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Abstract

Entanglement and Geometry

by

Chris Akers

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Raphael Bousso, Chair

There is now strong evidence of a deep connection between entanglement in quantum
gravity and the geometry of spacetime. In this dissertation, we study multiple facets of this
connection. We start by quantifying the entanglement of a scalar quantum field theory as a
function of the curvature of its background. We then shift our focus to the AdS/CFT duality,
and we prove multiple logical relationships between geometric statements in AdS and entropic
statements in the CFT. Many of these proofs work in the presence of quantum corrections,
and we prove under which geometric conditions entanglement wedge nesting continues to
imply the quantum null energy condition (QNEC) when the CFT is on an arbitrary curved
background. We also demonstrate that the non-gravitational limit of the quantum focusing
conjecture implies the QNEC, given the same geometric conditions. Next, we prove the
connection between the boundary of the future of a surface and the null geodesics originating
orthogonally from that surface. This theorem is important for proving that the area of
holographic screens increases monotonically. Finally, we derive the holographic prescription
for computing Renyi entropies of a CFT with the formalism of quantum error-correction. In
the process, we provide evidence that the quantum gravity degrees of freedom related to the
AdS geometry are maximally-mixed.
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Chapter 1

Introduction

To answer our universe’s deepest questions, we need a theory of quantum gravity. Straightfor-
ward attempts to unify quantum mechanics and general relativity have led to inconsistencies,
and cleverer connections need to be drawn.

Arguably our best window into the properties of quantum gravity is the Anti-de Sitter
/ Conformal Field Theory duality (AdS/CFT) [140]. This duality conjectures that a theory
of quantum gravity in a d + 1 dimensional asymptotically-anti de Sitter (AdS) spacetime
is dynamically equivalent to a conformal field theory (CFT) living on the d dimensional
boundary of the AdS spacetime.

AdS/CFT has pointed to a fundamental connection between entanglement and geometry
in quantum gravity. Two notable examples of this are the following.

1. The entanglement entropy of a subregion of the CFT equals the geometric area of an
extremal surface embedded in AdS [171]. It seems that the entanglement of certain
CFT degrees of freedom are somehow related to the AdS metric.

2. The AdS dual of a CFT in a thermal state is a black hole. But the AdS dual of two
CFTs, each in a thermal state but entangled together into a joint pure state, is that of
two black holes connected together by a wormhole [141]! Somehow the entanglement
between the two CFTs gives rise to a geometric connection in quantum gravity.

These facts motivate an improved understanding of the detailed connection between
entanglement and geometry in gravity. In this dissertation, we explore multiple facets of this
connection.

Summary We start in Chapter 2 by quantifying the entanglement in a quantum field
theory as a function of the curvature scale of its background. We compute the entanglement
entropy of the O(N) vector model on a spherical time-slice as a function of the radius of the
sphere. This chapter is based on reference [3].
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In Chapter 3 we consider nine known geometric and entropic statements in AdS/CFT,
and we present proofs of the logical relationships between each of them. Five of the ten
proofs are new. This chapter is based on reference [4].

In Chapter 4, we study the near-boundary implications of entanglement wedge nesting
in holographic CFTs on arbitrary curved backgrounds. We find necessary and su�cient
conditions for it to imply the so-called quantum null energy condition (QNEC) in less than
six spacetime dimensions. We also study the non-gravitational limit of the Quantum Fo-
cusing Conjecture (QFC), and we find that it implies the QNEC under the same geometric
conditions. This chapter is based on reference [5].

Causal structure plays a key role in relating geometry and entanglement, as seen in e.g.
the covariant entropy bound [20] and the GSL for holographic screens [24, 21]. In Chapter
5, we rigorously prove the connection between the boundary of the future of a surface and
the null geodesics originating orthogonally from that surface. This theorem is important for
proving that the area of holographic screens monotonically increase. This chapter is based
on reference [2].

What are naively paradoxes in the emergence of geometry from entanglement in holo-
graphic CFTs have been understood as simply properties of quantum error-correction. In-
deed, understanding the CFT as a quantum error-correcting code (QECC) has gone beyond
its original purpose and explained the intimate connection between Ryu-Takayangi [171] and
subregion duality. In Chapter 6, we further illustrate the power of understanding AdS/CFT
as a QECC by deriving the holographic prescription for computing Renyi entropies. In the
process, we learn the particular entanglement structure of the AdS degrees of freedom that
might be naturally interpreted as the quantum gravity degrees of freedom that build up the
geometry. This chapter is based on reference [1].
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Chapter 2

Entanglement and RG in the O(N)
vector model

2.1 Introduction

An important aspect of quantum field theory is the renormalization group (RG) flow between
conformal field theories [192, 35, 129, 128]. Recent results, such as the proof of the F-theorem
by Casini and Heurta [38, 37], strongly suggest entanglement entropy plays an important
role in characterizing such flows. For some recent studies of entanglement and RG, see
[149, 84, 15, 157, 74, 162, 42, 85] To date, most explicit field theoretic computations of
entanglement entropy have focused on the vicinity of fixed points. It is the purpose of this
paper to compute entanglement entropy along an entire RG trajectory. We do this for the
interacting vector O(N) model at large N in 4 and 4 � ✏ dimensions.

In Sec. 2.2 we review the entanglement flow equations and recent results in perturbative
calculations of entanglement entropy. We establish the setup of our problem: the Euclidean
spacetime is taken to be a sphere, and the entangling surface is the bifrucation surface of
the equator (see Fig. 2.1). The radius ` of the sphere sets the RG scale. The flow equations
for the variation of entanglement entropy with respect to ` reduce to a one-point function of
the trace of the stress-tensor.

In Sec. 2.3 we introduce the vector O(N) model. Within the ✏ expansion, the RG flow
is from the Gaussian fixed point in the UV to the Wilson-Fisher fixed point in the IR. We
work to leading order in 1/N , so that the dynamics is encoded in the mass gap equation.
We take the theory to have arbitrary non-minimal coupling in the UV. We renormalize the
theory, solve for the beta functions, and compute the expectation value of the trace of the
stress-tensor.

In Sec. 2.4 we find the entanglement entropy as a function of `. This follows immediately
from the results of the previous sections; the general expression is presented in Sec. 2.4. It is
instructive to first directly find the entanglement entropy in various limits, and in Sections
2.4, 2.4, we study the UV and IR limits, respectively. In Sec. 2.4 we warm up with the case
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AB

S
d

O(2)

Figure 2.1: The equator of Sd is split into two equal cap-like regions A and B (shown in
blue and red respectively). The entanglement entropy is the von Neumann entropy of the
density matrix living on the blue region.

of strictly four dimensions; this does not have a UV fixed point, but one may still study the
entanglement entropy between two points along the RG trajectory.

In Sec. 2.5 we discuss the implications of our results for computations on backgrounds
with conical deficits. The entanglement flow equations imply entanglement entropy is sensi-
tive to the amount of non-minimal coupling to gravity, even in the flat space limit and with
interactions. We show this is consistent with replica-trick calculations, but only if one ac-
counts for the contribution of the conical singularity. In fact, this conclusion is unavoidable:
even if one chooses to discard such boundary terms, quantum corrections will generate them
[143].

2.2 Review of Entanglement Flow Equations

In this Section we review the entanglement flow equations. The main equation, Eq. 2.8,
expresses the entanglement entropy in terms of the expectation value of the trace of the
stress-tensor.

Entanglement entropy is the von Neumann entropy of a reduced density matrix, ⇢. The
entanglement (or modular) Hamiltonian is defined through the reduced density matrix as

⇢ = e�K , Tr ⇢ = 1 . (2.1)

It trivially follows that entanglement entropy is given by the expectation value of the entan-
glement Hamiltonian,

SEE ⌘ �tr(⇢ log ⇢) = hKi . (2.2)
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Viewing the expectation value in (2.2) through the Euclidean path integral representation,
the entanglement flow equations [166, 165] follow:

@SEE

@�
= �

Z
hO(x)Ki (2.3)

2
�SEE

�gµ⌫(x)
= �

p
g(x)hTµ⌫(x)Ki , (2.4)

where the integral runs over the entire Euclidean manifold parametrized by x. These equa-
tions describe the change in entanglement entropy under a deformation of the coupling � of
some operator O, or under a change in the background metric gµ⌫ .1

A planar entangling surface in Minkowski space, or a spherical entangling surface in de
Sitter space, are especially useful contexts in which to study the flow equations. In these
two cases the symmetry in the transverse directions to the entangling surface implies that
the entanglement Hamiltonian is proportional to the boost generator (or rotation generator,
in the Euclidean continuation) [121]

K =

Z

A

Tµ⌫⇠
µn⌫ + c , (2.5)

where n⌫ is normal to the entangling surface, ⇠µ is the Killing vector associated with the
symmetry, and c is a normalization constant such that Tr ⇢ = 1. It should be noted that
Eq. 2.5 is valid for any Lorentz invariant quantum field theory.

Let us review a few properties of the flow equation (2.3). Since the correlator hTabOi
vanishes for a CFT, the change in entanglement entropy under a deformation away from
a fixed point vanishes to first order in � [165, 168]. This demonstrates the stationarity of
entanglement entropy at the fixed points on a sphere, providing an a�rmative answer to
the question raised in [124].2 The distinction between the conformally and nonconformally
coupled scalar is something we will return to. The second order in � part of entanglement
entropy is fixed by the correlators hTabOOi and hOOi, and is thereby completely universal:
the result agrees with both free field and holographic computations [167]. And while these
calculations are done for a planar entangling surface, the result for this universal entangle-
ment entropy (log term) is independent of the shape of the entangling surface [167], as was
verified holographically [119].

For a planar entangling surface, one can give an independent derivation of (2.3) [168].
In addition, through use of spectral functions, one can give a compact expression for the

1Eq. 2.4 can also be used to study shape dependance of entanglement entropy [165], although there are
unresolved issues at second order [167]. Shape dependance will not be the focus of our study, see however
[176, 7, 144, 136, 36, 69, 16].

2In order to see stationarity of entanglement entropy at the conformal fixed points on a sphere, it should
be the case that the stress-tensor in the correlator hTabOi represents CFT degrees of freedom only. In later
sections, we will find that when the IR fixed point is reached by an RG flow from the UV, this is not
necessarily the case. In our case the stress-tensor for the gapped system does not vanish in the deep IR and
gives rise to nonzero entanglement entropy which can be regarded as a remnant of the UV.
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entanglement entropy for a general QFT [168], allowing a demonstration of the equivalence
of entanglement entropy and the renormalization of Newton’s constant [41, 42].

While a planar entangling surface is a useful and simple case to consider, it is a bit too
simple for the study of RG flow of entanglement entropy, as it lacks any scale. A spherical
entangling surface is the best suited in this regard, as the size of the sphere sets the RG scale.
For an entangling surface that is a sphere in flat space, the entanglement Hamiltonian is only
known for a CFT [39], which is su�cient for computing entanglement entropy perturbatively
near the fixed point [68], but insu�cient for finding it along an entire RG trajectory.

In this paper, we study entanglement entropy for a spherical entangling surface in de
Sitter space. In this case, one knows the entanglement Hamiltonian along the entire RG
trajectory, and the flow equation can be directly applied. The analytic continuation of de
Sitter is a sphere Sd, and the Killing vector ⇠µ is the rotation generator. We will study the
change of entanglement entropy as we vary the radius l of Sd.

Noting that variation of the radius ` of the space Sd can be expressed as,

`
@

@`
= �2

Z
gµ⌫(x)

�

�gµ⌫(x)
, (2.6)

the flow equation (2.4) gives,

`
dSEE

d`
=

Z
hT µ

µ
(x)Ki . (2.7)

As a result of (2.5), the flow of entanglement entropy can be computed from (2.7) provided
one knows the 2-pt function of the stress-tensor. In fact, a further simplification can be made.
As a result of the maximal symmetry of de Sitter space, as well as the Ward identities, the
2-pt function can be reduced to a 1-pt function, turning (2.7) into [14]

`
dSEE

d`
= �VSd

d
`
d

d`
hT µ

µ
i , (2.8)

where VSd is the volume of a d-dimensional sphere of radius `. Eq. 2.8 can also be found
directly from the interpretation of entanglement entropy as the thermal entropy in the static
patch [14]. The flow equation in the form (2.8) will be used in Sec. 2.4 to compute entan-
glement entropy throughout the RG flow, from l ! 0 in the UV to l ! 1 in the IR.

2.3 O(N) on a sphere

In this Section we introduce the field theory background for the O(N) model on a sphere.
We work within the ✏ expansion, so as to have both the free UV and the Wilson-Fisher
IR fixed points. We also work at large N , allowing us to sum the infinite class of cactus
diagrams, as is concisely encoded in the mass gap equation. For the purposes of computing
the � functions near the fixed points, this is equivalent to working at finite N to one-loop.

After introducing the action and the gap equation in Sec. 2.3, we renormalize the theory
and compute the � functions in Sec. 2.3, and find the expectation value of the trace of the
stress-tensor in Sec. 2.3.
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Gap Equation

The Euclidean action of the O(N) vector model living on a d-dimensional sphere of radius
` is given by, 3

I =

Z

Sd


1

2
(@~�)2 +

t0
2
~�2 +

1

2
(⇠⌘c + ⌘0)R~�

2 +
u0

4N
(~� 2)2

�
+ Ig , (2.9)

where R = d(d�1)
`2

is the scalar curvature and ⌘c =
d�2

4(d�1) is the conformal coupling.4 We take
the theory to have arbitrary non-minimal coupling, parameterized by ⇠; we will be interested
in letting ⇠ have the range ⇠ � 0, with ⇠ = 0 corresponding to a minimally coupled scalar
and ⇠ = 1 corresponding to a conformally coupled scalar. The lower bound on ⇠ follows from
the requirement that the theory is stable in the UV.

Since we are on a curved space, we have included Ig which describes the purely gravita-

tional counter-terms which must be introduced to cancel the vacuum fluctuations of ~�,

Ig = N

Z

Sd

⇥
⇤0 + 0R + a0E4 + c0R

2
⇤
, (2.10)

where R is the Riemann scalar and E4 = R↵���R↵��� � 4R↵�R↵� +R2.5

Following the standard large N treatment, we introduce a Lagrange multiplier field s and
an auxiliary field ⇢, so as to write the generating function as

Z[ ~J ] =

Z
Ds D⇢ D~� exp

⇣
�I � ~J · ~�

⌘
, (2.11)

where the action is

I =

Z 
1

2
(@~�)2 +

t0
2
~�2 +

1

2
⇠⌘cR ~� 2 +

1

2
s(~�2 � N⇢) +

N

2
⌘0R⇢+N

u0

4
⇢2
�
+ Ig . (2.12)

We can integrate out ~� to obtain, 6

Z[ ~J ] =

Z
Ds D⇢ exp

⇣
�N

2

Z ⇣u0

2
⇢2 � s⇢+ ⌘0R⇢

⌘
�N

2
Tr ln Ôs+

1

2
h ~J, Ô�1

s
~Ji�Ig

⌘
, (2.13)

where Ôs ⌘ �⇤+ t0 + ⇠⌘cR+ s and h, i is the L2 norm. The contours of integration for the
auxiliary fields s and ⇢ are chosen so as to ensure that the path integral converges.

3We do not distinguish between the bare and renormalized � since to leading order in 1/N they are
identical.

4The bare coupling ⌘0 is introduced to account for the possible counter-terms associated with renormal-
ization of the non-minimal coupling to gravity.

5In 4-dimensions E4 represents the Euler density. Also, since the sphere is conformally flat, there is no
Weyl tensor counterterm.

6There is no spontaneous symmetry breaking on a sphere, so we are always in the O(N) symmetric
phase.
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= +
(a)

(b)

Figure 2.2: (a) At large N the Schwinger-Dyson equation for the 2-pt function simplifies to
become the gap equation (2.16). (b) Iterating (a) gives a sum of cactus diagrams, such as
the one shown above.

The auxiliary field ⇢ has trivial dynamics since it appears algebraically in the action. It
can easily be integrated out,

Z[ ~J ] =

Z
Ds exp

⇣
� N

2

✓
Tr ln Ôs �

Z

Sd

(s � ⌘0R)2

2u0

◆
+

1

2
h ~J, Ô�1

s
~Ji � Ig

⌘
, (2.14)

The remaining auxiliary field s encodes the full dynamics of the original N physical degrees
of freedom; it is an O(N) singlet, which significantly simplifies the 1/N expansion. At large
N the theory is dominated by the saddle point, s(x) = s̄, which satisfies

s̄ = u0h�2i + ⌘0R , h�2i ⌘ hx|Ô�1
s̄

|xi . (2.15)

It is convenient to re-express (2.15) in terms of the physical mass,7 m2 ⌘ t0 + s̄,

m2 = t0 + u0 h�2i + ⌘0R . (2.16)

Eq. (2.16) is the gap equation; it has a simple interpretation. At large N , fluctuations
of ~�2 are suppressed, h~�2(x)~�2(y)i ⇡ h~�2(x)ih~�2(y)i. The quartic interaction in the action
(4.41) is thus e↵ectively the square of a quadratic, and at leading order in 1/N the theory
can in some sense be regarded as a free theory with the mass fixed self-consistently through
(2.16). Equivalently, at large N the propagator is found by summing over all cactus diagrams
(see Fig. 2.2); this sum is encoded in (2.16), as can be seen by iterating (2.16) starting with
the bare mass t0.

7If the space-time is flat, then m
2 corresponds to a pole in the 2-point function.
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To solve the gap equation (2.16) we need the two-point function on a sphere for a free
field of mass squared m2 + ⇠⌘cR,

h�a(x)�c(y)i = �ac
l2�d

(4⇡)d/2
�(�)�(��+ d � 1)

�(d/2)
2F1(�, d � 1 � �,

d

2
; cos2

�

2
) , (2.17)

where � is the angle of separation between x, y and

� =
d � 1

2
+ i

r
(m`)2 � 1

4
+

d(d � 2)(⇠ � 1)

4
. (2.18)

In the limit of coincident points (2.17) becomes

h�2i = �(1 � d/2)�(�)�(d � 1 � �)

⇡(4⇡)d/2`d�2
sin
�⇡
2
(d � 2�)

�
, (2.19)

Eq. (2.19) exhibits a logarithmic divergence in the vicinity of d = 4, and so we must renor-
malize the theory.

Beta functions to leading order in 1/N

We first consider the counter terms needed to renormalize the couplings t, u, ⌘ in the action
for �. This is done through use of the gap equation and the requirement of a finite mass m.

The divergent piece in the gap equation (2.16) can be obtained by expanding (2.19) in
✏ ⌘ 4 � d ⌧ 1,

h�2i =
✓
(1 � ⇠)

4⇡2`2
� m2

8⇡2

◆
m�✏

✏
+ O(✏0) . (2.20)

To ensure a finite mass gap, m2, the bare parameters u0, t0 and ⌘0 in Eq. (2.16) should be
renormalized. To find the relation between the bare and renormalized couplings we rewrite
Eq. (2.16) as,

m2

u0
=

t0
u0

+
⌘0
u0

R � m2`✏

8⇡2✏
+

(1 � ⇠)`✏

4⇡2`2✏
+ . . . , (2.21)

where ellipsis encode finite terms independent of the bare couplings. The absence of poles
in the gap equation therefore gives the following relation between the bare and renormalized
parameters:

1

u0
=

1

uµ✏
� 1

8⇡2✏µ✏
,

t0
u0

=
t

u µ✏
,

⌘0
u0

=
⌘

uµ✏
� 1 � ⇠

48⇡2✏µ✏
, (2.22)

where t, u, ⌘ are the renormalized variables and depend on the RG scale µ.8

8The couplings u and ⌘ are dimensionless, and we use the minimal subtraction scheme throughout the
paper.
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Applying µ d

dµ
to both sides of (2.22), and recalling that the bare couplings are indepen-

dent of µ, leads to the following set of RG equations:

�u ⌘ µ
du

dµ
= �✏u+

u2

8⇡2
=

u

8⇡2
(u � u⇤) ,

�t ⌘ µ
dt

dµ
=

ut

8⇡2
, (2.23)

�⌘ ⌘ µ
d⌘

dµ
=

u

8⇡2

✓
⌘ � 1 � ⇠

6

◆
.

Here u⇤ = 8⇡2✏ is the well-known Wilson-Fisher IR fixed point9, while the Gaussian UV
fixed point is at u = 0.

Our discussion has been general, in that we have allowed the theory to have an arbitrary
non-minimal coupling in the UV. Given our conventions for the coe�cient of non-minimal
coupling to gravity, (⇠⌘c + ⌘0)R~�2 in the action (4.41), we impose that ⌘ = 0 at the UV
fixed point. Since the constant ⌘c was picked to be ⌘c = 1/6 in 4 dimesnions, this ensures
that for ⇠ = 1 the scalar is conformally coupled in the UV, while for ⇠ = 0 it is minimally
coupled. In fact, (2.23) tells us that independent of our choice of ⇠, the IR endpoint of the
flow is the same: ⌘⇤ = 1�⇠

6 at the Wilson-Fisher fixed point, and therefore ⇠⌘c + ⌘⇤ = 1/6.
Thus to leading order in ✏, a family of weakly interacting, non-conformally coupled massive
scalar fields, parametrized by ⇠ � 0 in the vicinity of the Gaussian fixed point, all flow to
the conformally coupled theory at the Wilson-Fisher fixed point.

Gravitational counter-terms and energy-momentum tensor

The � functions for u and t found in (2.23) are obviously the same as those in flat space. In
addition to ⌘, the sphere background requires the introduction of gravitational counterterms
(2.10). In this section we compute their � functions; the expectation value of the trace of
the energy-momentum tensor will then follow. We note that knowing the contribution of
the gravitational counterterms is essentially irrelevant for our purposes. We are interested
in the area law piece of entanglement entropy, which by necessity involves the mass. The
contribution of the gravitational counterterms aE4 and cR2 only involves the sphere radius `
and correspondingly will give some constant contribution to the entanglement entropy. The
computation of these conterterms is for completeness; the reader uninterested in the details
may skip to the result, Eq. (2.41).

Our analysis and notation will closely follow the discussion in Ref. [29]. We work on
an arbitrary conformally flat curved background,10 specializing to a sphere at the end. The

9At finite N the Wilson-Fisher fixed point is at u
⇤ = N

8⇡2✏
N+8 = 8⇡

2
✏ + O(1/N). Note that as a result of

the normalization of the quartic term in the lagrangian by a factor of N , u
⇤ has an additional factor of N

as compared to the usual ✏ expansion conventions.
10Conformally flat because we do not bother to include the Weyl tensor counter term.
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relation between the bare and renormalized parameters is [29]

⌘0 = (⌘ + F⌘)Z
�1
2 , Z�1

2 ⌘ t0
t
,

⇤0 = µd�4(⇤+ t20F⇤) ,

0 = µd�4(+ 2t0⌘0F⇤ + t0F) ,

a0 = µd�4(a+ Fa) ,

c0 = µd�4(c+ ⌘20F⇤ + ⌘0F + Fc) , (2.24)

where all counter terms, Z�1
2 , F⌘, F⇤, F, Fa and Fc, are dimensionless functions of the renor-

malized coupling u, and we choose a scheme where they contain only an ascending series of
poles in ✏ = 4 � d. As argued in [29], these functions are independent of the renormalized
coupling ⌘. Furthermore, from (2.22) we immediately find,

Z�1
2 =

⇣
1 � u

8⇡2✏

⌘�1

,

F⌘ =
(⇠ � 1)u

48⇡2✏
. (2.25)

To calculate F⇤ and F, one can use the definition of the renormalized operator [~� 2] [29]: 11

t[~� 2] = t0~�
2 +Nµ�✏t0

⇣
4(t0 + ⌘0R)F⇤ + 2RF

⌘
, (2.26)

and require that its vev is finite. The result is,

F⇤ =
1

2(4⇡)2✏

⇣
1 � u

8⇡2✏

⌘
,

F =
⇠ � 1

96⇡2✏

⇣
1 � u

8⇡2✏

⌘
. (2.27)

In Appendix A.1 we carry out an independent calculation of F⇤, finding agreement with [74]
and the above result. Using these counter terms together with (2.24), one can evaluate the
RG flow equations for ⇤ and ,

µ
d⇤

dµ
= ✏⇤+

t2

2(4⇡)2
,

µ
d

dµ
= ✏+

t

(4⇡)2

✓
⌘ � 1 � ⇠

6

◆
. (2.28)

The RG equation for  can then be solved,

 =
⌘

2u
t+ ̄µ✏, (2.29)

11In our case the relative sign of the counter terms is flipped since we are using Euclidean signature.
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where ⌘⇤ = (1 � ⇠)/6 and ̄ is some constant that will still need to be fixed.
Turning to the a and c coe�cients,

�a ⌘ µ
da

dµ
= ✏ a+ f (1)

a
,

�c ⌘ µ
dc

dµ
= ✏ c+

⌘2

2(4⇡)2
+ ⌘

⇠ � 1

96⇡2
+ f (1)

c
, (2.30)

where f (1)
a and f (1)

c are the residues of the simple poles in the definitions of Fa and Fc,

Fa =
f (1)
a

✏
+

f (2)
a

✏2
+ . . . ,

Fc =
f (1)
c

✏
+

f (2)
c

✏2
+ . . . . (2.31)

To calculate Fa and Fc we will require that the energy-momentum tensor has a finite vev.

Energy-momentum tensor

The energy-momentum tensor of the O(N) model is given by Tµ⌫ = T �

µ⌫
+ T g

µ⌫
where T �

µ⌫
is

the contribution from �,

T �

µ⌫
⌘ 2

p
g

�Ig
�gµ⌫

= rµ
~�r⌫

~�� gµ⌫

✓
1

2
(@~�)2 +

1

2
t0~�

2 +
1

2
⇠⌘cR ~� 2 +

u0

4N
(~� 2)2

◆

+⇠⌘cRµ⌫
~� 2 + ⇠⌘c

�
gµ⌫r2 � rµr⌫

�
~� 2 ,

(2.32)

and T g

µ⌫
is the gravitational contribution, defined through the variation of the action,

Tµ⌫ =
2

p
g

�Ig
�gµ⌫

. (2.33)

Taking the trace gives

T ⌘ gµ⌫Tµ⌫ = �t0~�
2 � d � 2

2
E0 + (d � 4)

u0

4N
(~� 2)2 + (d � 1)(⇠ � 1)⌘cr2~� 2 + T g , (2.34)

where E0 is the equation of motion operator

E0 = ~�
⇣
�r2 + ⇠⌘cR + t0 +

u0

N
(~� 2)

⌘
~� , (2.35)

and T g is the trace of the gravitational part,

1

N
T g ⌘ 1

N
gµ⌫T g

µ⌫
= �d⇤0 � (d � 2)0R � (d � 4)(a0E4 + c0R

2) , (2.36)
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where we dropped a term proportional to r2R, since it vanishes on a sphere.
Taking the vev of the energy-momentum trace and using the gap equation (2.16): h~�2i =

N(m2 � t0 � ⌘0R)/u0, yields12

1

N
hT i = � t0

u0
(m2 � t0 � ⌘0R) + (d � 4)

1

4u0
(m2 � t0 � ⌘0R)2 +

1

N
T g . (2.37)

By definition, this expression is finite after the bare parameters are expressed in terms of
the renormalized parameters. Substituting (2.22), (2.24), (2.25) and (2.27) into (2.37), we
get after some algebra,

µ✏

N
hT i =

m4

2(4⇡)2

✓
1 � u⇤

u

◆
+

t

u

⇣
t � m2 +

✏

2

⇣
m2 � t

2

⌘⌘
� (4 � ✏)⇤

+

✓
(✏� 2)+

⇣
1 � ✏

2

⌘⌘
u
t+
⇣
✏
⌘

2u
+
⇠ � 1

96⇡2

⌘
m2

◆
R (2.38)

+ ✏(a+ Fa)E4 + ✏

✓
c � ⌘2

4u
+ Fc +

⇣ ⇠ � 1

96⇡2✏

⌘2
u

◆
R2 + O(✏2) .

Imposing that hT i be finite leads to the following large-N results:

Fa =
f (1)
a

✏
,

Fc =
f (1)
c

✏
�
⇣⇠ � 1

96⇡2

⌘2 u
✏2

. (2.39)

Both f (1)
a and f (1)

c are not fixed. However, to leading order in 1/N they are identical to their
free field values, and we get

Fa =
�1

360(4⇡)2✏
,

Fc = �
⇣⇠ � 1

96⇡2

⌘2 u
✏2

. (2.40)

Combining with (2.29), the final expression for the trace of energy-momentum tensor
takes the form

µ✏

N
hT i =

m4

2(4⇡)2

✓
1 � u⇤

u

◆
+

t

u

⇣
t � m2 +

✏

2

⇣
m2 � t

2

⌘⌘
� (4 � ✏)⇤

+

✓
(✏� 2)̄µ✏ +

⇣
✏
⌘

2u
+
⇠ � 1

96⇡2

⌘
m2

◆
R (2.41)

+ ✏

✓
a � 1

360(4⇡)2✏

◆
E4 + ✏

✓
c � ⌘2

4u

◆
R2 + O(✏2) ,

12Note that the vev of the equation of motion operator vanishes identically. The same holds for vevs of
total derivatives on a sphere.
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where recall that R is the curvature of the sphere, the renormalized couplings are evaluated
at RG scale µ, the constant ⇠ parameterizes the non-minimal coupling (⇠ = 1 for conformally
coupled), and m is the physical mass found through the gap equation. In the next section,
we use (2.41) to calculate entanglement entropy.

2.4 Entanglement entropy

Having assembled the necessary field theory ingredients in the previous section, we now
compute the entanglement entropy. In what follows we account for the leading order in 1/N
contributions.

The entanglement entropy is found by solving the flow equation (2.8), which involves the
derivative of hT i (2.41) with respect to the sphere radius `. Since the renormalized couplings
t, u, ⌘, are independent of `, 13 we get

`
dSEE

d`
= � 2⇡N A⌃ µ�✏

(4 � ✏)(3 � ✏)
`2
✓

m2

(4⇡)2

✓
1 � u⇤

u

◆
`
dm2

d`
+

t

u

⇣ ✏
2

� 1
⌘
`
dm2

d`
� 2(✏� 2)̄µ✏R

◆
+s0 ,

(2.42)
where A⌃ is the area of the entangling surface ⌃ = Sd�2, s0 collectively denotes the con-
tribution of curvature square terms in (2.41), and we used solutions of RG equations for 
and ⌘/u to simplify the linear curvature term in (2.41), see (2.29) and (2.66). We ignore the
s0 terms as they are m-independent, and therefore just give some constant contribution to
the entanglement entropy. The solution for entanglement entropy along the RG trajectory
follows upon substituting the solutions of the gap equation (2.16) and the beta functions
(2.23) into (2.42) and integrating.

There are, however, a few caveats associated with the standard ambiguities of renormal-
ization. Indeed, the couplings in the above expression depend on an arbitrary RG scale, µ, as
well as on the choice of renormalization scheme. This ambiguity is unsurprising, and reflects
the well-known fact that entanglement entropy in field theory depends on the details of the
regularization procedure, and is therefore scheme dependent. However, certain contributions
to the entanglement entropy, ‘universal entanglement entropy’, are una↵ected by a change
in the regularization scheme. It is these terms that we will be interested in calculating.

There are three competing scales: µ, `, and the asymptotic mass m1 given through
the solution of the gap equation (2.16) in the limit of flat space.14. Since the curvature
of the sphere sets the characteristic energy scale, we must have µ ⇠ `�1. The constant of
proportionality between µ and `�1 is arbitrary, though this is no di↵erent than the usual
freedom to rescale µ. In our context, this constant of proportionality is exchanged for the
entanglement entropy at some radius `. Or, put di↵erently, we can express the entanglement
entropy at radius `1 in terms of the entanglement entropy at some other radius `0.

13The couplings of local interactions should not know about the global geometry.
14It is apparent that m should depend on `: the mass was found by summing cactus diagrams, which

probe the entire sphere.
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Furthermore, there is a substantial di↵erence between the two cases characterized by
✏ = 0 and ✏ 6= 0. In the former case the theory is not UV complete; as m` runs from small to
large values, it flows from a nonconformal interacting field theory in the UV to a Gaussian IR
fixed point. In contrast, for finite ✏ ⌧ 1, the system flows from the Gaussian UV fixed point
at m1` ⌧ ✏ ⌧ 1, into the interacting Wilson-Fisher IR fixed point at m1` � ✏�1 � 1.
In particular, there is no smooth limit which interpolates between the two cases, and we
analyze them separately. We consider ✏ = 0 in Sec. 2.4, and finite ✏ in Sec. 2.4, 2.4, and 2.4.
Note that in 4-dimensions, the coe�cient of the log term is universal. In 4 � ✏ dimensions
there is no log term, however a 1/✏ term turns into a log in the limit of ✏ ! 0.

Four dimensions

In this section we compute the entanglement entropy in 4 dimensions. Taking the limit
✏ ! 0 results in the following RG flow equations,

µ
du

dµ
=

u2

8⇡2
,

µ
d

dµ

⇣⌘
u

⌘
=

⇠ � 1

48⇡2
. (2.43)

Integrating gives,

u(µ) =
u0

1 � u0
8⇡2 log(µ�)

,

⌘

u
=

⇠ � 1

48⇡2
log (µ�) , (2.44)

where we imposed the initial conditions (u, ⌘) = (u0, 0) at the UV scale �. In the deep IR
(2.44) gives (0, (1 � ⇠)/6).

The 4D counterparts of (2.41) and (2.42) are

hT i
N

=
m4

2(4⇡)2
+

t

u

⇣
t � m2

⌘
� 4⇤ �

✓
2̄+

1 � ⇠

96⇡2
m2

◆
R � E4

360(4⇡)2
, (2.45)

and

`
dSEE

d`
=

⇡N A⌃

6
`2
✓
t

u
`
dm2

d`
� 4̄R

◆
+ s0 , (2.46)

while the gap equation (2.16) can be succinctly written as

t

u
=

m2

u(m)
� ⇠ � 1

4⇡2`2
log(m�) � h�2ireg , (2.47)
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where we used (2.44), and the last term denotes the regular part of the 4D two-point function
in the limit of coincident points, see (2.20),

h�2ireg ⌘ lim
✏!0


hx|
�
�⇤+m2 + ⇠⌘cR

��1 |xi �
✓
(1 � ⇠)

4⇡2`2
� m2

8⇡2

◆
m�✏

✏

�
. (2.48)

Applying a derivative with respect to ` to both sides of (2.47), yields

`
dm2

d`

✓
1 +

u(m)

8⇡2

⇣ 1 � ⇠

(m`)2
� 1

2

⌘◆
= u(m)

1 � ⇠

2⇡2`2
log(m�) + u(m) `

d

d`
h�2ireg (2.49)

This expression together with (2.46) and (2.47) provides a full solution for entanglement
entropy flow on a sphere. Note that the RG scale µ is completely eliminated from the final
answer. E↵ectively its role is played by the radius of the sphere, `, as the curvature of the
background sets the characteristic energy scale for excitations. In particular, the deep IR
and UV are defined by m` � 1 and m` ⌧ 1, respectively. Of course, we have assumed that
the physical scales m and ` are far away from the microscopic UV cut o↵ �,

m� ⌧ 1 and ` � � . (2.50)

Now we explicitly evaluate EE in the UV and IR regimes. We start from the former.
Using (2.19) to evaluate h�2ireg and substituting the result into (2.49), yields15

`
dm2

d`

���
m`⌧1

= u(m)
⇠ � 1

2⇡2`2
�
log(m`) � log(m�) + . . .

�
+ O(u(m)2) , (2.51)

where ellipsis denote subleading terms in m` ⌧ 1. Similarly, from the gap equation (2.47),
we get

u(m)
t(µ)

u(µ)

���
m`⌧1

= m2 + 2
⇠ � 1

`2
+ . . . . (2.52)

Only the first term on the right hand side contributes to the ‘area law’, while other terms are
either subleading corrections or contribute to a constant term in the entanglement entropy.
Hence,

`
dSEE

d`

���
m`⌧1

= N(⇠ � 1)
A⌃ m2

12⇡
log

`

�
� 8⇡N A⌃̄+ . . . , (2.53)

Similarly, in the IR regime we have

`
dSEE

d`

���
m`�1

= N(1 � ⇠)
A⌃ m2

12⇡
log(m�) � 8⇡N A⌃̄+ . . . . (2.54)

The above behavior of entanglement entropy has a simple physical interpretation. In
the UV regime we have 1 ⌧ `

�
⌧ 1

m�
, and the universal ‘area law’ of entanglement scales as

15Note that based on (2.50) u(m) ' � 8⇡2

log(m�) ⌧ 1
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`2 log(`/�), i.e., there is a logarithmic enhancement relative to the standard growth ⇠ `2. This
enhancement persists as we increase ` until `m ⇠ 1 is reached. E↵ectively, the universal ‘area
law’ at m` ⇠ 1 is built from all the massive degrees of freedom which have almost decoupled
at this point. As we continue increasing `, the universal ‘area law’ continues growing like
`2 until the hierarchy of scales is reversed, 1 ⌧ 1

m�
⌧ `

�
, and the flow terminates at the IR

fixed point.
In particular, the logarithmic ‘area law’ in the deep IR represents entanglement of UV

degrees of freedom. It has nothing to do with the IR field theory, which is empty in our case.
As was noted in [165, 168] (see Sec. 2.2), the universal entanglement entropy vanishes for a
conformally coupled scalar. Setting ⇠ = 1 in (2.54) and (2.53) recovers this result.

Wilson-Fisher fixed point

In this section we calculate the entanglement entropy at the Wilson-Fisher fixed point in
4 � ✏ dimensions. This requires evaluating the right hand side of (2.42), which involves the
derivative of m2 with respect to `.

We start by expanding (2.19) in m` � ✏�1 � 1, 16

h�2i = (4⇡)
✏
2

(2⇡)2✏(✏� 2)
�
⇣
1 +

✏

2

⌘
m2�✏

✓
1 � (✏� 4)(✏� 2)(6(1 � ⇠) + ✏(3⇠ � 2))

24 (m`)2
+ O

�
(m`)�4

�◆

(2.55)
Now using (2.16), (2.22) and (2.55) results in

t⇤ =
2(4⇡)

✏
2

(2 � ✏)
�
⇣
1 +

✏

2

⌘
m2

✓
m

µ

◆�✏✓
1 � (✏� 4)(✏� 2)(6(1 � ⇠) + ✏(3⇠ � 2))

24 (m`)2
+ O

�
(m`)�4

�◆
,

(2.56)
where the asterisk in t⇤ denotes that the system sits at the Wilson-Fisher fixed point. Dif-
ferentiating (2.56) with respect to ` yields,

`
dm2

d`

���
m`�1

= m2

✓
�(✏+ 2)(✏� 4)(✏� 2)(6(1 � ⇠) + ✏(3⇠ � 2))

24 (m`)2
+ O

�
(m`)�4

�◆
, (2.57)

Substituting this expression and (2.56) into (2.42) gives

`
dSEE

d`

���
m`�1

=
(4⇡)

✏
2�1(✏� 2)

�
6(1 � ⇠) + ✏(3⇠ � 2)

�

12 ✏ (3 � ✏)
�
⇣
2 +

✏

2

⌘
NA⌃m

2�✏

⇣
1 + O

�
(m`)�2

�⌘

+ 4⇡(✏� 2)N A⌃̄+ s0 , (2.58)

The first thing to note about (2.58) is that the ‘area law’ term does not have any µ-
dependance, and therefore it is not sensitive to the constant of proportionality in the relation

16We do not expand in ✏. Note also that O
�
(m`)�4

�
and higher order terms in (2.55) are proportional to

✏, and therefore they do not contribute to the divergence of h�2i when ✏ ! 0.
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µ ⇠ `�1, i.e., as expected, the value of entanglement entropy at the fixed point is invariant
under reparametrizations of the RG trajectory.

It is instructive to compare (2.58) with its counterpart in [143]. The results in [143] are
intrinsic to the Wilson-Fisher fixed point since their setup, unlike ours, confines the RG flow
to the IR end. The geometry in [143] is flat, and therefore the gravitational coupling, ̄,
which appears in (2.58) is absent. In addition, as we argue in section 2.5, the computation
of [143] corresponds to ⇠ = 1 at the Wilson-Fisher fixed point. Thus, to leading order in
✏ ⌧ 1, Eq. (2.58) reduces to

`
dSEE

d`

���
m`�1

' �N
A⌃m2�✏

1

72⇡
, SEE ' �N

A⌃m2�✏

1

144⇡
, (2.59)

where m1 is the mass gap in the limit of flat space. Eq. (2.59) is in agreement with [143]. A
simple derivation of (2.59) was later given by Casini, Mazzitelli and Testé [41]. The authors
noticed that to leading order in ✏, the anomalous dimension vanishes at the Wilson-Fisher
fixed point, and thus (2.59) may be found from the entanglement entropy for a free field. One
distinction between our work and that of [41], is that [41] advocates that the entanglement
Hamiltonian has a discontinuous jump at the UV fixed point. Namely, that the entanglement
entropy takes the value for the minimally coupled scalar at the free field endpoint of the RG
trajectory, whereas it takes the conformally coupled value at all other locations. In our setup,
the entanglement entropy behaves smoothly along the entire RG trajectory. As found from
the beta functions (2.23), starting with either a minimally or nonminimally coupled field in
the UV leads to the conformally coupled field in the IR.

Let us now expand the numerical coe�cient of the ‘area law’ term in (2.58) in ✏ ⌧ 1

`
dSEE

d`

���
m`�1

=
N A⌃m2�✏

12

✓
�1

6⇡
+ (⇠ � 1)

✓
1

⇡✏
� 2� + 2/3 � 2 log(4⇡)

4⇡

◆
+ O

�
✏, (m`)�2

�◆

+ 4⇡(✏� 2)N A⌃̄+ s0 . (2.60)

In the next section, we will see that the 1/✏ term in (2.60) is associated with UV degrees of
freedom. 17 The presence of this UV remnant is a result of using the full energy-momentum
tensor (2.41) to calculate entanglement entropy at any scale µ ⇠ `�1.

To isolate entanglement entropy intrinsic to the scale `, one needs to use some kind of
subtraction scheme. There is no unique or preferred choice of such a scheme. Renormalized
entanglement entropy [138] is one possibility. This prescription proved to be particularly
powerful in three dimensions, and was used in the proof [38] of the F-theorem [118], see also
[44]. Unfortunately, it is not clear that renormalized entanglement entropy has analogous
properties, such as monotonicity, in integer dimensions higher than the 3; nor is it clear how
to apply it in non-integer dimensions.

For the particular choice of ⇠ = 1, the theory is conformally coupled along the entire RG
trajectory, and the contribution of UV degrees of freedom to the ‘area law‘ in the vicinity of

17The IR theory is empty, as we have only massive degrees of freedom which decouple in the deep IR.
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d = 4 (✏ = 0) vanishes. Since in this case (2.58) is not contaminated by UV physics, it can
be used to find an approximation for entanglement entropy at the interacting IR fixed point
in three dimensional flat space. Substituting ⇠ = ✏ = 1 and ̄ = 0 into (2.58), gives

SIR
EE

���
d=3

' �N

64
mA⌃ . (2.61)

We note that the constant ̄ is arbitrary; it can be exchanged for the entanglement
entropy at some scale l1. A choice that would seem natural is to demand that entanglement
entropy vanishes in the deep IR (as a result of the mass gap, all degrees of freedom decouple
in the IR, and the Wilson-Fisher fixed point is thus empty). This results in

SEE

���
m`�1

= 0 ) ̄ = m2�✏
(4⇡)

✏
2�2
�
6(⇠ � 1) � ✏(3⇠ � 2)

�

12 ✏ (3 � ✏)
�
⇣
2 +

✏

2

⌘
. (2.62)

The above subtraction scheme is special to a curved manifold with nondynamical gravity,
where there is an extra parameter ̄. However in flat space ̄ = 0, and one is forced to adopt
a di↵erent subtraction scheme. Another drawback of the choice (2.62) is that it modifies
entanglement entropy at all points along the RG trajectory, and not only in the deep IR
limit. The latter makes it di�cult to extrapolate the results for an ‘area law’ on a sphere to
flat space which has no analog of ̄. In what follows we simply leave ̄ unspecified.

Gaussian fixed point

This time we expand (2.19) in m` ⌧ ✏ ⌧ 1. In this regime the theory flows to the Gaussian
UV fixed point where u asymptotically vanishes, u ⌧ ✏. From the gap equation,

h�2i
���
m`⌧1

= ↵1m
2`✏
✓

1

(m`)2
+ ↵2 + O

�
(m`)2

�◆
, (2.63)

where �0 = �|m`=0 and for brevity we introduced the following constants

↵1 ⌘
�
�
✏�2
2

�
�(�0)�(�̄0) cosh

�
⇡(�0��̄0)

4i

�

⇡(4⇡)
4�✏
2

,

↵2 ⌘ 2
 (�̄0) �  (�0) + i⇡ tanh

�
⇡(�0��̄0)

4i

�

�0 � �̄0
, (2.64)

where  (�) is the digamma function. The two terms that we kept in (2.63) are the only ones
that diverge as ✏ ! 0. We now substitute this expansion into (2.16) and use (2.22)

m2

✓
1

u
� 1

8⇡2✏

◆
=

t

u
+ ↵1m

2(µ`)✏
✓

1

(m`)2
+ ↵2 + O((m`)2)

◆
+

✓
⌘

u
� 1 � ⇠

48⇡2✏

◆
R . (2.65)

Solving the RG equation for ⌘ and u gives

⌘

u
=

1 � ⇠

48⇡2✏
. (2.66)
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Hence, we can drop the last term in (2.65),

`
dm2

d`

���
m`⌧1

= u↵1m
2(µ`)✏

✓
✏� 2

(m`)2
+ ✏ ↵2 + O

�
(m`)2

�◆
+ O(u2) . (2.67)

Substituting (2.65) and (2.67) into (2.42), we finally deduce,

`
dSEE

d`

���
m`⌧1

= � 2⇡↵1(2 � ✏)

(4 � ✏)(3 � ✏)
NA⌃m

2`✏
⇣
1 + O(u)

⌘
+ 4⇡(✏� 2)N A⌃̄+ O

�
(m`)4

�
+ s0 .

(2.68)
Expanding the coe�cient of A⌃m2`✏ in ✏ ⌧ 1, we get

`
dSEE

d`

���
m`⌧1

= N A⌃m
2`✏
✓
⇠ � 1

12⇡✏
+ O(✏, u)

◆
+ 4⇡(✏� 2)N A⌃̄+ O

�
(m`)4

�
+ s0 . (2.69)

As in the previous case, the µ dependence drops out of the final answer. While we
implicitly assumed that µ ⇠ `�1, the final answer for entanglement entropy at the fixed
point should not be sensitive to the O(1) coe�cient of proportionality between µ and `.
Furthermore, the 1/✏ term is the same term that appears in (2.58), which, as mentioned in
the previous section and now seen explicitly in (2.69), represents entanglement entropy of
the UV degrees of freedom.

For a minimally coupled scalar field, ⇠ = 0, and we recover the well-known universal
‘area law’, in agreement with [143] and [105, 112, 135] (this is just N times the answer for a
free scalar). If, however, the field is non-minimally coupled, we get a di↵erent answer which
vanishes at the conformal point ⇠ = 1. In Sec. 2.5, we show how to generalize the calculation
at the Gaussian fixed point presented in [143], so as to take into account the contribution
from non-minimal coupling.

Along the RG trajectory

In this section we write down the entanglement entropy for the O(N) model for a conformally
coupled scalar, at leading order in 1/N in dimension 4 � ✏, for any sphere of radius `. The
ingredients have been worked out in the previous sections; here we just collect them.

Solving the RG equation (2.23) gives

u(µ) =
u⇤

1 +
⇣

µ

µ0

⌘✏ , (2.70)

where µ0 is an arbitrary constant scale and u⇤ is u at the Wilson-Fisher fixed point. We
want to take µ = 1/`, and we let µ0 = `�1

0 . 18 We will write this as

u(`) =
u⇤

1 +
�
`0
`

�✏ . (2.71)

18Since the only scale is `, it must be that µ is proportional to `
�1. The constant of proportionality can

be absorbed into µ0.
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Note that the entanglement entropy will contain the constant `0. This is analogous to how
correlation functions contain an arbitrary scale which is calibrated through some measure-
ment. In our context, it means entanglement entropy needs to me measured at one value of
`, and can then be predicted at all other values.

The gap equation is given by

m2

✓
1

u
� 1

u⇤

◆
=

t

u
+ `�✏h�2i , (2.72)

where for simplicity we chose ⇠ = 1 (hence, ⌘ = 0 along the entire RG flow) and h�2i is given
by (2.19). Also,

`
d

d`

�
`�✏h�2i

�
=

✓
`
d�

d`

@

@�
� 2

◆�
`�✏h�2i

�
, (2.73)

where � is a function of m` and is given by (2.18). Di↵erentiating (2.72) and using (2.73),
we can solve for `dm

2

d`
.

The entanglement entropy is given by (2.42), where we substitute u(`) given by (2.71)
and t/u given by (2.72). We thus have a complete expression for entanglement entropy in
terms of the mass m and radius `.

2.5 Boundary perturbations

In the previous Section we computed entanglement entropy along the entire RG flow, and
in particular in the proximity of the fixed points. The entanglement entropy was found to
be sensitive to the non-minimal coupling parameter ⇠. This sensitivity is robust: it persists
in the flat space limit, and away from the UV fixed point.

In light of these results, in this Section we revisit the replica-trick calculations of en-
tanglement entropy near fixed points. The fact that entanglement entropy depends on ⇠,
even in flat space, is manifest in the context of the replica-trick, and is a consequence of
the curvature associated with the conical singularity. What is unclear is if this boundary
term which gives ⇠ dependance is real, or an artifact of the replica-trick which should be
discarded. The results of Sec. 2.4 suggest the former.

In Sec. 2.5 we review the replica-trick calculation of entanglement entropy for a free
scalar field using heat kernel techniques. In Sec. 2.5 we review a calculation of Metlistski,
Fuertes, and Sachdev [143] which finds that loop corrections generate a boundary term, and
we argue that this has a simple interpretation as the classical boundary term of Sec. 2.5
due to the curvature of the conical singularity. In Sec. 2.5 we generalize the calculation of
[143] of entanglement entropy at the Gaussian fixed point, so as to incorporate non-minimal
coupling, and find agreement with the results of Sec. 2.4.
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Replica trick: Free energy

Here we preform the standard replica trick calculation for a free massive scalar [120, 31, 181].
Recall that entanglement entropy is computed from the variation of the free energy,

S =

✓
�
@

@�
� 1

◆ ���
�=2⇡

(�F ) , (2.74)

where the e↵ective action (�F ) is evaluated on a space which is a cone with a deficit angle
2⇡ � �. Eq. (2.74) is just the standard thermodynamic equation for entropy; the need to
vary the temperature away from 1/2⇡ introduces a conical singularity at the origin. The
e↵ective action, after integrating out the matter, is expanded in derivatives of the metric,

�F = �1

2

Z

M

Z
1

�2

ds

(4⇡s)d/2
e�sm

2
⇣c0
s
+ c1R + O(s)

⌘
(2.75)

The relevant term is the one proportional to the scalar curvature, whose integral on a cone
is
R
M

R = 2A⌃ (2⇡ � �). Thus the entropy is,

S = 2⇡ c1 A⌃

Z
1

�2

ds

(4⇡s)d/2
e�sm

2
. (2.76)

Specializing to d = 4 and expanding the exponential in (2.76) to extract the log divergent
piece, we get,

S =
c1
4⇡

m2 A⌃ log(�) . (2.77)

For the minimally coupled scalar c1 = 1/6, while for the conformally coupled scalar c1 = 0
[183].

This computation is, of course, not new. However, it conflicts with the belief that (in
the flat space limit) entanglement entropy should, like correlation functions, be unable to
distinguish a minimally from nonminally coupled scalar field. The agreement of (2.77) with
the independent results of Sec. 2.4 suggests Eq. (2.77) should be taken seriously.

Loops generate a boundary term

In [143] entanglement entropy is computed using the replica-trick approach. Introducing the
standard replica symmetry around a given codimension-two entangling surface, the entan-
glement entropy is given by

SEE = lim
n!1

1

1 � n
log

Zn

Zn

1

, (2.78)

where Zn is the partition function of the theory on an n-sheeted Riemanian manifold, Mn.
The entangling surface is where the n sheets are glued together, and is the location of the
conical singularity. In computing correlation functions on Mn, it is important to note that
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Mn has separate translation symmetries in the directions parallel to the entangling surface,
and in the directions orthogonal to it. Clearly, the entangling surface is a special location.

In [143] the authors consider the loop corrections that a correlation function on Mn,
such as a two-point function, will receive from interactions. They find that as a result of
loops in the vicinity of the entangling surface, new divergences are generated, forcing the
introduction of a boundary counter-term in the action,

�I =
c

2

Z

⌃

~� 2 , (2.79)

where the integral is restricted to the entangling surface, ⌃. Performing an RG analysis gives
(to leading order in the large-N expansion) the renormalized coupling, c, at the Wilson-Fisher
fixed point [143]

c⇤ = �2⇡

3
(n � 1) . (2.80)

In fact, as we now show, this result has a simple interpretation in terms of the conformal
coupling to the background metric. Recall that the action (4.41) contains the term

R
1
2(⇠⌘c+

⌘0)R� 2. Solving the RG equations, we found in Sec. 2.3 that at the Wilson-Fisher fixed point
⌘⇤+ ⇠⌘c = 1/6 to leading order in ✏. At the Wilson-Fisher fixed point this part of the action
is therefore,

�I =
1

12

Z
R �2 . (2.81)

As we have mentioned before, and is reflected in (2.81), the RG flow leads to conformal
coupling in the IR, regardless of the non-minimal coupling ⇠ in the UV. Now we need to
evaluate (2.81) on the background Mn. Recall that to linear order in (n� 1), the expansion
of the curvature scalar, R(n), on a replicated manifold is given by [80]

R(n) = Rreg + 4⇡(1 � n)�⌃ + . . . , (2.82)

where Rreg is the regular curvature in the absence of the conical defect. The term �⌃ is a
two-dimensional delta function with support on the entangling surface ⌃, and reduces the
d-dimensional integral over the entire manifold to an integral over the entangling surface. 19

Inserting (2.82) into (2.81) gives

�I = �⇡
3
(n � 1)

Z

⌃

�2 , (2.83)

in agreement with (2.79) i.e., the induced boundary perturbation (2.79) is just the confor-
mally coupled action evaluated on the conical defect.

19The higher order terms in (2.82) are ambiguous [80], and therefore in general only linear order terms
in (n � 1) are reliable.
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Including non-minimal coupling

In Sec. 2.5 we showed that entanglement entropy for a free scalar is di↵erent depending on if
the scalar is minimally or conformally coupled. The calculation was done using the replica
trick, combined with heat kernel techniques. In [143], entanglement entropy was calculated
at the Gaussian fixed point using the replica trick, and by evaluating a 2-pt function on the
conical background. The computation in [143] was implicitly for a minimally coupled scalar.
For completeness, here we generalize the calculation to incorporate non-minimal coupling,

At the Gaussian fixed point the action for the O(N) model simplifies to

I =

Z ✓
1

2

�
@~�
�2

+
t

2
~� 2 +

1

2
⇠ ⌘cR~�

2

◆
. (2.84)

It follows from (2.78) that,

d

dt
SEE = lim

n!1

1

1 � n

d

dt
log

Zn

Zn

1

. (2.85)

Using (2.82) to expand Zn, and keeping only terms of order n � 1,

Zn =

Z
D�

✓
1 + 2⇡⌘c(n � 1)

Z

⌃

�2 + . . .

◆
exp

✓
�
Z

Mn

1

2
(@~� )2 +

t

2
~� 2 +

1

2
⇠ ⌘cR

reg~� 2

◆
.

(2.86)
Now taking a derivative with respect to t gives

d

dt
logZn = �1

2

Z

Mn

h~� 2in � ⇡⇠⌘c(n � 1)

Z

M1

Z

⌃

h ~� 2 ~� 2 i1 + . . . (2.87)

Note that to leading order in (n�1), we can take both the integral and the two-point function
in Eq. (2.87) to be over a single sheet. Thus, we obtain

dSEE

dt
= lim

n!1

1

n � 1


1

2

✓Z

Mn

h~� 2in � n

Z

M1

h~� 2i1
◆
+ ⇡⇠⌘c(n � 1)

Z

M1

Z

⌃

h ~� 2 ~� 2 i1
�
. (2.88)

It is convenient to specialize to the case of a planar entangling surface embedded in flat
space; the ‘area law’ terms are insensitive to this choice. For ⇠ = 0, only the first two terms
in (2.88) survive and evaluate to [143]

lim
n!1

1

n � 1


1

2

✓Z

Rd
n

h~� 2in � n

Z

Rd

h~� 2i1
◆�

=
�N

24⇡✏
, (2.89)

where the 1/✏ pole signals that there is a logarithmic divergence as ✏ ! 0.
For ⇠ 6= 0, the last term in (2.88) must included. To evaluate it, we first note that

h�a(x)�c(0)i1 =
�ac

(2⇡)
d
2

✓p
t

|x|

◆ d�2
2

K d�2
2

�p
t x2
�
,

h~� 2(x)~� 2(0)i1 =
2N

(2⇡)d

✓
t

x2

◆ d�2
2

K2
d�2
2

�p
t x2
�
. (2.90)
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where K d�2
2

is the modified Bessel function. Hence,

⇡⇠⌘c

Z

M1

Z

⌃

h ~� 2 ~� 2 i1 =
N⇠ ⌘c

(4⇡)
d�2
2 �

�
d

2

� t
d�4
2 A⌃

Z
1

0

dr r K2
d�2
2
(r) =

N⇠ ⌘c�
�
4�d

2

�

2(4⇡)
d�2
2

t
d�4
2 A⌃ .

(2.91)
where we introduced a dimensionless variable r =

p
t x2. Substituting d = 4� ✏ and expand-

ing in ✏ ⌧ 1 gives

⇡⇠⌘c

Z

M1

Z

⌃

h ~� 2 ~� 2 i1 =
N⇠

24⇡✏
A⌃ + O(✏0) . (2.92)

Combining the above results, we recover the 1/✏ term in (2.69). Note also that the integrand
on the right hand side of (2.91) decays exponentially fast in the IR. In particular, the 1/✏
enhancement comes entirely from the UV regime (r ⇠ 0).

Comments

We close with a few comments. The question of if a minimally and non-minimally coupled
scalar have the same entanglement entropy in flat space is an old one, see e.g., [131], in
which interest has recently revived [124, 150, 132, 106, 62, 168, 41, 14]. A practical question
concerns the computation of entanglement entropy on a lattice [179, 112, 139] and whether
certain boundary terms should be included even for a scalar theory. Such boundary terms
were advocated in [55, 40, 56, 59] for gauge theories. The lattice calculation is carried out
in flat space and naively the non-minimal coupling plays no role. To what extent this claim
is true requires further investigation. In particular, it is essential to understand how one
splits the Hilbert space in a conformally invariant way. We note that for a CFT the lattice
computation of the universal entanglement entropy whose coe�cient is fixed by the trace
anomaly is not a↵ected by this issue. In particular, for a massless free scalar field it seems
not to depend on whether one uses the canonical or the improved energy-momentum tensor.

In Sec. 2.5 we found a term localized on the tip of the cone, originating from the non-
minimal coupling to the background geometry. In e.g., [175, 109, 177], the authors also
found such a contribution, 20 but they regarded it as an artifact of the replica-trick and
discarded it. However, our result (2.69) relies on neither the replica trick nor free field
calculations, and is consistent with the presence, but not the absence, of the term on the
tip of the cone. Finally, the analysis of [143] in the interacting case did not include the
contribution of the non-minimal coupling at the tip of the cone (or alternatively, their scalar
field is implicitly minimally coupled). Yet, their results imply that quantum fluctuations
on the conical background force the introduction of the boundary counter terms which, as
we have argued, have a simple interpretation in terms of induced non-minimal coupling to
the background geometry. And, as the RG equations show, this occurs even if the theory is

20 Such a contribution was discussed in these works in the context of the leading non universal (A/�
2)

area law piece of entanglement entropy. However, the term in question contributes to the universal part of
entanglement entropy as well.
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minimally coupled in the UV. We conclude that QFT on the cone background is incomplete
without the inclusion of boundary terms.
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Chapter 3

Geometric Constraints from
Subregion Duality Beyond the
Classical Regime

3.1 Introduction

AdS/CFT implies constraints on quantum gravity from properties of quantum field theory.
For example, field theory causality requires that null geodesics through the bulk are delayed
relative to those on the boundary. Such constraints on the bulk geometry can often be
understood as coming from energy conditions on the bulk fields. In this case, bulk null
geodesics will always be delayed as long as there is no negative null energy flux [82].

In this paper, we examine two constraints on the bulk geometry that are required by the
consistency of the AdS/CFT duality. The starting point is the idea of subregion duality,
which is the idea that the state of the boundary field theory reduced to a subregion A is
itself dual to a subregion of the bulk. The relevant bulk region is called the entanglement
wedge, E(A), and consists of all points spacelike related to the extremal surface anchored
on @A, on the side towards A [46, 104]. The validity of subregion duality was argued [50,
90] to follow from the Ryu-Takayanagi-FLM formula [170, 171, 111, 71, 134, 53], and the
consistency of subregion duality immediately implies two constraints on the bulk geometry.

The first constraint, which we call Entanglement Wedge Nesting (EWN), is that if a
region A is contained in a region B on the boundary (or more generally, if the domain
of dependence of A is contained in the domain of dependence of B), then E(A) must be
contained in E(B). This condition was previously discussed in [46, 189].

The second constraint is that the set of bulk points I�(D(A)) \ I+(D(A)), called the
causal wedge C(A), is completely contained in the entanglement wedge E(A). We call this
C ✓ E . See [46, 189, 67, 110, 104] for previous discussion of .

We refer to the delay of null geodesics passing through the bulk relative to their boundary
counterparts [82] as the Boundary Causality Condition (BCC), as in [63]. These three
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conditions, and their connections to various bulk and boundary inequalities relating entropy
and energy, are the primary focus of this paper.

In section 3.2 we will spell out the definitions of EWN and C ✓ E in more detail, as well
as describe their relations with subregion duality. Roughly speaking, EWN encodes the fact
that subregion duality should respect inclusion of boundary regions. C ✓ E is the statement
that the bulk region dual to a given boundary region should at least contain all those bulk
points from which messages can be both received from and sent to the boundary region.

Even though EWN, C ✓ E , and the BCC are all required for consistency of AdS/CFT,
part of our goal is to investigate their relationships to each other as bulk statements inde-
pendent of a boundary dual. As such, we will demonstrate that EWN implies C ✓ E , and
C ✓ E implies the BCC. Thus EWN is in a sense the strongest statement of the three.

Though this marks the first time that the logical relationships between EWN, C ✓ E ,
and the BCC have been been independently investigated, all three of these conditions are
known in the literature and have been proven from more fundamental assumptions in the
bulk [189, 110]. In the classical limit, a common assumption about the bulk physics is the
Null Energy Condition (NEC).1 However, the NEC is known to be violated in quantum field
theory. Recently, the Quantum Focussing Conjecture (QFC), which ties together geometry
and entropy, was put forward as the ultimate quasi-local “energy condition” for the bulk,
replacing the NEC away from the classical limit [26].

The QFC is currently the strongest reasonable quasi-local assumption that one can make
about the bulk dynamics, and indeed we will show below that it can be used to prove EWN.
Additionally, there are other, weaker, restrictions on the bulk dynamics which follow from
the QFC. The Generalized Second Law (GSL) of horizon thermodynamics is a consequence
of the QFC. In [67], it was shown that the GSL implies what we have called C ✓ E . Thus the
QFC, the GSL, EWN, and C ✓ E form a square of implications. The QFC is the strongest of
the four, implying the three others, while the C ✓ E is the weakest. This pattern continues
in a way summarized by Figure 3.1, which we will now explain.

The QFC, the GSL, and the Achronal Averaged Null Energy Condition (AANEC) reside
in the first column of Fig. 3.1. As we have explained, the QFC is the strongest of these
three, while the AANEC is the weakest [190]. In the second column we have EWN, C ✓ E ,
and the BCC. In addition to the relationships mentioned above, it was shown in [82] that
the ANEC implies the BCC, which we extend to prove the BCC from the AANEC.

The third column of Figure 3.1 contains “boundary” versions of the first column: the
Quantum Null Energy Condition (QNEC) [26, 27, 126], the Quantum Half Averaged Null
Energy Condition (QHANEC), and the boundary AANEC.2 These are field theory state-
ments which can be viewed as nongravitational limits of the corresponding inequalities in the
first column. The QNEC is the strongest, implying the QHANEC, which in turn implies the
AANEC. All three of these statements can be formulated in non-holographic theories, and

1See [104] for a related classical analysis of bulk constraints from causality, including .
2For simplicity we are assuming throughout that the boundary theory is formulated in Minkowski space.

There would be additional subtleties with all three of these statements if the boundary were curved.
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GSL

AANEC

QFC Ent. Wedge 
Nesting (EWN) 

BCC

QNEC

Quantum 
Half-
ANEC 

(QHANEC) 

AANEC
Figure 3.1: The logical relationships between the constraints discussed in this paper. The left
column contains semi-classical quantum gravity statements in the bulk. The middle column
is composed of constraints on bulk geometry. In the right column is quantum field theory
constraints on the boundary CFT. All implications are true to all orders in G~ ⇠ 1/N . We
have used dashed implication signs for those that were proven to all orders before this paper.

all three are conjectured to be true generally. (The AANEC was recently proven in [73] as a
consequence of monotonicity of relative entropy and in [95] as a consequence of causality.)

In the case of a holographic theory, it was shown in [126] that EWN in the bulk implies
the QNEC for the boundary theory to leading order in G~ ⇠ 1/N . We demonstrate that this
relationship continues to hold with bulk quantum corrections. Moreover, in [122] the BCC
in the bulk was shown to imply the boundary AANEC. Here we will complete the pattern
of implications by showing that C ✓ E implies the boundary QHANEC.

In the classical regime, the entanglement wedge is defined in terms of a codimension-
2 surface with extremal area [111, 71, 104, 53]. It has been suggested that the correct
quantum generalization should be defined in terms of the “quantum extremal surface”: a
Cauchy-splitting surface which extremizes the generalized entropy to one side [67]. Indeed,
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we find that the logical structure of Fig. 3.1 persists to all orders in perturbation theory in
G~ ⇠ 1/N if and only if the entanglement wedge is defined in terms of the quantum extremal
surface. This observation provides considerable evidence for prescription of [67].

The remainder of this paper is organized as follows. In Section 3.2 we will define all of the
statements we set out to prove, as well as establish notation. Then in Sections 3.3 and 3.4 we
will prove the logical structure encapsulated in Figure 3.1. Several of these implications are
already established in the literature, but for completeness we will briefly review the relevant
arguments. We conclude with a discussion in Section 6.6.

3.2 Glossary

Regime of Validity Quantum gravity is a tricky subject. We work in a semiclassical
(large-N) regime, where the dynamical fields can be expanded perturbatively in G~ ⇠ 1/N
about a classical background [188].3 For example, the metric has the form

gab = g0
ab
+ g1/2

ab
+ g1

ab
+O((G~)3/2) , (3.1)

where the superscripts denote powers of G~. In the semi-classical limit — defined as G~ ! 0
— the validity of the various inequalities we consider will be dominated by their leading non-
vanishing terms. We assume that the classical O((G~)0) part of the metric satisfies the null
energy condition (NEC), without assuming anything about the quantum corrections. For
more details on this type of expansion, see Wall [190].

We primarily consider the case where the bulk theory can be approximated as Einstein
gravity with minimally coupled matter fields. In the semiclassical regime, bulk loops will
generate Planck-suppressed higher derivative corrections to the gravitational theory and the
gravitational entropy.4 We will comment on the e↵ects of these corrections throughout.

We consider a boundary theory on flat space, possibly deformed by relevant operators.
When appropriate, we will assume the null generic condition, which guarantees that every
null geodesic encounters matter or gravitational radiation.

Geometrical Constraints

There are a number of known properties of the AdS bulk causal structure and extremal
surfaces. At the classical level (i.e. at leading order in G~ ⇠ 1/N), the NEC is the standard
assumption made about the bulk which ensures that these properties are true [189]. However,
some of these are so fundamental to subregion duality that it is sensible to demand them

3The demensionless expansion parameter would be G~/`
D�2, where ` is a typical length scale in whatever

state we are considering. We will leave factors of ` implicit.
4Such corrections are also necessary for the generalized entropy to be finite. See Appendix A of [26] for

details and references. Other terms can be generated from, for example, stringy e↵ects, but these will be
suppressed by the string length `s. For simplicity, we will not separately track the `s expansion. This should
be valid as long as the string scale is not much di↵erent from the Planck scale.
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and to ask what constraints in the bulk might ensure that these properties hold, even under
quantum corrections. Answering this question is one key focus of this paper.

In this section, we review three necessary geometrical constraints. In addition to defining
each of them and stating their logical relationships (see Figure 3.1), we explain how each is
critical for subregion duality.

Boundary Causality Condition (BCC)

A standard notion of causality in asymptotically-AdS spacetimes is the condition that the

bulk cannot be used for superluminal communication relative to the causal structure of the

boundary. More precisely, any causal bulk curve emanating from a boundary point p and
arriving back on the boundary must do so to the future of p as determined by the boundary
causal structure.

This condition, termed “BCC” in [63], is known to follow from the averaged null curvature
condition (ANCC) [82]. Engelhardt and Fischetti have derived an equivalent formulation
in terms of an integral inequality for the metric perturbation in the context of linearized
perturbations to the vacuum [63].

Microcausality in the boundary theory requires that the BCC hold. If the BCC were
violated, a bulk excitation could propagate between two spacelike-separated points on the
boundary leading to nonvanishing commutators of local fields at those points. In Sec. 3.4
we will show that BCC is implied by C ✓ E . Thus BCC is the weakest notion of causality
in holography that we consider.

C ✓ E

Consider the domain of dependence D(A) of a boundary region A. Let us define the causal
wedge of a boundary region A to be C(A) ⌘ I�(D(A)) \ I+(D(A)).5

By the Ryu-Takayanagi-FLM formula, the entropy of the quantum state restricted to
A is given by the area of the extremal area bulk surface homologous to A plus the bulk
entropy in the region between that surface and the boundary [170, 171, 111, 71, 134, 53].
This formula was shown to hold at O((1/N)0) in the large-N expansion. In [67], Engelhardt
and Wall proposed that the all-orders modification of this formula is to replace the extremal
area surface with the Quantum Extremal Surface (QES), which is defined as the surface
which extremizes the generalized entropy: the surface area plus the entropy in the region
between the surface and A. Though the Engelhardt-Wall prescription remains unproven, we
will assume that it is the correct all-orders prescription for computing the boundary entropy
of A. We denote the QES of A as e(A).

The entanglement wedge E(A) is the bulk region spacelike-related to e(A) on the A side
of the surface. This is the bulk region believed to be dual to A in subregion duality [46].

5
I

±(S) represent respectively the chronological future and past of the set S. The causal wedge was
originally defined in [104] in terms of the causal future and past, J

±(S), but for our purposes the chronological
future and past are more convenient.
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Dong, Harlow and Wall have argued that this is the case using the formalism of quantum
error correction [50, 90].

C ✓ E is the property that the entanglement wedge E(A) associated to a boundary region

A completely contains the causal wedge C(A) associated to A. can equivalently be formulated
as stating that e(A) is out of causal contact with D(A), i.e. e(A)\(I+(D(A)[I�(D(A)) = ;.
In our proofs below we will use this latter characterization.

Subregion duality requires C ✓ E because the bulk region dual to a boundary region A
should at least include all of the points that can both send and receive causal signals to and
from D(A). Moreover, if C ✓ E were false then it would be possible to use local unitary
operators in D(A) to send a bulk signal to e(A) and thus change the entropy associated to
the region [46, 189, 67, 104]. That is, of course, not acceptable, as the von Neumann entropy
is invariant under unitary transformations.

This condition has been discussed at the classical level in [104, 189]. In the semiclassical
regime, Engelhardt and Wall [67] have shown that it follows from the generalized second
law (GSL) of causal horizons. We will show in Sec. 3.4 that C ✓ E is also implied by
Entanglement Wedge Nesting.

Entanglement Wedge Nesting (EWN)

The strongest of the geometrical constraints we consider is EWN. In the framework of sub-
region duality, EWN is the property that a strictly larger boundary region should be dual
to a strictly larger bulk region. More precisely, for any two boundary regions A and B with

domain of dependence D(A) and D(B) such that D(A) ⇢ D(B), we have E(A) ⇢ E(B).
This property was identified as important for subregion duality and entanglement wedge

reconstruction in [46, 189], and was proven by Wall at leading order in G~ assuming the
null curvature condition [189]. We we will show in Sec. 3.4 that the Quantum Focussing
Conjecture (QFC) [26] implies EWN in the semiclassical regime assuming the generalization
of HRT advocated in [67].

Constraints on Semiclassical Quantum Gravity

Reasonable theories of matter are often assumed to satisfy various energy conditions. The
least restrictive of the classical energy conditions is the null energy condition (NEC), which
states that

Tkk ⌘ Tab k
akb � 0 , (3.2)

for all null vectors ka. This condition is su�cient to prove many results in classical gravity.
In particular, many proofs hinge on the classical focussing theorem [186], which follows
from the NEC and ensures that light-rays are focussed whenever they encounter matter or
gravitational radiation:

✓0 ⌘ d

d�
✓  0 , (3.3)
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where ✓ is the expansion of a null hypersurface and � is an a�ne parameter.
Quantum fields are known to violate the NEC, and therefore are not guaranteed to focus

light-rays. It is desirable to understand what (if any) restrictions on sensible theories exist
in quantum gravity, and which of the theorems which rule out pathological phenomenon in
the classical regime have quantum generalizations. In the context of AdS/CFT, the NEC
guarantees that the bulk dual is consistent with boundary microcausality [82] and holographic
entanglement entropy [189, 32, 102, 104], among many other things.

In this subsection, we outline three statements in semiclassical quantum gravity which
have been used to prove interesting results when the NEC fails. They are presented in order
of increasing strength. We will find in sections 3.3 and 3.4 that each of them has a unique
role to play in the proper functioning of the bulk-boundary duality.

Achronal Averaged Null Energy Condition

The achronal averaged null energy condition (AANEC) [187] states that

Z
Tkk d� � 0 , (3.4)

where the integral is along a complete achronal null curve (often called a “null line”). Local
negative energy density is tolerated as long as it is accompanied by enough positive energy
density elsewhere. The achronal qualifier is essential for the AANEC to hold in curved
spacetimes. For example, the Casimir e↵ect as well as quantum fields on a Schwarzschild
background can both violate the ANEC [125, 185] for chronal null geodesics. An interesting
recent example of violation of the ANEC for chronal geodesics in the context of AdS/CFT
was studied in [81].

The AANEC is fundamentally a statement about quantum field theory formulated in
curved backgrounds containing complete achronal null geodesics. It has been proven for
QFTs in flat space from monotonicity of relative entropy [73], as well as causality [95].
Roughly speaking, the AANEC ensures that when the backreaction of the quantum fields is
included it will focus null geodesics and lead to time delay. This will be made more precise
in Sec. 3.4 when we discuss a proof of the boundary causality condition (BCC) from the
AANEC.

Generalized Second Law

The generalized second law (GSL) of horizon thermodynamics states that the generalized
entropy (defined below) of a causal horizon cannot decrease in time.

Let ⌃ denote a Cauchy surface and let � denote some (possibly non-compact) codimension-
2 surface dividing ⌃ into two distinct regions. We can compute the von Neumann entropy of
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the quantum fields on the region outside of �, which we will denote Sout
6. The generalized

entropy of this region is defined to be

Sgen = Sgrav + Sout (3.5)

where Sgrav is the geometrical/gravitational entropy which depends on the theory of gravity.
For Einstein gravity, it is the familiar Bekenstein-Hawking entropy. There will also be
Planck-scale suppressed corrections7, denoted Q, such that it has the general form

Sgrav =
A

4G~ +Q (3.6)

There is mounting evidence that the generalized entropy is finite and well-defined in per-
turbative quantum gravity, even though the split between matter and gravitational entropy
depends on renormalization scale. See the appendix of [26] for details and references.

The quantum expansion ⇥ can be defined (as a generalization of the classical expansion ✓)
as the functional derivative per unit area of the generalized entropy along a null congruence
[26]:

⇥[�(y); y] ⌘ 4G~p
h

�Sgen

��(y)
(3.7)

= ✓ +
4G~p

h

�Q

��(y)
+

4G~p
h

�Sout

��(y)
(3.8)

where
p
h denotes the determinant of the induced metric on �, which is parametrized by y.

These functional derivatives denote the infinitesimal change in a quantity under deformations
of the surface at coordinate location y along the chosen null congruence. To lighten the
notation, we will often omit the argument of ⇥.

A future (past) causal horizon is the boundary of the past (future) of any future-infinite
(past-infinite) causal curve [114]. For example, in an asymptotically AdS spacetime any
collection of points on the conformal boundary defines a future and past causal horizon in
the bulk. The generalized second law (GSL) is the statement that the quantum expansion
is always nonnegative towards the future on any future causal horizon

⇥ � 0 , (3.9)

with an analogous statement for a past causal horizon.

6The choice of “outside” is arbitrary. In a globally pure state both sides will have the same entropy, so
it will not matter which is the “outside.” In a mixed state the entropies on the two sides will not be the
same, and thus there will be two generalized entropies associated to the same surface. The GSL, and all
other properties of generalized entropy, should apply equally well to both.

7There will also be stringy corrections suppressed by ↵
0. As long as we are away from the stringy regime,

these corrections will be suppressed in a way that is similar to the Planck-suppressed ones, and so we will
not separately track them.
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In the semiclassical G~ ! 0 limit, Eq. (3.7) reduces to the classical expansion ✓ if it is
nonzero, and the GSL becomes the Hawking area theorem [96]. The area theorem follows
from the NEC.

Assuming the validity of the GSL allows one to prove a number of important results in
semiclassical quantum gravity [191, 67]. In particular, Wall has shown that it implies the
AANEC [190], as we will review in Section 3.3, and C ✓ E [67], reviewed in Section 3.4 (see
Fig. 3.1).

Quantum Focussing Conjecture

The Quantum Focussing Conjecture (QFC) was conjectured in [26] as a quantum general-
ization of the classical focussing theorem, which unifies the Bousso Bound and the GSL. The
QFC states that the functional derivative of the quantum expansion along a null congruence
is nowhere increasing:

�⇥[�(y1); y1]

��(y2)
 0 . (3.10)

In this equation, y1 and y2 are arbitrary. When y1 6= y2, only the Sout part contributes, and
the QFC follows from strong subadditivity of entropy [26]. For notational convenience, we
will often denote the “local” part of the QFC, where y1 = y2, as8

⇥0[�(y); y]  0. (3.11)

Note that while the GSL is a statement only about causal horizons, the QFC is conjectured
to hold on any cut of any null hypersurface.

If true, the QFC has several non-trivial consequences which can be teased apart by
applying it to di↵erent null surfaces [26, 21, 67]. In Sec. 3.4 we will see that EWN can be
added to this list.

Quantum Null Energy Condition

When applied to a locally stationary null congruence, the QFC leads to the Quantum Null
Energy Condition (QNEC) [26, 126]. Applying the Raychaudhuri equation and Eqs. (3.5),
(3.7) to the statement of the QFC (4.40), we find

0 � ⇥0 = � ✓2

D � 2
� �2 � 8⇡GTkk +

4G~p
h

(S 00

out
� S 0

out
✓) (3.12)

where S 00

out
is the local functional derivative of the matter entropy to one side of the cut. If we

consider a locally stationary null hypersurface satisfying ✓2 = �2 = 0 in a small neighborhood,

8Strictly speaking, we should factor out a delta function �(y1 � y2) when discussing the local part of the
QFC [27, 126]. Since the details of this definition are not important for us, we will omit this in our notation.
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this inequality reduces to the statement of the Quantum Null Energy Condition (QNEC)
[26]:

Tkk � ~
2⇡

p
h
S 00

out
(3.13)

It is important to notice that the gravitational coupling G has dropped out of this equation.
The QNEC is a statement purely in quantum field theory which can be proven or disproven
using QFT techniques. It has been proven for both free fields [27] and holographic field theo-
ries at leading order in G~ [126].9 In Section 3.4 of this paper, we generalize the holographic
proof to all orders in G~. These proofs strongly suggest that the QNEC is a true property of
general quantum field theories.10 In the classical ~ ! 0 limit, the QNEC becomes the NEC.

Quantum Half-Averaged Null Energy Condition

The quantum half-averaged energy condition (QHANEC) is an inequality involving the in-
tegrated stress tensor and the first null derivative of the entropy on one side of any locally-
stationary Cauchy-splitting surface subject to a causality condition (described below):

Z
1

�

Tkk d�̃ � � ~
2⇡

p
h
S 0(�), (3.14)

Here ka generates a null congruence with vanishing expansion and shear in a neighborhood
of the geodesic and � is the a�ne paramter along the geodesic. The geodesic thus must be of
infinite extent and have Rabkakb = Cabcdkakc = 0 everywhere along it. The aforementioned
causality condition is that the Cauchy-splitting surfaces used to define S(�) should not be
timelike-related to the half of the null geodesic Tkk is integrated over. Equivalently, S(�)
should be well-defined for all � from the starting point of integration all the way to � = 1.

The causality condition and the stipulation that the null geodesic in (3.14) be contained
in a locally stationary congruence ensures that the QHANEC follows immediately from
integrating the QNEC (Eq. (3.13)) from infinity (as long as the entropy isn’t evolving at
infinite a�ne parameter, i.e., S 0(1) = 0). Because the causality condition is a restriction on
the global shape of the surface, there will be situations where the QNEC holds locally but
we cannot integrate to arrive at a QHANEC.

The QHANEC appears to have a very close relationship to monotonicity of relative
entropy. Suppose that the modular Hamiltonian of the portion of a null plane above an
arbitrary cut u = �(y) (where u is a null coordinate) is given by

K[�(y)] =

Z
dd�2y

Z
1

�(y)

d� (�� �(y))Tkk (3.15)

9There is also evidence [79] that the QNEC holds in holographic theories where the entropy is taken to
be the casual holographic information [110], instead of the von Neumann entropy.

10The free-field proof of [27] was for arbitrary cuts of Killing horizons. The holographic proof of [126]
(generalized in this paper) showed the QNEC for a locally stationary (✓ = � = 0) portion of any Cauchy-
splitting null hypersurface in flat space.
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Then (3.45) becomes monotonicity of relative entropy. As of yet, there is no known general
proof in the literature of (3.15), though for free theories it follows from the enhanced sym-
metries of null surface quantization [188]. Eq. (3.15) can be also be derived for holographic
field theories [127]. It has also been shown that linearized backreaction from quantum fields
obeying the QHANEC will lead to a spacetime satisfying the GSL [188].11

In Sec. 3.4, we will find that C ✓ E implies the QHANEC on the boundary.

3.3 Relationships Between Entropy and Energy
Inequalities

The inequalities discussed in the previous section are not all independent. In this section we
discuss the logical relationships between them.

GSL implies AANEC

Wall has shown [190] that the GSL implies the AANEC in spacetimes which are linearized
perturbations of classical backgrounds, where the classical background obeys the null energy
condition (NEC). Here, we point out that this proof is su�cient to prove the AANEC from
the GSL in the semi-classical regime, to all orders in G~ (see Sec. 3.2).

Because the AANEC is an inequality, in the semi-classical G~ ! 0 limit its validity is
determined by the leading non-zero term in the G~ expansion. Suppose that this term is
order (G~)m. Suppose also that at order (G~)m�1 the metric contains a complete achronal
null geodesic �, i.e. a null geodesic without a pair of conjugate points. (If at this order no such
geodesics exist, the AANEC holds trivially at this order as well as all higher orders, as higher-
order contributions to the metric cannot make a chronal geodesic achronal.) Achronality
guarantees that � lies in both a future and past causal horizon, H±.

Wall’s proof required that, in the background spacetime, the expansion and shear vanish
along � in both H+ and H�. Wall used the NEC in the background spacetime to derive
this, but here we note that the NEC is not necessary given our other assumptions. The
“background” for us is the O((G~)m�1) part of the metric. Consider first the past causal
horizon, H�, which must satisfy the boundary condition ✓(�1) ! 0. Since � is achronal, the
expansion ✓ of H� cannot blow up to �1 anywhere along �. As � ! 1, ✓ can either remain
finite or blow up in the limit. Suppose first that ✓ asymptotes to a finite constant as � ! 1.
Then lim�!1 ✓0 = 0. Assuming the matter stress tensor dies o↵ at infinity (as it must for the
AANEC to be well-defined), Raychaudhuri’s equation gives lim�!1 ✓0 = �✓2/(D � 2) � �2,

11It has been shown [30] that holographic theories also obey the QHANEC when the causal holographic
information [110] is used, instead of the von Neumann entropy. This implies a second law for the causal
holographic information in holographic theories.



CHAPTER 3. GEOMETRIC CONSTRAINTS FROM SUBREGION DUALITY
BEYOND THE CLASSICAL REGIME 38

the only solution to which is12

lim
�!1

✓ = lim
�!1

� = 0 . (3.16)

Similar arguments apply to H+. This also implies that H+ = H�. The rest of the proof
follows [190]. This proves the AANEC at order (G~)m.

The alternative case is that |✓| ! 1 as � ! 1. But if Tkk dies o↵ at infinity, then for
large enough � we have ✓0 < �✓2/(D � 2) + ✏ for some ✏. Then a simple modification of the
standard focussing argument shows that ✓ goes to �1 at finite a�ne parameter, which is a
contradiction.

QFC implies GSL

In a manner exactly analogous to the proof of the area theorem from classical focusing, the
QFC can be applied to a causal horizon to derive the GSL. Consider integrating Eq. 4.40
from future infinity along a generator of a past causal horizon:

Z
dd�2y

p
h

Z
1

�

d�̃⇥0[�(y, �̃); y]  0 (3.17)

Along a future causal horizon, ✓ ! 0 as � ! 1, and it is reasonable to expect the matter
entropy Sout to stop evolving as well. Thus ⇥ ! 0 as � ! 1, and the integrated QFC then
trivially becomes

⇥[�(y); y] � 0 (3.18)

which is the GSL.

QHANEC implies AANEC

In flat space, all achronal null geodesics lie on a null plane. Applying the QHANEC to cuts
of this null plane taking � ! �1 produces the AANEC, Eq. (3.4).

3.4 Relationships Between Entropy and Energy
Inequalities and Geometric Constraints

In this section, we discuss how the bulk generalized entropy conditions reviewed in Sec. 3.2
imply the geometric conditions EWN, C ✓ E and BCC (described in Sec. 3.2). We also
explain how these geometric conditions imply the boundary QNEC, QHANEC and AANEC.
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Figure 3.2: The causal relationship between e(A) and D(A) is pictured in an example space-
time that violates C ✓ E . The boundary of A’s entanglement wedge is shaded. Notably, in
C ✓ E violating spacetimes, there is necessarily a portion of D(A) that is timelike related
to e(A). Extremal surfaces of boundary regions from this portion of D(A) are necessarily
timelike related to e(A), which violates EWN.

EWN implies C ✓ E implies the BCC

EWN implies C ✓ E

The and EWN conditions were defined in Sec. 3.2. There, we noted that can be phrased
as the condition that the extremal surface e(A) for some boundary region A lies outside
of timelike contact with D(A). We will now prove that EWN implies by proving the
contrapositive: we will show that if is violated, there exist two boundary regions A,B with
nested domains of dependence, but whose entanglement wedges are not nested.

Consider an arbitrary region A on the boundary. C ✓ E is violated if and only if there
exists at least one point p 2 e(A) such that p 2 I+(D(A))[I�(D(A)), where I+ (I�) denotes
the chronological future (past). Then violation of is equivalent to the exisence of a timelike
curve connecting e(A) to D(A). Because I+ and I� are open sets, there exists an open
neighborhood O ⇢ D(A) such that every point of O is timelike related to e(A) (see Figure
3.2). Consider a new boundary region B ⇢ O. Again by the openness of I+ and I�, the
corresponding entanglement wedge E(B) also necessarily contains points that are timelike
related to e(A). Since E(A) is defined to be all points spacelike-related to e(A) on the side
towards A, E(B) * E(A). But by construction D(B) ✓ D(A), and thus EWN is violated.

In light of this argument, we have an additional characterization of the condition : is

12We absorb the graviton contribution to the shear into the stress tensor.



CHAPTER 3. GEOMETRIC CONSTRAINTS FROM SUBREGION DUALITY
BEYOND THE CLASSICAL REGIME 40

Figure 3.3: The boundary of a BCC-violating spacetime is depicted, which gives rise to a
violation of C ✓ E . The points p and q are connected by a null geodesic through the bulk.
The boundary of p’s lightcone with respect to the AdS boundary causal structure is depicted
with solid black lines. Part of the boundary of q’s lightcone is shown with dashed lines. The
disconnected region A is defined to have part of its boundary in the timelike future of q while
also satisfying p 2 D(A). It follows that e(A) will be timelike related to D(A) through the
bulk, violating C ✓ E .

what guarantees that E(A) contains D(A), which is certainly required for consistency of bulk
reconstruction.

C ✓ E implies the BCC

We prove the contrapositive. If the BCC is violated, then there exists a bulk null geodesic
from some boundary point p that returns to the boundary at a point q not to the future of
p with respect to the boundary causal structure. Therefore there exist points in the timelike
future of q that are also not to the future of p.

If q is not causally related to p with respect to the boundary causal structure, we derive
a contradiction as follows. Define a boundary subregion A with two disconnected parts:
one that lies entirely within the timelike future of q but outside the future of p, and one
composed of all the points in the future lightcone of p on a boundary timeslice su�ciently
close to p such that A is completely achronal. By construction, p 2 D(A). Moreover, because
@A includes points timelike related to q, e(A) includes points timelike related to q and by
extension p. Therefore A is an achronal boundary subregion whose extremal surface contains
points that are timelike related to D(A). See Figure 3.3.
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If q is in the past of p, then a contradiction is reached more easily. Define a boundary
subregion A as the intersection of p’s future lightcone with any constant time slice su�ciently
close to p, chosen so that e(A) is not empty. Then p is in D(A) and q is in I�(A) according
to the boundary causal structure (though according to the bulk causal structure it is in
J+(p)). Hence e(A) is timelike related to D(A) in the bulk causal structure, which is the
sought-after contradiction.

Semiclassical Quantum Gravity Constraints Imply Geometric
Constraints

Quantum Focussing implies Entanglement Wedge Nesting

Consider a boundary region A associated with boundary domain of dependence D(A). As
above, we denote the quantum extremal surface anchored to @A as e(A). For any other
boundary region, B, such that D(B) ⇢ D(A), we will show that E(B) ⇢ E(A), assuming
the QFC.

Since we are treating quantum corrections perturbatively, every quantum extremal sur-
face is located near a classical extremal area surface.13 Wall proved in [189] that E(B) ⇢ E(A)
is true at the classical level if we assume classical focussing. Thus to prove the quantum
statement within perturbation theory we only need to consider those (nongeneric) cases
where e(B) happens to intersect the boundary of E(A) classically.14 In such a case, one
might worry that a perturbative quantum correction could cause e(B) to exit E(A). We will
now argue that this does not happen.15

First, deform the region B slightly to a new region B0 ⇢ A such that e(B0) lies within
E(A) classically. Then, since perturbative corrections cannot change this fact, we will have
E(B0) ⇢ E(A) even at the quantum level. Now, following [67], we show that in deforming B0

back to B we maintain EWN.
The QFC implies that the null congruence generating the boundary of I±(e(A)) satisfies

⇥̇  0. Combined with ⇥ = 0 at e(A) (from the definition of quantum extremal surface), this
implies that every point on the boundary of E(A) satisfies ⇥  0. Therefore the boundary of
E(A) is a quantum extremal barrier as defined in [67], and so no continuous family of quantum
extremal surfaces can cross the boundary of E(A). Thus, as we deform B0 back into B, the
quantum extremal surface is forbidden from exiting E(A). Therefore e(B) ⇢ E(A), and by
extension E(B) ⇢ E(A).

Finally we will take care of the possibility of a phase transition. A phase transition
occurs when there are multiple quantum extremal surfaces for each region, and the identity

13Another possibility is that quantum extremal surfaces which exist at finite G~ move o↵ to infinity as
G~ ! 0. In that case there would be no associated classical extremal surface. If we believe that the classical
limit is well-behaved, then these surfaces must always be subdominant in the small G~ limit, and so we can
safely ignore them.

14The only example of this that we are aware of is in vacuum AdS where A is the interior of a sphere on
the boundary and B is obtained by deforming a portion of the sphere in an orthogonal null direction.

15For now we ignore the possibility of phase transitions. They will be treated separately below.
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of the one with minimal generalized entropy switches as we move within the space of regions.
This causes the entanglement wedge to jump discontinuously, and if it jumps the “wrong
way” then EWN could be violated. Already this would be a concern at the classical level,
but it was shown in [189] that classically EWN is always obeyed even accounting for the
possibility of phase transitions. So we only need to convince ourselves that perturbative
quantum corrections cannot change this fact.

Consider the infinite-dimensional parameter space of boundary regions. A family of
quantum (classical) extremal surfaces determines a function on this parameter space given by
the generalized entropy (area) of the extremal surfaces. A phase transition occurs when two
families of extremal surfaces have equal generalized entropy (or area), and is associated with
a codimension-one manifold in parameter space. In going from the purely classical situation
to the perturbative quantum situation, two things will happen. First, the location of the
codimension-one phase transition manifold in parameter space will be shifted. Second, within
each family of extremal surfaces, the bulk locations of the surfaces will be perturbatively
shifted. We can treat these two e↵ects separately.

In the vicinity of the phase transition (in parameter space), the two families of surfaces
will be classically separated in the bulk and classically obey EWN, as proved in [189]. A
perturbative shift in the parameter space location of the phase transition will not change
whether EWN is satisfied classically. That is, the classical surfaces in each extremal family
associated with the neighborhood of quantum phase transition will still be separated classi-
cally in the bulk. Then we can shift the bulk locations of the classical extremal surfaces to
the quantum extremal surfaces, and since the shift is only perturbative there is no danger
of introducing a violation of EWN.

It would be desirable to have a more unified approach to this proof in the quantum case
that does not rely so heavily on perturbative arguments. We believe that such an approach
is possible, and in future work we hope to lift all of the results of [189] to the quantum
case by the replacement of “area” with “generalized entropy” without having to rely on a
perturbative treatment.

Generalized Second Law implies C ✓ E

This proof can be found in [67], but we elaborate on it here to illustrate similarities between
this proof and the proof that QFC implies EWN.

Wall’s Lemma We remind the reader of a fact proved as Theorem 4 in [189].16 Let two
boundary anchored co-dimension two, spacelike surfaces M and N , which contain the point
p 2 M \ N such that they are also tangent at p. Both surfaces are Cauchy-splitting in the
bulk. Suppose that M lies completely to one side of N . In the classical regime, Wall shows
that either there exists some point x in a neighborhood of p where

✓N(x) > ✓M(x) (3.19)

16Wall’s Lemma is a significant part of the extremal surface barriers argument in [67].
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Figure 3.4: The surface M and N are shown touching at a point p. In this case, ✓M < ✓N .
The arrows illustrate the projection of the null orthogonal vectors onto the Cauchy surface.

or the two surfaces agree everywhere in the neighborhood. These expansions are associated
to the exterior facing, future null normal direction.

In the semi-classical regime, this result can be improved to bound the quantum expansions

⇥1(x) > ⇥2(x) (3.20)

where x is some point in a neighborhood of p. The proof of this quantum result requires
the use of strong sub-additivity, and works even when bulk loops generate higher derivative
corrections to the generalized entropy [191].

We now proceed to prove from the GSL by contradiction. Suppose that the causal wedge
lies at least partly outside the entanglement wedge. In this discussion, by the “boundary
of the causal wedge,” we mean the intersection of the past of I�(@D(A)) with the Cauchy
surface on which e(A) lies. Consider continuously shrinking the boundary region associated
to the causal wedge. The causal wedge will shrink continuously under this deformation. At
some point, C(A) must shrink inside E(A). There exists some Cauchy surface such that its
intersection with the boundary of the causal wedge touches the original extremal surface as
depicted in Figure 3.4. There, M is the intersection of the boundary of the causal wedge of
the shrunken region with the Cauchy surface and N is e(A).

Assuming genericity of the state, the two surfaces cannot agree in this neighborhood. At
this point, by the above lemma, the quantum expansions should obey

⇥e(x) > ⇥c(x) (3.21)

for x in some neighborhood of p. The Wall-Engelhardt prescription tells us that the entan-
glement wedge boundary should be given by the quantum extremal surface [67] and so

⇥e(x) = 0 > ⇥c(x) (3.22)

Thus, the GSL is violated at some point along this causal surface, which draws the contra-
diction.

AANEC implies Boundary Causality Condition

The Gao-Wald proof of the BCC [82] uses the fact — which follows from their assumptions
of the NEC and null generic condition (discussed below) — that all complete null geodesics
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through the bulk contain a pair of conjugate points.17 Here, we sketch a slight modification
of the proof which instead assumes the achronal averaged null energy condition (AANEC).

We prove that the AANEC implies BCC by contradiction. Let the spacetime satisfy the
null generic condition [186], so that each null geodesic encounters at least some matter or
gravitational radiation.18 Violation of the BCC implies that the ”fastest” null geodesic �
between two boundary points p and q lies in the bulk. Such a null geodesic is necessarily
complete and achronal, as p and q are not timelike related. As explained in Sec. 3.3, an
achronal null geodesic in an AANEC satisfying spacetime is contained in a congruence that
is both a past and future causal horizon. Integrating Raychaudhuri’s equation along the
entire geodesic then gives 0  �

R
(✓2 + �2), which implies ✓ = � = 0 everywhere along the

geodesic, and hence ✓0 = 0. Raychaudhuri’s equation then says ✓0 = �Tkk = 0 everywhere,
which contradicts the generic condition.

Geometric Constraints Imply Field Theory Constraints

The geometrical constraints EWN, , and BCC have non-trivial implications for the boundary
theory. We derive them in this section, which proves the three implications connecting
columns two and three of Fig. 3.1. The key idea behind all three proofs is the same: express
the geometrical constraints in terms of bulk quantities near the asymptotic boundary, and
then use near-boundary expansions of the metric and extremal surfaces to convert them into
field theory statements.

Entanglement Wedge Nesting implies the Boundary QNEC

At leading order in G~ ⇠ 1/N , this proof is the central result of [126]. There the boundary
entropy was assumed to be given by the RT formula without the bulk entropy corrections.
We give a proof here of how the 1/N corrections can be incorporated naturally. We will now
show, in a manner exactly analogous to that laid out in [126], that EWN implies the boundary
QNEC. In what follows, we will notice that in order to recover the boundary QNEC, we must
use the quantum extremal surface, not just the RT surface with FLM corrections [67].

The quantum extremal surface (QES) prescription, as first introduced in [67], is the
following. To find the entropy of a region A in the boundary theory, first find the minimal
codimension-2 bulk surface homologous to A, e(A), that extremizes the bulk generalized
entropy on the side of A. The entropy of A is then given by

SA = Sgen(e(A)) =
AQES

4G~ + Sbulk (3.23)

17Intuitively speaking, points p and q along a geodesic � are conjugate if an infinitesimally nearby geodesic
intersects � at both p and q. This can be shown to be equivalent to the statement that the expansion of a
congruence through p approaches �1 at q. See e.g. [186] for details.

18Mathematically, each complete null geodesic should contain a point where k
a
k

b
k[cRd]ab[ekf ] 6= 0.
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Entanglement Wedge Nesting then becomes a statement about how the quantum extremal
surface moves under deformations of the boundary region. In particular, for null deformations
of the boundary region, EWN states that e(A) moves in a spacelike (or null) fashion.

To state this more precisely, we can set up a null orthogonal basis about e(A). Let kµ be
the inward-facing, future null orthogonal vector along the quantum extremal surface. Let `µ

be its past facing partner with ` · k = 1. Following the prescrition in [126], we denote the
locally orthogonal deviation vector of the quantum extremal surface by sµ. This vector can
be expanded in the local null basis as

s = ↵k + �` (3.24)

The statement of entanglement wedge nesting then just becomes the statement that � � 0.
In order to find how � relates to the boundary QNEC, we would like to find its relation

to the entropy. We start by examining the expansion of the extremal surface solution in
Fe↵erman-Graham coordinates. Note that the quantum extremal surface obeys an equation
of motion including the bulk entropy term as a source

Kµ = �4G~p
H

�Sbulk

�Xµ
(3.25)

Here, Kµ = ✓k`µ+✓`kµ is the extrinsic curvature of the QES. As discussed in [126], solutions
to (3.25) without the bulk source take the form

X̄ i

HRT
(ya, z) = X i(ya) +

1

2(d � 2)
z2Ki(ya) + ...+

zd

d
(V i(ya) +W i(ya) log z) + o(zd) (3.26)

We now claim that the terms lower order than zd are una↵ected by the presence of the
source. More precisely

X̄ i

QES
(ya, z) = X i(ya) +

1

2(d � 2)
z2Ki(ya) + ...+

zd

d
(V i

QES
+W i(ya) log z) + o(zd) (3.27)

This expansion is found by examining the leading order pieces of the extremal surface
equation. First, expand (3.25) to derive

zd�1@z
⇣
z1�df

p
h̄h̄zz@zX̄

i

⌘
+ @a

⇣p
h̄abh̄

abf@bX̄
i

⌘
= �zd�14G~f �Sbulk

�X̄j
gji (3.28)

Here we are parameterizing the near-boundary AdS metric in Fe↵erman-Graham coordinates
by

ds2 =
1

z2
�
dz2 + gijdx

idxj
�

(3.29)

=
1

z2

✓
dz2 +


f(z)⌘ij +

16⇡GN

d
zdtij

�
dxidxj + o(zd)

◆
. (3.30)
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The function f(z) encodes the possibility of relevant deformations in the field theory which
would cause the vacuum state to di↵er from pure AdS. Here we have set LAdS = 1.

One then plugs in (3.27) to (3.28) to see that the terms lower order than zd remain
una↵ected by the presence of the bulk entropy source as long as �Sbulk/�X i remains finite
at z = 0. We discuss the plausibility of this boundary condition at the end of this section.

For null deformations to locally stationary surfaces on the boundary, one can show using
(3.27) that the leading order piece of � in the Fe↵erman-Graham expansion is order zd�2.
Writing the coordinates of the boundary entangling surface as a function of some deformation
parameter - X i(�) - we find that [126],

� / zd�2

✓
Tkk +

1

8⇡GN

ki@�V
i

QES

◆
. (3.31)

We will now show that V i

QES
is proportional to the variation in Sgen at all orders in 1/N ,

as long as one uses the quantum extremal surface and assumes mild conditions on derivatives
of the bulk entropy. The key will be to leverage the fact that Sgen is extremized on the QES.
Thus, its variation will come from pure boundary terms. At leading order in z, we will
identify these boundary terms with the vector VQES.

We start by varying the generalized entropy with respect to a boundary deformation

�Sgen =

Z

QES

�Sgen

�X̄ i
�X̄ idzdd�2y �

Z

z=✏

✓
@Sgen

@(@zX̄ i)
+ ...

◆
�X̄ idd�2y (3.32)

where the boundary term comes from integrating by parts when deriving the Euler-Lagrange
equations for the functional Sgen[X̄]. The ellipsis denotes terms involving derivatives of Sgen

with respect to higher derivatives of the embedding functions (@Sgen/@(@2X), . . .) These
boundary terms will include two types of terms: one involving derivatives of the surface area
and one involving derivatives of the bulk entropy.

The first area term was already calculated in [126]. There it was found that

@A

@(@zX̄ i)
= � 1

zd�1

Z
dd�2y

p
h̄

gij@zX̄ i

p
1 + glm@zX̄ l@zX̄m

�X̄j|z=✏ (3.33)

One can use (3.27) to expand this equation in powers ✏, and then contract with the null
vector k on the boundary in order to isolate the variation with respect to null deformations.
For boundary surfaces which are locally stationary at some point y, one finds that all terms
lower order than zd vanish at y. In fact, it was shown in [126] that the right hand side of
(3.33), after contracting with ki, is just kiVi at first non-vanishing order. Finally, we assume
that that all such derivatives of the bulk entropy in (3.32) vanish as z ! 0. This is similar to
the reasonable assumption that entropy variations vanish at infinity, which should be true in
a state with finite bulk entropy. It would be interesting to classify the pathologies of states
which violate this assumption. Thus, the final result is that

kiV QES

i
= � 1p

h
ki
�Sgen

�X i
. (3.34)
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The quantum extremal surface prescription says that the boundary field theory entropy
is equal to the generalized entropy of the QES [67]. Setting Sgen = Sbdry in (3.34) and
combining that with (3.31) shows that the condition � � 0 is equivalent to the QNEC. Since
EWN guarantees that � � 0, the proof is complete.

We briefly comment about the assumptions used to derive (3.34). The bulk entropy
should - for generic states - not depend on the precise form of the region near the boundary.
The intuition is clear in the thermodynamic limit where bulk entropy is extensive. As long
as we assume strong enough fall-o↵ conditions on bulk matter, the change in the entropy
will have to vanish as z ! 0.

Note here the importance of using the quantum extremal surface. Had we naively con-
tinued to use the extremal area prescription, but still assumed SA = Sbulk(e(A)) +

A

4G~ , we
would have discovered a correction to the boundary QNEC from the bulk entropy. The
variation of the bulk extremal surface area would be given by a pure boundary term, but
the QNEC would take the erroneous form

Tkk � 1

2⇡
p
h
(S 00

A
� S 00

bulk
(e(A))) . (3.35)

In other words, if one wants to preserve the logical connections put forth in Figure 3.1 while
accounting for 1/N corrections, the use of quantum extremal surfaces is necessary.

We discuss the e↵ects of higher derivative terms in the gravitational action coming from
loop corrections at the end of this section.

C ✓ E implies the QHANEC

We now examine the boundary implication of C ✓ E . As before, this proof will hold to all
orders in G~, again assuming proper fall-o↵ conditions on derivatives of the bulk entropy.

The basic idea will be to realize that general states in AdS/CFT can be treated as
perturbations to the vacuum in the limit of small z. Again, we will consider the general case
where the boundary field theory includes relevant deformations. Then, near the boundary,
the metric can be written

ds2 =
1

z2

✓
dz2 +


f(z)⌘ij +

16⇡GN

d
zdtij

�
dxidxj + o(zd)

◆
, (3.36)

where f(z) encodes the e↵ects of the relevant deformations. In this proof we take the
viewpoint that the order zd piece of this expansion is a perturbation on top of the vacuum.
In other words

gab = gvac
ab

+ �gab. (3.37)

Of course, this statement is highly coordinate dependent. In the following calculations, we
treat the metric as a field on top of fixed coordinates. We will have to verify the gauge-
independence of the final result, and do so below.

For this proof we are interested in regions A of the boundary such that @A is a cut of
a null plane. In null coordinates, that would look like @A = {(u = U0(y), v = 0)}. These
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regions are special because in the vacuum state e(A) lies on the past causal horizon generated
by bulk geodesics coming from (u = 1, v = 0). This can be shown using Lorentz symmetry
as follows:

An arbitrary cut of a null plane can be deformed back to a flat cut by action with an
infinite boost (since boosts act by rescalings of u and v). Such a transformation preserves
the vacuum, and so the bulk geometry possesses an associated Killing vector. The past
causal horizon from (u = 1, v = 0) is a Killing horizon for this boost, and by symmetry
the quantum extremal surface associated to the flat cut will be the bifurcation surface of
the Killing horizon. Had e(A) for the arbitrary cut left the horizon, then it would have been
taken o↵ to infinity by the boost and not ended up on the bifurcation surface.19

We can construct an orthogonal null coordinate system around e(A) in the vacuum. We
denote the null orthogonal vectors by k and ` where kz = 0 = `z and kx = kt = 1 so that
k · ` = 1. Then the statement of C ✓ E becomes20

k · (⌘ � X̄SD) � 0 (3.38)

Here we use ⌘, X̄SD to denote the perturbation of the causal horizon and quantum extremal
surface from their vacuum position, respectively. The notation of X̄SD is used to denote the
state-dependent piece of the embedding functions for the extremal surface. Over-bars will
denote bulk embedding functions of e(A) surface and Xa will denote boundary coordinates.
The set up is illustrated in Figure 3.5.

Just as in the previous section, for a locally stationary surface (such as a cut of a null
plane), one can write the embedding coordinates of e(A), X̄, as an expansion in z [126]:

X̄ i(ya, z) = X i(ya) +
1

2(d � 2)
z2Ki(ya) + ...+

zd

d
(V i +W i(ya) log z) + o(zd) (3.39)

where V i is some local “velocity” function that denotes the rate at which the entangling
surface diverges from its boundary position and represents the leading term in the state-
dependent part of the embedding functions. The state-independent terms of lower order in
z are all proportional to ki. In vacuum, we also have V i / ki, and so for non-vacuum states
k · X̄SD = 1

d
V · kzd + o(zd).

19It is also worth noting that EWN together with C ✓ E can also be used to construct an argument.
Suppose we start with a flat cut of a null plane, for which e(A) is also a flat cut of a null plane in the
vacuum (the bifurcation surface for the boost Killing horizon). We then deform this cut on the boundary to
an arbitrary cut of the null plane in its future. In the bulk, EWN states that e(A) would have to move in a
space-like or null fashion, but if it moves in a space-like way, then C ✓ E is violated.

20The issue of gauge invariance for this proof should not be overlooked. On their own, each term in (3.38)
is not gauge invariant under a general di↵eomorphism. The sum of the two, on the other hand, does not
transform under coordinate change:

gµ⌫ ! gµ⌫ + r(µ⇠⌫)

Plugging this into the formula for k · ⌘ shows that �(k · ⌘) = �(k · ⇠), which is precisely the same as the
change in position of the extremal surface �(k · X̄SD) = �(k · ⇠).
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Figure 3.5: This picture shows the various vectors defined in the proof. It depicts a cross-
section of the extremal surface at constant z. e(A)vac denotes the extremal surface in the
vacuum. For flat cuts of a null plane on the boundary, they agree. For wiggly cuts, they will
di↵er by some multiple of ki.

Equation (3.34) tells us that X̄SD is proportional to boundary variations of the CFT
entropy. Thus, equation (3.39) together with (3.34) tells us the simple result that

k · X̄SD = �4GN

d
p
h
S 0

A
zd�2. (3.40)

Now we explore the ⌘ deformation, where ⌘ is the vector denoting the shift in the position
of the causal horizon. This discussion follows much of the formalism found in [63]. At a
specific value of (z, y), the null generator of the causal surface, k0, is related to the vacuum
vector k by

k0 = k + �k = k + kara⌘ (3.41)

In the perturbed metric, k0 must be null to leading order in ⌘ = O(zd). Imposing this
condition we find that

kbrb(⌘ · k) = �1

2
�gabk

akb (3.42)

Here �gab is simply the di↵erece between the excited state metric and the vacuum metric,
which can be treated as a perturbation since we are in the near-boudnary limit. This equation
can be integrated back along the original null geodesic, with the boundary condition imposed
that ⌘(1) = 0. Thus, we find the simple relation

(k · ⌘)(�) = 1

2

Z
1

�

�gkk d�̃. (3.43)

The holographic dictionary tells us how to relate �gkk to boundary quantities. Namely,
to leading order in z, the expression above can be recast in terms of the CFT stress tensor

k · ⌘ =
1

2

Z
1

�

16⇡GN

d
zd�2Tkk d�̃. (3.44)
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Plugging all of this back in to (3.38), we finally arrive at the basic inequality

Z
1

�

Tkk d�̃+
~

2⇡
p
h
S 0

A
� 0. (3.45)

Note that all the factors ofGN have dropped out and we have obtained a purely field-theoretic
QHANEC.

Loop corrections Here we will briefly comment on how bulk loop corrections a↵ect the
argument. Quantum e↵ects do not just require that we add Sout to A; higher derivative
terms suppressed by the Planck-scale will be generated in the gravitational action which will
modify the gravitational entropy functional. With Planck-scale suppressed higher derivative
corrections, derivatives of the boundary entropy of a region have the form

S 0 =
A0

4G~ +Q0 + S 0

out
(3.46)

where Q0 are the corrections which start at O((G~)0). The key point is that Q0 is always
one order behind A0 in the G~ perturbation theory. As G~ ! 0, Q0 can only possibly be
relevant in situations where A0 = 0 at O((G~)0). In this case, V i ⇠ ki, and the bulk quantum
extremal surface in the vacuum state is a cut of a bulk Killing horizon. But then Q0 must
be at least O(G~), since Q0 = 0 on a Killing horizon for any higher derivative theory. Thus
we find Eq. (3.34) is unchanged at the leading nontrivial order in G~.

Higher derivative terms in the bulk action will also modify the definition of the boundary
stress tensor. The appearance of the stress tensor in the QNEC and QHANEC proofs
comes from the fact that it appears at O(zd) in the near-boundary expansion of the bulk
metric [126]. Higher derivative terms will modify the coe�cient of Tij in this expansion, and
therefore in the QNEC and QHANEC. (They will not a↵ect the structure of lower-order
terms in the asymptotic metric expansion because there aren’t any tensors of appropriate
weight besides the flat metric ⌘ij [126]). But the new coe�cient will di↵er from the one in
Einstein gravity by the addition of terms containing the higher derivative couplings, which
are 1/N -suppressed relative to the Einstein gravity term, and will thus only contribute to
the sub-leading parts of the QNEC and QHANEC. Thus the validity of the inequalities at
small G~ is una↵ected.

Boundary Causality Condition implies the AANEC

The proof of this statement was first described in [122]. We direct interested readers to
that paper for more detail. Here we will sketch the proof and note some similarities to the
previous two subsections.

As discussed above, the BCC states that no bulk null curve can connect boundary points
that are not connected by a boundary causal curve. In the same way that we took a boundary
limit of C ✓ E to prove the QHANEC, the strategy here is to look at nearly null time-like
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curves that hug the boundary. These curves will come asymptotically close to beating the
boundary null geodesic and so in some sense derive the most stringent condition on the
geometry.

Expanding the near boundary metric in powers of z, we use holographic renormalization
to identify pieces of the metric as the stress tensor

gµ⌫dx
µdx⌫ =

dz2 + ⌘ijdxidxj + zd�ij(z, xi)dxidxj

z2
(3.47)

where �ij(0, xi) = 16⇡GN
d

hTiji. Using null coordinates on the boundary, we can parameterize
the example bulk curve by u 7! (u, V (u), Z(u), yi = 0). One constructs a nearly null, time-
like curve that starts and ends on the boundary and imposes time delay. If Z(�L) = Z(L) =
0, then the BCC enforces that V (L) � V (�L) � 0. For the curve used in [122], the L ! 1
limit turns this inequality directly into the boundary AANEC.

3.5 Discussion

We have identified two constraints on the bulk geometry, entanglement wedge nesting (EWN)
and the C ✓ E , coming directly from the consistency of subregion duality and entanglement
wedge reconstruction. The former implies the latter, and the latter implies the boundary
causality condition (BCC). Additionally, EWN can be understood as a consequence of the
quantum focussing conjecture, and C ✓ E follows from the generalized second law. Both
statements in turn have implications for the strongly-coupled large-N theory living on the
boundary: the QNEC and QHANEC, respectively. In this section, we list possible general-
izations and extensions to this work.

Unsuppressed higher derivative corrections There is no guarantee that higher deriva-
tive terms with un-suppressed coe�cients are consistent with our conclusions. In fact, in
[33] it was observed that Gauss-Bonnett gravity in AdS with an intermediate-scale coupling
violates the BCC, and this fact was used to place constraints on the theory. We have seen
that the geometrical conditions EWN and C ✓ E are fundamental to the proper functioning
of the bulk/boundary duality. If it turns out that a higher derivative theory invalidates some
of our conclusions, it seems more likely that this would be point to a particular pathology
of that theory rather than an inconsistency of our results. It would be interesting if EWN
and C ✓ E could be used to place constraints on higher derivative couplings, in the spirit of
[33]. We leave this interesting possibility to future work.

A further constraint from subregion duality Entanglement wedge reconstruction im-
plies an additional property that we have not mentioned. Given two boundary regions A
and B that are spacelike separated, E(A) is spacelike separated from E(B). This property
is actually equivalent to EWN for pure states, but is a separate statement for mixed states.
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In the latter case, it would be interesting to explore the logical relationships of this property
to the constraints in Fig. 3.1.

Beyond AdS In this paper we have only discussed holography in asymptotically AdS
spacetimes. While the QFC, QNEC, and GSL make no reference to asymptotically AdS
spacetimes, EWN and C ✓ E currently only have meaning in this context. One could
imagine however that a holographic correspondence with subregion duality makes sense in
more general spacetimes — perhaps formulated in terms of a “theory” living on a holographic
screen [18, 22, 24]. In this case, we expect analogues of EWN and C ✓ E . For some initial
steps in this direction, see [172].

Quantum generalizations of other bulk facts from generalized entropy A key
lesson of this paper is that classical results in AdS/CFT relying on the null energy condition
(NEC) can often be made semiclassical by appealing to powerful properties of the generalized
entropy: the quantum focussing conjecture and the generalized second law. We expect this
to be more general than the semiclassical proofs of EWN and C ✓ E presented here. Indeed,
Wall has shown that the generalized second law implies semiclassical generalizations of many
celebrated results in classical general relativity, including the singularity theorem [191]. It
would be illuminating to see how general this pattern is, both in and out of AdS/CFT. As
an example, it is known that strong subadditivity of holographic entanglement entropy can
be violated in spacetimes which don’t obey the NEC [32]. It seems likely that the QFC can
be used to derive strong subadditivity in cases where the NEC is violated due to quantum
e↵ects in the bulk.

Gravitational inequalities from field theory inequalities We have seen that the
bulk QFC and GSL, which are semi-classical quantum gravity inequalities, imply their non-
gravitational limits on the boundary, the QNEC and QHANEC. But we can regard the
bulk as an e↵ective field theory of perturbative quantum gravity coupled to matter, and
can consider the QNEC and QHANEC for the bulk matter sector. At least when including
linearized backreaction of fields quantized on top of a Killing horizon, the QHANEC implies
the GSL [188], and the QNEC implies the QFC [26]. In some sense, this “completes” the
logical relations of Fig. 3.1.

Support for the quantum extremal surfaces conjecture The logical structure un-
covered in this paper relies heavily on the conjecture that the entanglement wedge should be
defined in terms of the surface which extremizes the generalized entropy to one side [67] (as
opposed to the area). Perhaps similar arguments could be used to prove this conjecture, or
at least find an explicit example where extremizing the area is inconsistent with subregion
duality, as in [81].
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Connections to Recent Proofs of the AANEC Recent proofs of the AANEC have
illuminated the origin of this statement within field theory [73, 95]. In one proof, the engine
of the inequality came from microcausality and reflection positivity. In the other, the proof
relied on montonoicity of relative entropy for half spaces. A natural next question would be
how these two proofs are related, if at all. Our paper seems to o↵er at least a partial answer
for holographic CFTs. Both the monotonicity of relative entropy and microcausality - in
our case the QHANEC and BCC, respectively - are implied by the same thing in the bulk:
C ✓ E . In 3.2, we gave a motivation for this geometric constraint from subregion duality. It
would be interesting to see how the statement of C ✓ E in a purely field theoretic language
is connected to both the QHANEC and causality.
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Chapter 4

The Quantum Null Energy Condition,
Entanglement Wedge Nesting, and
Quantum Focusing

4.1 Introduction and Summary

The Quantum Focusing Conjecture (QFC) is a new principle of semiclassical quantum gravity
proposed in [26]. Its formulation is motivated by classical focusing, which states that the
expansion ✓ of a null congruence of geodesics is nonincreasing. Classical focusing is at the
heart of several important results of classical gravity [160, 96, 97, 76], and likewise quantum
focusing can be used to prove quantum generalizations of many of these results [190, 191,
21, 4].

One of the most important and surprising consequences of the QFC is the Quantum Null
Energy Condition (QNEC), which was discovered as a particular nongravitational limit of
the QFC [26]. Subsequently the QNEC was proven for free fields [27] and for holographic
CFTs on flat backgrounds [126] (and recently extended in [78] in a similar way as we do
here). The formulation of the QNEC which naturally comes out of the proofs we provide
here is as follows.

Consider a codimension-two Cauchy-splitting surface ⌃, which we will refer to as the
entangling surface. The Von Neumann entropy S[⌃] of the interior (or exterior) of ⌃ is
a functional of ⌃, and in particular is a functional of the embedding functions X i(y) that
define ⌃. Choose a one-parameter family of deformed surfaces ⌃(�), with ⌃(0) = ⌃, such
that (i) ⌃(�) is given by flowing along null geodesics generated by the null vector field ki

normal to ⌃ for a�ne time � , and (ii) ⌃(�) is either “shrinking” or “growing” as a function
of �, in the sense that the domain of dependence of the interior of ⌃ is either shrinking or
growing. Then for any point on the entangling surface we can define the combination

Tij(y)k
i(y)kj(y) � 1

2⇡

d

d�

 
ki(y)p
h(y)

�Sren

�X i(y)

!
. (4.1)



CHAPTER 4. THE QUANTUM NULL ENERGY CONDITION, ENTANGLEMENT
WEDGE NESTING, AND QUANTUM FOCUSING 55

Here
p

h(y) is the induced metric determinant on ⌃. Writing this down in a general curved
background requires a renormalization scheme both for the energy-momentum tensor Tij

and the renormalized entropy Sren. Assuming that this quantity is scheme-independent (and
hence well-defined), the QNEC states that it is positive. Our main task is to determine the
necessary and su�cient conditions we need to impose on ⌃ and the background spacetime
at the point y in order that the QNEC hold.

In addition to a proof through the QFC, the holographic proof method of [126] is easily
adaptable to answering this question in full generality. The backbone of that proof is Entan-
glement Wedge Nesting (EWN), which is a consequence of subregion duality in AdS/CFT [4].
A given region on the boundary of AdS is associated with a particular region of the bulk,
called the entanglement wedge, which is defined as the bulk region spacelike-related to the
extremal surface [171, 111, 67, 51] used to compute the CFT entropy on the side toward the
boundary region. This bulk region is dual to the given boundary region, in the sense that
there is a correspondence between the algebra of operators in the bulk region and that of the
operators in the boundary region which are good semiclassical gravity operators (i.e., they
act within the subspace of semiclassical states) [46, 117, 50]. EWN is the statement that
nested boundary regions must be dual to nested bulk regions, and clearly follows from the
consistency of subregion duality.

While the QNEC can be derived from both the QFC and EWN, there has been no clear
connection between these derivations.1 As it stands, there are apparently two QNECs, the
QNEC-from-QFC and the QNEC-from-EWN. We will show in full generality that these two
QNECs are in fact the same, at least in d  5 dimensions.

Here is a summary of our results:

• The holographic proof of the QNEC from EWN is extended to CFTs on arbitrary
curved backgrounds. In d = 5 we find that the necessary and su�cient conditions for
the ordinary QNEC to hold at a point are that2

✓(k) = �(k)
ab

= Da✓(k) = Da�
(k)
bc

= Rka = 0 (4.2)

at that point. For d < 5 only a subset of these conditions are necessary. This is the
subject of §4.2.

• We also show holographically that under the weaker set of conditions

�(k)
ab

= Da✓(k) +Rka = Da�
(k)
bc

= 0 (4.3)

the Conformal QNEC holds. The Conformal QNEC was introduced in [126] as a
conformally-transformed version of the QNEC. This is the strongest inequality that we
can get out of EWN. This is the subject of §4.2

1In [4] it was shown that the QFC in the bulk implies EWN, which in turn implies the QNEC. This is
not the same as the connection we are referencing here. The QFC which would imply the boundary QNEC
in the sense that we mean is a boundary QFC, obtained by coupling the boundary theory to gravity.

2Here �
(k)
ab and ✓(k) are the shear and expansion in the k

i direction, respectively, and Da is a surface
covariant derivative. Our notation is further explained in Appendix A.2.



CHAPTER 4. THE QUANTUM NULL ENERGY CONDITION, ENTANGLEMENT
WEDGE NESTING, AND QUANTUM FOCUSING 56

• By taking the non-gravitational limit of the QFC we are able to derive the QNEC
again under the same set of conditions as we did for EWN. This is the subject of §4.3.

• We argue in §4.3 that the statement of the QNEC is scheme-independent whenever
the conditions that allow us to prove it hold. This shows that the two proofs of the
QNEC are actually proving the same, unambiguous field–theoretic bound.

We conclude in §4.4 with a discussion and suggest future directions. A number of technical
Appendices are included as part of our analysis.

Relation to other work While this work was in preparation, [78] appeared which has
overlap with our discussion of EWN and the scheme-independence of the QNEC. The results
of [78] relied on a number of assumptions about the background: the null curvature condition
and a positive energy condition. From this they derive certain su�cient conditions for the
QNEC to hold. We do not assume anything about our backgrounds a priori, and include
all relevant higher curvature corrections. This gives our results greater generality, as we are
able to find both necessary and su�cient conditions for the QNEC to hold.

4.2 Entanglement Wedge Nesting

Subregion Duality

The statement of AdS/CFT includes a correspondence between operators in the semiclas-
sical bulk gravitational theory and CFT operators on the boundary. Moreover, it has been
shown [90, 50] that such a correspondence exists between the operator algebras of subregions
in the CFT and certain associated subregions in the bulk as follows: Consider a spatial sub-
region A in the boundary geometry. The extremal surface anchored to @A, which is used to
compute the entropy of A [171, 111], bounds the so-called entanglement wedge of A, E(A),
in the bulk. More precisely E(A) is the codimension-zero bulk region spacelike-related to
the extremal surface on the same side of the extremal surface as A. Subregion duality is the
statement that the operator algebras of D(A) and E(A) are dual, where D(A) denotes the
domain of dependence of A.

Entanglement Wedge Nesting The results of this section follow from EWN, which we
now describe. Consider two boundary regions A1 and A2 such that D(A1) ✓ D(A2). Then
consistency of subregion duality implies that E(A1) ✓ E(A2) as well, and this is the statement
of EWN. In particular, EWN implies that the extremal surfaces associated to A1 and A2

cannot be timelike-related.
We will mainly be applying EWN to the case of a one-paramter family of boundary

regions, A(�), where D(A(�1)) ✓ D(A(�2)) whenever �1  �2. Then the union of the one-
parameter family of extremal surfaces associated to A(�) forms a codimension-one surface
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Figure 4.1: Here we show the holographic setup which illustrates Entanglement Wedge
Nesting. A spatial region A1 on the boundary is deformed into the spatial region A2 by the
null vector �X i. The extremal surfaces of A1 and A2 are connected by a codimension-one
bulk surface M (shaded blue) that is nowhere timelike by EWN. Then the vectors �X̄µ and
sµ, which lie in M, have nonnegative norm.

in the bulk that is nowhere timelike. We denote this codimension-one surface by M. See
Fig. 4.1 for a picture of the setup.

Since M is nowhere timelike, every one of its tangent vectors must have nonnegative
norm. In particular, consider the embedding functions X̄µ of the extremal surfaces in some
coordinate system. Then the vectors �X̄µ ⌘ @�X̄µ is tangent to M, and represents a vector
that points from one extremal surface to another. Hence we have (�X̄)2 � 0 from EWN,
and this is the inequality that we will discuss for most of the remainder of this section.

Before moving on, we will note that (�X̄)2 � 0 is not necessarily the strongest inequality
we get from EWN. At each point on M, the vectors which are tangent to the extremal
surface passing through that point are known to be spacelike. Therefore if �X̄µ contains
any components which are tangent to the extremal surface, they will serve to make the
inequality (�X̄)2 � 0 weaker. We define the vector sµ at any point of M to be the part of
�X̄µ orthogonal to the extremal surface passing through that point. Then (�X̄)2 � s2 � 0.
We will discuss the s2 � 0 inequality in §4.2 after handling the (�X̄)2 � 0 case.

Near-Boundary EWN

In this section we explain how to calculate the vector �X̄µ and sµ near the boundary explicitly
in terms of CFT data. Then the EWN inequalities (�X̄)2 > 0 and s2 > 0 can be given a
CFT meaning. The strategy is to use a Fe↵erman-Graham expansion of both the metric and
extremal surface, leading to equations for �X̄µ and sµ as power series in the bulk coordinate
z (including possible log terms). In the following sections we will analyze the inequalities
that are derived in this section.

Bulk Metric We work with a bulk theory in AdSd+1 that consists of Einstein gravity
plus curvature-squared corrections. For d  5 this is the complete set of higher curvature
corrections that have an impact on our analysis. The Lagrangian is3

L =
1

16⇡GN

✓
d(d � 1)

L̃2
+ R + `2�1R2 + `2�2R2

µ⌫
+ `2�GBLGB

◆
, (4.4)

where LGB = R2
µ⌫⇢�

� 4R2
µ⌫

+ R2 is the Gauss–Bonnet Lagrangian, `2 is the cuto↵ scale,

and L̃2 is the scale of the cosmological constant. The bulk metric has the following near
3For simplicity we will not include matter fields explicitly in the bulk, but their presence should not alter

any of our conclusions.



CHAPTER 4. THE QUANTUM NULL ENERGY CONDITION, ENTANGLEMENT
WEDGE NESTING, AND QUANTUM FOCUSING 58

boundary expansion in Fe↵erman-Graham gauge [92]:

ds2 =
L2

z2
(dz2 + ḡij(x, z)dx

idxj), (4.5)

ḡij(x, z) = g(0)
ij
(x) + z2g(2)

ij
(x) + z4g(4)

ij
(x) + . . .+ zd log z g(d,log)

ij
(x) + zdg(d)

ij
(x) + o(zd).

(4.6)

Note that the length scale L is di↵erent from L̃, but the relationship between them will not
be important for us. Demanding that the above metric solve bulk gravitational equations
of motion gives expressions for all of the g(n)

ij
for n < d, including g(d,log)

ij
(x), in terms of

g(0)
ij
(x). This means, in particular, that these terms are all state-independent. One finds

that g(d,log)
ij

(x) vanishes unless d is even. We provide explicit expressions for some of these
terms in Appendix A.4.

The only state-dependent term we have displayed, g(d)
ij
(x), contains information about the

expectation value of the energy-momentum tensor Tij of the field theory. In odd dimensions
we have the simple formula [72]4

g(d=odd)
ij

=
16⇡GN

⌘dLd�1
hTiji, (4.7)

with

⌘ = 1 � 2 (d(d+ 1)�1 + d�2 + (d � 2)(d � 3)�GB)
`2

L2
(4.8)

In even dimensions the formula is more complicated. For d = 4 we discuss the form of the
metric in Appendix A.6

Extremal Surface EWN is a statement about the causal relation between entanglement
wedges. To study this, we need to calculate the position of the extremal surface. We
parametrize our extremal surface by the coordinate (ya, z), and the position of the surface
is determined by the embedding functions X̄µ(ya, z). The intrinsic metric of the extremal
surface is denoted by h̄↵�, where ↵ = (a, z). For convenience we will impose the gauge
conditions X̄z = z and h̄az = 0.

The functions X̄(ya, z) are determined by extremizing the generalized entropy [67, 51]
of the entanglement wedge. This generalized entropy consists of geometric terms integrated
over the surface as well as bulk entropy terms. We defer a discussion of the bulk entropy
terms to §4.4 and write only the geometric terms, which are determined by the bulk action:

Sgen =
1

4GN

Z p
h̄


1 + 2�1`

2R + �2`
2

✓
Rµ⌫N µ⌫ � 1

2
KµKµ

◆
+ 2�GB`

2r̄

�
. (4.9)

4Even though [72] worked with a flat boundary theory, one can check that this formula remains unchanged
when the boundary is curved.
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We discuss this entropy functional in more detail in Appendix A.4. The Euler-Lagrange
equations for Sgen are the equations of motion for X̄µ. Like the bulk metric, the extremal
surface equations can be solved at small-z with a Fe↵erman–Graham-like expansion:

X̄ i(y, z) = X i

(0)(y) + z2X i

(2)(y) + z4X i

(4)(y) + . . .+ zd log z X i

(d,log)(y) + zdX i

(d)(y) + o(zd),

(4.10)

As with the metric, the coe�cient functions X i

(n) for n < d, including the log term, can be

solved for in terms of X i

(0) and g(0)
ij
, and again the log term vanishes unless d is even. The

state-dependent term X i

(d) contains information about variations of the CFT entropy, as we
explain below.

The z-Expansion of EWN By taking the derivative of (4.10) with respect to �, we find
the z-expansion of �X̄ i. We will discuss how to take those derivatives momentarily. But
given the z-expansion of �X̄ i, we can combine this with the z-expansion of ḡij in (4.6) to get
the z-expansion of (�X̄)2:

z2

L2
(�X̄)2 = g(0)

ij
�X i

(0)�X
j

(0) + z2
⇣
2g(0)

ij
�X i

(0)�X
j

(2) + g(2)
ij
�X i

(0)�X
j

(0) +Xm

(2)@mg
(0)
ij
�X i

(0)�X
j

(0)

⌘
+ · · ·

(4.11)

EWN implies that (�X̄)2 � 0, and we will spend the next few sections examining this
inequality using the expansion (4.11). From the general arguments given above, we can
get a stronger inequality by considering the vector sµ and its norm rather than �X̄µ. The
construction of sµ is more involved, but we would similarly construct an equation for s2 at
small z. We defer further discussion of sµ to §4.2.

Now we return to the question of calculating �X̄ i. Since all of theX i

(n) for n < d are known
explicitly from solving the equation of motion, the �-derivatives of those terms can be taken
and the results expressed in terms of the boundary conditions for the extremal surface. The
variation of the state-dependent term, �X i

(d), is also determined by the boundary conditions

in principle, but in a horribly non-local way. However, we will now show that X i

(d) (and

hence �X i

(d)) can be re-expressed in terms of variations of the CFT entropy.

Variations of the Entropy The CFT entropy SCFT is equal to the generalized entropy
Sgen of the entanglement wedge in the bulk. To be precise, we need to introduce a cuto↵ at
z = ✏ and use holographic renormalization to properly define the entropy. Then we can use
the calculus of variations to determine variations of the entropy with respect to the boundary
conditions at z = ✏. There will be terms which diverge as ✏ ! 0, as well as a finite term,
which is the only one we are interested in at the moment. In odd dimensions, the finite term
is given by a simple integral over the entangling surface in the CFT:

�SCFT|finite = ⌘dLd�1

Z
dd�2y

p
hgijX

i

(d)�X
j. (4.12)
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This finite part of SCFT is the renormalized entropy, Sren, in holographic renormalization.
Eventually we will want to assure ourselves that our results are scheme-independent. This
question was studied in [77], and we will discuss it further in §4.3. For now, the important
take-away from (4.12) is

1p
h

�Sren

�X i(y)
= �⌘dL

d�1

4GN

X i

(d,odd). (4.13)

The case of even d is more complicated, and we will cover the d = 4 case in Appendix A.6.

State-Independent Inequalities

The basic EWN inequality is (�X̄)2 � 0. The challenge is to write this in terms of boundary
quantities. In this section we will look at the state-independent terms in the expansion of
(4.11). The boundary conditions at z = 0 are given by the CFT entangling surface and
background geometry, which we denote by X i and gij without a (0) subscript. The variation
vector of the entangling surface is the null vector ki = �X i. We can use the formulas of
Appendix A.5 to express the other X i

(n) for n < d in terms of X i and gij. This allows us to

express the state-independent parts of (�X̄)2 � 0 in terms of CFT data. In this subsection
we will look at the leading and subleading state-independent parts. These will be su�cient
to fully cover the cases d  5.

Leading Inequality From (4.11), we see that the first term is actually kiki = 0. The next
term is the one we call the leading term, which is

L�2(�X̄)2
��
z0

= 2ki�X
i

(2) + g(2)
ij
kikj +Xm

(2)@mgijk
ikj. (4.14)

From (A.49), we easily see that this is equivalent to

L�2 (�X̄ i)2
��
z0

=
1

(d � 2)2
✓2(k) +

1

d � 2
�2
(k), (4.15)

where �(k)
ab

and ✓(k) are the shear and expansion of the null congruence generated by ki,
and are given by the trace and trace-free parts of kiKi

ab
, with Ki

ab
the extrinsic curvature of

the entangling surface. This leading inequality is always nonnegative, as required by EWN.
Since we are in the small-z limit, the subleading inequality is only relevant when this leading
inequality is saturated. So in our analysis below we will focus on the ✓(k) = �(k)

ab
= 0 case,

which can always be achieved by choosing the entangling surface appropriately. Note that
in d = 3 this is the only state-independent term in (�X̄)2, and furthermore we always have

�(k)
ab

= 0 in d = 3.

Subleading Inequality The subleading term in (�X̄)2 is order z2 in d � 5, and order
z2 log z in d = 4. These two cases are similar, but it will be easiest to focus first on d � 5
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and then explain what changes in d = 4. The terms we are looking for are

L�2(�X̄)2
��
z2

= 2ki�X
i

(4) + 2g(2)
ij
ki�Xj

(2) + gij�X
i

(2)�X
j

(2) + g(4)
ij
kikj +Xm

(4)@mgijk
ikj

+ 2Xm

(2)@mgijk
i�Xj

(2) +Xm

(2)@mg
(2)
ij
kikj +

1

2
Xm

(2)X
n

(2)@m@ngijk
ikj. (4.16)

This inequality is significantly more complicated than the previous one. The details of its
evaluation are left to Appendix A.5. The result, assuming ✓(k) = �(k)

ab
= 0, is

L�2(�X̄)2
��
z2

=
1

4(d � 2)2
(Da✓(k) + 2Rka)

2

+
1

(d � 2)2(d � 4)
(Da✓(k) +Rka)

2 +
1

2(d � 2)(d � 4)
(Da�

(k)
bc

)2

+


d � 4

�
CkabcC

abc

k
� 2C c

k ca
C b a

k b

�
. (4.17)

where  is proportional to �GB`2/L2 and is defined in Appendix A.5. Aside from the Gauss–
Bonnet term we have a sum of squares, which is good because EWN requires this to be
positive when ✓(k) and �(k) vanish. Since  ⌧ 1, it cannot possibly interfere with positivity

unless the other terms were zero. This would require Da✓(k) = Da�
(k)
bc

= Rka = 0 in addition
to our other conditions. But, following the arguments of [133], this cannot happen unless
the components Ckabc of the Weyl tensor also vanish at the point in question. Thus EWN
is always satisfied. Also note that the last two terms in middle line of (4.17) are each

conformally invariant when ✓(k) = �(k)
ab

= 0, which we have assumed. This will become
important later.

Finally, though we have assumed d � 5 to arrive at this result, we can use it to derive
the expression for L�2(�X̄)2

��
z2 log z

in d = 4. The rule, explained in Appendix A.6, is to
multiply the RHS by 4� d and then set d = 4. This has the e↵ect of killing the conformally
non-invariant term, leaving us with

L�2(�X̄)2
��
z2 log z,d=4

= �1

4
(Da✓(k) +Rka)

2 � 1

4
(Da�

(k)
bc

)2. (4.18)

The Gauss–Bonnet term also disappears because of a special Weyl tensor identity in d =
4 [77]. The overall minus sign is required since log z < 0 in the small z limit. In addition, we
no longer require that Rka and Da✓(k) vanish individually to saturate the inequality: only
their sum has to vanish. This still requires that Ckabc = 0, though.

The Quantum Null Energy Condition

The previous section dealt with the two leading state-independent inequalities that EWN
implies. Here we deal with the leading state-dependent inequality, which turns out to be the
QNEC.
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At all orders lower than zd�2, (�X̄)2 is purely geometric. At order zd�2, however, the
CFT energy-momentum tensor enters via the Fe↵erman–Graham expansion of the metric,
and variations of the entropy enter through X i

(d). In odd dimensions the analysis is simple
and we will present it here, while in general even dimensions it is quite complicated. Since
our state-independent analysis is incomplete for d > 5 anyway, we will be content with
analyzing only d = 4 for the even case. The d = 4 calculation is presented in Appendix A.6.
Though is it more involved that the odd-dimensional case, the final result is the same.

Consider first the case where d is odd. Then we have

L�2(�X̄)2
��
zd�2 = g(d)

ij
kikj + 2ki�X

i

(d) +Xm

(d)@mgijk
ikj = g(d)

ij
kikj + 2�

�
ki�X

i

(d)

�
. (4.19)

From (4.7) and (4.13), we find that

L�2(�X̄)2
��
zd�2 =

16⇡GN

⌘dLd�1


hTkki � �

✓
ki

2⇡
p
h

�Sren

�X i

◆�
. (4.20)

The nonnegativity of the term in brackets is equivalent to the QNEC. The case where d is
even is more complicated, and we will go over the d = 4 case in Appendix A.6.

The Conformal QNEC

As mentioned in §4.2, we can get a stronger inequality from EWN by considering the norm
of the vector sµ, which is the part of �X̄µ orthogonal to the extremal surface. Our gauge
choice X̄z = z means that sµ 6= �X̄µ, and so we get a nontrivial improvement by considering
s2 � 0 instead of (�X̄)2 � 0.

We can actually use the results already derived above to compute s2 with the following
trick. We would have had �X̄µ = sµ if the surfaces of constant z were already orthogonal
to the extremal surfaces. But we can change our definition of the constant-z surfaces with
a coordinate transformation in the bulk to make this the case, apply the above results to
(�X̄)2 in the new coordinate system, and then transform back to the original coordinates.
The coordinate transformation we are interested in performing is a PBH transformation [113],
since it leaves the metric in Fe↵erman–Graham form, and so induces a Weyl transformation
on the boundary.

So from the field theory point of view, we will just be calculating the consequences of
EWN in a di↵erent conformal frame, which is fine because we are working with a CFT.
With that in mind it is easy to guess the outcome: the best conformal frame to pick is one
in which all of the non-conformally-invariant parts of the state-independent terms in (�X̄)2

are set to zero, and when we transform the state-dependent term in the new frame back to
the original frame we get the so-called Conformal QNEC first defined in [126]. This is indeed
what happens, as we will now see.

Orthogonality Conditions First, we will examine in detail the conditions necessary for
�X̄µ = sµ, and their consequences on the inequalities derived above. We must check that

ḡij@↵X̄
i�X̄j = 0. (4.21)
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for both ↵ = z and ↵ = a. As above, we will expand these conditions in z. When ↵ = z, at
lowest order in z we find the condition

0 = kiX
i

(2), (4.22)

which is equivalent to ✓(k) = 0. When ↵ = a, the lowest-order in z inequality is automatically
satisfied because ki is defined to be orthogonal to the entangling surface on the boundary.
But at next-to-lowest order we find the condition

0 = ki@aX
i

(2) + eai�X
i

(2) + g(2)
ij
ei
a
kj +Xm

(2)@mgije
i

a
kj (4.23)

= � 1

2(d � 2)

⇥
(Da � 2wa)✓(k) + 2Rka

⇤
. (4.24)

Combined with the ✓(k) = 0 condition, this tells us that that Da✓(k) = �2Rka is required.
When these conditions are satisfied, the state-dependent terms of (�X̄)2 analyzed above
become5

L�2(�X̄)2 =
1

d � 2
�2
(k) +


1

(d � 2)2(d � 4)
(Rka)

2 +
1

2(d � 2)(d � 4)
(Da�

(k)
bc

)2
�
z2 + · · ·

(4.25)

Next we will demonstrate that ✓(k) = 0 and Da✓(k) = �2Rka can be achieved by a Weyl
transformation, and then use that fact to write down the s2 � 0 inequality that we are after.

Achieving �X̄µ = sµ with a Weyl Transformation Our goal now is to begin with
a generic situation in which �X̄µ 6= sµ and use a Weyl transformation to set �X̄µ ! sµ.
This means finding a new conformal frame with ĝij = e2�(x)gij such that ✓̂(k) = 0 and

D̂a✓̂(k) = �2R̂ka, which would then imply that �X̂µ = sµ (we omit the bar on �X̂µ to avoid

cluttering the notation, but logically it would be � ˆ̄Xµ).
Computing the transformation properties of the geometric quantities involved is a stan-

dard exercise, but there is one extra twist involved here compared to the usual prescription.
Ordinarily a vector such as ki would be invariant under the Weyl transformation. However,
for our setup is it is important that ki generate an a�ne-parameterized null geodesic. Even
though the null geodesic itself is invariant under Weyl transofrmation, ki will no longer be
the correct generator. Instead, we have to use k̂i = e�2�ki. Another way of saying this is

5We have not included some terms at order z
2 which are proportional to �

(k)
ab because they never play a

role in the EWN inequalities.
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that ki = k̂i is invariant under the Weyl transformation. With this in mind, we have

e2�R̂ka = Rka � (d � 2)
⇥
Da@k�� wa@k�� kjK

j

ab
@b�� @k�@a�

⇤
, (4.26)

e2�✓̂(k) = ✓(k) + (d � 2)@k�, (4.27)

e2�D̂a✓̂(k) = Da✓(k) + (d � 2)Da@k�� 2✓(k)@a�� 2(d � 2)@k�@a�, (4.28)

�̂(k)
ab

= �(k)
ab

, (4.29)

D̂c�̂
(k)
ab

= Dc�
(k)
ab

� 2
h
�(k)
c(b@a)�+ �(k)

ab
@c�� gc(a�

(k)
b)dr

d�
i
, (4.30)

ŵa = wa � @a�. (4.31)

So we may arrange ✓̂(k) = 0 at a given point on the entangling surface by choosing @k� =

�✓(k)/(d� 2) that that point. Having chosen that, and assuming �(k)
ab

=0 at the same point,
one can check that

e2�
⇣
D̂a✓̂(k) + 2R̂ka

⌘
= Da✓(k) � 2wa✓(k) + 2Rka � (d � 2)Da@k� (4.32)

So we can choose Da@k� to make the combination D̂a✓̂(k) + 2R̂ka vanish. Then in the new

frame we have �X̂µ = sµ.

The s2 � 0 Inequality Based on the discussion above, we were able to find a conformal
frame that allows us to compute the s2. For the state-independent parts we have

L�2s2 =
1

d � 2
�̂2
(k) +


1

(d � 2)2(d � 4)
(R̂ka)

2 +
1

2(d � 2)(d � 4)
(D̂a�̂

(k)
bc

)2
�
ẑ2 + · · · (4.33)

Here we also have a new bulk coordinate ẑ = ze� associated with the bulk PBH transfor-
mation. All we have to do now is transform back into the original frame to find s2. Since
✓̂(k) = D̂a✓̂(k) + 2R̂ka = 0, we actually have that

R̂ka = D̂a✓̂(k) � ŵa✓̂(k) � R̂ka, (4.34)

which transforms homogeneously under Weyl transformations when �(k)
ab

= 0. Thus, up to
an overall scaling factor, we have

L�2s2 =
1

d � 2
�2
(k)

+


1

(d � 2)2(d � 4)
(Da✓(k) � wa✓(k) � Rka)

2 +
1

2(d � 2)(d � 4)
(Da�

(k)
bc

)2
�
z2 + · · · ,

(4.35)

where we have dropped terms of order z2 which vanish when �(k)
ab

= 0. As predicted, these
terms are the conformally invariant contributions to (�X̄)2.
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In order to access the state-dependent part of s2 we need the terms in (4.35) to vanish.

Note that in d = 3 this always happens. In that case there is no z2 term, and �(k)
ab

= 0 always.
Though our expression is singular in d = 4, comparing to (4.25) shows that actually the term
in brackets above is essentially the same as the z2 log z term in �X̄. We already noted that
this term was conformally invariant, so this is expected. The di↵erence now is that we no
longer need ✓(k) = 0 in order to get to the QNEC in d = 4. In d = 5 the geometric conditions
for the state-independent parts of s2 to vanish are identical to those for d = 4, whereas in the
(�X̄)2 analysis we found that extra conditions were necessary. These were relics of the choice
of conformal frame. Finally, for d > 5 there will be additional state-independent terms that
we have not analyzed, but the results we have will still hold.

Conformal QNEC Now we analyze the state-dependent part of s2 at order zd�2. When
all of the state-independent parts vanish, the state-dependent part is given by the conformal
transformation of the QNEC. This is easily computed as follows:

L�2 s2
��
zd�2 =

16⇡GN

⌘dLd�1

"
2⇡hT̂ijikikj � �

 
ki

p
h

�Ŝren

�X i(y)

!
� d

2
✓(k)

 
ki

p
h

�Ŝren

�X i(y)

!#
. (4.36)

Of course, one would like to replace T̂ij with Tij and Ŝren with Sren. When d is odd this
is straightforward, as these quantities are conformally invariant. However, when d is even
there are anomalies that will contribute, leading to extra geometric terms in the conformal
QNEC [86, 126].

4.3 Connection to Quantum Focusing

The Quantum Focusing Conjecture

We start by reviewing the statement of the QFC [26, 133] before moving on to its connection
to EWN and the QNEC. Consider a codimension-two Cauchy-splitting (i.e. entangling)
surface ⌃ and a null vector field ki normal to ⌃. Denote by N the null surface generated by
ki. The generalized entropy, Sgen, associated to ⌃ is given by

Sgen = hSgravi + Sren (4.37)

where Sgrav is a state-independent local integral on ⌃ and Sren is the renormalized von
Neumann entropy of the interior (or exterior of ⌃. The terms in Sgrav are determined by
the low-energy e↵ective action of the theory in a well-known way [47]. Even though hSgravi
and Sren individually depend on the renormalization scheme, that dependence cancels out
between them so that Sgen is scheme-independent.

The generalized entropy is a functional of the entangling surface ⌃, and the QFC is a
statement about what happens when we vary the shape of ⌃ by deforming it within the
surface N . Specifically, consider a one-parameter family ⌃(�) of cuts of N generated by
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deforming the original surface using the vector field ki. Here � is the a�ne parameter along
the geodesic generated by ki and ⌃(0) ⌘ ⌃. To be more precise, let ya denote a set of intrinsic
coordinates for ⌃, let hab be the induced metric on ⌃, and let X i(y,�) be the embedding
functions for ⌃(�). With this notation, ki = @�X i. The change in the generalized entropy is
given by

dSgen

d�

����
�=0

=

Z

⌃

dd�2y
�Sgen

�X i(y)
@�X

i(y) ⌘ 1

4GN

Z

⌃

dd�2y
p
h⇥[⌃, y] (4.38)

This defines the quantum expansion ⇥[⌃, y] in terms of the functional derivative of the
generalized entropy:

⇥[⌃, y] = 4GN

ki(y)p
h

�Sgen

�X i(y)
. (4.39)

Note that we have suppressed the dependence of ⇥ on ki in the notation, but the dependence
is very simple: if ki(y) ! f(y)ki(y), then ⇥[⌃, y] ! f(y)⇥[⌃, y].

The QFC is simple to state in terms of ⇥. It says that ⇥ is non-increasing along the flow
generated by ki:

0 � d⇥

d�
=

Z

⌃

dd�2y
�⇥[⌃, y]

�X i(y0)
ki(y0). (4.40)

Before moving on, let us make two remarks about the QFC.
First, the functional derivative �⇥[⌃, y]/�X i(y0) will contain local terms (i.e. terms pro-

portional to �-functions or derivatives of �-functions with support at y = y0) as well as
non-local terms that have support even when y 6= y0. Sgrav, being a local integral, will only
contribute to the local terms of �⇥[⌃, y]/�X i(y0). The renormalized entropy Sren will con-
tribute both local and non-local terms. The non-local terms can be shown to be nonpositive
using strong subadditivity of the entropy [26], while the local terms coming from Sren are in
general extremely di�cult to compute.

Second, and more importantly for us here, the QFC as written in (4.40) does not quite
make sense. We have to remember that Sgrav is really an operator, and its expectation value
hSgravi is really the thing that contributes to ⇥. In order to be well-defined in the low-
energy e↵ective theory of gravity, this expectation value must be smeared over a scale large
compared to the cuto↵ scale of the theory. Thus when we write an inequality like (4.40), we
are implicitly smearing in y against some profile. The profile we use is arbitrary as long as it
is slowly-varying on the cuto↵ scale. This extra smearing step is necessary to avoid certain
violations of (4.40), as we will see below [133].

QNEC from QFC

In this section we will explicitly evaluate the QFC inequality, (4.40), and derive the QNEC
in curved space from it as a nongravitational limit. We consider theories with a gravitational
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action of the form

Igrav =
1

16⇡GN

Z p
g
�
R + `2�1R

2 + `2�2RijR
ij + `2�GBLGB

�
(4.41)

where LGB = R2
ijmn

� 4R2
ij
+ R2 is the Gauss-Bonnet Lagrangian. Here ` is the cuto↵

length scale of the e↵ective field theory, and the dimensionless couplings �1, �2, and �GB are
assumed to be renormalized.

The generalized entropy functional for these theories can be computed using standard
replica methods [47] and takes the form

Sgen =
A[⌃]

4GN
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4GN
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p
h


2�1R + �2

✓
RijN
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2
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◆
+ 2�GBr

�
+ Sren. (4.42)

Here A[⌃] is the area of the entangling surface, N ij is the projector onto the normal space
of ⌃, Ki is the trace of the extrinsic curvature of ⌃, and r is the intrinsic Ricci scalar of ⌃.

We can easily compute ⇥ by taking a functional derivative of (4.42), taking care to
integrate by parts so that the result is proportional to ki(y) and not derivatives of ki(y).
One finds

⇥ = ✓(k) + `2
"
2�1(✓(k)R + rkR) + �2
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(Da � wa)

2✓(k) +KiK
iabKk
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Now we must compute the �-derivative of ⇥. When we do this, the leading term comes from
the derivative of ✓(k), which by Raychaudhuri’s equation contains the terms ✓2(k) and �2

(k).
Since we are ultimately interested in deriving the QNEC as the non-gravitational limit of
the QFC, we need to set ✓(k) = �(k)

ab
= 0 so that the nongravitational limit is not dominated

by those terms. So for the rest of this section we will set ✓(k) = �(k)
ab

= 0 at the point of
evaluation (but not globally!). Then we find
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This expression is quite complicated, but it simplifies dramatically if we make use of the
equation of motion coming from (4.41) plus the action of the matter sector. Then we have
Rkk = 8⇡GTkk � Hkk where [88]

Hkk = 2�1
�
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k
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For the Gauss-Bonnet term we have used the standard decomposition of the Riemann tensor
in terms of the Weyl and Ricci tensors. Using similar methods to those in Appendix A.5,
we have also exchanged kikj⇤Rij in the R2

ij
equation of motion for surface quantities and

ambient curvatures.
After using the equation of motion we have the relatively simple formula
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The Gauss-Bonnet term agrees with the expression derived in [77]. However unlike [77] we
have not made any perturbative assumptions about the background curvature.

At first glance it seems like (4.47) does not have definite sign, even in the non-gravitational
limit, due to the geometric terms proportional to �2 and �GB. The di�culty posed by the
Gauss-Bonnet term, in particular, was first pointed out in [78]. However, this is where we
have to remember the smearing prescription mentioned in §4.3. We must integrate (4.47)
over a region of size larger than ` before testing its nonpositivity. The crucial point, used in
[133], is that we must also remember to integrate the terms ✓2(k) and �

2
(k) that we dropped

earlier over the same region. When we integrate ✓2(k) over a region of size ` centered at a point

where ✓(k) = 0, the result is ⇠`2(Da✓(k))2 + o(`2), where ⇠ & 10 is a parameter associated

with the smearing profile. A similar result holds for �(k)
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. Thus we arrive at
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Since the size of ⇠ is determined by the validity of the e↵ective field theory, by construction
the terms proportional to ⇠ in (4.48) dominate over the others. Thus in order to take the
non-gravitational limit, we must eliminate these smeared terms.

Clearly we need to be able to choose a surface such that Da✓(k) = Da�
(k)
bc

= 0. Then
smearing ✓2(k) and �

2
(k) would only produce terms of order `4 (terms of that order would also

show up from smearing the operators proportional to �2 and �GB). As explained in [133],
this is only possible given certain conditions on the background spacetime at the point of
evaluation. We must have

Ckabc =
1

d � 2
habRkc � 1

d � 2
hacRkb. (4.49)

This can be seen by using the Codazzi equation for ⌃. Imposing this condition, which allows
us to set Da✓(k) = Da�

(k)
bc

= 0, we then have.
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This is the quantity which must be negative according to the QFC. In deriving it, we had
to assume that ✓(k) = �(k) = Da✓(k) = Da�

(k)
bc

= 0.
We make two observations about (4.50). First, if we assume that Rka = 0 as an additional

assumption and take ` ! 0, then we arrive at the QNEC as long as GN > o(`3). This is the
case when ` scales with the Planck length and d  5. These conditions are similar to the
ones we found previously from EWN, and below in §4.3 we will discuss that in more detail.

The second observation has to do with the lingering possibility of a violation of the QFC
due to the terms involving the couplings. In order to have a violation, one would need the
linear combination

�2 + 2
(d � 3)(d � 4)

(d � 2)2
�GB (4.51)

to be negative. Then if one could find a situation where the first line of (4.50) dominated
over the second, there would be a violation. It would be interesting to interpret this as a
bound on the above linear combination of couplings coming from the QFC, but it is di�cult
to find a situation where the first line of (4.50) dominates. The only way for Rka to be large
compared to the cuto↵ scale is if Tka is nonzero, in which case we would have Rka ⇠ GNTka.
Then in order for the first line of (4.50) to dominate we would need

GN`
2TkaT

a

k
� Tkk. (4.52)

As an example, for a scalar field � this condition would say

GN`
2(@a�)

2 � 1. (4.53)

This is not achievable within e↵ective field theory, as it would require the field to have
super-Planckian gradients. We leave a detailed and complete discussion of this issue to
future work.
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Scheme-Independence of the QNEC

We take a brief interlude to discuss the issue of the scheme-dependence of the QNEC, which
will be important in the following section. It was shown in [77], under some slightly stronger
assumptions than the ones we have been using, that the QNEC is scheme-independent under
the same conditions where we expect it to hold true. Here we will present our own proof of
this fact, which actually follows from the manipulations we performed above involving the
QFC.

In this section we will take the point of view of field theory on curved spacetime without
dynamical gravity. Then each of the terms in Igrav, defined above in (4.41), are completely
arbitrary, non-dynamical terms we can add to the Lagrangian at will.6 Dialing the values of
those various couplings corresponds to a choice of scheme, as even though those couplings are
non-dynamical they will still contribute to the definitions of quantities like the renormalized
energy-momentum tensor and the renormalized entropy (as defined through the replica trick).
The QNEC is scheme-independent if it is insensitive to the values of these couplings.

To show the scheme-independence of the QNEC, we will begin with the statement that
Sgen is scheme-independent. We remarked on this above, when our context was a theory
with dynamical gravity. But the scheme-independence of Sgen does not require use of the
equations of motion, so it is valid even in a non-gravitational theory on a fixed background.
In fact, only once in the above discussion did we make use of the gravitational equations
of motion, and that was in deriving (4.47). Following the same steps up to that point, but
without imposing the gravitational equations of motion, we find instead
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Since the theory is not gravitational, we would not claim that this quantity has a sign.
However, it is still scheme-independent.

To proceed, we will impose all of the additional conditions that are necessary to prove
the QNEC. That is, we impose Db✓(k) = Rb

k
= Da�bc = 0, as well as ✓(k) = �(k)

ab
= 0, which

in turn requires Ckabc = 0. Under these conditions, we learn that the combination
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is scheme-independent. The second term here is one of the contributions to the renormalized
2⇡hTkki in the non-gravitational setup, the other contribution being kikj

4⇡
p
g

�Imatter
�gij

. But Imatter

6We should really be working at the level of the quantum e↵ective action, or generating functional, for
correlation functions of Tij [78]. The geometrical part has the same form as the classical action Igrav and so
does not alter this discussion.
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is already scheme-independent in the sense we are discussing, in that it is independent of
the parameters appearing in Igrav. So adding that to the terms we have above, we learn that
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is scheme-independent. This is what we wanted to show.

QFC vs EWN

As we have discussed above, by taking the non-gravitational limit of (4.50) under the as-

sumptions Db✓(k) = Rb

k
= Da�bc = ✓(k) = �(k)

ab
= 0 we find the QNEC as a consequence

of the QFC (at least for d  5). And under the same set of geometric assumptions, we
found the QNEC as a consequence of EWN in (4.20). The discussion of the previous section
demonstrates that these assumptions also guarantee that the QNEC is scheme-independent.
So even though these two QNEC inequalities were derived in di↵erent ways, we know that
at the end of the day they are the same QNEC. It is natural to ask if there is a further
relationship between EWN and the QFC, beyond the fact that they give the same QNEC.
We will begin to investigate that question in this section.

The natural thing to ask about is the state-independent terms in the QFC and in (�X̄)2.
We begin by writing down all of the terms of (�X̄)2 in odd dimensions that we have computed:
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The first line looks like �✓̇, which would be the leading term in d⇥/d�, except it is missing
an Rkk. Of course, we eventually got rid of the Rkk in the QFC by using the equations of
motion. Suppose we set ✓(k) = 0 and �(k)

ab
= 0 to eliminate those terms, as we did with the

QFC. Then we can write (�X̄)2 suggestively as
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where

G̃N = GN

2(d � 2)zd�2

⌘dLd�1
, (4.59)

�̃2 =
1

4(d � 4)
, (4.60)

�̃GB = � 

2(d � 4)
. (4.61)

Written this way, it almost seems like (d � 2)L�2(�X̄ i)2 ⇠ �d⇥/d� in some kind of model
gravitational theory. One discrepancy is in the coe�cient of the RkaRka term, unless d = 4.
It is also intriguing that the e↵ective coe�cients G̃N , �̃2, and �̃GB are close to, but not
exactly the same as, the e↵ective braneworld induced gravity coe�cients found in [148].
This is clearly something that deserves further study.

4.4 Discussion

We have displayed a strong similarity between the state-independent inequalities in the QFC
and the state-independent inequalities from EWN. We now discuss several possible future
directions and open questions that follow naturally from these results.

Bulk Entropy Contributions

We ignored the bulk entropy Sbulk in this work, but we know that it produces a contribution
to CFT entropy [71] and plays a role in the position of the extremal surface [67, 51]. The
bulk entropy contributions to the entropy are subleading in N2 and do not interfere with the
gravitational terms in the entropy. We could include the bulk entropy as a source term in the
equations determining X̄, which could lead to extra contributions to the X(n) coe�cients.
However, it does not seem possible for the bulk entropy to have an e↵ect on the state-
independent parts of the extremal surface, namely on X(n) for n < d, which means the bulk
entropy would not a↵ect the conditions we derived for when the QNEC should hold.

Another logical possibility is that the bulk entropy term could a↵ect the statement of
the QNEC itself, meaning that the schematic form Tkk � S 00 would be altered. This would
be problematic, especially given that the QFC always produces a QNEC of that same form.
It was argued in [4] that this does not happen, and that argument holds here as well.

Smearing of EWN

We were careful to include a smearing prescription for defining the QFC, and it was an
important ingredient in the analysis of §4.3. But what about smearing of EWN? Of course,
the answer is that we should smear EWN appropriately, but as we will see now it would not
make a di↵erence to our analysis.
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The issue is that the bulk theory is a low-energy e↵ective theory of gravity with a cuto↵
scale `, and the quantities that we use to probe EWN, like (�X̄)2, are operators in that
theory. As such, these operators need to be smeared over a region of proper size ` on the
extremal surface. Of course, due to the warp factor, such a region has coordinate size z`/L.
We can ask what e↵ect such a smearing would have on the inequality (�X̄)2.

When we performed our QNEC derivation, we assumed that ✓(k) = 0 at the point of
evaluation, so that the ✓2(k) term in (�X̄)2

��
z0

would not contribute. However, after smearing

this term would contribute a term of the form `2(Da✓(k))2/L2 to (�X̄)2
��
z2
. But we already

had such a term at this order, so all this does is shift the coe�cient. Furthermore, the
coe�cient is shifted only by an amount of order `2/L2. If the cuto↵ ` is of order the Planck
scale, then this is suppressed in powers of N2. In other words, this e↵ect is negligible for
the analysis. A similar statement applies for �(k)

ab
. So in summary, EWN should be smeared,

but the analysis we performed was insensitive to it.

Future Work

There are a number of topics that merit investigation in future work. We will touch on a
few of them to finish our discussion.

Relevant Deformations Perhaps the first natural extension of our work is to include rel-
evant deformations in the EWN calculation. There are a few reasons why this is interesting.
First, one would like to test the continued correspondence between the QFC and EWN when
it comes to the QNEC. The QFC arguments do not care whether relevant deformations are
turned on, so one would expect that the same is true in EWN. This is indeed the case when
the boundary theory is formulated on flat space [126], and one would expect similar results
to hold when the boundary is curved.

Another reason to add in relevant deformations is to test the status of the Conformal
QNEC when the theory is not a CFT. To be more precise, the (�X̄)2 and s2 calculations
we performed di↵ered by a Weyl transformation on the boundary, and since our boundary
theory was a CFT this was a natural thing to do. When the boundary theory is not a CFT,
what is the relationship between (�X̄)2 and s2? One possibility, perhaps the most likely one,
is that they simply reduce to the same inequality, and the Conformal QNEC no longer holds.

Finally, and more speculatively, having a relevant deformation turned on when the back-
ground is curved allows for interesting state-independent inequalities from EWN. We saw
that for a CFT the state-independent terms in both (�X̄)2 and s2 were trivially positive.
Perhaps when a relevant deformation is turned on more nontrivial results uncover them-
selves, such as the possibility of a c-theorem hiding inside of EWN. We are encouraged by
the similarity of inequalities used in recent proofs of the c-theorems to inequalities obtained
from EWN [43].
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Higher Dimensions Another pressing issue is extending our results to d = 6 and beyond.
This is an algebraically daunting task using the methods we have used for d  5. Considering
the ultimate simplicity of our final expressions, especially compared to the intermediate steps
in the calculations, it is likely that there are better ways of formulating and performing the
analyses we performed here. It is hard to imagine performing the full d = 6 analysis without
such a simplification.

Further Connections Between EWN and QFC Despite the issues outlined in §4.3,
we are still intrigued by the similarities between EWN and the QFC. It is extremely natural
to couple the boundary theory in AdS/CFT to gravity using a braneworld setup [164, 184,
87, 148]. Upon doing this, one can formulate the QFC on the braneworld. However, at the
same time near-boundary EWN becomes lost, or at least changes form: extremal surfaces
anchored to a brane will in general not be orthogonal to the brane, and in that case a null
deformation on the brane will induce a timelike deformation of the extremal surface in the
vicinity of the brane. Of course, one has to be careful to take into account the uncertainty
in the position of the brane since we are dealing with expectation values of operators, which
complicates things. We hope that such an analysis could serve to unify the QFC with EWN,
or at least illustrate their relationship with each other.

Conformal QNEC from QFC While we emphasized the apparent similarity between
the EWN-derived inequality (�X̄)2 � 0 and the QFC, the stronger EWN inequality s2 � 0 is
nowhere to be found in the QFC discussion. It would be interesting to see if there is a direct
QFC calculation that yields the Conformal QNEC (rather than first deriving the ordinary
QNEC and then performing a Weyl transformation). In particular, the Conformal QNEC
applies even in cases where ✓(k) is nonzero, while in those cases the QFC is dominated
by classical e↵ects. Perhaps there is a useful change of variables that one can do in the
semiclassical gravity when the matter sector is a CFT which makes the Conformal QNEC
manifest from the QFC point of view. This is worth exploring.
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Chapter 5

The Boundary of the Future

5.1 Theorem

In this paper, we prove the following theorem establishing necessary and su�cient conditions
for a point to be on the boundary of the future of a surface in spacetime. (An analogous
theorem holds for the past of K.)

Theorem 1 Let (M, g) be a smooth,
1
globally hyperbolic spacetime and let K be a smooth

codimension-two submanifold of M that is compact and acausal. Then a point b 2 M is on

the boundary of the future of K if and only if all of the following statements hold:

(i) b lies on a future-directed null geodesic � that intersects K orthogonally.

(ii) � has no points conjugate to K strictly before b.

(iii) � does not intersect any other null geodesic orthogonal to K strictly between K and b.

Theorem 1 enumerates the conditions under which a light ray, launched normally from
a surface, can exit the boundary of the future of that surface and enter its chronological
future. In essence, this happens only when the light ray either hits another null geodesic
launched orthogonally from the surface or when the light ray encounters a caustic, in a sense
that will be made precise in terms of special conditions on the deviation vectors for a family
of infinitesimally-separated geodesics. These two possibilities for the fate of the light ray are
illustrated in Fig. 5.1.

The theorem is useful for characterizing the causal structure induced by spatial surfaces.
In particular, if K splits a Cauchy surface into two parts, then Theorem 1 implies that the
four orthogonal null congruences fully characterize the associated split of the spacetime into
four portions: the future and past of K and the domains of dependence of each of the two
spatial sides (see Fig. 5.2). This is of particular interest when K is a holographic screen [19].

1Nowhere in the proof will more than two derivatives be needed, so the assumption of smoothness for
M and K can be relaxed everywhere in this paper to C

2.
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Figure 5.1: Possibilities for how a null geodesic orthogonal to a surface can exit the boundary
of its future. In this example, a parabolic surface K (blue line) lies in a particular spatial
slice. A future-directed null geodesic (red line) is launched orthogonally from p. At q, it
encounters a caustic, entering the interior of the future of K (red dashed line). The point
q is conjugate to K. Other null geodesics orthogonal to K (black lines) encounter nonlocal
intersections with other such geodesics along the green line, where they exit the boundary
of the future of K.

Then some of the orthogonal congruences form light sheets [17] such that the entropy of
matter on a light sheet is bounded by the area of K. This relation makes precise the notion
that the universe is like a “hologram” [108, 180, 75] and should be described as such in a
quantum gravity theory. Such holographic theories have indeed been identified for a special
class of spacetimes [140].

Specifically, Theorem 1 plays a role in the recent proof of a novel area theorem for
holographic screens [23, 25], where it was assumed without proof. It also enters the analogous
derivation of a related Generalized Second Law in cosmology [21] from the Quantum Focusing
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Conjecture [28].
Although our motivation lies in applications to General Relativity and quantum gravity,

we stress that the theorem itself is purely a statement about Lorentzian geometry. It does
not assume Einstein’s equations and so in particular does not assume any conditions on the
stress tensor of matter.
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Figure 5.2: In this generic Penrose diagram, the codimension-two surface K (black dot)
splits a Cauchy surface ⌃ (dashed line) into two parts ⌃in, ⌃out. This induces a splitting of
the spacetime M into four parts: the past and future of K (red, yellow) and the domains of
dependence of ⌃in and ⌃out (green, blue) [25]. Theorem 1 guarantees that this splitting is
fully characterized by the four orthogonal null congruences originating on K (black diagonal
lines).

Related Work. Parts of the “only if” direction of the theorem are a standard textbook
result [186], except for (iii), which we easily establish. The “if” direction is nontrivial and
takes up the bulk of our proof.
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Ref. [13] considers the cut locus, i.e., the set of all cut points associated with geodesics
starting at some point p 2 M . Given a geodesic � originating at p, a future null cut point,
in particular, can be defined in terms of the Lorentzian distance function or equivalently as
the final point on � that is in the boundary of the future of p. As shown in Theorem 5.3
of Ref. [13], if q is the future null cut point on � of p, then either q corresponds to the
first future conjugate point of p along �, or another null geodesic from p intersects � at
q, or both. Our theorem can be viewed as an analogous result for geodesics orthogonal to
codimension-two surfaces and a generalization of our theorem implies the result of Ref. [13]
as a special case. The codimension-two surfaces treated by our theorem are of significant
physical interest due to the important role of holographic screens in the study of quantum
gravity (see, e.g., Ref. [65] for very recent results on the coarse-grained black hole entropy).
We encountered nontrivial di↵erences in proving the theorem for surfaces. Moreover our
condition (ii) places stronger constraints on the associated deviation vector, as we discuss
in Sec. 5.2.2

The previously known parts of the “only if” direction of Theorem 1 were originally
established in the context of proving singularity theorems [161, 98]. It would be interesting
to see whether Theorem 1 can be used to derive new or stronger results on the formation or
the cosmic censorship of spacetime singularities.

Generalizations. As we are only concerned with the causal structure, the metric can be
freely conformally rescaled. Thus, a version of Theorem 1 still holds for noncompact K, as
long as it is compact in the conformal completion of the spacetime, i.e., in a Penrose diagram.
A situation in which this may be of interest is for surfaces anchored to the boundary of anti-de
Sitter space.

Furthermore, the theorem can be generalized to surfaces of codimension other than two,
but in that case we can say less about the type of conjugate point that orthogonal null
geodesics may encounter. We will discuss this further in Sec. 5.3.

Notation. Throughout, we use standard notation for causal structure. A causal curve
is one for which the tangent vector is always timelike or null. The causal (respectively,
chronological) future of a set S in our spacetime M , denoted by J+(S) (respectively, I+(S))
is the set of all q 2 M such that there exists p 2 S for which there is a future-directed causal
(respectively, timelike) curve in M from p to q. For the past (I�(S), J�(S), etc.), similar
definitions apply. We will denote the boundary of a set S by Ṡ. Standard results [186]
include that I±(S) is open and that J̇±(S) = İ±(S). We will call a set S acausal if there do
not exist distinct p, q 2 S for which there is a causal path in M from p to q. A spacetime
is said to be globally hyperbolic if it contains no closed causal curves and if J+(p) \ J�(q) is

2After this paper first appeared, we were made aware of Refs. [130, 123], which also generalize the results
of Ref. [13] to codimension-two surfaces. Our work goes further in that we more strongly constrain the type
of conjugacy to be that of Def. 17. This is crucial for making contact with the notion of points “conjugate
to a surface” used in the physics literature, e.g., in Ref. [186].
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compact for all p, q 2 M . Equivalently [83], M has the topology of ⌃ ⇥ R for some Cauchy

surface ⌃; that is, ⌃ is a surface for which, for all p 2 M , every inextendible timelike curve
through p intersects ⌃ exactly once.

Outline. In Sec. 5.2, we review the notion of a conjugate point and establish some useful
lemmas. In Sec. 5.3, we prove Theorem 1.

5.2 Conjugate Points to a Surface

Exponential Map

Let (M, g) be a smooth, globally hyperbolic spacetime of dimension n > 2. Thus, M is a
manifold with metric g of signature (�,+, . . . ,+). (As already noted, we will be concerned
only with the causal structure of M , so g need only be known up to conformal transforma-
tions.)

For p 2 M , let TpM be the tangent vector space at p and let TM ⌘
S

p2M
{p} ⇥ TpM be

the tangent bundle of M . TM has a natural topology that makes it a manifold of dimension
2n. In the open subsets associated with charts of M , TM is di↵eomorphic to open subsets
of R2n, corresponding to n coordinates for the location of p 2 M and n components of a
tangent vector v 2 TpM . The tangent space of TM at (p, v) is

Tp,vTM = TpM ⇥ TvTpM. (5.1)

For every (p, v) 2 TM , there is a unique inextendible geodesic,

cp,v : (a, b) ! M, s 7! cp,v(s), (5.2)

where a, b 2 R [ {�1,1}, with a�ne parameter s and tangent vector v 2 TpM given by
the pushforward of d/ds by cp,v at the point p = cp,v(0) 2 M . It is convenient to include the
degenerate curves obtained with v = 0.

Definition 2 The exponential map is defined by:
3

exp : TM ! M, (p, v) 7! cp,v(1). (5.3)

Restrictions of exp to submanifolds of TM are frequently of interest. To study the
congruence of geodesics emanating from a given point, one may restrict to exp

p
: TpM !

M , v 7! cp,v(1). Moreover, one can define the di↵erential of exp
p
, exp

p⇤
: TvTpM !

Tcp,v(1)M , which describes how exp
p
v varies due to small changes in v. See Fig. 5.3 for

an illustration of the exponential map and its di↵erential. In this paper, we will consider a
di↵erent restriction suited to the study of the geodesics orthogonal to a given spatial surface;
we will define the di↵erential in more detail for this restriction below.

3If the spacetime is not geodesically complete, the exponential map can only be defined on the subset of
TM consisting of the (p, v) such that cp,v can be extended to � = 1. This restriction will be left implicit in
this paper.
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expp⇤ w

Figure 5.3: An illustration of the exponential map exp, which takes a vector in TM to a
point in M , and the Jacobian of the exponential map, which takes a vector in the tangent
space TTM of TM to a vector in TM .

Let K ⇢ M be a smooth submanifold. We consider the normal bundle

NK ⌘
[

p2K

{p} ⇥ TpK
?,

where TpK? is the two-dimensional tangent vector space perpendicular to K at p. The
normal bundle has the structure of an n-dimensional manifold. Its tangent space at (p, v) 2
NK is

Tp,vNK = TpK ⇥ TvTpK
?. (5.4)

Here, TpK is the tangent space of p in the manifold K; that is, TpK is the subspace of TpM
normal to TpK?. Note that TpK is of the same dimension as K.

Definition 3 The surface-orthogonal exponential map

exp
K

: NK ! M , (p, v) 7! cp,v(1) (5.5)

is the restriction of exp to NK.
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Definition 4 The Jacobian or di↵erential of the exponential map is given by

exp
K⇤

: Tp,vNK ! TM , w 7! exp
K⇤

w. (5.6)

It is a linear map between vectors that captures the response of exp
K

to small variations

in its argument. It is defined by requiring that (exp
K⇤

w)(f) = w(f � exp
K
) for any func-

tion f : M ! R. Note exp
K⇤

w is the pushforward of w by exp
K
. If x↵

are coordinates

in an open neighborhood of (p, v) 2 NK and y� are coordinates in an open neighborhood

of exp
K
(p, v) 2 M and we write the vectors in coordinate form, w =

P
w↵(@/@x↵) and

exp
K⇤

w =
P

ŵ�(@/@y�), then the components are related by the Jacobian matrix,

ŵ� =
X

↵

@y�

@x↵
w↵. (5.7)

See Fig. 5.4 for an illustration of exp
K
, exp

K⇤
, and the various tangent spaces used in this

paper.

Definition 5 A Jacobian is an isomorphism if it is invertible, i.e., if it has no eigenvectors

with eigenvalue zero.

Since (M, g) and K are smooth, exp
K

is smooth. The inverse function theorem [169] thus
implies the following.

Lemma 6 If the Jacobian exp
K⇤

at (p, v) 2 NK is an isomorphism, then exp
K

is a di↵eo-

morphism of an open neighborhood of (p, v) onto an open neighborhood of exp
K
(p, v) 2 M .

Definition 7 The exponential map exp
K

is called singular at (p, v) 2 NK if exp
K⇤

is not

an isomorphism. Then (p, v) is called a conjugate point in NK.

Jacobi Fields

It is instructive to relate the above definition of conjugate point to an equivalent definition
in terms of Jacobi fields.

Definition 8 Let Q be an open set in R2
and let f : Q ! M, (r, s) 7! f(r, s) be a smooth

map. If the curves of constant r and varying s, �r : Q ! M, s 7! f(r, s), are geodesics in

M , then f is called a one-parameter family (or congruence) of geodesics.

Definition 9 Let @s denote the partial derivative with respect to s. It follows from the above

definition that the pushforward S ⌘ f⇤(@s) 2 TM is tangent to any geodesic �r. Similarly,

R ⌘ f⇤(@r) 2 TM is tangent to any curve µs : Q ! M, r 7! f(r, s) at fixed s. For general

families of curves, R represents the deviation vector field of the congruence. In the special

case of a geodesic congruence, R restricted to any �r is called a Jacobi field on �r.
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M

Kp

cp,v(1)

v

TpK
?

TvTpK
?

expK⇤

expK

expK⇤ w

Tcp,v(1)M

w2

⇥⇥ TpM

Tp,vNK

w1

TpK

Figure 5.4: An illustration of the surface-orthogonal exponential map exp
K

evaluated at
p 2 K, which takes a vector in TpK? to a point cp,v(1) in M . Here, as in text, the tangent
space at p, TpM , is broken up as a product TpK? ⇥ TpK. Also shown is the Jacobian exp

K⇤

at v 2 TpK?, which takes a vector w = (w1, w2) 2 Tp,vNK = TpK ⇥ TvTpK? to a vector in
Tcp,v(1)M .

Remark 10 The Jacobi field R satisfies the geodesic deviation equation on Q,

D2
S
R = R(S,R)S, (5.8)

where R(A,B) ⌘ [DA, DB] � D[A,B] is the curvature tensor [107, 186] and DV = V µrµ is

the covariant derivative, defined with respect to the Levi-Civita connection, along a vector V .

The exponential map can be used to generate a one-parameter family of geodesics and its
derivative exp

⇤
generates the associated Jacobi fields. We first recall the more familiar case

of geodesics through a point p, generated by exp
p
, as follows.
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Remark 11 Let R̂, Ŝ 2 TpM and let R̃ and S̃ be the naturally associated constant vector

fields in TTpM .
4

Then f(r, s) = exp
p
[s(Ŝ + rR̂)] is smooth and defines a one-parameter

family of geodesics. Its tangent vector field is S = exp
p⇤

��
s(Ŝ+rR̂)

(S̃ + rR̃) and its deviation

or Jacobi field is R = exp
p⇤

��
s(Ŝ+rR̂)

sR̃.
5

It is clear from this construction that exp
p
is

singular (i.e., exp
p⇤

fails to be an isomorphism) at s(Ŝ + rR̂) if and only if there exists a

nontrivial Jacobi field of the geodesic �r that vanishes at f(r, s) and f(r, 0). This establishes
the equivalence of two common definitions of conjugacy to a point p.

Remark 12 A conjugate point in a geodesic congruence with tangent vector kµ
corresponds

to a caustic, which is a point at which the expansion ✓ = rµkµ
goes to �1.

We turn to the case relevant to this paper: a one-parameter family of geodesics orthogonal
to a smooth, compact, acausal, codimension-two submanifold K. (For example, K could
be a topological sphere at an instant of time.) Subject to this restriction, the map f and
vector fields R and S are defined as before, with TpM replaced by TpK?. One can choose the
parameters (r, s) such that f(r, 0) 2 K and f(0, 0) = p. The map ⌫ : r 7! (f(r, 0), S|(r,0)) is
a smooth curve in NK with tangent vector R̄ 2 TNK. From this curve, the one-parameter
family can be recovered as

f(r, s) = exp
f(r,0) sS|(r,0) = exp

K
(f(r, 0), sS|(r,0)). (5.9)

Remark 13 We will be interested in the Jacobi field R ⌘ f⇤@r only along one geodesic, say

� at r = 0. By Eq. (5.8) this depends only on the initial data S and R̄ at p. Thus R|(0,s)
will be the same for any curve ⌫ with tangent vector R̄ at (p, S|(0,0)) 2 NK. Conversely,

one can extend any given R̄ at (p, S|(0,0)) 2 NK to a (non-unique) one-parameter family of

geodesics by picking such a curve ⌫. We now take advantage of this freedom in order to find

an explicit expression for the Jacobi field in terms of exp
K⇤

.

By Eq. (5.4), one can uniquely decompose R̄ = (Ř, R̃), with Ř 2 TpK and R̃ 2 TSTpK?.
Let ⇡ be the defining projection of the fiber bundle, ⇡ : NK ! K. Then µ ⌘ ⇡(⌫) is a curve
on K with tangent vector Ř at p. Let f(r, 0) = µ(r).

Further, let S|(r,0) 2 Tf(r,0)K? be defined by K-normal parallel transport6 of the vector

S|(0,0)+rR̂ 2 TpK? along µ from p to µ(r). Here R̂ 2 TpK? is the vector naturally associated
with R̃ 2 TSTpK?. Similarly, we define S̃ 2 TSTpK? to be the vector naturally associated
with S|(0,0) .

4Concretely, one can first choose a neighborhood U of p di↵eomorphic to Rn, which exists since M is a
manifold, and then choose a map � : U ! TpM such that the pushforward �⇤ is the identity map from TpM

to TvTpM for some v; then R̃ and S̃ can be defined as R̃ = �⇤R̂ and S̃ = �⇤Ŝ for v = R̂ or Ŝ, respectively.
5The subscript is the point where the Jacobian map is evaluated. The vector the Jacobian acts on

appears to its right.
6Given a vector v 2 TpK

?, normal parallel transport defines a vector field v(r) along µ normal to K

such that the normal component of its covariant derivative along µ vanishes, D
?
r v(r) = 0. Given µ(r) and

the initial vector in TpK
?, v(r) is unique by Lemma 4.40 of Ref. [156].
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Lemma 14 With the above choices and definitions, Eq. (5.9) yields a suitable one-parameter

family of geodesics. The corresponding Jacobi field and tangent vector along � can be written

as:

R|(0,s) ⌘ f⇤@r|(0,s) = exp
K⇤

|(p,sS|(0,0)) (Ř, sR̃) (5.10)

and

S|(0,s) ⌘ f⇤@s|(0,s) = exp
K⇤

|(p,sS|(0,0)) (0, S̃), (5.11)

respectively.

See App. A.7 for a proof of Lemma 14 via a direct calculation.
We note that Ř and R̃ encode the initial value and derivative, respectively, of R, in

accordance with the initial value problem set up in Remark 13. From Eq. (5.10), we obtain
a criterion for conjugacy equivalent to that of Def. 7:

Remark 15 In the above notation, the map exp
K

is singular at (p, sS|(0,0)) 2 NK if and

only if the geodesic � possesses a nontrivial Jacobi field that vanishes at exp
K
(p, sS|(0,0)) and

is tangent to K at p.

Specifically, our interest lies in null geodesics orthogonal to K. We now show that their
conjugate points satisfy an additional criterion on the associated eigenvector of exp

K⇤
.

Lemma 16 Let � be a geodesic orthogonal to K at p, with conjugate point (p, sS|(0,0)) 2 NK.

By Def. 7 there exists a nonzero vector R̄ 2 Tp,sS|(0,0)
NK such that exp

K⇤
|(p,sS|(0,0)) R̄ = 0. If

� is null, i.e., if kS|(0,0)k = 0, then the projection of R̄ onto TpK is nonvanishing: Ř 6= 0.

By Eqs. (5.10) and (5.11), the Jacobi field R|(0,s) is orthogonal to � at two points: at p (by
construction) and (trivially) at the assumed conjugate point. By Lemma 8.7 of Ref. [156],
this implies that R(0,s) ? S|(0,s) for all s. Again using Eqs. (5.10) and (5.11), along with
linearity of exp

K⇤
, this implies that R̃ ? S̃ and thus exp

K⇤
|(p,sS|(0,0))(0, sR̃) ? S.

Prior to the conjugate point, the map exp
K⇤

is a linear isomorphism; hence it maps
the (1+1)-dimensional subspace TSTpK? 3 R̃ of Tp,SNK into a (1+1)-dimensional sub-
space exp

K⇤
TSTpK? of Tf(0,1)M . This subspace contains both the null tangent vector S|(0,s)

and the component exp
K⇤

|(p,sS|(0,0))(0, sR̃) of the Jacobi field R, which is itself a Jacobi
field since our choice of initial data R̄ was arbitrary. In a (1+1)-dimensional space, the
only vectors orthogonal to a null vector S are proportional to S. The general solution to
Eq. (5.8) for a Jacobi field proportional to the tangent vector S is (↵ + �s)S|(0,s). There-
fore exp

K⇤
|(p,sS|(0,0))(0, sR̃) must have this form for some real constants ↵, �. At s = 0,

exp
K⇤

|(p,sS|(0,0))(0, sR̃) vanishes trivially, so ↵ = 0.

Now, suppose Ř = 0, so R|(0,s) is just �sS|(0,s). Since our Jacobi field is nontrivial and
S does not vanish, we must have � 6= 0. Thus, R|(s,0) vanishes only at p and hence cannot
vanish at exp

K
(p, sS|(0,0)). This contradiction implies that Ř 6= 0.

We now define a refinement of the notion of a conjugate point.
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Definition 17 Let �(s) be a geodesic orthogonal to K at p, with �(0) = p and with conjugate

point (p, v). Then there exists a nontrivial Jacobi field R(s) 2 TM that vanishes at q =
exp

K
(p, v) and is tangent to K at p. We say that q is conjugate to (the surface) K if R is

nonvanishing at p.

Remark 18 By Lemma 16, Ř 6= 0, so the Jacobi field associated with R̄ as defined in

Eq. (5.10) does not vanish at p and hence, if (p, sS|(0,0)) 2 NK is a conjugate point, then

the point exp
K
(p, sS|(0,0)) is conjugate to K for � null.

Moreover, we can similarly define the notion of a point conjugate to another point.

Definition 19 Given a nontrivial Jacobi field R for a segment � of a geodesic such that R
vanishes at p and q, we say that q is conjugate to (the point) p.

See Fig. 5.5 for an illustration of the two types of conjugate points defined in Defs. 17
and 19.
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Figure 5.5: The two types of conjugate points defined in Defs. 17 and 19. The point q1 is
conjugate to the point p1, with the Jacobi field illustrated by the red arrows. The point q2
is conjugate to the surface K (blue line), at the point p2, with the Jacobi field illustrated
by the green arrows. Geodesics orthogonal to K are shown in black. If a general conjugate
point lies along an orthogonal null geodesic, then by Lemma 16 there exists a Jacobi field
such that the conjugate point is of the surface type. Hence, this type of conjugacy appears
in Theorem 1.



CHAPTER 5. THE BOUNDARY OF THE FUTURE 86

5.3 Proof of the Theorem

We now prove Theorem 1. For the “only if” direction, we may assume that b 2 İ+(K).
Then conclusions (i), (ii) are already established explicitly elsewhere in the literature (e.g.,
Theorem 9.3.11 of Ref. [186] and Theorem 7.27 of Ref. [159]; see also Lemma VII of Ref. [161],
as well as Ref. [98]).

Conclusion (iii) follows by contradiction: let �0 be a distinct null geodesic orthogonal to
K that intersects � at some point q strictly between b and K. By acausality of K, �0 \ K
is a single point, p0, which is distinct from q. Hence, K can be connected to b by a causal
curve that is not an unbroken null geodesic, namely, by following �0 from p0 to q and � from
q to b. By Proposition 4.5.10 in Ref. [99], this implies that some r 2 K can be joined to b
by a timelike curve, in contradiction with b 2 İ+(K). Hence, no such �0 can exist.

The “if” direction of the theorem states that if (i), (ii), (iii) hold, then b 2 İ+(K). We
will prove the following equivalent statement: If b /2 İ+(K) satisfies (i), then b will fail to
satisfy (ii) or (iii).

Let the geodesic �(s) guaranteed by (i) be parametrized so that �(0) = p ⌘ � \ K and
�(1) = b. By (i), b 2 J+(K), the causal future of K. By assumption, b /2 İ+(K) = J̇+(K),
so it follows that b 2 I+(K), the chronological future of K. Since p 2 İ+(K), there exists
an s⇤ between 0 and 1 where � leaves the boundary of the future:

s⇤ ⌘ sup ��1(�([0, 1]) \ İ+(K)). (5.12)

The point where � leaves İ+(K), q ⌘ �(s⇤), lies in İ+(K).7 Thus s⇤ < 1. Moreover, s⇤ > 0
by the obvious generalization of Proposition 4.5.1 in Ref. [99] and achronality of K. We
conclude that

p 2 İ�(q) \ K, q 6= b, and q 6= p. (5.13)

Recall that q = �(s⇤) is the future-most point on � that is not in I+(K). Let sn be a
strictly decreasing sequence of real numbers that converges to s⇤. That is, sn > s⇤ and, for
n su�ciently large, the points qn ⌘ �(sn) exist and lie in I+(K). Now, since K is acausal
and M is globally hyperbolic, there exists a Cauchy surface ⌃ � K. Given p1, p2 2 M ,
define C(p1, p2) to be the set of all causal curves from p1 to p2. Since by Corollary 6.6
of Ref. [159] C(⌃, qn) is compact, it is closed and bounded. Thus, C(K, qn) ⇢ C(⌃, qn) is
bounded. Consider a sequence of curves µm from K to qn. By Lemma 6.2.1 of Ref. [99], the
limit curve µ of {µm} is causal; since K is compact and thus contains its limit points, µ runs
from K to qn, so µ 2 C(K, qn). Hence, C(K, qn) is closed and therefore compact. Since the
proper time is an upper semicontinuous function on C(⌃, qn), it attains its maximum over
a compact domain, so we conclude in analogy with Theorem 9.4.5 of Ref. [186] that there
exists a timelike geodesic �n that maximizes the proper time from K to qn. By Theorem 9.4.3
of Ref. [186], �n is orthogonal to K.

7This follows because İ
+(K) is closed and hence its intersection with a closed segment of � is closed.

Therefore, the argument of the supremum is a closed interval and the supremum is its upper endpoint.
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By construction, the point q is a convergence point (and hence a limit point) of the
sequence {�n}. By the time-reverse of Lemma 6.2.1 of Ref. [99], there exists, through q,
a causal limit curve �0 of the sequence {�n}. This curve must intersect K because all �n
intersect K and K is compact. Since �0 passes through q 2 İ+(K), it must not be smoothly
deformable to a timelike curve since I+(K) is open. Thus, by Theorem 9.3.10 of Ref. [186],
�0 must be a null geodesic orthogonal to K, so if �0 6= �, condition (iii) fails to hold. See
Fig. 5.6 for an illustration.

The only alternative is that � is the only limit curve of the sequence {�n}. In this case,
{�n} contains a subsequence whose convergence curve is �. From now on, let {�n} denote
this subsequence. Orthogonality to K of the �n implies that we can write

qn = exp
K
(pn, vn), (5.14)

where pn = �n \ K, for some vector vn 2 TpnK
? tangent to �n. But since qn 2 �, we can

also write
qn = exp

K
(p, kn), (5.15)

where kn is tangent to �. Thus, every qn has a non-unique pre-image.
By the above construction, the sequences {(p, kn)} and {(pn, vn)} in NK each have (p, v)

as their limit point, where q = exp
K
(p, v). Hence there exists no open neighborhood O of

(p, v) such that exp
K
is a di↵eomorphism of O onto an open neighborhood of q. By Lemma 6,

it follows that exp
K

is singular at (p, v), i.e., (p, v) is a conjugate point. By Lemma 16 and
Remark 18, q is conjugate to K. Thus, condition (ii) fails to hold; again, see Fig. 5.6.
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Figure 5.6: Possibilities in the proof. The sequence of timelike geodesics �n (black) connects
K with a sequence of points qn 2 I+(K) on the orthogonal null geodesic � (red) that joins
p 2 K with q, after which � leaves İ+(K) (red dashed). In the case on the left, �0 (green)
is distinct from �, so condition (iii) fails. In the case on the right, �0 = �, which we prove
corresponds to a failure of condition (ii).

Remark 20 The fact that K had codimension two was only important in the last step in

the proof of Theorem 1, i.e., going from knowing that (p, v) is a conjugate point to showing

that q is conjugate to the surface K. For K a compact, acausal submanifold that is not of

codimension two, the steps in the proof of Theorem 1 still establish that (p, v) is a conjugate

point in the sense of Def. 7. Moreover, that the corresponding Jacobi field is orthogonal to

S remains true without the codimension-two assumption (see the proof of Lemma 16) and

the one-parameter family of geodesics is orthogonal to K (because it was defined via normal

parallel transport). As a result, the Jacobi field defines a deviation of � in terms of only

orthogonal null geodesics (as proven in, e.g., Corollary 10.40 of Ref. [156]), but in general

that will not mean that q is conjugate to the surface K in the sense of Def. 17. Specifically,

the Jacobi field is not necessarily nonvanishing at K if K has codimension greater than two.
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Chapter 6

Holographic Renyi Entropy from
Quantum Error Correction

6.1 Introduction

While the quantum error-correction interpretation of AdS/CFT was discovered by trying to
resolve certain paradoxes [9], it has exceeded its original purpose. Among other things, it
has led to proofs of entanglement wedge reconstruction [50, 45] and a better understanding
of the black hole interior [100, 8].

One remarkable result was an appreciation of the Ryu-Takayanagi (RT) formula [171,
170, 111] as a property of the code [90]. The RT formula computes the von Neumann
entropy S(⇢A) ⌘ � tr ⇢A log ⇢A of a subregion A of a holographic CFT via the area A of an
extremal surface in the AdS dual:

S(⇢) =
A

4GN

+ Sbulk (6.1)

where Sbulk is the entropy of the matter in the bulk subregion dual to A [71]. While the
area term is in general O(1/GN), Sbulk is in general O(1) and is the quantum (or “FLM”)
correction to RT [71].

The RT formula naturally appears when one computes the von Neumann entropy of an
encoded state in a quantum error-correcting code. We demonstrate this now in the context of
the type of code we will be using throughout: an operator-algebra quantum error-correcting
(OQEC) code with complementary recovery. These appear to be the best codes to model
AdS/CFT [90], and we will explain their details in Section 6.2. For now, it su�ces to say
that we consider a finite-dimensional Hilbert space H = HA ⌦ HĀ, and a Hilbert space
Hcode ✓ H. Furthermore, these Hilbert spaces have the following decompositions

HA = �↵(HA
↵
1

⌦ HA
↵
2
) � HA3 , (6.2)

Hcode = �↵(Ha↵ ⌦ Hā↵) , (6.3)
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with dimHA
↵
1
= dimHa↵ . In these codes, a “logical” density matrix ⇢ acting on Hcode is

encoded in a “physical” density matrix acting on H. Moreover, we say that A encodes a if
there exists a unitary operation UA on HA such that

e⇢A = UA (�↵(p↵⇢↵ ⌦ �↵))U
†

A
, (6.4)

and the density matrices ⇢↵ act on HA
↵
1
and correspond to the state ⇢a↵ that we wished to

encode in e⇢A. I.e. ⇢↵ acts on HA
↵
1
in the same way that ⇢a↵ does on Ha↵ . The density

matrices �↵ act on HA
↵
2
and correspond to the extra degrees of freedom that help encode.

The von Neumann entropy is

S(e⇢A) = tr (e⇢ALA) �
X

↵

p↵ log p↵ +
X

↵

p↵S(⇢↵) (6.5)

where the “area operator” is defined as

LA ⌘ �↵S(�↵)1a↵ā↵ . (6.6)

Compare this to Eq. (6.1). The first term on the RHS of both are the expectation value of
linear operators evaluated in the state of interest. The other terms are naturally the algebraic
von Neumann entropy of the logical state [90]. This is the basic connection between RT and
quantum error-correcting codes.

In AdS/CFT, there is a natural generalization of the RT formula that we now describe.
The von Neumann entropy S(⇢) has a well-known generalization called the Renyi entropies,
Sn(⇢) ⌘ 1

1�n
log tr ⇢n. While the Renyi entropy equals the von Neumann entropy for n = 1,

it is widely believed that the Renyi entropy does not satisfy anything qualitatively similar
to the RT formula for n 6= 1 [48, 10]. However, a related quantity called the refined Renyi
entropy

eSn(⇢) ⌘ n2@n

✓
n � 1

n
Sn(⇢)

◆
(6.7)

also reduces to the von Neumann entropy for n = 1 but in fact does satisfy a generalized
version of the RT formula [48]. One computes eSn(⇢A) holographically via the so-called
“cosmic brane prescription,” which works roughly as follows. Into the state ⇢A, insert an
extremal codimension-2 cosmic brane in AdS homologous to the boundary region A, and let
this brane have tension Tn = n�1

4nGN
. The refined Renyi entropy is related to the area of this

brane:

eSn(⇢A) =
Abrane

4GN

+ eSn,bulk , (6.8)

where eSn,bulk is the refined Renyi entropy of bulk matter fields in a particular state ⇢n which
is defined naturally by an n-sheeted path integral on the boundary (for details see [52]).1

1It is important to note that ⇢n is di↵erent in general than the original bulk state dual to ⇢A. It is the
state of the matter fields prepared by a path integral on a bulk geometry with an n-sheeted boundary and
that satisfies the gravitational equations of motion everywhere. This matches our results below, in which
eSn,bulk comes predominantly from the state of the bulk fields on the saddle geometry dual to the n-sheeted
boundary state.
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We describe this prescription in detail in Section 6.4. As one might expect, the cosmic brane
prescription limits to the RT formula as n ! 1, because in that limit the tension vanishes
and the cosmic brane reduces to an extremal surface.

Because the cosmic brane prescription generalizes RT, it behooves us to investigate
whether the connection between RT and quantum error-correcting codes can be general-
ized to the cosmic brane prescription. Let us formulate this question more precisely. Does
the refined Renyi entropy of e⇢A from Eq. (6.4) satisfy some formula like

eSn(e⇢A)
?
= tr(e⇢brane,ALA) + eSn,logical , (6.9)

for some state e⇢brane,A, where eSn,logical represents the refined Renyi entropy of the logical
state? If e⇢A indeed satisfies such a formula, what determines the state e⇢brane,A, and why does
this state manifest in AdS/CFT as inserting a brane with a particular tension into e⇢A?

Our main result is to answer these questions. In short, yes: one can derive the cosmic
brane prescription within the formalism of OQEC, and we do this in Section 6.4. Notably,
this derivation requires that the AdS/CFT code has certain special properties, which we now
explain by discussing refined Renyi entropy in general OQEC codes.

For a general OQEC code, the refined Renyi entropy of e⇢A from Eq. (6.4) is

eSn(e⇢A) =
X

↵

p(n)
↵
eSn(�↵) + eSn,logical , (6.10)

where

p(n)
↵

= tr

✓
P↵

e⇢n
A

tr(e⇢n
A
)

◆
(6.11)

and P↵ =
P

i
|↵, ii h↵, i| is a projector onto a particular value of ↵. While this equation

bears some resemblance to Eq. (6.9), they do not match in general.
Indeed, there are two aspects of the code that need to be true for Eq. (6.9) to hold. First,

it must be the case that
X

↵

p(n)
↵
eSn(�↵) = tr

⇣
e⇢(n)
A

LA

⌘
(6.12)

for some state e⇢(n)
A

in the code subspace. We show that this is true if and only if �↵ is

maximally mixed. Second, when interpreted in the context of the AdS/CFT code, e⇢(n)
A

needs to manifest as the state e⇢A with an inserted cosmic brane of exactly the right tension.
One of our primary focuses is to demonstrate that CFT states with geometric duals indeed
admit such an interpretation, as long as �↵ is maximally mixed. Formulating this argument
requires that we carefully interpret Eq. (6.4) in gravity. For example, we must understand
that each ↵-block corresponds to a particular geometry so that we can interpret some ↵-
blocks as geometries with cosmic branes. We must also understand that CFT states with
geometric duals have non-vanishing support p↵ on ↵-blocks corresponding to many di↵erent
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classical geometries. This way, e⇢(n)
A

can have its support predominantly on a di↵erent classical
geometry than e⇢A does. We provide these interpretations in Section 6.3, and we explicitly
show how they manifest as a cosmic brane prescription within quantum error-correction in
Section 6.4.

Also in Section 6.4, we emphasize the fact that a maximally-mixed �↵ for each ↵ implies
both properties needed for a code to match the cosmic brane prescription. This leads us
to conclude that �↵ is maximally-mixed in AdS/CFT. This has a number of interesting
implications, such as an improved definition of the area operator

LA = �↵ log dim(�↵)1a↵ā↵ . (6.13)

In Section 6.5, we discuss the implications of these results for tensor network models
of AdS/CFT. While tensor networks tend to nicely satisfy the RT formula [182, 158, 101],
historically they have struggled to have a non-flat spectrum of Renyi entropies. Our results
suggest that there is a natural way to construct a holographic tensor network that not only
has the correct Renyi entropy spectrum, but also computes the Renyi entropies via a method
qualitatively similar to the cosmic brane prescription.

Finally, in Section 6.6 we conclude with a discussion of implications, future directions
and related work. Note that this paper was released jointly with [49] where similar ideas are
discussed.

6.2 Operator-algebra Quantum Error Correction

We start by reviewing the framework of operator-algebra quantum error correction (OQEC)
as discussed in [90]. Consider a finite dimensional “physical” Hilbert space H = HA ⌦ HĀ

and a “logical” code subspace Hcode ✓ H.2 In the context of holography, one can think of
H as the boundary Hilbert space and Hcode as the Hilbert space of the bulk e↵ective field
theory (EFT).

Let L(Hcode) be the algebra of all operators acting on Hcode and M ✓ L(Hcode) be a
subalgebra. In particular, we require that M be a von Neumann algebra, i.e. it is closed
under addition, multiplication, hermitian conjugation and contains all scalar multiples of the
identity operator.

Any von Neumann algebra has an associated decomposition of the Hilbert space given
by

Hcode = �↵ (Ha↵ ⌦ Hā↵) , (6.14)

such that the operators in the von Neumann algebra are the set of ↵ block diagonal operators
that only act non-trivially on the Ha↵ factor within each block. Namely, they are of the form

eOM = �↵

⇣
eOa↵ ⌦ 1ā↵

⌘
, (6.15)

2More generally the physical Hilbert space need not factorize, e.g. if the boundary theory has gauge
constraints. We expect the qualitative features of our result to be unchanged in that case.



CHAPTER 6. HOLOGRAPHIC RENYI ENTROPY FROM QUANTUM ERROR
CORRECTION 93

where from now onward, we use the “tilde” to denote objects that naturally act on the
code subspace.3 The commutant of M , denoted M 0, is defined by the set of operators that
commute with all the operators in M . The operators in M 0 are then similarly of the form

eOM 0 = �↵

⇣
1a↵ ⌦ eOā↵

⌘
. (6.16)

The center ZM consists of operators that belong to both M and M 0 take the form

eOM 0 = �↵ (�↵1a↵ ⌦ 1ā↵) , (6.17)

where �↵ could in general be di↵erent for each ↵ block.
The OQEC code is then defined by requiring that for any state in the code subspace,

the operators in the von Neumann algebra M are robust against erasure of the subfactor
HĀ of the physical Hilbert space. Equivalently, we require that all the operators in M
can be represented as physical operators acting non-trivially only on HA. In addition, by
taking inspiration from AdS/CFT, we restrict to OQEC codes with complementary recovery,
i.e. where operators in M 0 are robust against erasure of A. Thus, we require that for all
| e i 2 Hcode, eOM 2 M and eOM 0 2 M 0, there exists OA 2 L(HA) and OĀ 2 L(HĀ) such that

eOM | e i = OA | e i (6.18)

eO†

M
| e i = O†

A
| e i (6.19)

eOM 0 | e i = OĀ | e i (6.20)

eO†

M 0 | e i = O†

Ā
| e i (6.21)

Let us pause for a moment to make connections with holography. Suppose A is a boundary
subregion and �(A) is the bulk codimension 2 extremal surface of minimal area anchored to
@A, i.e. the RT surface of A.[111, 189]. The entanglement wedge EW(A) is defined as the
bulk domain of dependence of any bulk spacelike surface ⌃ such that @⌃ = A [ �(A) [46,
104, 115]. Given a pure boundary state, �(A) = �(Ā) and thus, EW(A) [ EW(Ā) includes
a complete Cauchy slice in the bulk.4 Interpreting M and M 0 as the algebra of operators in
EW(A) and EW(Ā) respectively, it is clear that Eq. (6.18) is the statement of entanglement
wedge reconstruction [50, 70]. In holography, the surface �(A) is fixed irrespective of the
state of bulk quantum fields at leading order in GN . In fact even at first subleading order in
GN , one could calculate S(A) by keeping �(A) fixed and including bulk entropy corrections at
O(1) [71]. At higher orders in GN , one has to take into account the quantum extremal surface
prescription for �(A) wherein the surface can move depending on the bulk state [67, 52]. In
general there would be a “no man’s land” region in the bulk that cannot be reconstructed
state-independently by either A or Ā. Thus, the OQEC code with complementary recovery

3The only exception to this is the notation for the refined Renyi entropy eSn.
4If the boundary state is mixed, e.g. a thermal state, one could purify it, e.g. to a thermofield double

[141].
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only works as a toy model of holography when computing entanglement entropy to O(1) and
hence, all our results hold only to this order.

As shown in [90], one can equivalently find unitaries UA and UĀ such that

|]↵, i ji = UA UĀ

⇣
|↵, ii

A
↵
1
|↵, ji

Ā
↵
1
|�↵iA↵

2 Ā
↵
2

⌘
, (6.22)

where |]↵, i ji ⌘ |f↵, ii⌦|g↵, ji is a complete orthonormal basis for the code subspace. Here, the
Hilbert space HA has been decomposed as HA = �↵

�
HA

↵
1

⌦ HA
↵
2

�
�HA

↵
3
where dim(HA

↵
1
) =

dim(Ha↵). A similar decomposition has been applied to HĀ.
This allows us to write a general density matrix e⇢ in the code subspace as

e⇢ = UA UĀ

⇣
�↵ p↵ ⇢A↵

1 Ā
↵
1

⌦ |�↵i h�↵|A↵
2 Ā

↵
2

⌘
U †

Ā
U †

A
, (6.23)

where we choose the normalizations such that trAĀ(e⇢) = trA↵
1 Ā

↵
1
(⇢A↵

1 Ā
↵
1
) =

P
↵
p↵ = 1.

Restricting to subregion A, we obtain

e⇢A = UA (�↵ p↵ ⇢↵ ⌦ �↵)U
†

A
, (6.24)

where we have relaxed the notation by using ⇢↵ = trĀ↵
1

⇣
⇢A↵

1 Ā
↵
1

⌘
and �↵ = trĀ↵

2

⇣
|�↵i h�↵|A↵

2 Ā
↵
2

⌘
.

Using this it is straightforward to compute the von Neumann entropy of e⇢A and show
that it satisfies a Ryu-Takayanagi formula, i.e.

S(e⇢A) = tr(e⇢LA) + S(e⇢,M) , (6.25)

where LA is the area operator,5 an operator in the center of M defined by

LA ⌘ �↵ S(�↵)1a↵ ā↵ . (6.26)

In a gravitational theory with the Einstein-Hilbert action, the area operator is given by

LA =
A(�(A))

4GN

. (6.27)

The second term in Eq. (6.25) is the algebraic entropy defined by

S(e⇢,M) ⌘ �
X

↵

p↵ log p↵ +
X

↵

p↵S(e⇢a↵) . (6.28)

5Note that the important feature of LA is that it is localized to the RT surface �(A). For theories of
higher derivative gravity, it would naturally correspond to the Dong entropy [47]
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Figure 6.1: Decomposing a lattice gauge theory into subregions a and ā requires the in-
troduction of extra degrees of freedom (denoted as white dots) at the entangling surface
(denoted by a dashed red line).

6.3 Interpretation of OQEC

In order to understand our result in Section 6.4, it will be crucial to interpret each piece of
the state in Eq. (6.24) in holography. The unitary UA is simply a unitary operation that
“encodes” the logical state ⇢↵ by mixing it with the redundant degrees of freedom �↵. We
ignore this piece and focus directly on the bulk reduced density matrix

⇢a = �↵ p↵ ⇢↵ ⌦ �↵ , (6.29)

where one should think of the bulk subregion a as EW(A). We interpret these pieces by first
reviewing lattice gauge theory, which has a similar block decomposition and was argued in
[57] to have a similar interpretation. We then proceed by analogy for the case of gravity.

Lattice Gauge Theory

Understanding the structure of the reduced density matrix in a gauge theory requires dealing
with the novel feature that the Hilbert space doesn’t factorize across a spatial partition due
to gauge constraints [55, 40, 56, 57]. This can be easily visualized in lattice gauge theory,
where the gauge field lives on the links of the graph, whereas other fields that transform under
the gauge symmetry live on the nodes. These links are necessarily cut when partitioning
the vertices to extract the reduced density matrix for a bulk subregion a. A prescription
to compute ⇢a was given in [55, 61] and has several consistency checks backing it [59, 60].
In order to find the reduced density matrix ⇢a, the prescription is to define an extended
Hilbert space by first adding extra degrees of freedom at the entangling surface which are
not required to satisfy a gauge constraint (see Figure 6.1). These extra degrees of freedom
allow the extended Hilbert space to factorize. The physical states that satisfy the gauge
constraint form a subspace of this extended Hilbert space.
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As shown in [55, 56], the requirement that physical states commute with the action of
gauge transformations implies that the reduced density matrix must take the form

⇢a = �R p(R) ⇢(R) ⌦ 1R

dimR
, (6.30)

where the direct sum is over all the di↵erent irreducible representations of the entangling
surface symmetry group. Comparing this to Eq. (6.29), the state has a similar form with
the restriction that �↵ = 1

dim�↵
. This �↵ can be interpreted as the maximally mixed state

of the extra degrees of freedom that were added inside the entangling region.
The block-diagonal structure of Eq. (6.30) comes from the following. The representations

R determine all the local gauge invariant observables, e.g. the Casimir operator, and are
thus distinguishable within the region a. Hence, the reduced density matrix is in a classical
mixture of these superselection sectors with probability distribution p(R).

It is worth commenting here on one aspect of the connection to gravity. When the bulk
is treated semiclassically, one might interpret Eq. (6.29) as the gravitational equivalent of
Eq. (6.30) [57, 137]. Di↵eomorphisms then play the role of the gauge symmetry, and �↵

represents degrees of freedom added across the boundary to enable factorization [57].

Gravity

Armed with the previous discussion, we now interpret each piece of Eq. (6.29) in gravity,
occasionally drawing an analogy to Eq. (6.30).

↵-blocks

Recall that the ↵-blocks were defined by first choosing a von Neumann algebra M and then
finding the natural associated block decomposition of the Hilbert space. The algebraM has a
non-trivial center ZM since the gauge constraints from di↵eomorphism invariance inhibit the
low energy bulk Hilbert space from factorizing. Then, the simplest physical interpretation
of the ↵-blocks is as eigenspaces of the operators in the center ZM . In holography, these
include various gauge invariant observables localized to the RT surface, and in particular
the area operator LA from Eq. (6.26) is one such operator [57].6 Hence the states in a given
↵-block can be thought of as area eigenstates with the same value of the area operator.

Of course, we do not require infinite precision when comparing eigenvalues. Since we
compute entropies accurately up to O(1), we could rightfully consider two states to be in
the same ↵-block if they have the same eigenvalue of LA at O(1). However, in the rest of
this paper we are interested in fixing the area eigenvalue only at leading order, and therefore

6In the presence of other gauge constraints, e.g. U(1) gauge fields in the bulk, there would in general
be more center observables, e.g. the electric flux. The ↵-blocks would then be labelled by the values of all
such observables. We expect the observables related to non-gravitational constraints to leave the ↵-block
structure unchanged at leading order in GN , though this is not important for our analysis.
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when we refer to ↵-blocks, we will always mean the coarser ↵-blocks in which every state
has the same area eigenvalue at leading order.

Note that our code subspace is relatively large: we include an ↵-block for every allowed
value of A/4GN .7 Indeed, we identify the code subspace as the entire Hilbert space of bulk
EFT. This is important for our results in Section 6.4, and so we emphasize that we are
explicitly assuming this. We think it is likely to be well-grounded based on an extension
of [10]; the analysis in that paper motivates the inclusion of di↵erent classical background
geometries in the code subspace when working at O(1/GN). Once that is established, it is
easier to define a code subspace on top of each classical background. Perhaps an argument
along these lines justifies including many classically di↵erent geometries in the same code
subspace, even when working to O(1).

We are primarily interested in bulk states that are smooth geometries. In the GN ! 0
limit, smooth geometries become area eigenstates, and hence have support exclusively on
↵-blocks with one particular value of A/4GN at leading order. When GN is finite, overlap
with other blocks is best computed using the Euclidean path integral [116]. This formalism
makes it clear that two classically di↵erent geometries have e�O(1/GN ) overlap. We will go
into more depth when we discuss p↵ below.

We assume that non-perturbative corrections do not ruin the exactly block-diagonal
structure of Eq. (6.29). As we will see in Section 6.4, this su�ces to derive a prescription
resembling the AdS/CFT calculation. It is unclear whether this is well-justified, but one ar-
gument for it is the following. We work exclusively in the context of semi-classical gravity, and
semi-classical gravity states are non-perturbatively gauge invariant [116]. Gauge invariance
demands the direct sum structure exactly. I.e., non-perturbatively small o↵ block-diagonal
terms might break non-perturbative gauge invariance. Again, this argument is intended
heuristically, not as a proof. For our purposes, we simply assume that the o↵-diagonal terms
are exactly zero.

State ⇢↵

This physical understanding of ↵-blocks lends itself to an easy interpretation of ⇢↵. The
state ⇢↵ is the state of the bulk matter fields when restricted to the subspace of the bulk
Hilbert space with a definite value of A/4GN to O(1/GN). From Eq. (6.26), we see that the
definite value of A/4GN is S(�↵).

State �↵

Since the bulk EFT degrees of freedom are captured by the ⇢↵ state, the �↵ state must
correspond to the high energy, quantum gravity degrees of freedom that were integrated out
to define the semiclassical gravity EFT.

This is nicely consistent with the fact that the area operator LA measures the entropy of
these degrees of freedom. In semiclassical gravity, the generalized entropy of a subregion is

7Again with precision only to O(1).
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defined as

Sgen =
A

4GN

+ Smatter , (6.31)

where Smatter is the von Neumann entropy of the bulk matter fields. While Sgen is defined
purely in semiclassical gravity, it is widely believed that it corresponds to the von Neumann
entropy of all the degrees of freedom in the “full” quantum gravity theory. The entropy of
the quantum gravity degrees of freedom that were integrated out shows up as the area term
in Sgen. Comparing with Eq. (6.25), we see that the entropy S(e⇢A) is interpreted in exactly
this way: the part S(⇢↵) is the bulk matter entropy, and S(�↵) can be interpreted as the
area.

One can gain further insight into the degrees of freedom described by �↵ by drawing an
analogy to lattice gauge theory. By comparing Eq. (6.29) and Eq. (6.30), one sees that the
�↵ degrees of freedom seem analogous to the surface symmetry degrees of freedom, which
are in the state 1R

dimR
. This was pointed out in [57, 137], in which they argue that because

semi-classical gravity is a gauge theory, this should be understood as more than an analogy.
One should expect that the �↵ can be interpreted as playing the role of surface symmetry
degrees of freedom for the di↵eomorphism group.

This interpretation would come with an interesting implication. Because gauge invariance
imposes that surface symmetry degrees of freedom are in the singlet state, it would have to
be the case that �↵ = 1↵

dim�↵
. Confirming that �↵ is indeed in this state in the AdS/CFT

code will be one of our main results in Section 6.4.

Distribution p↵

How would we compute p↵ within the CFT? We could first prepare the state e⇢A with the
Euclidean path integral. Then, based on Eq. (6.24), project onto block ↵ – which has area
eigenvalue S(�↵) – and take the trace to isolate p↵.

The analogous procedure in the bulk first prepares a bulk density matrix with the Eu-
clidean path integral. We define the bulk density matrix as follows. Let (g�,��) and (g+,�+)
correspond to two classical metric and matter field configurations at Euclidean time ⌧ = 0.
The density matrix ⇢[g�,��; g+,�+] is a functional of these two configurations defined by
the path integral:

⇢[g�,��; g+,�+] =
1

Z

Z

g
0
,�

0
|1=J

(g�,��;g+,�+)

Dg0D�0 e�Ibulk[g0,�0] , (6.32)

where the notation (g�,��; g+,�+) is taken to enforce the following two boundary conditions,
one on the integration over Euclidean time from (�1, 0), and the other over (0,1):

⌧ 2 (�1, 0) : g(⌧ = 0) = g� , �(⌧ = 0) = �� , (6.33)

⌧ 2 (0,+1) : g(⌧ = 0) = g+ , �(⌧ = 0) = �+ . (6.34)
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The other boundary conditions on the path integral come from the AdS asymptotics: g0,�0|1,
must be consistent with boundary conditions at infinity set by the boundary sources J . With
this bulk density matrix, one then defines the reduced density matrix ⇢a by tracing out the
complement of a, which is ā ⌘ EW(Ā). This tracing is done by first identifying g� = g+
and �� = �+ in the region being traced out, then integrating over all metric and matter
configurations in that region.

To obtain p↵, we wish to project onto states in that ↵-block and then take the trace.
This is performed by tracing out a from ⇢a while including an extra boundary condition in
the path integral that the RT area operator takes on definite value S(�↵).

All of these bulk path integral computations can be lumped into one step: we compute
p↵ by performing the entire Euclidean path integral subject to the boundary condition that
the A/4GN of �(A) takes on definite value S(�↵) at O(1/GN):8

p↵ =
1

Z

Z

LA=S(�↵)
g
0
,�

0
|1=J

Dg0 D�0 e�Ibulk[g0,�0] . (6.35)

The leading order contribution to p↵ can be computed with the saddle-point approxima-
tion:

p↵ ⇡ e�Ibulk[g↵,�↵]

Z

����
g↵,�↵|1=J

. (6.36)

We have denoted the saddle-point metric and field configuration for each ↵ as g↵,�↵. We
later schematically shorten this to p↵ = e�Ibulk[↵]/Z|b.c., for boundary conditions “b.c.” Higher
order corrections can be computed from a perturbative expansion of the path integral. We
will pay special attention to the leading order piece in Section 6.4, because it will play the
most important role in connecting to the cosmic brane prescription [48] for computing the
refined Renyi entropy. Indeed, given a set of boundary conditions at infinity, we will interpret
some ↵-blocks as geometries with cosmic branes9, and we will see that computing the refined
Renyi entropy is exactly like computing the von Neumann entropy of a state with support
predominantly in one of these cosmic brane ↵-blocks.

What we have said here is so important to our main point that we emphasize it again
now. A general CFT state e⇢ has non-vanishing support on many ↵, not just the blocks that
correspond to its dominant geometric dual. This support is computable, and is schematically
p↵ = e�Ibulk[↵]/Z. Therefore, the boundary reduced density matrix e⇢A will in general be a
mixture of states on di↵erent ↵-blocks. We will use these facts when arguing that the cosmic
brane prescription for computing refined Renyi entropy [48] is derivable from within OQEC.

8The path integration must also respect the boundary conditions at infinity.
9Equivalently, we interpret them as geometries with conical deficits.
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6.4 Cosmic Brane Prescription in OQEC

Having established the framework, we now use the formalism of OQEC to compute the
refined Renyi entropy defined as

eSn(e⇢A) ⌘ n2@n

✓
n � 1

n
Sn(e⇢A)

◆
, (6.37)

where Sn(e⇢A) ⌘ 1
1�n

log tr e⇢n
A
is the Renyi entropy of subregion A. In [48, 52] it was shown

that in AdS/CFT, the refined Renyi entropy of a boundary subregion A is given by

eSn(A) =
A

4GN

+ eSn,bulk , (6.38)

where A is the area of a brane with tension Tn = n�1
4nGN

and extremal area. Here, the quantity
eSn,bulk is the refined Renyi entropy of bulk matter fields prepared by a path integral on the
bulk geometry dual to the n-sheeted boundary state. Our main result in this section will
be to derive this prescription from the formalism of quantum error correction. By doing so
we uncover an improved understanding of the high energy degrees of freedom in quantum
gravity, as well as a more refined definition of the area operator.

Quantum Error Correction calculation

The refined Renyi entropy of a general density matrix ⇢ can be shown to satisfy

eSn(⇢) = S(⇢(n)) = � tr
�
⇢(n) log ⇢(n)

�
, (6.39)

⇢(n) ⌘ ⇢n

tr(⇢n)
. (6.40)

We now use this to compute the refined Renyi entropy of a reduced density matrix in OQEC.
Consider an arbitrary state e⇢. From Eq. (6.24), we read o↵ the reduced density matrix of
subregion A as

e⇢A = UA (�↵p↵ ⇢↵ ⌦ �↵)U
†

A
. (6.41)

Plugging this into Eq. (6.40) defines the state

e⇢(n)
A

= UA

✓
�↵p

(n)
↵

⇢n
↵

tr(⇢n
↵
)

⌦ �n

↵

tr(�n
↵
)

◆
U †

A
. (6.42)

where

p(n)
↵

⌘ pn
↵
tr(�n

↵
) tr(⇢n

↵
)P

↵0 pn↵0 tr(�n

↵0) tr(⇢n↵0)
=

pn
↵
e�(n�1)Sn(�↵)�(n�1)Sn(⇢↵)

Z(n)
(6.43)
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represents a normalized probability distribution that depends on n. Using this in Eq. (6.39)
leads us to a crucial ingredient of our main result:

eSn(e⇢A) =
X

↵

p(n)
↵
eSn(�↵) �

X

↵

p(n)
↵

log p(n)
↵

+
X

↵

p(n)
↵
eSn(⇢↵) . (6.44)

It is illuminating to note the following connection to the Ryu-Takayanagi formula. In the
special case where �↵ is maximally mixed10, one can write

eSn(e⇢A) = tr e⇢(n)
A

LA �
X

↵

p(n)
↵

log p(n)
↵

+
X

↵

p(n)
↵

S
�
⇢(n)
↵

�
. (6.45)

Written this way, eSn(e⇢A) equals the expectation value of the area operator LA plus the
algebraic von Neumann entropy of the logical degrees of freedom, all evaluated in a state
e⇢(n)
A

that belongs to the code subspace.
Notably, to write Eq. (6.44) in the form Eq. (6.45) for arbitrary states e⇢A in the code

subspace, the identification
X

↵

p(n)
↵
eSn(�↵) = tr e⇢(n)

A
LA (6.46)

must hold term by term, because one could choose states with support on a single ↵-block.
This is equivalent to having eSn(�↵) = S(�↵) for all ↵-blocks, and we show in Appendix A.8
that, for this, it is both necessary and su�cient that �↵ be maximally mixed. Moreover,
a maximally mixed �↵ has another important implication. In the next subsection we shall
argue that it is a necessary and su�cient condition for the gravitational interpretation of
e⇢(n)
A

to be a geometry containing a brane with the precise n-dependent tension required to
match the cosmic brane prescription in [48].

Connection to gravity

Review of holographic refined Renyi entropy: We start by carefully reviewing the
cosmic brane prescription of [48]. One considers a CFT state e⇢ that can be prepared by the
Euclidean path integral. The bulk dual of the reduced density matrix ⇢A is given by the
Hartle-Hawking wavefunction [94], which has the saddle-point approximation

⇢A[g�,��; g+,�+] =
e�Ibulk[g,�]

Z

����
g,�|1=J

(g�,��;g+,�+)

, (6.47)

where g,� are the saddle point field configurations given the boundary conditions at Eu-
clidean time ⌧ = 0, (g�,��; g+,�+). Moreover, the AdS asymptotics g,�|1 must be consis-
tent with boundary conditions J at infinity that define the state e⇢.

10More generally it is given by a normalized projector, which can be thought of as being maximally mixed
over the subspace on which it has support.
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The cosmic brane prescription computes the refined Renyi entropy eSn(e⇢A) in two steps.
First, consider the bulk reduced density matrix

⇢brane,A[g�,��; g+,�+] =
e
�nIbulk[g,�]�(n�1) A[g]

4GN

Z

�����
g,�|1=J

(g�,��;g+,�+)

. (6.48)

The action is n times the sum of the bulk action Ibulk and the area A of a brane with tension
Tn = n�1

4nGN
anchored to the boundary of region A. We refer to this as a “brane state,”

because of its bulk interpretation as ⇢ with an inserted cosmic brane.
Second, in this brane state compute the expectation value of the area operator Â/4GN :

eSn(e⇢A) =
tr
⇣
⇢brane,AÂ

⌘

4GN

. (6.49)

This computes the refined Renyi entropy to O(1/GN). The O(1) part can be computed by
including the O(1) contribution of the area operator and adding the bulk contribution [48,
52]. However, we remind the reader that the interpretation of the bulk term in OQEC is
subtle, and we restrict our analysis to leading order in GN .

Let us forestall a possible confusion. It is often said that the refined Renyi entropy equals
the area of the extremal cosmic brane, and rightly so. Yet, the prescription above was to
evaluate the area operator in the brane state. The area operator corresponds to the area of
the tensionless extremal surface, so it’s not obvious a priori why it should also correspond
to the area of the brane with tension. In fact, in these brane states, the tensionless extremal
surface coincides with the brane. Indeed, the branes satisfy the very strong condition that
their extrinsic curvature tensor vanishes everywhere.11 (Note, in the limit n ! 1 only the
trace of the extrinsic curvature remains vanishing.)

This concludes the cosmic brane prescription for computing the refined Renyi entropy.

Branes in quantum error-correction: We now argue that this prescription is simply
Eq. (6.45) combined with three special features of gravity. This is our main result.

The first special feature is the geometric interpretation of ↵-blocks. As we discussed at
length in Section 6.3, each ↵ in e⇢A corresponds to states of definite area eigenvalue. We are
interested in CFT states with smooth geometric bulk duals. Such states have support on
many ↵-blocks, and di↵erent distributions p↵ correspond to di↵erent smooth geometries. Of
course, one does not expect all possible distributions to correspond to some smooth geometry
– after all, an equal mixture of two di↵erent classical geometries is likely not itself a smooth
geometry. The point is that certain mixtures, such as those prepared by the Euclidean path
integral, correspond to smooth geometries. This is crucial for deriving the cosmic brane
prescription in OQEC, because immediately below, we will interpret a particular distribution
p(n)↵ as defining a “brane geometry”.

11We thank Aitor Lewkowycz for helping us understand this.
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The second special feature is the type of support p↵ has on many ↵-blocks for smooth
geometries. As we described in Section 6.3, p↵ can be computed by performing the Euclidean
path integral subject to the constraint that the area takes on the appropriate value. The
leading order in GN part of p↵ is given by the saddle-point approximation, and should be
understood as a weight assigned to the classical geometry with that value of the area. Hence
we can write the p↵ of the state e⇢A as

p↵ =
e�Ibulk[↵]

Z

����
b.c.

. (6.50)

Here, the AdS asymptotics are required to match the boundary conditions (b.c.) that define
the state e⇢. With this p↵ in hand, plug Eq. (6.50) into Eq. (6.43) to obtain the distribution

over ↵-blocks of the state e⇢(n)
A

:

p(n)
↵

=
e�nIbulk[↵]�(n�1)Sn(�↵)�(n�1)Sn(⇢↵)

Z(n)

����
b.c.

. (6.51)

Note the boundary conditions are the same as those for p↵. This is remarkably similar to
Eq. (6.48), and includes the known quantum correction to the action from the matter Renyi

entropy [52]. Indeed, if it were the case that Sn(�↵) = S(�↵) for all ↵, then p(n)↵ would look
exactly like p↵ but with the action shifted by the area operator:12

Ibulk[↵] ! nIbulk[↵] + (n � 1) tr(P↵e⇢AP↵LA) . (6.52)

where P↵ =
P

i
|↵, ii h↵, i| is a projector onto the particular ↵-block we are looking at.

Compare this to the AdS/CFT calculation of refined Renyi entropy. The action defining the
brane state Eq. (6.48) is shifted in exactly this way relative to the state whose refined Renyi
entropy we’re computing, Eq. (6.47). This strongly suggests that indeed Sn(�↵) = S(�↵) for
all ↵ and n in the AdS/CFT code.

We already saw separate evidence for this. In order to write Eq. (6.44) in the form
Eq. (6.45), it is necessary that �↵ is maximally mixed. So, the same condition that allows us
to relate the refined Renyi entropy to the expectation value of the area operator in a state
e⇢(n)
A

also guarantees that e⇢(n)
A

has an interpretation as the “brane state” Eq. (6.48)!
This is strong evidence that in the AdS/CFT code, �↵ is indeed maximally mixed. We

label this the third special feature of gravity. With this conclusion, we have completed the
argument that Eq. (6.45) is the cosmic brane prescription.

It is worth pausing to emphasize where the brane came from, from the point of view of the
code. I.e., we now emphasize how one can look at the state e⇢(n)

A
and determine that it equals

e⇢A with a brane inserted into the action. The original sum over ↵ in Eq. (6.41) included
states of every possible geometry, including geometries with conical deficits. Morally, the
reweighting p↵ ! p(n)↵ enhanced the contribution from the conical deficit geometries relative

12We have dropped Sn(⇢↵) for simplicity, but its presence only increases the resemblance.
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to the others, exactly like inserting a brane. It does this via the factor e�(n�1) tr(P↵e⇢AP↵LA)

in Eq. (6.43) – where we have used our conclusion that Sn(�↵) = S(�↵) to write this in
terms of the area operator like in Eq. (6.52). That factor suppresses geometries with large
eigenvalues of the area operator in exactly the same way that inserting e�(n�1)A/4GN does
when inserted into the bulk action.

Notably, the fact that �↵ is maximally mixed has a number of interesting implications.
For instance, it gives us an improved form of the area operator. Instead of Eq. (6.26), the
AdS/CFT code’s area operator is

LA = �↵ log dim(�↵)1a↵ ā↵ , (6.53)

where dim(�↵) is the dimension of the subspace on which �↵ has support. This strengthens
the argument that �↵ corresponds to the surface symmetry degrees of freedom in lattice
gauge theory. We discuss this more in Section 6.6.

Another implication is that states restricted to a single ↵-block have flat Renyi spectra
at leading order in GN . In order for a holographic CFT state to have a non-flat spectrum,
it must have support on many ↵-blocks. In other words, the well-known n-dependence of Sn

and eSn for CFTs evidently comes entirely from the n-dependent support on ↵-blocks, given
by Eq. (6.43). This suggests an interesting fix to the notorious inability of tensor networks to
have the correct Renyi spectrum [158, 101, 163, 61]. We explore this in detail in Section 6.5.

6.5 Tensor Networks

Holographic tensor networks have modeled certain aspects of AdS/CFT remarkably well
[158, 101, 163, 61]. Yet, a common mismatch between these models and AdS/CFT has
been the flatness of the tensor networks’ Renyi spectrum. This flatness is in part a result of
the maximal entanglement of the bonds. Hence some proposals for correcting the spectrum
involve modifying the entanglement of the bonds to be less than maximal, often thermal,
to match the expected Rindler entanglement across a spatial divide in quantum field theory
[101].

It was proposed in [10] that since the code subspace can be enlarged to include very
di↵erent background geometries, one might consider a direct sum of tensor networks with
di↵erent graph structures as a natural toy model for holography. We now discuss how our
results in Section 6.4 suggest that this approach of defining a “super tensor network” (STN)
with a Hilbert space that is a direct sum of the Hilbert space of many dissimilar constituent
tensor networks resolves the Renyi spectrum mismatch.

The key ingredient is the following. Instead of considering a tensor network to be a
smooth geometry, tensor networks should be thought of as a single ↵-block! I.e., one should
think of states on a single tensor network as states with support on a single ↵-block in the
code subspace described in Section 6.2. Indeed, tensor networks are natural area eigenstates,
because the “area” equals the product of the number of bonds cut and the bond dimension,
which is independent of the state.
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Moreover, considering tensor networks to be ↵-blocks makes the maximal bond entan-
glement in tensor networks a feature for matching AdS/CFT’s Renyi spectrum, instead of a
bug. If a tensor network’s bonds are maximally entangled, the degrees of freedom defining
the area operator are maximally mixed (i.e. the state on the bonds cut by the minimal
surface is maximally mixed). In Section 6.4, we called these degrees of freedom �↵, and
indeed we found that for a given ↵, �↵ is maximally mixed. Thus, there are strong reasons
to treat tensor networks as area eigenstates (i.e. ↵-blocks) and to model smooth geometries
as coherent superpositions of tensor networks with di↵erent graph structures. The particular
sorts of superpositions that correspond to smooth geometries are discussed in Section 6.3.

In fact, tensor networks are even more constraining than a single ↵-block since they are
eigenstates of the area operator for arbitrary subregions of the boundary. In AdS/CFT, it is
not precisely clear how one would simultaneously project onto eigenstates of the area oper-
ators for di↵erent subregions. RT surfaces anchored to di↵erent subregions could cross, and
in fact in the time-dependent generalization of RT [111], generically it wouldn’t be possible
to constrain all extremal surfaces to lie on the same Cauchy slice. Since tensor networks
represent a coarse grained picture of the bulk with each tensor roughly corresponding to a
single AdS volume, it might be possible to impose all the constraints simultaneously. Since
tensor networks manage to perform this simultaneous projection, understanding them better
may lead to an improved understanding of holography. It is also interesting to note that
time evolution of tensor networks is not well understood. This potentially stems from the
fact that they model eigenstates of the area operator at a given time and thus, very quickly
evolve into states that are not geometric. It would be interesting to explore this further.

To summarise, a single tensor network with maximal bond entanglement is a good toy
model for gravitational states with definite value of the area operator. The code subspace
of AdS/CFT is nicely represented by a direct sum over these di↵erent tensor networks.

In fact, the tensor network in [61] takes precisely this form. By including additional
“link” degrees of freedom resembling lattice gauge theory, this tensor network allows for a
non-trivial area operator and a direct sum structure for the code subspace. Thus, it serves
as a concrete example of an OQEC, and reproduces all the results obtained here.

The tensor network in [163] also approximately takes this form since there is very small
overlap between di↵erent networks and thus, any given state is roughly consistent with the
direct sum structure. Our results imply that not only will the STN have a non-flat spectrum,
but computing Renyi entropies will be qualitatively similar to the AdS/CFT prescription
involving an extremal brane. One should also compare our results to those of [89]. They
obtained the correct Renyi entropies in the case of AdS3 by using the specific form of the
gravitational action. We have taken inspiration from the result of [48] and instead considered
the refined Renyi entropies, which seem to be a more natural quantity in holography.
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6.6 Discussion

Inspired by the AdS/CFT result that eSn equals the area of an extremal cosmic brane, we
showed that a similar, more general prescription holds for any operator-algebra quantum
error correcting code. This helps better our understanding of the emergent bulk in terms of
error correction.

Under plausible assumptions about the AdS/CFT error-correcting code made in Sec-
tion 6.3, this result helps us constrain the entanglement structure of the OQEC. Namely, for
the code to satisfy the cosmic brane prescription, the redundant, quantum gravity degrees
of freedom split by the entangling surface must be maximally entangled. Somehow this fact
is encoded in the gravitational path integral, because that was the only input into deriving
the brane prescription in AdS/CFT. It would be interesting to see a direct way of proving
this within gravity.

We now proceed to discuss some interesting implications of our work and some potential
future directions that would be interesting to pursue.

Edge Modes and Lattice Gauge Theory

As we reviewed in Section 6.3, the reduced density matrix in a lattice gauge theory must
take the form

⇢A = �R p(R) ⇢(R) ⌦ 1R

dimR
, (6.54)

where the direct sum is over all the di↵erent representations of the entangling surface sym-
metry group. This strongly resembles states in the OQEC formalism, namely Eq. (6.24),
given our conclusion from Section 6.4 that �↵ = 1

dim�↵
.

There have been various arguments in favour of understanding the bulk as an emergent
gauge theory [91]. The above picture then suggests that the area term in the Ryu Takayanagi
formula could be analogous to the log dimR term that arises in lattice gauge theory [137]. In
order for this story to hold true, an important restriction as we saw above was that the state
�↵ be maximally mixed. However, we arrived at this from the independent consideration of
requiring that the OQEC code satisfy the Dong prescription. Thus, this puts the emergent
gravity proposal on a stronger footing.

In order to understand how the Ryu Takayanagi formula arises more precisely, one would
have to study the representations of the surface symmetry group in the context of gravity.
The results of [57, 178] motivate that the entropy from the �↵ degrees of freedom must scale
with the area. The real test would be to obtain the correct prefactor. The results in [66, 64,
154] might help provide a statistical interpretation to understand the edge mode counting
in the case of a restricted class of codimension 2 surfaces.
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Holography in General Spacetimes

Holography beyond AdS/CFT has been quite elusive as yet. In fact, the AdS/CFT dic-
tionary at length scales shorter than lAdS hasn’t been completely understood and has been
conjectured to involve the N2 matrix degrees of freedom of the boundary theory in an im-
portant way. Various attempts at understanding holography more generally include [155,
151, 153, 152, 6, 54, 146, 147]. In each of these cases, there have been attempts to find some
form of a Ryu Takayanagi (RT) formula [173, 54, 145]. To be precise, extremal surfaces
anchored to subregions of the proposed boundary theory exist, and satisfy the expected
holographic inequalities. However, it is not clear whether the area of such extremal surfaces
really computes the entanglement entropy of some boundary theory.

As [50, 90] showed, if the RT formula is indeed computing the entropy of a boundary
subregion, it automatically implies the existence of an error correcting code with subregion
duality. Since our results have demonstrated that any such holographic duality must satisfy
Dong’s prescription for the Renyi entropy, it should be an additional feature of any of the
above proposals in order for them to be consistent.

Another interesting direction to understand sub-AdS locality, while staying within the
realm of AdS/CFT, is the T T̄ deformation [142]. The T T̄ deformation is an irrelevant
deformation to the boundary CFT that has been conjectured to be dual to AdS with a
Dirichlet boundary at finite radius. Interestingly, in [58], both the Ryu Takayanagi formula
and the Dong prescription were shown to work precisely for a very symmetric setup of the T T̄
deformation. This strongly motivates that one might in fact have a similar error correcting
code with subregion duality even without referring to a conformal boundary.

Properties of refined Renyi entropy

Entanglement entropies are known to satisfy various inequalities such as subadditivity and
strong subadditivity. Despite the fact that their linear algebra proofs are quite involved, the
holographic proofs are remarkably simple [103, 189]. The geometric dual and the minimiza-
tion involved in the RT formula easily allow one to prove these inequalities. In fact, a large
set of non-trivial inequalities satisfied by holographic states can be proven [12, 11].

Both Renyi and refined Renyi entropies are not in general subadditive, even though
certain interesting classes of states [34] have been shown to satisfy such inequalities. In
the holographic context, since the refined Renyi entropies are also obtained by following a
minimization procedure on a dual geometry, one might be led to believe that similar proofs
could be used to prove inequalities for the refined Renyi entropies. These could then be used
to constrain the class of holographic states, i.e. a holographic refined Renyi entropy cone.13

However, there are subtleties in proving such inequalities due to the back-reaction from
the cosmic brane. When considering refined Renyi entropies of two disjoint regions A and
B, one would in general have to consider di↵erent geometries for computing eSn(A), eSn(B)

13We thank Ning Bao for discussions about this.
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and eSn(A[B). It’s possible that the OQEC formalism provides a useful, alternative way to
prove such inequalities.

More generally, understanding properties of the refined Renyi entropy is interesting future
work. The refined Renyi entropies seem to be a more natural generalization of von Neumann
entropy in holography than the Renyi entropies. They can be computed by a quantity
localized to a codimension 2 surface, while the Renyi entropies in general involve a non-local
integral, even at leading order in GN . It would be interesting to find quantum information
theoretic uses for the refined Renyi entropy, perhaps stemming from Eq. (6.39). For example,
if the von Neumann entropy of ⇢ is too di�cult to compute experimentally, one could instead
compute the n-th refined Renyi entropy of �, provided ⇢ = �n/ tr(�n).

Error Correction and Holography

Our analysis involved computing a quantity within the quantum error correction framework
and comparing it with results from AdS/CFT. This helped us learn about novel aspects of
both error correcting codes and AdS/CFT. Thus, it seems like a fruitful direction to analyze
other known holographic results within the framework of error correction in order to refine
our understanding of the emergent bulk. As we have seen, many results in AdS/CFT, such
as the RT formula and the Dong prescription, are simple “kinematic” results from OQEC.
We have also seen that AdS/CFT puts constraints on the type of OQEC that relates the
boundary to the bulk. It seems plausible that there is much mileage to be gained from simply
exploiting the OQEC framework without needing to reference the dynamics of the boundary
theory.

A small caveat to keep in mind is that all our results were obtained by working with
a finite dimensional Hilbert space. Interesting e↵ects might arise from considering infinite
dimensional Hilbert spaces. For example, [10] found that the Renyi entropies are discontin-
uous around n = 1 when taking the large N limit. This is also true for the refined Renyi
entropies that we have analyzed. Some features of infinite dimensional Hilbert spaces could
be modeled by using the framework of approximate error correction [100].14 Understanding
the nuances of the large N limit is an interesting direction that we leave for future work.

14We thank Patrick Hayden for a discussion about this.



109

Appendix A

Appendix

A.1 F⇤ counterterm

In this Appendix we carry out an independent calculation of F⇤ in order to verify (2.27). As
argued in [29], F⇤ is directly related to the divergences of the massless correlator h[~�2](x)[~�2](y)i,
where [. . .] denotes a renormalized composite operator. Such divergences are removed by
adding a counter term proportional to a delta function,

1

4
h[~�2](x)[~�2](y)i+µ�✏N A(u, ✏) �d(x, y) =

1

4

✓
t0
t

◆2

h~�2(x)~�2(y)i+µ�✏N A(u, ✏) �d(x, y) = finite ,

(A.1)
where A(u, ✏) has poles in ✏, and [29]1

F⇤(u, ✏) = �1

2

✓
t

t0

◆2

A(u, ✏) . (A.2)

To leading order in large-N , there are two diagrams that contribute to A(u, ✏), see Fig.
A.1. To evaluate these diagrams we have to calculate the propagator of the auxiliary field s.
To this end, we expand the generating functional (2.14) around the saddle point s = s̄ + s0

and use cyclicity of Tr, e.g.,

Tr ln Ôs = Tr ln
⇣
Ôs̄(1 + Ô�1

s̄
s0)
⌘
= Tr ln Ôs̄ + Tr

�
Ô�1

s̄
s0
�

� 1

2
Tr
�
Ô�1

s̄
s0Ô�1

s̄
s0
�
+ . . . (A.3)

Constant terms in the expansion of the action are part of the normalization and can therefore
be suppressed. Linear terms vanish since we are expanding around the saddle point. As a
result, the expansion of the action to second order is given by,

Se↵(s
0) = �N

4

Z
ddx
p

g(x)

Z
ddy
p
g(y) s0(x)

✓
D2(x, y) +

�d(x, y)

u0

◆
s0(y) + . . . , (A.4)

1Since we are using Euclidean signature there is a di↵erence in the relative sign between F⇤ and A in
comparison to [29].
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aa

a c
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Figure A.1: Two diagrams of order N which contribute to the Green’s function h~�2(x)~�2(y)i.
Solid and dashed lines represent propagators of the scalar, ~�, and auxiliary field, s, respec-
tively. The dots represent insertions of ~�2.

where D(x, y) ⌘ hx|Ô�1
s̄ |yi denotes the full propagator of the scalar field, ~�, to leading order

in the large-N expansion.
The propagator of the auxiliary field s0 can be easily obtained by inverting the above

quadratic form. On a sphere, such an inversion can be done in closed form by noting that
this quadratic form is diagonal in the basis of spherical harmonics. We will not carry out
the full calculation since we only need the �-functions in the propagator of s0, for which a
short distance expansion and flat space approximation are su�cient. In particular,

D2(x � y) =
µ�✏

8⇡2✏
�d(x � y) + O(✏0), (A.5)

where we suppressed (finite) terms without �-functions. Substituting into (A.4), and using
(2.22), yields

hs0(x)s0(y)i = �2uµ✏

N
�d(x � y) + . . . (A.6)

As expected, (2.22) renders the e↵ective action finite to leading order in large-N . Using now
(A.5) and (A.6), the diagrams in Fig. A.1 can be readily evaluated. The final result reads

A = � 1

(4⇡)2✏

✓
t0
t

◆2 ⇣
1 � u

8⇡2✏

⌘
) F⇤(u, ✏) =

1

2(4⇡)2✏

⇣
1 � u

8⇡2✏

⌘
, (A.7)

in full agreement with (2.27) and [74].

A.2 Notation and Definitions

Basic Notation

Notation for basic bulk and boundary quantities

• Bulk indices are µ, ⌫, . . ..
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• Boundary indices are i, j, . . .. Then µ = (z, i).

• We assume a Fe↵erman–Graham form for the metric: ds2 = L
2

z2
(dz2 + ḡijdxidxj).

• The expansion for ḡij(x, z) at fixed x is

ḡij = g(0)
ij

+ z2g(2)
ij

+ z4g(4)
ij

+ · · · + zd log zg(d,log)
ij

+ zdg(d)
ij

+ · · · . (A.8)

The coe�cients g(n)
ij

for n < d and g(d,log)
ij

are determined in terms of g(0)
ij
, while g(d)

ij
is

state-dependent and contains the energy-momentum tensor of the CFT. If d is even,
then g(d,log)

ij
= 0. To avoid clutter we will often write g(0)

ij
simply as gij. Unless otherwise

indicated, i, j indices are raised and lowered by g(0)
ij
.

• We use R, Rµ⌫ , Rµ⌫⇢� to denote bulk curvature tensors, and R, Rij, Rijmn to denote
boundary curvature tensors.

Notation for extremal surface and entangling surface quantities

• Extremal surface indices are ↵, �, . . ..

• Boundary indices are a, b, . . .. Then ↵ = (z, a).

• The extremal surface is parameterized by functions X̄µ(z, ya). We choose a gauge such
that Xz = z, and expand the remaining coordinates as

X̄ i = X i

(0) + z2X i

(2) + z4X i

(4) + · · · + zd log zX i

(d,log) + zdX i

(d) + · · · . (A.9)

The coe�cients X i

(n) for n < d and X i

(d,log) are determined in terms of X i

(0) and g(0)
ij
,

while X i

(d) is state-dependent and is related to the renormalized entropy of the CFT
region.

• The extremal surface induced metric will be denoted h̄↵� and gauge-fixed so that
h̄za = 0.

• The entangling surface induced metric will be denoted hab.

• Note that we will often want to expand bulk quantities in z at fixed y instead of fixed
x. For instance, the bulk metric at fixed y is

ḡij(y, z) = ḡij(X̄(z, y), z) = ḡij(X(0)(y) + z2X(2)(y) + · · · , z)

= g(0)
ij

+ z2
⇣
g(2)
ij

+Xm

(2)@mg
(0)
ij

⌘
+ · · · (A.10)

Similar remarks apply for things like Christo↵el symbols. The prescription is to always
compute the given quantity as a function of x first, the plug in X̄(y, z) and expand in
a Taylor series.
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Intrinsic and Extrinsic Geometry

Now will introduce several geometric quantities, and their notations, which we will need.
First, we define a basis of surface tangent vectors by

ei
a
= @aX

i. (A.11)

We will also make use of the convention that ambient tensors which are not inherently defined
on the surface but are written with surface indices (a, b, etc.) are defined by contracting
with ei

a
. For instance:

g(2)
aj

= ei
a
g(2)
ij
. (A.12)

We can form the surface projector by contracting the surface indices on two copies of ei
a
:

P ij = habei
a
ej
b
= ei

a
eja. (A.13)

We introduces a surface covariant derivative Da that acts as the covariant derivative on both
surface and ambient indices. So it is compatible with both metrics:

Dahbc = 0 = Dagij. (A.14)

Note also that when acting on objects with only ambient indices, we have the relationship

DaV
ij···

pq···
= em

a
rmV

ij···

pq···
, (A.15)

where ri is the ambient covariant derivative compatible with gij.
The extrinsic curvature is computed by taking the Da derivative of a surface basis vector:

Ki

ab
= �Dae

i

b
= �@aeib + �c

ab
ei
b
� �i

ab
. (A.16)

Note the overall sign we have chosen. Here �c
ab

is the Christo↵el symbol of the metric hab,
and the lower indices on the � symbol were contracted with two basis tangent vectors to
turn them into surface indices. Note that Ki

ab
is symmetric in its lower indices. It is an

exercise to check that it is normal to the surface in its upper index:

eicK
i

ab
= 0. (A.17)

The trace of the extrinsic curvature is denoted by Ki:

Ki = habKi

ab
. (A.18)

Below we will introduce the null basis of normal vectors ki and li. Then we can define
expansion ✓(k) (✓(l)) and shear �(k)

ab
(�(l)

ab
) as the trace and traceless parts of kiKi

ab
(liKi

ab
),

respectively.
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There are a couple of important formulas involving the extrinsic curvature. First is the
Codazzi Equation, which can be computed from the commutator of covariant derivatives:

DcK
i

ab
� DbK

i

ac
= (DbDc � DcDb)e

i

a

= Ri

abc
� rd

abc
ei
d
.

(A.19)

Here Ri

abc
is the ambient curvature (appropriately contracted with surface basis vectors),

while rd
abc

is the surface curvature. We can take traces of this equation to get others. Another
useful thing to do is contract this equation with ei

d
and di↵erentiate by parts, which yields

the Gauss–Codazzi equation:

KcdiK
i

ab
� KbdiK

i

ac
= Rdabc � rdabc. (A.20)

Various traces of this equation are also useful.

Null Normals k and l

A primary object in our analysis is the bull vector ki, which is orthogonal to the entangling
surface and gives the direction of the surface deformation. It will be convenient to also
introduce the null normal li, which is defined so that liki = +1. This choice of sign is
di↵erent from the one that is usually made in these sorts of analysis, but it is necessary to
avoid a proliferation of minus signs. With this convention, the projector onto the normal
space of the surface is

N ij ⌘ gij � P ij = kilj + kjli = 2k(ilj). (A.21)

As we did with the tangent vectors ei
a
, we will introduce a shorthand notation to denote

contraction with ki or li: any tensor with k or l index means it has been contracted with ki

or li. As such we will avoid using the letters k and l as dummy indices. For instance.

Rkl ⌘ kiljRij. (A.22)

Another quantity associated with ki and li is the normal connection wa, defined through

wa ⌘ liDak
i. (A.23)

With this definition, the tangent derivative of ki can be shown to be

Dak
i = wak

i +Kk

ab
ebi, (A.24)

which is a formula that is used repeatedly in our analysis.
At certain intermediate stages of our calculations it will be convenient to define extensions

of ki and li o↵ of the entangling surface, so here we will define such an extension. Surface
deformations in both the QNEC and QFC follow geodesics generated by ki, so it makes sense
to define ki to satisfy the geodesic equation:

rkk
i = 0. (A.25)
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However, we will not define li by parallel transport along ki. It is conceptually cleaner to
maintain the orthogonality of li to the surface even as the surface is deformed along the
geodesics generated by ki. This means that li satisfies the equation

rkl
i = �waei

a
. (A.26)

These equations are enough to specify li and ki on the null surface formed by the geodesics
generated by ki. To extend ki and li o↵ of this surface, we specify that they are both
parallel-transported along li. In other words, the null surface generated by ki forms the
initial condition surface for the vector fields ki and li which satisfy the di↵erential equations

rlk
i = 0, rll

i = 0 . (A.27)

This su�ces to specify ki an li completely in a neighborhood of the original entangling
surface. Now that we have done that, we record the commutator of the two fields for future
use:

[k, l]i = rkl
i � rlk

i = �wcei
c
. (A.28)

A.3 Surface Variations

Most of the technical parts of our analysis have to do with variations of surface quantities
under the deformationX i ! X i+�X i of the surface embedding coordinates. Here �X i should
be interpreted a vector field defined on the surface. In principle it can include both normal
and tangential components, but since tangential components do not actually correspond to
physical deformations of the surface we will assume that �X i is normal. The operator �
denotes the change in a quantity under the variation. In the case where �X i = @�X i, which
is the case we are primarily interested in, � can be identified with @�. With this in mind,
we will always impose the geodesic equation on ki whenever convenient. In terms of the
notation we are introducing here, this is

�ki = ��i

kk
. (A.29)

To make contact with the main text, we will use the notation ki ⌘ �X i, and assume
that ki is null since that is ultimately the case we care about. Some of the formulas we
discuss below will not depend on the fact that ki is null, but we will not make an attempt
to distinguish them.

Ambient Quantities For ambient quantities, like curvature tensors, the variation � can be
interpreted straightforwardly as ki@i with no other qualification. Thus we can freely use, for
instance, the ambient covariant derivative rk to simplify the calculations of these quantities.
Note that � itself is not the covariant derivative. As defined, � is a coordinate dependent
operator. This may be less-than-optimal from a geometric point of view, but it has the most



APPENDIX A. APPENDIX 115

conceptually straightforward interpretation in terms of the calculus of variations. In all of
the variational formulas below, then, we will see explicit Christo↵el symbols appear. Of
course, ultimately these non-covariant terms must cancel out of physical quantities. That
they do serves as a nice check on our algebra.

Tangent Vectors The most fundamental formula is that of the variation of the tangent
vectors ei

a
⌘ @aX i. Directly from the definition, we have

�ei
a
= @ak

i = Dak
i � �i

ak
= wak

i +Kk

ab
ebi � �i

ak
. (A.30)

This formula, together with the discussion of how ambient quantities transform, can be used
together to compute the variations of many other quantities.

Intrinsic Geometry and Normal Vectors The intrinsic metric variation is easily com-
puted from the above formula as

�hab = 2Kk

ab
. (A.31)

From here we can find the variation of the tangent projector, for instance:

�P ij = �habei
a
ej
b
+ 2habe(i

a
@bk

j)

= �2Kab

k
ei
a
ej
b
+ 2habe(i

a
Dbk

j) � 2habe(i
a
�j)
bk

= 2wae(i
a
kj) � 2habe(i

a
�j)
bk
. (A.32)

Notice that the second line features a derivative of ki = �X i. In a context where we are
taking functional derivatives, such as when computing equations of motion, this term would
require integration by parts. We can write the last line covariantly as

rkP
ij = 2wae(i

a
kj). (A.33)

Earlier we saw that li satisfied the equation rkli = �waei
a
as a result of keeping li

orthogonal to the surface even as the surface is deformed. In the language of this section,
this is seen by the following manipulation:

ei
a
�li = �li@ak

i = �wa � �l

ak
. (A.34)

Again, note the derivative of ki. It is easy to confirm that represents the only nonzero
component of rkli.

The normal connection wa = liDaki makes frequent appearances in our calculations, and
we will need to know its variation. We can calculate that as follows:

�wa = �liDaki + li@a�ki � li��n

ji
ej
a
kn � li�n

ji
@ak

jkn � li�n

ji
ej
a
�kn

= rkl
iDaki +Rklak

= �wcKac +Rklak. (A.35)
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Extrinsic Curvatures The simplest extrinsic curvature variation is that of the trace of
the extrinsic curvature

�K i = �Km�i

mk
� DaD

aki � Ri

mkj
Pmj +

�
2Da(Kk

ad
) � Dd(K

k)
�
edi � 2Kab

k
Ki

ab
(A.36)

Note that the combination �K i +Kk�i

km
km is covariant, so it makes sense to write

rkK
i = �DaD

aki � Ri

mkj
Pmj +

�
2Da(Kk

ad
) � Dd(K

k)
�
edi � 2Kab

k
Ki

ab
(A.37)

This formula is noteworthy because of the first term, which features derivatives of ki = �X i.
This is important because when Ki occurs inside of an integral and we want to compute the
functional derivative then we have to first integrate by parts to move those derivatives o↵ of
ki. This issue arises when computing ⇥ as in the QFC, for instance.

We can contract the previous formulas with li and ki to produce other useful formulas.
For instance, contracting with ki leads to

�Kk = �KkabKk

ab
� Rkk, (A.38)

which is nothing but the Raychaudhuri equation.
The variation of the full extrinsic curvature Ki

ab
is quite complicated, but we will not

needed. However, its contraction with ki will be useful and so we record it here:

ki�K
i

ab
= �Kj

ab
�m

jn
kmk

n � kiDaDbk
i � Rkakb. (A.39)

A.4 z-Expansions

Bulk Metric

We are focusing on bulk theories with gravitational Lagrangians

L =
1

16⇡GN

✓
d(d � 1)

L̃2
+ R + `2�1R2 + `2�2R2

µ⌫
+ `2�GBLGB

◆
. (A.40)

where LGB = R2
µ⌫⇢�

� 4R2
µ⌫

+ R2 is the Gauss-Bonnet Lagrangian, ` is the cuto↵ length
scale of the bulk e↵ective field theory, and the couplings �1, �2, and �GB are defined to be
dimensionless. We have decided to include LGB as part of our basis of interactions rather
than R2

µ⌫⇢�
because of certain nice properties that the Gauss-Bonnet term has, but this is

not important.
We recall that the Fe↵erman–Graham form of the metric is defined by

ds2 =
1

z2
(dz2 + ḡijdx

idxj), (A.41)

where ḡij(x, z) is expanded as a series in z:

ḡij = g(0)
ij

+ z2g(2)
ij

+ z4g(4)
ij

+ · · · + zd log zg(d,log)
ij

+ zdg(d)
ij

+ · · · . (A.42)
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In principle, one would evaluate the equation of motion from the above Lagrangian using
the Fe↵erman–Graham metric form as an ansatz to compute these coe�cients. The results
of this calculation are largely in the literature, and we quote them here. To save notational
clutter, in this section we will set gij = g(0)

ij
.

The first nontrivial term in the metric expansion is independent of the higher-derivative
couplings, and in fact is completely determined by symmetry [113]:

g(2)
ij

= � 1

d � 2

✓
Rij � 1

2(d � 1)
Rgij

◆
. (A.43)

The next term is also largely determined by symmetry, except for a pair of coe�cients [113].

We are only interested in the kk-component of g(4)
ij
, and where one of the coe�cients drops

out. The result is

g(4)
kk

=
1

d � 4


CkijmC

ijm

k
+

1

8(d � 1)
r2

k
R � 1

4(d � 2)
kikj⇤Rij

� 1

2(d � 2)
RijRkikj +

d � 4

2(d � 2)2
RkiR

i

k
+

1

(d � 1)(d � 2)2
RRkk

�
, (A.44)

where Cijmn is the Weyl tensor and

 = ��GB

`2

L2

✓
1 +O

✓
`2

L2

◆◆
. (A.45)

In d = 4 we will need an expression for g(4,log)
kk

as well. One can check that this is obtainable

from g(4)
kk

by first multiplying by 4 � d and then setting d ! 4. We record the answer for
future reference:

g(4,log)
kk

= �

CkijmC

ijm

k
+

1

24
r2

k
R � 1

8
kikj⇤Rij � 1

4
RijRkikj +

1

12
RRkk

�
. (A.46)

Extremal Surface Coordinates

The extremal surface position is determined by extremizing the generalized entropy func-
tional [67, 51]:

Sgen =
1

4GN

Z p
h̄


1 + 2�1`

2R + �2`
2

✓
Rµ⌫N µ⌫ � 1

2
KµKµ

◆
+ 2�GB`

2r̄

�
+ Sbulk. (A.47)

Here we are using Ki to denote the extrinsic curvature and r̄ the intrinsic Ricci scalar of the
surface.
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The equation of motion comes from varying Sgen and is (ignoring the Sbulk term for
simplicity)

0 = Kµ


1 + 2�1`

2R + �2`
2

✓
R⇢⌫N ⇢⌫ � 1

2
K⇢K⇢

◆
+ 2�GB`

2r̄

�
+ 2�1`

2rµR

+ �2`
2
⇣
N ⇢⌫rµR⇢⌫ + 2P⇢⌫r⇢Rµ

⌫
� 2Rµ

⇢
K⇢ + 2Kµ↵�R↵� +D↵D

↵Kµ

+ K⇢Rµ�⇢⌫P⌫� + 2Kµ↵�K⌫K⌫

↵�

⌘
� 4�GB`

2r̄↵�Kµ

↵�
. (A.48)

This equation is very complicated, but since we are working in d  5 dimensions we only
need to solve perturbatively in z for X i

(2) and X i

(4)
2. Furthermore, X i

(2) is fully determined
by symmetry to be [174]

X i

(2) =
1

2(d � 2)
Da@aX

i

(0) = � 1

2(d � 2)
Ki, (A.49)

where Ki denotes the extrinsic curvature of the X i

(0) surface, but we are leaving o↵ the (0)
in our notation to save space.

The computation of X i

(4) is straightforward but tedious. We will only need to know kiX i

(4)

(where indices are being raised and lowered with g(0)
ij
), and the answer turns out to be

4(d � 4)Xk

(4) = 2Xk

(2)

⇣
P jmg(2)

jm
� 4(X(2))

2
⌘

+Kk

ab
gab(2) + 4g(2)

km
Xm

(2) + 2X(2)
j

Kj

ab
Kkab + kiDaD

aX i

(2)

+ kj(rng
(2)
jm

� 1

2
rjg

(2)
mn

)Pmn +Xn

(2)RkmnjP
jm

+ 8�ab

(k)Ckalb � 2(d � 4)�k

jm
Xj

(2)X
m

(2). (A.50)

Here  depends on �GB as in (A.45). Notice that the last term in this expression is the
only source of noncovariant-ness. One can confirm that this noncovariant piece is required
from the definition of X i

(4)—despite its index, X i

(4) does not transform like a vector under
boundary di↵eomorphisms.

We also note that the terms in Xk

(4) with covariant derivatives of g(2)
ij

can be simplified

using the extended ki and li fields described §A.2 and the Bianchi identity:

kj(rng
(2)
jm

� 1

2
rjg

(2)
mn

)Pmn = � 1

4(d � 1)
rkR +

1

d � 2
rlRkk. (A.51)

2It goes without saying that these formulas are only valid for d > 2 and d > 4, respectively.
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Finally, we record here the formula for Xk

(4,log) which is obtained from Xk

(4) by multiplying
by 4 � d and sending d ! 4:

�4Xk

(4,log) = 2Xk

(2)

⇣
P jmg(2)

jm
� 4(X(2))

2
⌘

+Kk

ab
gab(2) + 4g(2)

km
Xm

(2) + 2X(2)
j

Kj

ab
Kkab + kiDaD

aX i

(2)

+ kj(rng
(2)
jm

� 1

2
rjg

(2)
mn

)Pmn +Xn

(2)RkmnjP
jm

+ 8�ab

(k)Ckalb. (A.52)

We will not bother unpacking all of the definitions, but the main things to notice is that the
noncovariant part disappears.

A.5 Details of the EWN Calculations

In this section we provide some insight into the algebra necessary to complete the calculations
of the main text, primarily regarding the calculation of the subleading part of (�X̄)2 in §4.2.
The task is to simplify (4.16),

L�2(�X̄)2
��
z2

= 2ki�X
i

(4) + 2g(2)
ij
ki�Xj

(2) + gij�X
i

(2)�X
j

(2) + g(4)
ij
kikj +Xm

(4)@mgijk
ikj

+ 2Xm

(2)@mgijk
i�Xj

(2) +Xm

(2)@mg
(2)
ij
kikj +

1

2
Xm

(2)X
n

(2)@m@ngijk
ikj. (A.53)

After some algebra, we can write this as

L�2(�X̄)2
��
z2

= g(4)
kk

+2�(Xk

(4,cov))+2g(2)
ik

rkX
i

(2)+rkX
(2)
j

rkX
j

(2)�
1

d � 2
(X l

(2))rkRkk. (A.54)

Here we have defined

X i

(4,cov) = X i

(4) +
1

2
�i

lm
X l

(2)X
m

(2), (A.55)

which transforms like a vector (unlikeX i

(4)). From here, the algebra leading to (4.17) is mostly
straightforward, though tedious. The two main tasks which require further explanation are
the simplification of one of the terms in g(4)

kk
and one of the terms in �Xk

(4,cov). We will explain
those now.

g(4)
kk

Simplification We recall the formula for g(4)
kk

from (A.44):

g(4)
kk

=
1

d � 4


CkijmC

ijm

k
+

1

8(d � 1)
r2

k
R � 1

4(d � 2)
kikj⇤Rij

� 1

2(d � 2)
RijRkikj +

d � 4

2(d � 2)2
RkiR

i

k
+

1

(d � 1)(d � 2)2
RRkk

�
. (A.56)
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The main di�culty is with the term kikj⇤Rij. We will rewrite this term by making use of
the geometric quantities introduced in the other appendices, and in particular we make use
of the extended k and l field from §A.2. We first separate it into two terms:

kikj⇤Rij = kikjN rsrrrsRij + kikjP rsrrrsRij. (A.57)

Now we compute each of these terms individually:

kikjN rsrrrsRij = 2kikjlsrkrsRij + 2RkmlkR
m

k

= 2rkrlRkk + 2wckikjDcRij + 2RkmlkR
m

k

= 2rkrlRkk + 2wcDcRkk � 4wcwcRkk � 4wcKa

ck
Rka + 2RkmlkR

m

k

= 2rkrlRkk + 2wcDcRkk � 4wcwcRkk + 2RkmlkR
m

k
.

(A.58)

In the last line we assumed that �(k) = 0 and ✓(k) = 0, which is the only case we will need
to worry about. The other term is slightly messier, becoming

kikjP rsrrrsRij = kikjescDcrsRij

= Dc(k
ikjDcRij) � Dc(k

ikjesc)rsRij

= Dc(k
ikjDcRij) � 2wcD

cRkk + 4wcw
cRkk + 6wcK

ca

k
Rak

� 2Kca

k
DcRka + 2Kca

k
Ki

ca
Rik + 2Kca

k
Kbk

c
Rab +KsrsRkk

= DcD
cRkk � 2Dc(w

cRkk) � 2Dc(K
cakRka) � 2wcD

cRkk + 4wcw
cRkk + 6wcK

ca

k
Rak

� 2Kca

k
DcRka + 2Kca

k
Ki

ca
Rik + 2Kca

k
Kbk

c
Rab +KsrsRkk

= DcD
cRkk � 2Dc(w

cRkk) � 2Dc(K
cak)Rka � 2wcD

cRkk + 4wcw
cRkk +KsrsRkk.

(A.59)

In the last line we again assumed that �(k) = 0 and ✓(k) = 0. Putting the two terms together
leads to some canellations:

kikj⇤Rij = 2rkrlRkk + 2RkmlkR
m

k
+DcD

cRkk � 2Dc(w
cRkk)

� 2(Da✓(k) +Rkcac)R
a

k
+KsrsRkk.

(A.60)

�Xk

(4,cov) Simplification The most di�cult term in (A.50), which also gives the most
interesting results, is

kiDaD
aX i

(2) = � 1

2(d � 2)
(Da � wa)

2✓(k) +
1

2(d � 2)
KabK

abiKi. (A.61)

The interesting part here is the first term, so we will take the rest of this section to discuss
its variation. The underlying formula is (A.35),

�wa = �wcKac +Rklak. (A.62)
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From this we can compute the following related variations, assuming that ✓(k) = 0 and
�(k) = 0:

�(Dawa) = DaRklak + wa@a✓(k) � 3Da(K
ab

k
wb) (A.63)

�(waDa✓(k)) = �3Kab

k
waDb✓(k) +RklakD

a✓(k) + waDa✓̇(k) (A.64)

�(DaDa✓(k)) = DaDa✓̇ � @a✓(k)@
a✓(k) � 2P jmRkjbmD

b✓(k). (A.65)

Here ✓̇(k) ⌘ �✓(k) is given by the Raychaudhuri equation. We can combine these equations
to get

�
�
(Da � wa)

2✓(k)
�
= �

�
DaDa✓(k)

�
� 2�

�
waDa✓(k)

�
� �

�
(Daw

a)✓(k)
�
+ �

�
waw

a✓(k)
�

= �DaDaRkk + 2waDaRkk + (Daw
a)Rkk � waw

aRkk

� d

d � 2
(Da✓(k))

2 � 2RkbD
b✓(k) � 2(D�)2. (A.66)

A.6 The d = 4 Case

As mentioned in the main text, many of our calculations are more complicated in even
dimensions, though most of the end results are the same. The only nontrivial even dimension
we study is d = 4, so in this section we record the formulas and special derivations necessary
for understanding the d = 4 case. Some of these have been mentioned elsewhere already,
but we repeat them here so that they are all in the same place.

Log Terms In d = 4 we get log terms in the extremal surface, the metric, and the EWN
inequality. By looking at the structure of the extremal surface equation, it’s easy to see that
the log term in in the extremal surface is related to X i

(4) in d 6= 4 by first multipling by 4� d
and then setting d ! 4. The result was recorded in (A.52), and we repeat it here:

�4Xk
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There is a similar story for g(4,log)
kk

, which was recorded earlier in (A.46):

g(4,log)
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24
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12
RRkk

�
. (A.68)

From these two equations, it is easy to see that the log term in (�X̄)2 has precisely the same
form as the subleading EWN inequality (4.17) in d � 5, except we first multiply by 4 � d
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and then set d ! 4. This results in

L�2(�X̄)2
��
z2 log z,d=4

= �1

4
(Da✓(k) +Rka)
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4
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(k)
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)2. (A.69)

Note that the Gauss-Bonnet term drops out completely due to special identities of the Weyl
tensor valid in d = 4 [77]. The overall minus sign is important because log z should be
regarded as negative.

QNEC in Einstein Gravity For simplicity we will only discuss the case of Einstein
gravity for the QNEC in d = 4, so that the entropy functional is just given by the extremal
surface area divided by 4GN . At order z2, the norm of �X̄µ is formally the same as the
expression in other dimensions:
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Now, though, Xk

(4) and g(4)
kk

are state-dependent and must be related to the entropy and
energy-momentum, respectively.

We begin with the entropy. From the calculus of variations, we know that the variation
of the extremal surface area is given by

�A = � lim
✏!0

L3

✏3
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h

1p
1 + gnm@zX̄n@zX̄m

gij@zX̄
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A few words about this formula are required. The X̄µ factors appearing here must be
expanded in ✏, but the terms without any (n) in their notation do not refer to (0), unlike
elsewhere in this paper. The reason is that we have to do holographic renormalization
carefully at this stage, and that means the boundary conditions are set at z = ✏. So when
we expand out X̄µ we will find its coe�cients determined by the usual formulas in terms
of X i

(0). We need to then solve for X i

(0) in term of X i ⌘ X̄ i(z = ✏) re-express the result

in terms of X i alone. Since we are not in a high dimension this task is relatively easy. An
intermediate result is
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The notation on the first term refers to the order ✏2 part of X i

(2) that is generated when X i

(2)

is written in terms of X̄ i(z = ✏). The result of that calculation is
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We have dropped terms of higher order in ✏. Thus we can write
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We will want to take one more variation of this formula so that we can extract �Xk

(4)cov. We

can get some help by demanding that the z2 log z part of EWN be saturated, which states
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Then we have
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Assuming that ✓(k) = �(k) = 0, we can simplify this to
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We can combine this with the holographic renormalization formula [93]
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to get
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After dividing by 4GN , we recognize the QNEC.

A.7 Proof of Lemma 14

We now prove Lemma 14 by direct calculation.
We wish to show that

R|(0,s) ⌘ f⇤@r|(0,s) = exp
K⇤

|(p,sS|(0,0)) (Ř, sR̃) (A.80)

and
S|(0,s) ⌘ f⇤@s|(0,s) = exp

K⇤
|(p,sS|(0,0)) (0, S̃), (A.81)
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where
f(r, s) = exp

f(r,0) sS|(r,0)
= exp

K
(f(r, 0), sS|(r,0)),

(A.82)

as defined in Sec. 5.2.
Using the definition of the pushforward, we can write f⇤@r|(0,s) as the di↵erential exp

K⇤
,

associated with f in Eq. (A.82), evaluated along the tangent direction sS|(0,0),
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(A.83)

In the second line, we used the definition of Ř as the tangent to µ(r) at p, along with linearity
of exp

K⇤
. We have again used the notation �⇤ for the identity map between vectors in TpM

and their naturally associated counterparts in TSTpM .
Next, we must evaluate the derivative of S, �⇤(@rS|(r,0))|r=0 2 TSTpK?. Let us write

S|(r,0) as an explicit function of both the parameter r along the path µ(r) ⌘ f(r, 0) 2 K and

the vector S|(0,0) + rR̂ 2 TpK? that is normal parallel transported along µ from µ(0) = p to
µ(r):

S|(r,0) = S(r, S|(0,0) + rR̂)|r1=r2=r

⌘ S(r1, r2)|r1=r2=r,
(A.84)

so that the derivative in question can be written as �⇤@rS(r, S|(0,0)+ rR̂)|r=0. Since S(r1, r2)

is defined by normal parallel transporting a particular vector (S|(0,0)+rR̂) in TpK? to µ(r1),
its variation with respect to r1 gives the normal part of the covariant derivative of S along
µ, which vanishes, i.e., @r1S(r1, r2) = 0. Hence,
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Inputting this result into Eq. (A.83), we have

R|(0,s) = exp
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|(p,sS|(0,0)) (Ř, s�⇤R̂)

= exp
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|(p,sS|(0,0)) (Ř, sR̃).
(A.86)

We have thus derived the claimed formula for the Jacobi field stated in Eq. (A.80). The
proof of Eq. (A.81) follows similarly. Neither f(r, 0) or S|(r,0) depend on s. Therefore
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(A.87)
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This derivation of the Jacobi field and tangent vector completes the proof of Lemma 14.

A.8 Flat Renyi Spectrum

Here we prove that if a density matrix ⇢ satisfies the condition eSn(⇢) = S(⇢) for all n, it
must be a normalized projector. We show this by first showing that this condition of having
a flat refined Renyi entropy spectrum is equivalent to having a flat Renyi entropy spectrum.

From the definition of the refined Renyi entropy and the above condition, we have

eSn(⇢) = n2@n

✓
n � 1

n
Sn(⇢)

◆
(A.88)

= S(⇢) . (A.89)

We can integrate with respect to n to obtain
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(A.90)

=) S(⇢) = Sn0(⇢) , (A.91)

where this condition is true for arbitrary n0. Now we can use the fact that ⇢ and ⇢n can be
simultaneously diagonalized to arrive at the identity

@n Sn(⇢) = � 1

(1 � n)2

dim(⇢)X

i=1

qi log
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qi
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◆
, (A.92)

where pi are the eigenvalues of ⇢ and qi = pn
i
/(
Pdim(⇢)

i=1 pn
i
). If indeed Eq. (A.91) is true,

then the LHS equals zero for all n. For the RHS to equal zero implies the relative entropy
(Kullback-Leibler divergence) between probability distributions qi and pi vanishes. Using a
standard result, we can conclude that the distributions are indeed identical. This gives us
our desired result that

pi =

0

@
rank(⇢)X
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1
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(A.93)

=
1

rank(⇢)
, (A.94)

where we have restricted to the non-zero elements only and used the normalization condition.
Thus, in its diagonal basis ⇢ takes the form

⇢ =
1

rank(⇢)

rank(⇢)X

i=1

|ii hi| , (A.95)

namely, it is a normalized projector.
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