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RESEARCH PAPER

Dietary prophage inducers and antimicrobials: toward landscaping the human
gut microbiome
Lance Bolinga, Daniel A. Cuevasb, Juris A. Grasis a*, Han Suh Kanga, Ben Knowlesa&, Kyle Levi c,
Heather Maughan d, Katelyn McNair a,c, Maria Isabel Rojasa, Savannah E. Sancheza#, Cameron Smurthwaitea,
and Forest Rohwera

aDepartment of Biology, San Diego State University, San Diego, CA, USA; bComputational Sciences Research Center, San Diego State
University, San Diego, CA, USA; cDepartment of Computer Science, San Diego State University, San Diego, CA, USA; dRonin Institute,
Montclair, NJ, USA

ABSTRACT
The approximately 1011 viruses and microbial cells per gram of fecal matter (dry weight) in the
large intestine are important to human health. The responses of three common gut bacteria
species, and one opportunistic pathogen, to 117 commonly consumed foods, chemical additives,
and plant extracts were tested. Many compounds, including Stevia rebaudiana and bee propolis
extracts, exhibited species-specific growth inhibition by prophage induction. Overall, these results
show that various foods may change the abundances of gut bacteria by modulating temperate
phage and suggests a novel path for landscaping the human gut microbiome.
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Introduction

The human adult gut microbiome is numerically
dominated by viruses, particularly the bacteriophages
(a.k.a., phages), and bacteria belonging to the
Bacteroidetes and Firmicutes phyla.1–4 The relative
abundances of particular gut bacteria strains and spe-
cies are regulated through bottom-up (e.g., food) and
top-down mechanisms like phage predation.5,6

Consumption of foods such as cocoa,7 tea, wine, soy,
and plant polyphenols;8 nondigestible carbohydrate
substrates such as resistant starches, plant cell wall
material, and oligosaccharides;9 specific fibers such
as inulin,10 and hemicellulose such as arabinoxylan,11

have significant effects on the relative abundances of
microbes in the gut and the metabolites they produce.

In the lumen of the gut, there is approximately 1
virus-like particle (VLP) for every bacterial cell.12

Most of these VLPs are dsDNA phage. These phages
play a protective role by adhering to mucus that lines
the intestinal epithelium.13,14 Most phages in the

human gut are temperate and integrated into the
genomes of their bacterial hosts as prophage.4 In
turn, prophages are induced by certain foods and
chemicals, including soy sauce,15 nicotine, other cigar-
ette chemicals,16 sunscreen,17 and antibiotics such as
ciprofloxacin.18

Prophage induction in gut bacteria may result in
the horizontal transfer of genes to other bacterial
strains or species. For example, prophages that encode
Shiga exotoxin are induced by prophylactic antibio-
tics, like carbadox, and are known to move these
exotoxins between E. coli strains in cattle.19 Prophage
induction can also alter the relative abundances of
bacteria species/strains. This can lead to dysbiosis if
pathogens fill the niche generated by lysed commen-
sals. For example, benzo[a]pyrene-diol-epoxide in
cigarette smoke induces multiple prophages that lyse
beneficial lactobacilli, thereby enabling anaerobic
pathogens to persist and cause bacterial vaginosis.16

Different foods and diet types are associated with
varying microbiome compositions20 and may shift
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gut community composition.3,21,22 Thus, there is
strong evidence that many common food and/or
environmental compounds alter gut community com-
position, sometimes through prophage activation.

To identify additional compounds that induce pro-
phages and/or affect gut community composition,
ingestible compounds were tested for their effects on
growth of human-associated Bacteroidetes
(Bacteroides thetaiotaomicron strain VPI-5482), two
Firmicutes (Enterococcus faecalis and Staphylococcus
aureus), as well as the opportunistic pathogen
Pseudomonas aeruginosa (Phylum Proteobacteria).
To determine whether antimicrobial effects were due
to prophage induction, compounds that inhibited
bacterial growth were assayed for their ability to
induce VLPs. Numerous compounds exhibited anti-
microbial activity and several were identified as novel
prophage-induction agents. Most of the compounds
displayed differential activity on the test bacterial spe-
cies, introducing the possibility of using diet to inten-
tionally landscape the human gut microbiome via
prophage induction.

Results

Effects of compounds on the growth of gut
bacteria

B. thetaiotaomicron, E. faecalis, and S. aureus were
tested for their growth in the presence of 117 consum-
able compounds (Supplementary Table S1). These
taxa are common in human gut metagenomes, being
detected in 84-94% of the 2,229 human gut metagen-
ome datasets. The average relative abundances of
B. thetaiotaomicron, E. faecalis, and S. aureus in these
datasets were 8.04%, 0.55%, and 0.32%, respectively.
Although not a typical member of the gut microbiota,
P. aeruginosa was also screened because it is
a common, opportunistic pathogen.

To identify compounds with antimicrobial proper-
ties, bacterial growth in the presence of each tested
compound was compared to growth without any
added compound (growth curves are shown in
Supplementary Figure S3). Clustering of the growth
curves identified general categories of antimicrobial
activity (Figure 1). The compounds with the strongest
andmostwidespread bactericidal effectswere Tabasco
(TAB), glycolic acid (GLY), N-acetyl-cysteine (NAC),
citric acid (CIT), toothpaste (TOO), and vinegar

(VIN). Cinnamon (CIN), neem (NEE), licorice
(LIC), Fernet (FER), and clove (CLO)were antibacter-
ial in most cases. Aspartame (ASP), coffee Arabica
(COFa), stevia (STE), trigonelline (TRI), and uva ursi
(UVA) were antibacterial in some cases. Cottage
cheese (COT), cayenne (CAY), miso (MIS), fish
sauce (FIS), and reuterin (REU) had potentially pre-
biotic effects. See Supplementary Table S2 for
a complete list of compounds and their effects.

Prophage induction

Bioinformatics analyses predicted functional pro-
phages in all four bacterial species (Figure 2 &
Supplementary Table S3), opening the possibility
that some of the bactericidal effects might be due to
prophage induction. Flow cytometry was used to
count VLPs when bacteria were incubated with anti-
microbial compounds. Because lysogens produce
some phage spontaneously, the VLPs in the treat-
ments were compared to controls without the treat-
ment compound. Compounds were chosen for flow
cytometry analysis based on the following criteria:
(1) growth curves that suggested a decline in loga-
rithmic growth of at least 1.19 (peak to trough ratio)
that might indicate prophage induction, and 2)
growth curves where the shifted area under the curve
(aucshifted) was less than the control, but not so low as
to indicate the majority of bacteria were killed (see
Supplementary Figure S5b). These criteria identified
28 compounds for counting VLPs via flow cytometry
(Table 1). P. aeruginosa was excluded because its
mucoid polysaccharides prevent efficient VLP
counting in the flow cytometer.

Of the 28 compounds tested with flow cytometry,
eleven induced VLPs to levels higher than the no-
compound control in at least one species (Figure 3).
For B. thetaiotaomicron, the strongest inductor was
stevia, which displayed a 410% increase in VLPs in the
treatment versus the control. Clove and propolis
increased the number of VLPs by +185% and
+115%, respectively, in B. thetaiotaomicron. The high-
est inducers for E. faecalis were uva ursi (+842%),
propolis (+695%), and aspartame (+579%). For
S. aureus, stevia (+321%), grapefruit seed extract
(+103%), and toothpaste (+79%) were the strongest
inducers (Figure 3).

Several compounds reduced the number of
VLPs relative to the control. Rhubarb (−62%),
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Figure 1. Heat map of clustering based on the antimicrobial effect of each substrate, calculated as described in the Materials and
Methods. Percent change in growth is indicated by color: red indicates less growth and blue indicates more growth compared to
negative controls. Clusters are classified as bactericidal (red), antibacterial in most cases (yellow), antibacterial in some cases (green),
and sometimes prebiotic (blue). Prebiotic compounds can only be digested and utilized by Bacteria, thereby facilitating their growth.
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Fernet (57%), coffee Arabica (−49%), and oregano
(−44%) reduced the number of VLPs in all bacter-
ial species. Several other compounds suppressed
VLPs in individual species. Pomegranate (−89%),
grapefruit seed extract (−89%), toothpaste (−88%),
and cinnamon (−88%) reduced VLP production in

B. thetaiotaomicron. Kombucha reduced E. faecalis
VLPs by 44%.

Uva ursi increased VLP production in E. fae-
calis by +842%, while markedly reducing VLP
production in B. thetaiotaomicron (−83%) and
S. aureus (−68%; Figure 3).

a

b

Bacteroides
thetaiotaomicron VPI-5482

Enterococcus faecalis

Pseudomonas
aeruginosa LES400

Staphylococcus 
aureus CA15

Prophage 1

Prophage 2
Prophage 3

Prophage 4
Prophage 5

Prophage 6

Prophage 1

Prophage 2Prophage 3

Prophage 4

Prophage 1

Prophage 2

Prophage 3

Prophage 4

Prophage 5
Prophage 6

Prophage 7 Prophage 1

Prophage 2

Prophage 3

Bacteroides
thetaiotaomicron

Enterococcus
faecalis

Pseudomonas
aeruginosa

Staphylococcus
aureus

Phispy intact prophage questionable prophage incomplete prophage

Figure 2. (a) A comparison of the number of putative prophages found by Phispy and PHAST. (B) Putative prophage in bacterial
genomes calculated with PHAST. Each prophage’s length, genomic position, and most closely related phage are listed in
Supplementary Table S3.
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Discussion

Foods, herb and dietary supplements are potentially
powerful tools tomanipulate the relative abundances
of gut bacteria. Most recent studies of diet and gut
community composition compared prebiotic diets
such as high plant polysaccharide vs. high fat/high
sugar, 11 or high-fat/low fiber vs. low-fat/high fiber.3

Our research complements these studies by identify-
ing reductive modulators of bacterial abundances
that may act by inducing prophages.

Hot sauces

Tabasco sauce at a final concentration of 3.3% (v/v)
reduced the growth of all three GI species, except the
opportunistic pathogen P. aeruginosa, by an average
of 92% (Supplementary Table S2). Tabasco’s antimi-
crobial activity was not solely due to the vinegar, as
the vinegar test reduced bacterial growth in all spe-
cies by an average of 71%. The additional bactericidal
activity may be capsaicin23 – a known antimicrobial
in hot peppers. Capsaicin had antibacterial effects in

Difference from control (%)
-50              0   500

snoitavresb
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5
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Figure 3. Induction of virus-like-particles (VLPs) by experimental compounds as detected by flow cytometry. VLPs were induced in
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our experiments at a concentration of 486 μg ml−1.
Since this concentration is much higher than that
found in Tabasco, the vinegar and capsaicin may be
synergistically interacting to decrease bacterial
growth. VLPs were not detected when any species
was incubated with Tabasco, vinegar, or capsaicin, so
these antimicrobial effects were not due to prophage
induction. Kurita et al. found that genes contributing
to DNA repair mechanisms were not induced by
capsaicin, and that antimicrobial activity was due to
membrane damage and osmotic stress.24

Tapatío, a hot sauce similar to Tabasco, reduced
bacterial growth by an average of 37% at a final con-
centration of 6.7% (v/v). Conversely, Sriracha sauce,
which contains very similar ingredients as the Tapatío
and Tabasco increased growth at a concentration of
6.7% (v/v). This is probably due to the sugar in the
Sriracha. The overall antimicrobial effect of Tabasco
suggests that an ingredient or a combination of ingre-
dients make it a potent modulator of gut community
structure. The consumption of Tabasco and other hot
sauces could potentially have similar effects as low
dose antibiotics,25,26 due to their powerful antimicro-
bial properties and high frequency of consumption in
some populations.

Hot sauces carry eukaryotic viruses like pepper
mild-mottled virus (PMMV), which was the pri-
mary RNA virus found in human fecal samples.27

PMMV was found in 4 of 7 chili sauces, indicating
that some viruses survived food production
processes.27 However, in a flow cytometry analysis
of Tabasco diluted in BHIS media, there were no
detectable viruses (Supplementary Figure S4).

N-acetyl-cysteine (NAC)

NAC had a strong antimicrobial effect in all species.
NAC is a synthetic amino-acid supplement that is
converted to glutathione in the body.28 NAC is used
as a supplement to treat acetaminophen toxicity28 and
Parkinson’s disease,29 to reduce influenza symptoms
and viral replication,30 and as a mucolytic agent for
cystic fibrosis and chronic obstructive pulmonary dis-
ease patients.25 NAC is also used to treat Helicobacter
pylori infection in the stomach,26 which implies that
NAC may affect the gut microbiome despite stomach
acids. NAC is bacteriostatic and inhibitory against
biofilm formation in P. aeruginosa31 and E. faecalis.32

In the case of E. faecalis, NAC inhibits infections and

biofilm formation following root canal treatment.
NAC is thought to be antimicrobial due in part to
the effect of its sulfhydryl groups reacting with essen-
tial proteins.33 This is consistent with the absence of
prophage induction by NAC despite its strong anti-
microbial activity.

Several other compounds featured in folklore
and world medicine – cinnamon, neem, rhubarb,
licorice, pine, and clove – as well as the bitter
aromatic herbal spirit Fernet Branca, demon-
strated differential antimicrobial effects in our
study (Figure 1).

Prophage inducers

Stevia, an artificial sweetener extracted from the
plant species Stevia rebaudiana, was the most potent
prophage inducerwith an increase of 410% and 321%
VLPs detected from B. thetaiotaomicron and
S. aureus, respectively. Several studies have demon-
strated the antimicrobial potential of stevia
extracts,34–36 but none has proposed a mechanism
of action. Abundant terpenes may be responsible for
the antimicrobial properties of stevia (as reviewed
by37). Our results agree with this possibility, in that
terpenes have been shown to be more effective
against gram-positive bacteria (E. faecalis and
S. aureus). Tomita et al.36 showed that fermented
stevia is effective against food-borne pathogenic bac-
teria, with no significant killing of gut microbes.36

A stevoside mixture from Stevia rebaudiana has also
been shown to be anti-tumorigenic,38,39 which may
involve proviral induction. Together, these studies
and our results suggest stevia could be used to
manipulate the gut microbiome.

Artificial sweeteners such as saccharin, sucralose,
and aspartame have been shown to have detrimental
effects, such as decreased glucose tolerance, that are
initiated by alterations of gut flora.40,41 Suez et al.41

showed that saccharin supplementation triggered
gut dysbiosis and increased Bacteroides spp. abun-
dance in mice. Our results showed a decrease in
growth for all species challenged with aspartame,
and differential effects from sucralose42 found that
recent consumers of aspartame or acesulfame-K had
significant differences in bacterial diversity com-
pared to non-consumers.42 While we only measured
the effects of artificial sweeteners on three gut
microbes, the data presented here may fall into the
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dysbiosis paradigm. Additionally, the increased VLP
expression in E. faecalis when challenged by aspar-
tame provides mechanistic insight into the potential
cause of dysbiosis.

A propolis glycerite increased VLP abundances by
115% and 695% for B. thetaiotaomicron and
E. faecalis, respectively. This and other bee products
were hypothesized to increase prophage expression
based on the antimicrobial effects of honey, which
are a product of hydrogen peroxide (a known proph-
age inducer) and phenolic activity.43,44 It showed that
inmice, a 2 or 5-week high-fat diet containing 0.2%w/
w of crude propolis extract mitigated the community
composition shift toward an increased Firmicutes:
Bacteroidetes ratio and subsequent inflammatory
markers that result from high-fat diets. This suggests
that propolis could be another supplement for shifting
ormaintaining gut community composition.Wewere
unable to measure whether any bee products were
antimicrobial because they formed precipitates that
obfuscatedOD600 nm readings.Nevertheless, increased
VLP production was observed in the Firmicute
E. faecalis, suggesting that prophage induction may
be partly responsible for the equalizing effect of pro-
polis on the Firmicutes:Bacteroidetes ratio.

Some of the compounds tested for prophage
induction had significantly fewer VLPs in their
supernatants relative to the mean, and for some
compounds, the effect varied between species
(Figure 3). Compounds with the greatest reduc-
tion in VLPs are strongly supported in the lit-
erature as antivirals – namely rhubarb,45–47

coffee,48–50 oregano,51,52 and pomegranate.53–55

Caveats

For themost part, growth curves did not produce the
characteristic pattern of a prophage induction. The
lack of a characteristic “induction” growth curve
means that future studies of potential prophage
inducers show a direct measure of VLPs like flow
cytometry or epifluorescence microscopy. Future
work needs to determine which prophage is induced
by the test treatments. Our study was conducted on
one strain of each bacterial species, so these results
may not be generalizable to other strains of each
species. Therefore, further studies are needed to
test the effects of these compounds on additional
gut bacteria in vivo, particularly because enzymatic

and/or pH alterations of the compounds may occur
before they reach the large intestine. Input into
a simulator of the intestinal microbial ecosystem
(SHIME)56 would be a logical next step. In vivo
investigations could be performed in gnotobiotic
mice or humans, considering most compounds are
recognized as safe food products.

Conclusions

Here we expanded the possibility of microbiome
landscaping through intentional ingestion of par-
ticular dietary compounds that modulate bacterial
abundances in the gut. We found that some com-
pounds act as reductive modulators by inducing
prophages, and because some of these are surpris-
ingly common ingredients (e.g., aspartame, tooth-
paste), diet-induced prophage activation is likely
a regular occurrence in the gut ecosystem. As these
ingredients are consumed by populations around
the world, these mechanisms could further our
understanding of how particular foods shape gut
microbiomes. They could also provide experimen-
tal tools for identifying novel mechanisms of
prophage induction; these tools are essential for
probing the dark matter of viral functional diver-
sity, and for determining how phages influence
and are affected by their environments.

Materials and methods

Bacterial strains and media

B. thetaiotaomicron VPI-5482 (NCBI Taxonomy
#226186, Genbank #AE015928.1) and E. faecalis
(ATCC #19433, NCBI Taxonomy #1169286) were
used for this study. The P. aeruginosa strain RM1
was isolated on cetrimide media from the lung biopsy
of a cystic fibrosis donor and S. aureus was isolated
from a human fecal sample.1 Bacteria from frozen
glycerol stocks were streaked onto supplemented
brain–heart infusion (BHIS) plates that were incu-
bated at 37°C for 24 h unless otherwise described.
B. thetaiotaomicron VPI-5482 was incubated for 48
h on Schaedler Blood Agar OxyPlates (Oxyrase –
Mansfield Ohio).

S. aureus, E. faecalis, and P. aeruginosa were cul-
tured in 3–5 mL of Brain-Heart Infusion Broth
(Becton, Dickson, and Company – Sparks,
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Maryland) supplemented with the following per liter
(BHIS): hemin 5 mg, menadione 1 mg, yeast extract 5
g, L-cysteine HCl 50 mg, MgSO4 120 mg, and CaCl2
50 mg. For B. thetaiotaomicron, Oxyrase for Broth
(Oxyrase – Mansfield Ohio) was added to BHIS at
a concentration of 4% v/v, and media was pre-
incubated at 37°C for at least 1 h to ensure complete
removal of oxygen (O2). Mineral oil (~1 mL) was
floated over the top of inoculated media to maintain
anaerobiosis. All species were incubated until the late
exponential phase, for up to 24 h at 37°C and shaken at
250 RPM.

Predicting prophages in genomes

To verify prophages are present in these bacterial
strains, each genome was screened using Phage
Search Tool (PHAST)57 and PhiSpy.58 Because
the strains of P. aeruginosa and S. aureus used in
this study do not have genome sequences available,
genomes from strains also isolated from humans
(P. aeruginosa LES400 and S. aureus CA15) were
screened for prophage content.

Screening compounds and master plate
preparation

One hundred seventeen compounds were screened
for antimicrobial activity (Supplementary Table S1).
Compounds were selected to include those with
known, presumed, or anecdotal antimicrobial activ-
ity and test concentrations were obtained from peer-
reviewed literature when possible. All compounds
were formulated (see Supplementary Table S1), fil-
ter-sterilized and then stored in two master 96-well
plates (MP1 andMP2) so that a common volume (10
or 20 μL depending on total well volume) could be
added to each test-well.

Bacterial growth and prophage-induction assays

Bacteria were cultured in the presence of each of the
117 test compounds for 24 h in 96-well plates. A single
colony from each species was used to inoculate a 3mL
liquid BHIS overnight culture, and 140 μL of diluted
overnight culture (1:10 in BHIS) was then mixed with
10 μL of test compound solution. For B. thetaiotaomi-
cron, volumes were doubled and 96-well plates sealed
with SealPlate Film (Excel Scientific) to promote

anaerobic conditions. The following controls were
included: BHIS alone (media control), bacteria in
BHIS without test compound (bacterial viability con-
trol), and each diluent used for the various test com-
pounds (Supplementary Table S1). Using
a SpectraMax M2 plate reader/incubator, optical den-
sity (OD) at 600 nm (OD600 nm) was measured every
10min for E. faecalis, S. aureus, and P. aeruginosa, and
every 60 min for B. thetaiotaomicron.

Preliminary tests showed that known prophage
inducers, mitomycin-C and carbadox, 59 reprodu-
cibly affected the growth of P. aeruginosa and
E. faecalis: logarithmic growth was followed by
a rapid decline in OD600 nm as host cells were
lysed (Supplementary Figure S2). This pattern of
bacterial growth served as a guide for identifying
prophage induction; those test compounds elicit-
ing a similar growth profile were further analyzed
at varying concentrations. Each test was accompa-
nied by a positive “induction” control of carbadox
(Sigma-Aldrich) at a range of final concentrations
(Supplementary Figure S3).

Growth curve analyses

The PMAnalyzer pipeline was used to analyze the
growth curves (Supplementary Figure S3A).60,61

The PMAnalyzer pipeline receives OD files from
the microtiter plate reader as an input and uses the
SciPy Python numerical library to model each
growth curve.62 Each growth curve was fitted
with the Zwietering model to predict the y0
(OD600 nm where growth begins), lag time, max-
imum growth rate, and biomass yield.63 For this
study, several new metrics were added to the pipe-
line. First, the area under the curve (auc) was
calculated using the SciPy integrate library to per-
form integration on the growth curve using the
composite trapezoidal rule. Second, the shifted
area under the curve (aucshifted) was calculated
using the formula:

aucshifted ¼ auc� y0tf

where auc is the area under the curve, y0 is the
starting OD600 nm value predicted by the
Zwietering model and tf is the final time point of
the experiment. By using the aucshifted calculation,
the y-axis cutoff of y = 0 becomes the actual starting
optical density, providing amethod of normalization
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necessary for downstream analysis (Supplementary
Figure S3B). Raw growth curves were plotted in
R using ggplot2.64

Differences between growth curves were analyzed
by comparing experimental wells to controls using
a method similar to one developed by Firsov65 who
determined that the antimicrobial effect of any com-
pound could be measured by directly comparing the
growth of cells when the compound is present or
absent. For each growth curve the aucshifted was cal-
culated and then compared to the aucshifted from
negative control wells (Supplementary Figure S3B)
to derive the antimicrobial effect (%) of each
compound:

antimicrobial effect ¼ � C� E
C

� �
x100

where C is the shifted area under the growth curve
for control (no test compound added) and E is the
shifted area under the growth curve for experi-
mental (test compound added).

For each microorganism, the mean antimicrobial
effect (Supplementary Table S2) of each compound
was used to generate a clustering heatmap in R using
the gplots library.66,67 Dendrograms were created in
gplots and used to re-order the heatmap, clustering by
the compound response and similar bacterial
response.

The following compounds were excluded from the
heatmap analysis because they formed precipitates in
the wells or were too opaque to accurately measure
OD600 nm: apple skin (APP), eugenol (EUG), grape-
fruit seed extract (GRA), pomegranate (POM), pro-
polis glycerite (PROg) and turmeric (TUR). Although
these compounds could not be used for growth curve
analyses, they were suitable for flow cytometry.

VLP quantification with flow cytometry

Each compound listed in Table 1 was tested for its
ability to induce prophages in B. thetaiotaomicron,
E. faecalis and S. aureus using flow cytometry. These
compounds were chosen based on the ratio of the
maximumOD600 nm of the growth curve to the lowest
OD600 nm measured after this peak. The cutoff ratio
was set to 1.19, which is the ratio observed when
B. thetaiotaomicron was incubated with 1 ug ml−1 of
carbadox. Some special cases were included that did
not meet the ratio criteria. Licorice (LIC) and

toothpaste (TOO)had strong antimicrobial/inhibitory
effects without typical induction growth-curves.
Although propolis could not be used for growth
curve analyses, it was included in flow cytometry
analysis based on our hypothesis that bee products’
peroxide-mediated antimicrobial effect43,68 may trig-
ger prophage induction as does peroxide.69,70 An
extract of coffee Arabica was included since pure
caffeine had a ratio above 1.19 in two of the three
species tested.

Overnight liquid cultures were diluted 1:100 in
BHIS media and an aliquot (130 μL) of each dilution
(260 μL for B. thetaiotaomicron) was transferred to
platewells in duplicate and grown in a SpectraMaxM2
plate reader, as described above, until cultures reached
early log growth phase. Turbidity of approximately
0.25, 0.35, 0.45 was reached for S. aureus, E. faecalis,
and B. thetaiotaomicron, respectively. Upon reaching
log growth, antimicrobial test solutions were added to
eachwell, at concentrations optimized for each species
based on data from growth curves and heat maps
(Table 1). Optimal concentrations of traditional
prophage inducers slightly inhibit bacterial growth
without causing excessive cytotoxicity;71 therefore,
the concentration of each antimicrobial compound
was optimized to be similar for each species while
maximizing prophage induction and minimizing
cytotoxicity (Table 1). Bacteria were incubated for
4–5 h with each test compound before well contents
were removed. Duplicate wells were not sampled but
were returned to the plate reader/incubator to deter-
mine the growth curve (Supplementary Figure S5a).
Growth curveswere similar to those in Supplementary
Figure S3, with few minimal differences due to com-
pound concentrations being optimized for flow cyto-
metry. The antimicrobial effect of each compoundwas
defined as the negative percent difference between the
control and test shifted area under the curve
(Supplementary Figure S5b).

Samples were prepared for flow cytometry with
the following procedure adapted from Brussaard et -
al.72 First, bacteria incubated alone or with food and
herbal extracts were transferred from 96-well plates
to epi-tubes and centrifuged for 5 min at 4000 RPM.
A portion (10 μL) of the supernatant was then com-
bined with 970 μL of sterile SM buffer. The purpose
of the bacteria grown alone in the plate was to create
bacteria controls so that VLP production between
bacteria grown with and without experimental
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compounds could be compared. All samples were
then stored overnight at 4°C. Samples were fixed by
adding 0.5% (v/v) glutaraldehyde (final concentra-
tion) to each sample, vortexing and then incubating
at 4°C for 30 min. To stain samples, 10 μL of a 10X
solution of SYBR Green I (Thermo Fisher Scientific)
wasmixed with 200 μL of each fixed sample and then
this mixture was heated at 80°C for 10min, then held
at 4°C for 5 min. As an internal flow rate standard, 5
μL of Fluoresbrite yellow-green 0.75 μm micro-
spheres (starting concentration of 107 beads mL−1,
Polysciences Inc.) were added to each experimental
well containing 195 μL of the sample. Prior to analy-
sis, the BD FACSCanto flow cytometer sheath fluid
was replaced with Milli-Q water to reduce the back-
ground noise of the instrument and to aid in the
separation of stained VLPs. To ensure cleanliness of
the machine, 10% bleach followed by Milli-Q water
were acquired for 20 min each or until Milli-Q water
reached ≤30 events/second, while thresholding on
side scatter 200. All samples were analyzed in stan-
dard mode utilizing the high-throughput sampler
(HTS) 96-well plate reader. For enumeration, 30 μL
of each sample was analyzed at a flow rate of 0.5 μL
s−1 followed by Milli-Q water to wash any residual
products or dye. The 488 nm blue laser was used to
excite the SYBR green dye detected in the FITC
channel (530/30 nm bandpass filter preceded by
a 502 nm long pass mirror). Threshold gating was
applied in the FITC channel above the background
noise of the Milli-Q water controls. As a positive
control, E. coli phage T4 virions (106 VLPs mL−1)
were used to confirm that VLPs were detectable in
this region. Salmonella enterica serovar
Typhimurium strain LT2 [78, 79] incubated with
the known prophage inducers mitomycin C and car-
badox was used as a positive control (Supplementary
Figure S4).

Bivariate plots displaying the FITC channel ver-
sus side scatter were created to differentiate beads
and microbes from samples so that VLPs could be
measured. These values were compared to back-
ground controls to determine which conditions
had elevated VLPs compared to the control. This
comparison was calculated as a percent difference
between the test condition and the control
(Supplementary Table S4). All data were collected
and analyzed on FACSDiva 6.1.1 software (BD
Biosciences – San Diego, CA).

Species abundance in environmental samples

To determine ubiquity and abundance of these four
species in the human gut, 2,299 human gut meta-
genomes were chosen from the Sequence Read
Archive that were identified to be shotgun sequenced
by PARTIE.73 These datasets were then scanned
using SearchSRA.74 When a species was found to
be present in a metagenome, the number of reads
assigned to that species per 10,000 reads was used to
calculate its relative abundance. For quality control,
reads less than 50 bp or 90% identity were excluded.
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