

be useful from the point of view of understanding the generic aspects of particle 

heating in the ionosphere. 

In any case, we also calculated £rm.(lOr. /Vmin) for the turbulent spectrum shown 

in Figure 15. While the structure of the field is much more erratic in this case than 

in the last, the value £rm3 = 2.3 m is quite comparable. 

These calculations provides us with a rough estimate of the relationship between 

(10) and £rm .. and serve to justify the values of fi used in the multiple mode 

simulations which follow. 

3.3 Multiple Mode Stochastic Webs 

As we mentioned in the last section, the study of finite mode stochastic webs may 

contribute to a better understanding of certain general properties of ionospheric 

particle heating. Wi th this ill mind, we choose to examine three particular cases, 

each for realistic values of the variolls wave parameters. Before doing so, we remind 
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the reader of some fundamental ideas in nonlinear dynamics. 

First, it has been shown that when the number of degrees of freedom satisfies 

n ~ 3, a separatrix net may arise which extends throughout phase space. This 

net, which was predicted by Arnold, forms a stochastic web along which particles 

may wander chaotically. The name given to this motion is Arnold diff1J.Jion, and 

results from the intersection of invariant tori which do not divide phase space (since 

n ~ 3). However, the Hamiltonian (4) represents only n = 3/2 degrees of freedom, 

thus showing (see Figures 16 to 18) that an Arnold-type diffusion may occur even 

in the case of minimal dimension for nonintegrabili ty. 

3.3.1 Four Modes 

Shown in Figure 16 is the stochastic web which results from a wave packet composed 

of four modes. The frequencies are spaced according to II; = 5i for i = 1, ... ,4; 

while the amplitudes and wavevectors are constant. Interestingly, the particle spent 

most of its time sticking to the tori centered at p - 38 m, and consequently the 

iterates were distributed very nonuniformly in phase space. 

3.3.2 Five Modes 

Next, we consider five modes with equal amplitude, and frequencies which are mul

tiples of 5 - but not spaced as in the last example. In this case, we vary the 

wavenumber so that waves with equal values of II; will have different phase veloci

ties. The effect of this modification is shown in Figure 17. We see quite dramatic 

heating effects, with gyroradii approaching 110 m (or energies approaching 0.93 

keY). This is achieved, however, with relatively low amplitude RMS fields (less 

than 0.5 V 1m), and in the abJence of what is normally considered to be global 

stochasticity (i.e., destruction of nearly all invariant tori). 
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3.3.3 Six Modes 

As a final example of stochastic web heating, we add a sixth mode to the previous 

system. This has the effect, surprisingly, of limiting the maximum energy gain to 

only about 0.62 keY (see Figure 18). Unfortunately, the tendency of the iterates on 

the surface of section to explore some areas of the separatrix mesh and not others 

is marked by a sensitive dependance on both initial conditions and the maximum 

integration time Tma". In instances of very large Tma", the areas of the web which 

are explored also depend on the time step used in SiA4 and on the precision of all 

floating point operations. 

3.4 Heating by a Completely Turbulent Spectrum 

This final series of simulations is aimed at modeling particle heating in a "realistic" 

spectrum of waves. We consider N = 10 waves, each with normalized frequency 

Vi, wavenumber ki and phase 'Pi chosen at random inside the intervals described 

in Section 2.2. Then, we calculate the average population N (p) according to the 

prescription in Section 3.1.2 for various cases characterized by different values of 

the ei . We performed 12 separate runs, which had the collective structure shown in 

Table 1. For the 6 runs labeled by "A", we chose the wave parameters 

which remained constant for all values of the mode amplitudes. Then, for each 

A run, we chose a set of mode amplitudes (composed of 10 fi) at random in the 

interval [emin, ema"J. For the runs labeled "n", we generated new values for the 

wave parameters and the ini tial ion distribution, then performed the simula tions 

with the same mode amplitudes as in the A runs. The maximum gyroradius Pm a" 
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and corresponding temperature Tmar to which the ions were accelerated also appear 

in Table 1. The distributions N(p) appear in Figures 19 to 30. 

Each of these simulations was performed on a CRAY X-MP supercomputer, 

using single precision real variables (14 digit accuracy). The integrator time step 

was chosen with j = 25 (see (10)). 

Perhaps the first difference which one notices in the heating profiles is the value 

of Pmar in runs 1B, 2B and 3B; it is significantly lower than in the corresponding 

A rnn~. Thi~ can he explained, however, in terms of the minimum modal phase 

velocities. The slowest modes in the A and B runs respectively had normalized 

phase veloci ties of 

{ ~(:::} . ~ V.Vllll 
I min 

and {
,)8) } 
k(B) . ~ 1.56 Ill. 

I min 

Now, for a particle to be effectively accelerated by a wave, it must be moving with 

a \'clodty not substantially less than the phase velocity of that wave. Otherwise, as 

seen in Figure 31, no resonant interaction will occur. This effect is manifested in our 

simulation, where the faster moving B wave is less effective at providing the first jolts 

of acceleration than the slower A W1we. This is one aspect of particle acceleration, 

however, that is greatly el1hanced by the presence of 11 stochastic web. Because of 

t.he la.rge first-order islands created by resonallce, particles which are initially locat.ed 

dose to the origin ill phase space (T < 1 eV) may be swept out to substantially 

higher energies than would be possi ble otherwise. This is seen clearly in Figure 1, 

where the separatlix mesh which surrounds the first-order islands reaches very close 

t.o t.he orip;in. This pffed. is not. ohserved in Figure 2. where the invariant t.ori divide 

the phase space into successive annulus-like regions. 

Next, it happens that the maximum velocity to which 11 particle Illay be ac

celerated is also dependent upon the values of the lIlodal phase velocities. To see 
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this, note that in the A and B runs respectively, the maximum normalized phase 

veloci ties were 

{

(A) } Vi ? 
k(A) ~ 92._ m 

, rna: 

and 
{

(B) } 
~!B) ~ 67.2 m. 

t rna:' 

The larger phase velocity in case A allows stochastic diffusion to occur at corre

spondingly larger gyroradii. As a result, for the maximum electric field amplitudes 

in runs 6A and 6B, case A exhibits superior particle heating characteristics. 

3.5 The Disappearance of Landau Damping 

Recall that one may define the dielectric re3pon3e function c(k, w) of a plasma in 

terms of the dielectric tensor E( k, w) according to 

(k )
= k · E(k,w)·k 

c ,w - k2 . (14) 

For a plasma in a uniform, external magnetic field such as that pertaining to (1), 

we can write this response as a sum over all ion species (j according to [20] 

() ~ ~ J 3 F •. n(v) c k, w = 1 - L. L. d v fl k . . 
d n=-oo n t1 + J: Vz - W - 11] 

(15) 

The explicit form of F •. n(v), which is not important for our purposes, is determined 

by the single-particle velocity distribution function f.(v). When the wave prop

agates obliquely to the magnetic field, the contributions to the response occur at 

values of V z where the denominator in the integral vanishes. These resonances, of 

course, are the sources of linear Landau dampin!l of the plasma wave. However, 

if we let the wave propagate transversely to the magnetic field as in (2), then the 

new set of resonances w = nfl. are independent of v - and the Landau damping 

vanishes. This phenomenon has been examined closely in [5] and [6], where it is 

shown that the paradoxical disappearance of Landau damping is accompanied by 
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the emergence of a particular form of nonlinear damping. This new damping is 

related to the stochastic instabili ty of particle motion. In particular, stochastic web 

formation is one example of this phenomenon. 
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Conclusion 

If lower hybrid waves are indeed responsible for the bulk heating of ions in the 

ionosphere, we hope that the simulations described herein might help elucidate some 

of details of the wave-particle interactions involved. Indeed, by studying this simple 

single particle model, we can gain a better understanding of the characteristics and 

limitations of LH heating. 

Unfortunately, as was mentioned earlier on, the processes which we have tried to 

model in this paper are still quite poorly understood. Further, lower hybrid heating 

is by no means the only possible mechanism for ion acceleration in the suprauroral 

region. While the upper limit of Tma% ~ 1 keY (at RMS fields of roughly 1.2 V 1m) 

is of the same order of magnitude as temperatures of observed hot ions populations, 

more experimental data is needed before researchers are able to construct a truly 

reliable picture of these ionospheric processes. 
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Figure Captions 

1. Surface of section of the Hamiltonian (4) for N = 1. The wave parameters 

are El = 0.7 m, VI = 5, kl = 1 m- 1 and 'PI = O. Points are plotted at the 

times Tp = 27rp!vI' Trajectories corresponding to various initial conditions 

are plotted, and the integration parameter j is 20. 

2. Same as [IJ, except VI = 5.16. 

3. Surface of section of the Hamiltonian (4) for N = 1. The wave parameters 

are El = 1.75 m, VI = 5, kl = 1 m- I and 'PI = O. Points are plotted at the 

times Tp = 27rp/vl ' Trajectories corresponding to various initial conditions 

are plotted, and the integration parameter j is 20. 

4. Same as [3J, except VI = 5.16. 

5. Time-averaged ion distribution N(p) versus gyroradius p for the Hamiltonian 

(4). Ten ions in the field of a single (N = 1) wave are averaged over the 

interval 2007r ~ T ~ 20007r. The wave parameters are EI = 1 m, VI = 5, 

kl = 0.5 m- I and 'PI = 0, and the integration parameter j is 25. 

6. Same as [5], except EI = 1.5 m. 

7. Same as [5], except EI = 2 m. 

8. Same as [5J, except EI = 2.5 m. 

D. Same as- [5] , except € I = 3 m. 

10. Time-averaged ion distribution N(p) versus gyroradius p for the Hamiltonian 

(4). Ten ions in the field of a single (N = 1) wave are a.veraged over the 
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interval 20071" :S T :S 200071". The wave parameters are EI = 1 m, VI = 5.16, 

kl = 0.5 m -I and 'PI = 0, and the integration parameter j is 25. 

11. Same as [101, except EI = 3 m. 

12. Time-averaged ion distribution N(p) versus gyro radius p for the Hamiltonian 

(4). One ion in the field of a single (N = 1) wave is averaged over the interval 

20071" :S T :S 600071". The wave parameters are EI = 3 m, VI = 5, kl = 1 m- I 

and 'PI = 0, and the integration parameter j is 20. 

13. Same as [121, except VI = 5.16: 

14. The normalized electric field £(x(T), T) as seen by a particle in the field of 10 

waves. The wave parameters are Ei = 1 m, Vi = 3i, ki = 1 m- I and 'Pi = ° for 

i = 1, ... , 10. The horizontal axis shows the number of spatial periods of the 

slowest wave, and integration parameter j is 20. 

15. The normalized electric field £( x(T), T) as seen by a particle in the field of 

10 waves. The wave parameters are Ei = 1 m, with Vi, ki and 'Pi chosen at 

random for i = 1, . .. ,10. The horizontal axis shows the number of spatial 

periods of the slowest wave, and integration parameter j is 20. 

16. Surface of section of the Hamiltonian (4) for N = 4. The wave parameters 

are Ei = 1.75 m, Vi = 5i, ki = 0.7 m- I and 'Pi = ° for i = 1, ... ,4. Points are 

plotted at the times Tp = 2r.p/ VI. for p = 1, ... , 15000. The initial gyroradius 

is 2.5 m, and the integration parameter j = 17.5 is not an integer in this 

special case. 

17. Surface of section of the Hamiltonian (4) for N = 5. Wave parameters are 

Ei = 1.8 m, (v\> ... ,vs) = (5,10,10,15,15), (kl, . .. ,ks) = (0.7,0.75,0.55,0.7, 
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0.35) m- I and 'Pi = a for i = 1, ... ,5. Points are plotted at the times 

Tp = 2rrp/vl> for p = 1,00.,15000. The initial gyroradius is 2.6 m, and 

the integration parameter is j = 22. 

18. Surface of section of the Hamiltonian (4) for N = 6. Wave parameters are 

Ei = 1.8 m, (Vi>'" ,vG) = (5,10,10,15,15,20), (ki>oo, ,kG) = (0.7,0.75,0.55, 

0.7,0.35,0.7) m- I and 'Pi = a for i = 1, . . . , 6. Points are plotted at the times 

Tp = 2rrp/vl> for p = 1, . .. ,15000. The initial gyroradius is 2.6 m, and the 

integration parameter j = 17.5 is not an integer in this special case. 

19. Time-averaged ion distribution N(p) versus gyroradius p for the Hamilto

nian (4). Ten ions in the field of ten waves are averaged over the interval 

200rr ~ T :S 2000rr. The wave parameters are chosen at random according 

to the prescriptions in the text (case A), with the mode amplitude range 

[Emin' Emu] = [0,1] m. The integration parameter j is 25. 

20. Same as [19], except [Emin' Emu] = [0.5,1.5] m. 

21. Same as [HJj, except [Emin, Em• z ] = [1,2] m. 

22. Same as [191. except [Em;n, Em• z ] = [1.5,2.5] m. 

23. Same as [19], except [Emin' Emu] = [2,2.5] m. 

24. Same as [HJj, except [Emin, Em• z ] = [3,3.5] m. 

25. Time-averaged ion distribution N(p) versus gyroradius (I for the Hamilto

nian (4). Ten ions in the field of ten waves are averaged over the interval 

200rr :S T :S 2000rr. The wave parameters are chosen at random accord

ing to the prescriptions in the text (case Il), with the mode amplitude mnge 

[Em;n, Em• z] = [0,1] m. The integration parameter j is 25. 
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26. Same as [25], except [fm;n, f m.,,] = [0.5,1.5] m. 

27. Same as [25], except [fm;n, f m.,,] = [1,2] m. 

28. Same as [25], except [fm;n, f mu] = [1.5,2.5] m. 

29. Same as [25], except [fm;n, f m.,,] = [2,2.5] m. 

30. Same as [25], except [fm;n, f m.,,] = [3,3.5] m. 

31. Qualitative particle trajectory in the (x, y) phase plane for the Hamiltonian 

(2). In the oval regions, a resonant interaction occurs which may lead to a 

substantial phase change and thus to stochastic particle dynamics. This effect 

weakens as the gyroradius of a particular trajectory increases. 
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Table I: Summary of Tur ulent jpectrum Heating b S S imulations. 

Run Vvave Parameters fmin - fmQ% (m) Pm"z (m) Tm"z (eV) I 
1A {v~A) k~A) (A)fo 

I , I , CPI i=l 0-1 14 1.5 x 101 

2A 0.5 - 1.5 29 6.4 x 101 

3A 1-2 51 2.0 x 102 

4A 1.5 - 2.5 80 4.9 x 102 

5A 2 - 2.5 83 5.3 x 102 

6A 3 - 3.5 133 1.4 x10J 

1B {v~B) k(B) (B) fO 
I 'I ,<PI i=l 0-1 4 1.2 x 10° 

2B 0.5 - 1.5 5 1.9 x 10° 

3B 1 - 2 6 2.8 x 10° 

4B 1.5 - 2.5 60 2.8 x 102 

5B 2 - 2.5 84 5.4 x 102 

6B 3 - 3.5 108 8.9 x 102 

25 



1
0

 

-o 
-

c 0 
...... 
..,J 

0 Q
) 

If.l 
-
. 

.... 
..,J 

0 --
"" 

~
 

.... ... 
'+-< 
0 Q

) 
0 cd 

'+-< 
$..t 

1
0

 
1 

::1 
If.l 

0 

-1 10 

-101 
0 

.... 
10 

.... 
1 

0 
1 

1 
1

0
 

0 .... 
-

(1)d 

26 



Surface of Section 

10 
.-----.. __ .-

5 

-5 

-10 

-10 -5 o 5 10 15 

x(t) 

Fig . 2 



N 
ex> 

15 

10 

5 

o 

-5 . 

-10 

Surface of Section 
, 
< 
• 

• 
-1~~15~~~~-~1~0~~~~··~'~~5~~~~0~~~~~5~~·~··~~~1~0~~~~15 

x(t) 

Fig. 3 



Surface of Section 

15 

10 

5 

o 

-5 

-10 

-10 -5 o 5 10 15 

x(t) 

Fig. 4 



Time-Averaged Ion Distribution 

-

103 I:- -

~ 

w Q... 
0 '--" 

Z 
102 I:- -

o 10 20 30 

Gyroradius p (m) 

Fig. 5 



Time-Averaged Ion Distribution 

104 :--

102 :--

101 :--

o 10 20 30 

Gyroradius p (m) 

Fig. 6 



Time-Averaged Ion Distribution 

-

103 - -

----Q.. ..., '-./ 
N Z 

102 ~ 

-

o 10 20 30 

Gyroradius p (m) 

Fig . 7 



Time-Averaged Ion Distribution 

104 I-- -

103 b- -

,..-... 
w Q.. w ~ 

Z 
102 b-

-

o 10 20 30 

Gyroradius p (m) 

Fig . 8 



Time-Averaged Ion Distribution 

-

103 I:- -

------Q. 
w '--' 
~ Z 

102 I:- -

-

o 10 20 30 

Gyroradius p (m) 

Fig. 9 



Time-Averaged · Ion Distribution 

-

-

-

101 f- -

o 10 20 30 

Gyroradius p (m) 

Fig. 10 



Time-Averaged . Ion Distribution 

-

103 .... -

...-.. 
w Q.. 
'" -.....J 

Z 

102 I- -

-

o 10 20 30 

Gyroradius p (m) 

Fig. 11 



Time-Averaged · Ion Distribution 

104 t- -

103 '- -
---.. 

"" 3 .... 
Z 

102 :-

r 

-

o 10 20 30 

Gyroradius p (m) 

Fig. 12 



Time-Averaged · Ion Distribution 

-

103 - r -
....---

w Q.. 
ex> '-" 

Z 

102 I- -

o 10 20 30 

Gyroradius p (m) 

. Fig. 13 



Electric Field Amplitude 

10 

---E-< 5 ~ ---E-< 
'--' 

>c: 
'--' 
r:il 

--- 0 
w N 

'" c: 
Po 

S 
'-... 

(l) 
'--' -6 

-10 

o 1 2 3 4 5 

Fig . 14 



Electric Field Amplitude 
I I I I 

10 '- -

..--
f-i 5 - -
..--
f-i 
'--" 

>< 

NW 
I~ '--" n r:z::I 

VV~ lr ..-- 0 rJ 
N 

". c: V 0 

Po. V \ S 
"-Q) 
'--" -5 -

-10 ~ -

I I I I 

o 1 2 3 4 5 

Fig . 15 



Surface of Section 

40 

20 

o 

.. 

-20 

-40 

-40 -20 o 20 40 

xCt) 

Fig. 16 



100 

50 

a 

-50 

/1 
, I 

, I 

I ~,~ 

Surface of Section 

-100~~~~~~--~~~~~--~~~~~~--~~~~ 

-100 -50 a 50 100 

x(t) 

Fig. 17 



Surface of Section 
100 

50 

o 

-50 

-100~~~--~~-L~~~~~--~~~--~~~--~~~--~~ 

-100 -50 o 50 100 

x(t) 

Fig . 16 



Time-Averaged Ion Distribution 

103 

~ 

". Q.. 
". 

~ 

Z 
102 

o 20 40 60 80 

Gyroradius p (m) 

Fig. 19 



Time-Averaged Ion Distribution 

o 20 40 60 80 

Gyroradius p (m) 

Fig. 20 



Time-- Averaged Ion Distribution 

103 

-----. 
~ Q. 
a- '--' 

Z 
102 

Gyroradius p (m) 

Fig. 21 



Time-Averaged Ion Distribution 

104 

103 

~ 

~ 
Q.. ........., .... 

Z 
102 

40 60 80 

Gyroradius p (m) 

Fig. 22 



Time-Averaged Ion Distribution 

103 

,..-..,. 

'" Q.. 0> 
'--" 
Z 

102 

60 80 

Gyroradius p (m) 

Fig. 23 



Time-Averaged Ion Distribution 

104 

103 

....---.., .,. 
Q '" '--' 
Z 

102 

o 25 50 75 100 125 

Gyroradius p (m) 

Fig. 24 



Time-Averaged Ion Distribution 
105 

104 

103 

----I..n Q.. 
0 

........., 
Z 

102 

101 

100 
o 20 40 60 80 

Gyroradius p (m) 

Fig . 25 

•. 



Time-Averaged Ion Distribution 

104 

103 

,,--... 
U> Q.. 
I-' '---" 

Z 
102 

101 

o 20 40 60 80 

Gyroradius p (m) 

Fig. 26 



Time-Averaged Ion Distribution 

103 

....-... 
'" Q. '" '---' 

Z 
102 

101 

o 20 40 60 80 

Gyroradius p (m) 

Fig . 27 



Time-Averaged Ion Distribution 

103 

,-.... 
V> Q.. w 

'---" 
Z 

102 

o 20 40 60 80 

Gyroradius p (m) 

Fig. 28 



Time-Averaged Ion Distribution 

103 

,-.... 

'" Q.. 
~ '---" 

Z 
102 

o 20 40 60 80 

Gyroradius p (m) 

Fig . 29 

• 



Time-Averaged Ion Distribution 

103 

---... 
Q.. 

V> '-" 
V> Z 

102 

a 25 50 75 100 125 

Gyroradius p (m) 

Fig . 30 

....... ; . 



dy/dt 

Fig. 31 

w/k 
I 

dx/dt 

,. 




