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Abstract
Background and Objectives
To develop and test the performance of the Positive Aβ Risk Score (PARS) for prediction of
β-amyloid (Aβ) positivity in cognitively unimpaired individuals for use in clinical research.
Detecting Aβ positivity is essential for identifying at-risk individuals who are candidates for early
intervention with amyloid targeted treatments.

Methods
We used data from 4,134 cognitively normal individuals from the Anti-Amyloid Treatment in
Asymptomatic Alzheimer’s (A4) Study. The sample was divided into training and test sets. A
modified version of AutoScore, a machine learning–based software tool, was used to develop a
scoring system using the training set. Three risk scores were developed using candidate pre-
dictors in various combinations from the following categories: demographics (age, sex, edu-
cation, race, family history, body mass index, marital status, and ethnicity), subjective measures
(Alzheimer’s Disease Cooperative Study Activities of Daily Living–Prevention Instrument,
Geriatric Depression Scale, and Memory Complaint Questionnaire), objective measures (free
recall, Mini-Mental State Examination, immediate recall, digit symbol substitution, and delayed
logical memory scores), and APOE4 status. Performance of the risk scores was evaluated in the
independent test set.

Results
PARS model 1 included age, body mass index (BMI), and family history and had an area under
the curve (AUC) of 0.60 (95% CI 0.57–0.64). PARS model 2 included free recall in addition to
the PARS model 1 variables and had an AUC of 0.61 (0.58–0.64). PARS model 3, which
consisted of age, BMI, and APOE4 information, had an AUC of 0.73 (0.70–0.76). PARS model
3 showed the highest, but still moderate, performance metrics in comparison with other models
with sensitivity of 72.0% (67.6%–76.4%), specificity of 62.1% (58.8%–65.4%), accuracy of
65.3% (62.7%–68.0%), and positive predictive value of 48.1% (44.1%–52.1%).

Discussion
PARSmodels are a set of simple and practical risk scores that may improve our ability to identify
individuals more likely to be amyloid positive. The models can potentially be used to enrich
trials and serve as a screening step in research settings. This approach can be followed by the use
of additional variables for the development of improved risk scores.

Classification of Evidence
This study provides Class II evidence that in cognitively unimpaired individuals PARS models
predict Aβ positivity with moderate accuracy.
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Accumulation of β-amyloid (Aβ) is a defining pathologic
characteristic of Alzheimer disease (AD) and may occur de-
cades before cognitive impairment.1,2 Early diagnosis and in-
tervention to reduce Aβ accumulation is considered a potential
approach to modify disease course and has been the focus of
many of the recent clinical trials involving cognitively normal
(CN) participants.3,4 Most of these trials require biomarker
confirmation of amyloid positivity as a criterion for enrollment,
usually based on amyloid PET. Because only 30% of CN older
adults are Aβ positive (Aβ+), 10 people receive a PET scan for
every 3 potentially eligible participants for enrollment—a
costly process. A practical, noninvasive method to identify
participants likely to be Aβ+ could make the process of
screening and enrolling for clinical trials more efficient.

The goal of this study was to develop a practical risk score to
predict Aβ positivity of individuals prior to confirmatory PET
scan. Clinical risk scores are commonly used in medical practice
for diagnosis or to predict prognosis.5 Risk scores allow clinicians
to quantitatively estimate the likelihood, or risk, that an individual
will have a particular outcome, often based on a small number of
metrics that are readily determined. Developing a practical risk
score for Aβ positivity would be timely as there are several drugs
in the AD research pipeline that target aggregated Aβ for treat-
ment of AD in various stages of disease. Aducanumab, a human
monoclonal antibody that selectively targets aggregated Aβ, was
recently approved by the US Food and Drug Administration for
the treatment of AD in mild disease stage.6 Due to the associated
costs and access limitations, obtaining amyloid imaging or CSF
studies from all at-risk individuals is not possible. Therefore, de-
veloping simple and reliable risk scores for determining the
likelihood of Aβ positivity could serve as a support tool for
decision-making before proceeding with confirmatory tests.

The Anti-Amyloid Treatment in Asymptomatic Alzheimer’s
(A4) Study provides an ideal setting for developing a risk
score for amyloid positivity. In the A4 Study, cognitively
unimpaired older adults underwent amyloid PET scanning.
We used a machine learning method based on random forest
(RF) algorithms to identify important predictors and determine
the risk score for amyloid positivity. Predictor variables were
categorized into 4 large categories of demographics, subjective
measures, objective measures, and genetic information in the
form of APOE4 genotypes. Risk scores were developed using

different combinations of these variable categories. This is
intended to provide flexibility in terms of the information
needed for constructing a risk score. We hypothesized that
simple risk scores developed based on machine learning pre-
dictive models can improve our ability in estimating likelihood
of amyloid positivity prior to obtaining PET imaging in cogni-
tively unimpaired older adults.

Methods
Participants
Data used for this paper come from the A4 Study. This study is
an ongoing trial that is being conducted at 67 clinical sites across
4 countries with a secondary outcome being themean composite
standardized uptake value ratio (SUVR) change from baseline.7

To participate in the study, individuals must be between the ages
of 65 and 85, score between 25 and 30 on theMini-Mental State
Examination (MMSE), score 0 on the Global Clinical Dementia
Rating (CDR), have a Logical Memory II score at screening of
6–18 depending on educational level, have a participating study
partner, and show evidence of Aβ positivity via a PET scan as
defined below. Exclusion criteria included various illnesses, se-
rious risk of suicide, or the use of particular drugs.

A total of 6,763 individuals were prescreened to determine eli-
gibility for the study. Of those, 4,486 individuals met criteria and
were selected to undergo Aβ PET scans. In compiling the data set
to use for this study, 352 individuals had at least one variable of
missing data; 122 individuals did not have a Memory Complaint
Questionnaire (MACQ) score from either visit 1 or 3 of the
study; 83 individuals had unknown marital status; and for 88
individuals, race and ethnicity was unknown or missing. There-
fore, as the methods required complete feature sets, a total of
4,134 individualsmet criteria for inclusion in this study (Figure 1).

Study Measures

Study Outcome
Amyloid PET imaging was done using 18F-florbetapir data ac-
quired 50–70 minutes postinjection. Images were realigned and
averaged and then spatially aligned to a standard space template.
18F-florbetapir, sampled in a global neocortical region for Aβ, was
expressed as an SUVR with a cerebellar reference region. Aβ
positivity was defined as 18F-florbetapir PET SUVR >1.10.8

Glossary
A4 = Anti-Amyloid Treatment in Asymptomatic Alzheimer’s; Aβ = β-amyloid; AD = Alzheimer disease; ADCS-ADL =
Alzheimer’s Disease Cooperative Study–Activities of Daily Living;AUC = area under the receiver operating characteristic curve;
BMI = body mass index; CN = cognitively normal; FCSRT = Free and Cued Selective Reminding Test; FR = free recall; fRF =
full random forest; GDS = Geriatric Depression Scale; LONI = Laboratory of NeuroImaging; MACQ = Memory Complaint
Questionnaire; MCC = Matthews correlation coefficient; MCI = mild cognitive impairment; MMSE = Mini-Mental State
Examination;NPV = negative predictive value; PACC = Preclinical Alzheimer Cognitive Composite; PARS = Positive Aβ Risk
Score; PPV = positive predictive value; RF = random forest; RFR = random forest regression; ROC = receiver operating
characteristic; SUVR = standardized uptake value ratio; vRF = random forest with variable selection.
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Study Features (Predictors)
To develop the Positive Aβ Risk Scores (PARS), we catego-
rized variables used as predictors into one of the following 4
broad categories to simplify systematic development of the
risk score. To develop risk scores that are practical and simple,
total scores for each variable are used when applicable rather
than component scores of the individual measures.

Demographics

This category included age, sex, education, race, ethnicity, marital
status, family history of dementia or memory impairment, and
body mass index. Age and years of education were initially
treated as continuous variables. Body mass index (BMI) was
initially included as a continuous variable and subsequently
grouped as low (0–25), intermediate (25–30), and high (30+)
during the fine-tuning step of the algorithm. Marital status was a
binary variable between married and not married (single, wid-
owed, or divorced). Family history consisted of the number of
parents (0, 1, or 2) with history of dementia or significant
memory impairment. Race and ethnicity were categorized as
white or non-White and Hispanic or non-Hispanic, respectively.

Subjective Measures

There were 3 self-report scales in this category: an adapted
version of the Alzheimer’s Disease Cooperative Study Activities
of Daily Living–Prevention Instrument (ADCS-ADL)9; the 15-
item version of the Geriatric Depression Scale (GDS)10; and the
MACQ.11 The ADCS-ADL assesses 6 basic activities of daily

living and 17 instrumental activities where a lower score indicates
a more severe condition. GDS consists of 15 questions that
assess depressive symptoms in seniors; scores range from0 to 15,
with scores above 5 indicating potential depression and above 10
likely depression. The MACQ consists of 6 questions where the
first 5 are about situations often found to be troubling to those
with declining memory and a final question that broadly mea-
sures one’s perception of his or her own memory decline.

Objective Test Measures

This category included the following measures: the MMSE, a
global measure of cognitive functioning12; the Digit Symbol
Substitution, a measure of executive function13,14; free recall
(FR) from the Free and Cued Selective Reminding Test
(FCSRT), a measure of word recall under controlled learning
conditions15,16; and immediate and delayed recall of the
Logical Memory stories.17

Genetic Measures

The e4 allele of APOE4 is the major genetic risk factor for AD.
APOE4 status was entered into models as a categorical vari-
able (0, 1, or 2 e4 alleles).18,19

Data Analysis

Hierarchical Selection of Feature Sets
The predictors were grouped by category: demographics (D),
subjective measures (S), objective measures (O), and genetic
information (G). This allowed for the systematic study of the

Figure 1 Flow Chart of the Study Design

Aβ = β-amyloid.
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effect of each predictor group on the development of a risk
score. To assess this, 5 feature sets were studied where Dwas a
constant feature. These feature sets were D, DS, DSO, DG,
and DSOG (Figure 2).

Training and Test Samples
To train and test the risk scores, the data set was randomly
divided into 2 independent subsets (Figure 1): training set
(70%, Ntraining = 2,894) and test set (30%, Ntest = 1,240) of
entire sample (N = 4,134). The training set was used to train,
develop, and fine-tune the risk scores. The test set was in-
dependent from the training of the risk score and used to
internally validate the performance of the final risk scores.

AutoScore Method
AutoScore is an algorithm and software package that was
developed to aid clinicians and researchers in developing risk
scores based on machine learning techniques.20 The Auto-
Score algorithm consists of 6 modules:

Module 1: Variable Ranking

RF, an ensemble machine learning algorithm, was used to
identify the top-ranking predictors of subsequent score genera-
tion.21 Variables were ranked for inclusion in the risk score based
on the mean decrease in impurity determined by the Gini index
derived from RF outputs. An advantage of using RF to identify
importance of variables for prediction over other methods such
as backward stepwise regression or LASSO is that RF can rank
variables on the basis of their nonlinear and heterogeneous

effects. As the Gini index may exhibit bias toward continuous or
high-cardinality variables, alternatives such as the permutation
importance or conditional permutation importance may be
used.22 In the AutoScore framework, the final list of variables is
decided by the ranking, in addition to the parameter m, which is
the number of final selected variables. Parameter m can be
chosen case by case to accommodate clinical preference, expert
or domain knowledge, or the needs of real-world applications.

Module 2: Variable Transformation

In this section, all selected variables that are continuous are
preprocessed for variable transformation, that is, continuous
variables are converted into categorical variables. Creating
categorical variables allows for the modeling of nonlinear ef-
fects. In AutoScore, the maximum number of categories
(e.g., K = 5) for each variable is predefined to ensure it is
practical to use in the final risk score.

Module 3: Score Derivation

Next, the selected and transformed variables are used to create
a risk score for prediction of the outcome. The method allows
for the choice of maximum score depending on preference
and application. The maximum score was chosen to be 100
points for this article. In this module, each category of an
individual variable is weighted and given an integer point. As is
commonly done with risk scores, logistic regression is used as
the default setting for score weighting, with which the points
can be easily interpreted.23

Figure 2 Feature Selection Criteria

Five feature sets were considered as combinations of the 4
categories demographics (D), subjective measures (S), ob-
jective measures (O), and genetic information (G): D, DS, DSO,
DG, and DSOG. Categories considered in each feature set are
highlighted by color. Only the variables marked with an X
were retained in the final models, resulting in 3 risk scores
from the 5 feature sets considered. Parents refers to parents
with dementia. ADCS-ADL = Alzheimer’s Disease Cooperative
Study–Activities of Daily Living; BMI = bodymass index; DLM =
delayed recall of the Logical Memory stories; DSS = Digit
Symbol Substitution; GDS =Geriatric Depression Scale;MACQ
= Memory Complaint Questionnaire; MMSE = Mini-Mental
State Examination; PARS = Positive Aβ Risk Score.
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Module 4: Model Selection and Parameter Determination

A model is considered parsimonious when it is both sparse
(small number of variables,m, possible) and has high prediction
performance. To cope with the tradeoff between accuracy and
complexity, different parameters m can be examined on the
training set and a parsimony plot (i.e., model performance vs
complexity) to which the user can refer for deciding the tradeoff
in deriving the risk scores. The optimal parameter m is de-
termined by when m continues to increase but the prediction
performance is no longer improving significantly. In this study,
to determine the final set of variables for risk scores, variables
were incrementally added to the risk score and performance was
assessed using the training set. A variable was included in the
final risk score if it increased the area under the receiver oper-
ating characteristic (ROC) curve (AUC) of the predictivemodel
by at least 1%. If adjustments were made in this step, then
modules 2 and 3 are rerun to find an updated risk score.

Module 5: Fine-Tuning

For continuous variables, the variable transformation (mod-
ule 2) is a data-driven process, in which domain knowledge is
not integrated. In this module, the automatically generated
cutoff values for each continuous variable can be fine-tuned by
adjusting the cutoffs according to the standard clinical norm.
If adjustments were made in this step, modules 2 and 3 are
rerun to find an updated risk score.

Module 6: Predictive Performance Evaluation

The performance of the risk score is evaluated using ROC
analysis, which includes AUC, sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV)
of the final risk score on the test set.

Comparison of PARS Models With Other
Machine Learning Models
Three RF algorithms were run for comparison of performance:
full RF (fRF), RF with variable selection (vRF) performed using
the stepwise selection procedure implemented in the VSURF R
package,24 andRF regression (RFR) on the rawPETSUVRvalue
where the predicted PET SUVR was subsequently binarized for
classification using the cutoff value of >1.10 for Aβ positivity.

Standard Protocol Approvals, Registrations,
and Patient Consents
All work was performed on data collected as part of the A4
Study (NCT02008357). The A4 Study was approved by the
institutional review boards of all participating institutions.
Informed written consent was obtained from all participants.
This study followed the Strengthening the Reporting of Ob-
servational Studies in Epidemiology (STROBE) reporting
guidelines for cross-sectional studies.

Data Availability
Data used in this article are available for download from the
Laboratory of NeuroImaging (LONI).25 All variables were
extracted from files posted at LONI.

Results
Characteristics of the Study Sample
Participants had an average age of 71.28 years (SD 4.68), had
an average number of years of education of 16.64 (SD 2.84),
94.4% were White, and 59.8% were women. The Aβ+ group,
compared with the Aβ− group, was older, performed equally
or worse on the different cognitive tests, and a larger per-
centage of them had at least 1 APOE4 e4 allele. Sample
characteristics are summarized in Table 1.

Variable Selection and Score Derivation
Five feature sets were considered in the development of the
PARS models (Figure 2). With the goal reducing the number
of variables used in order to achieve models that are simple,
each variable was included in the final model only if it im-
proved AUC by at least 1% (see Training and Test Samples
for details). Therefore, 3 risk score models were derived from
the initial 5 feature sets (Figure 2). The first model (PARS
model 1), derived from feature set D, the final demographic
model, included age, BMI, and family history. For the DS
model, none of the subjective measures were retained. The
DSO feature set resulted in model 2 (PARS model 2), which
comprised 3 demographic features (age, BMI, and family
history) and 1 objective feature (FR from the FCSRT). The
last 2 feature sets both resulted in the model 3 (PARS model
3), which consisted of age, BMI, and APOE4 status. The 3 risk
score models are summarized in Figures 2 and 3.

Supplementary analysis on these models showed inclusion of
additional variables that did not meet the inclusion criterion
or improve AUC or overall performance of models. In cases
where adding new variables improved one metric of model
performance (e.g., specificity), it was at the cost of de-
terioration of another performance metric (e.g., sensitivity).
The inclusion criterion worked to optimize the AUC of the
model and balance the results of the other performance
metrics (eFigure 1, links.lww.com/WNL/B979).

Performance of the Risk Scores
Performance of the 3 models on the training and test sets are
reported in Table 2. In the test set, the ROC curves for models
1 and 2 were similar, but performance of model 3 was sig-
nificantly higher (Figure 4). Models 1, 2, and 3 had AUCs of
0.60, 0.61, and 0.73, respectively (Table 2 and eFigure 2, links.
lww.com/WNL/B979). Addition of FR to model 2 improved
sensitivity of the model, but this was at the cost of a decrease
in specificity. Model 3, the only model that included APOE4
allele as a predictor, replacing family history of dementia,
performed better than all other models based on all perfor-
mance metrics.

With a prevalence of 32.8% in the test set, model 3 showed the
highest, but still moderate, performance metrics in compari-
son with other models: sensitivity 72.0%, specificity 62.1%,
PPV 48.1%, NPV 81.9%, and accuracy 65.3%. Models 1 and 2
had PPVs approximately 22% (7.3 and 7.1 percentage points,
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Table 1 Sample Characteristics

Training set Test set Entire data set

Aβ2 Aβ+ p Value Total Aβ2 Aβ+ p Value Total Aβ2 Aβ+ p Value Total

N (%) 1,954 (67.5) 940 (32.5) 2,894 833 (67.1) 407 (33.9) 1,240 2,787 (67.4) 1,347 (32.6) 4,134

Demographics

Age, y 70.95 (4.53) 71.86 (4.89) <0.001 71.24 (4.67) 70.83 (4.55) 72.46 (4.83) <0.001 71.36 (4.70) 70.91 (4.54) 72.04 (4.88) <0.001 71.28 (4.68)

Female sex 1,185 (60.6) 555 (59.0) 0.433 1,740 (60.1) 487 (58.5) 245 (60.2) 0.602 732 (59.0) 1,672 (60.0) 800 (59.4) 0.737 2,472 (59.8)

Education 16.65 (2.87) 16.74 (2.87) 0.43 16.68 (2.87) 16.58 (2.80) 16.46 (2.67) 0.466 16.54 (2.76) 16.63 (2.85) 16.65 (2.81) 0.784 16.64 (2.84)

Race, % White 1,835 (93.9) 900 (95.7) 0.052 2,735 (94.5) 773 (92.8) 394 (96.8) 0.007 1,167 (94.1) 2,608 (93.6) 1,294 (96.1) 0.001 3,902 (94.4)

Ethnicity, % Hispanic 59 (3.0) 22 (2.3) 0.359 81 (2.8) 25 (3.0) 12 (2.9) 1 37 (3.0) 84 (3.0) 34 (2.5) 0.431 118 (2.9)

Married 1,405 (71.9) 668 (71.1) 0.671 2,073 (71.6) 603 (72.4) 290 (71.3) 0.726 893 (72.0) 2,008 (72.0) 958 (71.1) 0.559 2,966 (71.7)

BMI 27.75 (5.19) 27.44 (4.99) 0.122 27.65 (5.13) 27.62 (4.92) 27.27 (4.90) 0.233 27.51 (4.91) 27.72 (5.11) 27.39 (4.96) 0.051 27.61 (5.06)

Family history: 0 parents 713 (36.5) 297 (31.6) 0.001 1,010 (34.9) 287 (34.5) 114 (28.0) 0.061 401 (32.3) 1,000 (35.9) 411 (30.5) <0.001 1,411 (34.1)

Family history: 1 parent 1,068 (54.7) 521 (55.4) 1,589 (54.9) 462 (55.5) 243 (59.7) 705 (56.9) 1,530 (54.9) 764 (56.7) 2,294 (55.5)

Family history: 2 parents 173 (8.9) 122 (13.0) 295 (10.2) 84 (10.1) 50 (12.3) 134 (10.8) 257 (9.2) 172 (12.8) 429 (10.4)

Subjective measures

ADCS-ADL 64.90 (5.78) 64.17 (6.05) 0.002 64.67 (5.88) 65.18 (5.85) 64.52 (5.91) 0.06 64.96 (5.88) 64.99 (5.80) 64.28 (6.01) <0.001 64.76 (5.88)

GDS 0.99 (1.46) 1.01 (1.36) 0.703 1.00 (1.42) 1.01 (1.49) 0.96 (1.19) 0.479 1.00 (1.39) 0.99 (1.47) 0.99 (1.31) 0.991 0.99 (1.42)

MACQ 24.82 (3.93) 25.36 (4.20) 0.002 24.99 (4.03) 24.97 (3.88) 24.93 (3.92) 0.845 24.96 (3.89) 24.91 (3.89) 25.21 (4.09) 0.025 25.01 (3.96)

Objective measures

Free recall 29.33 (5.56) 28.31 (5.66) <0.001 29.00 (5.61) 29.25 (5.41) 28.07 (5.71) <0.001 28.86 (5.54) 29.31 (5.51) 28.23 (5.67) <0.001 28.96 (5.59)

Immediate recall 13.13 (3.13) 12.83 (3.24) 0.016 13.04 (3.17) 13.17 (3.11) 12.68 (3.07) 0.009 13.00 (3.11) 13.14 (3.12) 12.78 (3.19) 0.001 13.03 (3.15)

MMSE 28.83 (1.20) 28.78 (1.25) 0.338 28.81 (1.21) 28.92 (1.09) 28.80 (1.22) 0.102 28.88 (1.14) 28.86 (1.17) 28.77 (1.25) 0.036 28.83 (1.20)

Digit Symbol Substitution 44.07 (9.02) 42.92 (8.99) 0.001 43.70 (9.03) 44.54 (8.59) 42.10 (8.65) <0.001 43.74 (8.68) 44.21 (8.89) 42.67 (8.89) <0.001 43.71 (8.92)

Logical Memory–delayed 11.90 (3.18) 11.53 (3.28) 0.003 11.78 (3.22) 11.91 (3.12) 11.33 (3.21) 0.002 11.72 (3.16) 11.91 (3.17) 11.47 (3.26) <0.001 11.76 (3.20)

Genetic

APOE4: 0 «4 alleles 1,488 (76.2) 390 (41.5) <0.001 1,878 (64.9) 637 (76.5) 173 (42.5) <0.001 810 (65.3) 2,125 (76.2) 563 (41.8) <0.001 2,688 (65.0)

APOE4: 1 «4 allele 449 (23.0) 484 (51.5) 933 (32.2) 190 (22.8) 190 (46.7) 380 (30.6) 639 (22.9) 674 (50.0) 1,313 (31.8)

APOE4: 2 «4 alleles 17 (0.9) 66 (7.0) 83 (2.9) 6 (0.7) 44 (10.8) 50 (4.0) 23 (0.8) 110 (8.2) 133 (3.2)

Abbreviations: Aβ =β-amyloid; ADCS-ADL = Alzheimer’s Disease Cooperative Study–Activities of Daily Living; BMI = bodymass index; GDS =Geriatric Depression Scale; MACQ =Memory Complaint Questionnaire; MMSE =Mini-
Mental State Examination.
Values are n (%) or mean (SD).

e2430
N
eu

ro
logy

|
Vo

lu
m
e
98,N

um
b
er

24
|

Ju
ne

14,2022
N
eurology.org/N

C
opyright

©
2022

A
m
erican

A
cadem

y
of

N
eurology.

U
nauthorized

reproduction
of

this
article

is
prohibited.

http://neurology.org/n


respectively) above prevalence and model 3 had a PPV 47%
(15.3 percentage points) above prevalence.

Although model 3 outperformed the other models in terms of
higher risk score values corresponding to larger percentages of
Aβ-positive individuals, with AUC of 0.73, the performance
may be considered moderate (Figure 5). Whereas the per-
centages of amyloid-positive individuals in the bottom 2
quartiles of points for each model were similar, the percent-
ages of amyloid-positive individuals with risk score points in
the third quartile were 42%, 44%, and 65%, respectively, and
the percentages of amyloid-positive individuals in the fourth
quartile of points for risk score models 1, 2, and 3 were 71%,
60%, and 90%, respectively.

To compare the performance of the 3 PARS models, 3 RF
models (fRF, vRF, and RFR) were developed on each feature
set. ROC curves for the PARS and RF models were found to
be comparable (eFigure 3, links.lww.com/WNL/B979). De-
tailed performancemetrics of the PARS and RFmodels can be
found in eTable 1. When using the feature set corresponding
to all the available variables (DSOG), PARSmodel 3 achieved
a higher sensitivity, but lower specificity, than the other
models. Furthermore, model 3 performed comparably with
respect to NPV, but had a slightly lower PPV.

Because the outcome only has a slight class imbalance with a
ratio of 1:2, data balancing methods were not implemented.
However, because the following additional metrics are con-
sidered to have advantages for imbalanced classes,26 they are
reported in eTable 1 (links.lww.com/WNL/B979): F1 score,
Balanced Accuracy, and the Matthews correlation coefficient
(MCC). PARS models 1 and 2 performed better on all 3
metrics compared with the RF models when using the D, DS,
and DSO feature sets. The PARS and RF models perform
comparably on the F1 score and Balanced Accuracy on both
the DG and DSOG feature sets. However, on the DG feature
set, the fRF and vRF both outperform model 3 and the RFR

model on the MCC metric. Lastly, on the DSOG feature set,
all RF models perform moderately well and slightly out-
perform model 3 on the MCC metric.

Classification of Evidence
This study provides Class II evidence that in cognitively un-
impaired individuals, PARS models predict Aβ positivity with
moderate accuracy.

Discussion
In this study, we developed 3 PARS models for predicting Aβ
positivity determined by 18F-florbetapir PET imaging. These
risk scores are simple and practical to use as they only require
features that are easily and inexpensively obtainable from all
individuals. PARS model 3 included APOE4 genotypes as a
predictor and outperformed the other models in all perfor-
mance measures with moderate overall performance. In sit-
uations where APOE4 genotype information is not available,
model 2, derived from the DSO feature set, could be used. In
addition, although model 3 performed better than the other
models, measuring FR is more inexpensive and easier than
obtaining APOE4 information and may make model 2 pref-
erable for use in some situations.

Over the past decade, many research groups have tried to
predict Aβ positivity using a wide variety of predictors in-
cluding demographics, neuropsychological tests, genetic risk
factors, MRI, and CSF or blood-based biomarkers.27-32 A
comparison of performance between these models and PARS
can be found in eTable 2 (links.lww.com/WNL/B979). With
the recent approval of aducanumab as the first AD treatment
that targets Aβ,33 developing tools that facilitate clinical
decision-making for obtaining confirmatory tests
(i.e., amyloid PET scans or CSF studies) becomes even more
important. One study found RF models utilizing de-
mographics, APOE4, and longitudinal cognitive tests could
predict Aβ positivity in cognitively healthy individuals.28 A

Table 2 PerformanceMeasures of theDifferent PARSModels in Differentiating Aβ− andAβ+ in the Training and Test Sets

Sensitivity, % Specificity, % PPV, % NPV, % Accuracy, % Prevalence, % AUC

Training set

Model 1 47.9 (44.7–51.1) 64.0 (61.8–66.1) 39.0 (36.2–41.8) 71.8 (69.7–74.0) 58.7 (56.9–60.5) 32.5 0.58 (0.55–0.60)

Model 2 56.6 (53.4–59.8) 57.1 (54.9–59.3) 38.8 (36.3–41.4) 73.2 (71.0–75.5) 56.9 (55.1–58.7) 32.5 0.59 (0.57–0.61)

Model 3 60.7 (57.6–63.9) 75.0 (73.1–76.9) 53.9 (50.9–56.9) 79.9 (78.0–81.7) 70.4 (68.7–72.0) 32.5 0.72 (0.70–0.74)

Test set

Model 1 59.5 (54.7–64.2) 56.5 (53.2–59.9) 40.1 (36.2–44.0) 74.1 (70.6–77.5) 57.5 (54.7–60.3) 32.8 0.60 (0.57–0.64)

Model 2 68.1 (63.5–72.6) 49.8 (46.4–53.2) 39.9 (36.2–43.5) 76.1 (72.6–79.7) 55.8 (53.0–58.6) 32.8 0.61 (0.58–0.64)

Model 3 72.0 (67.6–76.4) 62.1 (58.8–65.4) 48.1 (44.1–52.1) 81.9 (78.9–84.9) 65.3 (62.7–68.0) 32.8 0.73 (0.70–0.76)

Abbreviations: Aβ = β-amyloid; AUC = area under the receiver operating characteristic curve; NPV = negative predictive value; PARS = Positive Aβ Risk Score;
PPV = positive predictive value.
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second study comparing Aβ positivity stratification models
using a RF approach with minimally invasive and low-cost
measures via blood-based biomarkers showed promise toward
reducing the cost and difficulty of predicting Aβ positivity.34

Another study found neuropsychological and MRI measures
used separately performed equally well as when used jointly

on individuals with amnestic mild cognitive impairment
(MCI).29 Although some of these studies developed high-
performance models, it has been exceedingly difficult to draw
conclusions from them not only because of the breadth of
approaches used, but also because studies mix participants at
different stages of the AD spectrum (normal, MCI, early de-
mentia, or a combination).

The high-performance models for predicting Aβ positivity
developed in previous work are often not practical for use by
clinicians or in prospective studies. This impediment exists
either because the models are too complicated to be used or
the inputs used as predictor variables are too costly or bur-
densome to obtain. Many models require the performance of
multiple neuropsychological examinations and evaluation of
multiple genetic risk factors, structural MRIs, CSF, or blood-
based biomarkers.35

A recent study also looked at predicting amyloid burden using
data from the A4 Study with the purpose of providing solu-
tions to challenges related to participant selection for clinical
trials.36 Using the Extreme Gradient Boosting (XGBoost)
algorithm, a tree-based machine learning method, researchers
limited predictive variables to demographics, cognitive and
functional assessments, and APOE4 genotype and developed
models with AUCs between 0.60 (without APOE4 geno-
types) and 0.73 (with APOE4 genotypes). The performance
of thesemodels is moderate and comparable to PARSmodel 1
and 2, with AUCs equal to 0.60 and 0.61, and model 3, with
AUC equal to 0.73. Differences between the 2 studies are as
follows: (1) although many variables are similar, different

Figure 3 Chart of Point Assignments for Each of the PARS Models

BMI = body mass index; PARS = Positive Aβ Risk
Score.

Figure 4 Receiver Operating Characteristic Curves of the 3
PARS Models Performance on the Test Dataset

PARS = Positive Aβ Risk Score.
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variables are considered, such as Preclinical Alzheimer Cog-
nitive Composite (PACC) (versus individual components of
PACC), Cogstate scores, and Cognitive Function Instrument
scores; (2) distinction between remote and in-clinic collec-
tion of certain variables; and (3) direct use of machine
learning for prediction instead of use of machine learning to
develop a simplified risk score used for prediction of amyloid
positivity.

For studies of presymptomatic AD, models like the PARS
developed from cognitively normal individuals are required.
The advantage of PARS is the ability to compute multiple
risk scores that can be used situationally depending on the
data available to, or easily obtainable by, clinicians and re-
searchers. In addition, once the predictor variables are de-
termined by the clinician, the risk scoring models require
only a simple calculation to determine an individual’s total
risk score. To improve practicality of using PARS, we de-
veloped an online calculator, which could be accessed at
Neurodiction.37 There is great potential to expand this
scoring system by addition of other predictors not included
in this study, such as structural MRIs, genetic information, or
biofluid biomarkers.38,39

A parsimonious set of readily ascertainable risk factors like
PARS would facilitate enrollment in clinical trials of very early
AD and inform decisions about amyloid PET at the time of
the initial evaluation. Requiring longitudinal cognitive tests
will impede ascertainment and delay clinical decisions for
individuals at most risk for AD progression. To address this
issue and to create a model that is practical to use by clinicians,

a recent study used a probabilistic approach to develop 2
algorithms with robust performance across 3 different co-
horts: Alzheimer’s Disease Neuroimaging Initiative (ADNI),
Australian Imaging, Biomarkers, and Lifestyle Flagship Study
of Ageing (AIBL), and Mayo Clinic Olmsted Study of Aging
(MCSA).30 The first algorithm required only age and im-
mediate recall test score as inputs while the second also in-
cluded APOE4 genotype information. Our findings were
similar to this study even though theirs was conducted in a
population that included both CN individuals and patients
with MCI whereas ours was conducted only in CN individ-
uals. We also found that age and APOE4 genotype were
among the most informative measures for detecting Aβ pos-
itivity. Additional predictors identified as important in our
study were FR on the FCSRT, which was not available in all
the study datasets used by Maserejian et al.,30 BMI, and pa-
rental history of dementia, which was not included in their
final models. As cognitive status (CN vsMCI) is a predictor of
amyloid positivity, models may operate differently in persons
who are CN and those who have MCI.

Whereas the PARS models may require further refinement
and need to be validated on independent datasets, the po-
tential effect of the PARS models for use in clinical trials can
be demonstrated by the following hypothetical thought ex-
periment. Assume there is a goal to enroll 300 Aβ+ patients
into each of 3 treatment arms (placebo, low dose, and high
dose) of a potential therapy. In the first scenario, where risk
scores are not utilized, 1,000 individuals need to be identified
as Aβ+, due to other exclusions, where amyloid PET scans are
administered on all potential participants. At the prevalence of
33%, approximately 3,300 would need to undergo costly
amyloid PET scans. If instead individuals are first screened
using the risk scores of PARS models 1, 2, or 3, approximately
2,500, 2,500, and 2,000 individuals need to be screened by
amyloid PET scans, respectively. Savings include the reduced
cost of the amyloid PET and the reduced exposure of par-
ticipants to radiation, albeit at low levels. Those savings are
offset by increased cost of participant identification and
screening.

Some limitations should be noted. First, the models were
trained, validated, and internally tested on data from the A4
Study. The A4 sample is predominantly White, is highly ed-
ucated, has strict inclusion/exclusion criteria for participation
in the study, and has other characteristics that might not be
representative of the general population. Whereas this ap-
proach can be easily applied to other groups or populations,
for these models to be considered generalizable they will need
to be tested on other populations. Second, whereas perfor-
mance of these risk scores is comparable to previous studies
that used similar predictors, their performance is moderate.
Third, only data for individuals with complete data profiles
were included in this analysis. Alternatively, methods of data
imputation could be used to include data from more indi-
viduals enrolled in the A4 Study. Lastly, the risk scores would
likely benefit from the addition of other predictors such as

Figure 5 Percentage of Individuals for Each PARS Model
Who Are Aβ Positive Within Each Quartile of Risk
Score Points Calculated Using Test Dataset
Where the Maximum Risk Score is 100 Points

Aβ = β-amyloid; PARS = Positive Aβ Risk Score.
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blood-based biomarkers or longitudinal variables by improv-
ing prediction performance and robustness.

The development of the PARS models in this study dem-
onstrated an approach to creating risk scores that is simple
and results in models with few variables that perform
comparably to more complicated algorithms such as RF
models with or without variable selection. As such, the
models can be refined further using the same method on
datasets that have additional potentially informative vari-
ables, particularly volumetric MRI data or blood-based
biomarkers.
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