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ABSTRACT OF THE DISSERTATION

Testing Optimal Bandwidth for Zero Lugsail Estimators

by

Rebecca Kurtz-Garcia

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, September 2023

Dr. James Flegal, Chairperson

Test statistics, confidence intervals, and p-values all typically rely on an estimate

for variance. For data sets that are not independent and identically distributed (iid) caution

must be used when selecting a variance estimator. If the dependence structure is unknown

but stationary, a robust long run variance (LRV) estimator can be used which can handle

a wide variety of scenarios. Estimation of the LRV is of interest in various fields such as

time series, econometrics, spectral analysis, and Markov chain Monte Carlo simulations.

Spectral variance (SV) estimators are one of the most common LRV estimation

methods, but they suffer from a negative bias in the presence of positive correlation. An

alternative zero lugsail estimator has been proposed to combat this issue which has a zero

asymptotic bias regardless of correlation. The optimal bias properties come at the expense

of increased variability which causes testing error rates to suffer. Further advancements

have been made regarding nonstandard limiting distributions that better incorporate the

variability of LRV estimators. The zero lugsail estimator and the nonstandard limiting

distribution address different issues, the former being bias and the latter variability. In
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conjunction the two mechanics yield a marked improvement for inference procedures that

rely on LRV estimators.

Both SV and zero lugsail estimators rely on a bandwidth parameter, a critical

component for the estimation process. For SV estimators bandwidth selection typically

revolves around the bias and variance of a LRV estimator. Most SV bandwidth rules do

not apply to the zero lugsail estimator because of its optimal bias properties. Currently no

guidelines exist for selecting a bandwidth for the zero lugsail estimator. We propose a testing

optimal bandwidth rule for zero lugsail estimators when relying on nonstandard limiting

distributions. With this procedure we can greatly improve bias, account for variability, and

obtain an estimator optimized for inference.
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Chapter 1

Introduction

Random vector processes appear in time series, econometrics, spectral analysis,

and steady state simulation. Although the practical applications, set ups, assumptions, and

priorities of these realms differ, the problem space is notably similar, where each field works

with serially correlated multivariate data. With correlated data it is difficult to estimate

the long run variance (LRV), which we denote as Ω. The LRV is the product of the sample

size and asymptotic variance of the mean vector, and is a critical component for inference

procedures. Estimating Ω is especially difficult when the error structure is unknown and

the data is positively correlated. Andrews [1], Newey & West [41], and Priestley [49] are

prominent works that investigate this issue.

It is well known that under reasonable assumptions that the asymptotic LRV is

equal to an infinite sum of autocovariance matrices, Ω =
∑∞

s=−∞ Γ(s) [11, 22, 67]. One

may have a natural instinct to estimate the LRV by using a sum of estimated autocovari-

ance matrices that spans the range of the data, i.e. Ω̂
(N)
T =

∑T−1
s=−(T−1) Γ̂(s). However,
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this estimator is problematic for four reasons. First, in a finite sample setting estimated

autocovariance matrices with large lags suffer from boundary effects and behave sporadi-

cally. Second, the estimator is not consistent, increasing the sample size does not increase

stability [49, Section 6.2.3]. Third, test statistics depending on LRV estimators typically

do not converge quickly to a standard limiting distribution due to the estimation of the

LRV [1, 25]. This problem is not specific to the Ω̂
(N)
T , but to LRV estimators generally.

Lastly, while Ω is asymptotically positive semi-definite, Ω̂
(N)
T may not be. Lack of positive

semi-definiteness is typically the easiest issue to address [35, 36, 37, 61].

To combat these issues several alternative estimators to Ω̂
(N)
T have been proposed,

e.g. spectral variance (SV) [1, 41, 49], steep origin [46], flat top [47, 48], and lugsail es-

timators [61]. These methods apply some sort of weighting scheme to the autocovariance

matrices to control boundary effects and the general estimation process. SV estimators are

perhaps the most common and consist of two tuning parameters, a kernel function κ∗ and

a bandwidth parameter b ∈ [0, 1]. Define the SV estimator as

Ω̂T =
T−1∑

h=−(T−1)

κ∗
(
h

bT

)
Γ̂(h). (1.1)

The kernel function generates weights and is selected from a class of functions

K1 with various restrictions discussed in Chapter 2. The bandwidth is the proportion of

autocovariance matrices that are given a non-zero weight. Typically the only autocovariance

matrix given a unit weight is at lag zero, and the rest of the weights decrease as the lags

increase [49]. The SV estimator can be re-parameterized using a truncation parameter

M = bT , the lag of the largest non-zero autocovariance matrix. However, we avoid this

construction to keep the notation consistent throughout. A chief benefit of the SV estimator
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is that with the kernel function and tuning parameters we can control the general variability

of Ω̂T . However, it comes at a cost of having a negatively biased estimator in the presence

of positive correlation [1, 14].

When assuming that bT → ∞ but at a slower rate than T → ∞, the SV estimator

is consistent. We refer to the results generated under this construction as small-b asymptotic

theory and to SV estimators as being heteroskedastic and autocorrelation consistent (HAC)

[41, 65]. Under this framework standard limiting distributions can be used; however, they

are known to not represent finite data sets well, especially in the presence of high correlation

[1, 17, 40]. To combat this issue research has been dedicated to optimizing bandwidth and

kernel selection. The foremost rule for classical SV estimators under this framework is based

on asymptotic mean squared error (AMSE), but the discrepancy still persists [1].

Keifer & Vogelsang [24, 25] considered foregoing the assumption that bT → ∞

and instead assumed that b is a fixed number. We refer to the results generated under this

construction as fixed-b asymptotic theory. In this context the SV estimator is no longer

consistent and we instead refer to it as being heteroskedastic and autocorrelation robust

(HAR) [14, 39]. Standard limiting distributions are no long valid, but instead nonstandard

distributions which better capture the distributional properties of estimating the LRV can

be used [14, 24, 25]. The nonstandard limiting theory opens different avenues for accounting

for the variability of estimating Ω and optimizing the tuning parameters.

The steep origin, flat top, and lugsail estimators can all be considered as transfor-

mations or generalizations of the traditional SV estimator. In addition to the bandwidth

and kernel, these estimators rely on at least one other tuning parameter. The steep origin
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uses a parameter that exponentiates the weights generated by kernels in K1 [46]. In con-

trast, the flat top and lugsail estimators introduce parameters that inflate weights generated

by kernels in K1, and have the unique property that multiple lags near the origin can be

given a unit weight [48, 61]. The lugsail estimator goes a step further and allows some

weights to exceed one to offset the negative bias inherent to these estimators [61]. The

inflated weights of the lugsail estimator greatly decrease the bias while still controlling for

boundary effects.

Weighted orthonormal series (WOS) and series estimators are yet another alter-

native. The WOS estimator is similar to a SV estimator but it approximates the weights

generated by κ∗ ∈ K1 using a series of K orthonormal basis functions [29, 53]. The series

estimator is the same as the WOS estimator except that it approximates the weights of a

steep origin estimator instead [52].

In addition, batch estimators have also been proposed as LRV estimators and are

especially popular when working with highly correlated data sets [38]. In particular, the

batch means estimator [7, 32] is used in Markov Chain Monte Carlo (MCMC) settings, and

a comparable univariate version is used in econometric settings, which we will refer to as

a batch betas estimator [17, 40]. The idea of a batch estimator is to separate the data

into a smaller subsets, or batches. Batch statistics then act as data points which should

be less correlated then the original data, and the batch statistics are then combined via

a weighting scheme. This construction decreases discrepancy from the exact test statistic

distribution and limiting distribution [14, 40]. Some connections have been drawn between

the batch beta estimator to the t-distribution [14, 40], and the fixed-b distribution through
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a connection to WOS estimators under specific settings [14, 27]. However, to the best of our

knowledge batch estimators have not been connected to the fixed-b distribution generally.

When data sets have a high positive correlation the problems inherent to LRV

estimation are pronounced [1, 40]. To avoid these problems practitioners typically filter

observations as a preprocessing step to decorrelate data. Parameter selection for these

LRV estimators is typically driven by the bias and the variability of the estimator. Data

filtering is used to mitigate bias issues in the presence of high positive correlation, and

down weighing autocovariance matrices is a key component that controls variability. The

lugsail estimator defies common practice by inflating the weights to decrease the bias at the

cost of variability. Although lugsail estimators have high variability, they free practitioners

to collect data at a higher frequency in the presence of high positive correlation. Lugsail

estimators are expected to perform well because the inflated weights decrease the bias and

the ability to record data at a higher sampling frequency improves power [1, 2, 43].

Inference motivated loss functions using testing error rates, power, and coverage

probability error have been proposed for the SV [54, 56], series, steep origin [53], and WOS

estimators [29, 27] using fixed-b limiting theory. Most rules rely on bias properties that

lugsail estimators do not possess, and hence do not apply. To the best of our knowledge,

lugsail estimators do not currently have guidelines for finding an optimal bandwidth in

either the small-b or fixed-b setting. The lugsail estimator using ‘zero’ lugsail settings, i.e.

zero lugsail estimator, is the most elusive as the asymptotic bias of the estimator is zero

[61]. It also the most widely applicable of the lugsail settings because of this property.
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The LRV estimators discussed are not distinct, and all overlap with at least one

other type of estimator under specific settings. For example, there are strong connections

between the lugsail and SV estimators, and connections between the lugsail, flat top, and

batch means estimators under specific settings. We focus on the zero lugsail estimator due

to its flexibility, versatility, relationship to other estimators, and optimal bias properties.

The focus of this document is to address issues inherent to LRV estimation and

inference, and to obtain an optimal inference procedure. Specifically we concentrate on the

zero lugsail estimator and use fixed-b limiting theory to find a testing optimal bandwidth rule

that accounts for the estimator’s ideal bias characteristics. We assume the data is positively

correlated unless otherwise specified. In addition, we also focus on highly correlated data

and the effects thereof. Chapter 2 formerly establishes assumptions and the problem space.

Chapters 3 and 4 verify and derive properties related to the test statistic using infinite

and finite samples, respectively. Chapter 5 derives expressions for the testing error rates

and establishes an optimal bandwidth rule. Chapter 6 discusses practical considerations.

Lastly, Chapter 7 concludes with a simulation study, application, and brief discussion. Our

results largely follow Sun [54], with the major contributions being verifying and extending

fixed-b results to include lugsail estimators, incorporating more information related to the

bias, and deriving an optimal bandwidth rule for the zero lugsail estimator.
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Chapter 2

Autocorrelation Robust Testing

and Long Run Variance Estimators

2.1 Set Up and Assumptions

We use a standard generalized method of moments (GMM) framework which is

valid for a wide variety of applications [12, 24, 25, 54]. Consider a vector of parameters

θ ∈ Θ ⊆ Rp. Let θ0 be the true value of θ, and vt denote a vector of observed values at time

t. Assume the following moment conditions,

E[f(vt; θ0)] = 0

where t = (1, . . . , T ), f(vt; θ) is a m× 1 vector of twice differentiable continuous real valued

functions, m ≥ p, and E[f(vt; θ)] has rank p, i.e. E
(
∂f(vt;θ)

∂θ′

)
= p. The GMM estimator of

θ is defined as

θ̂T := argmin
θ∈Θ

1

T
gT (θ)

′WT gT (θ)
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where gt(θ) =
1
T

∑t
j=1 f(vj ; θ), and WT is a m×m weighting matrix. The matrix WT has

a subscript T to emphasize that this weighting matrix can be dependent on the sample.

Define

Gt(θ) :=
∂gt(θ)

∂θ′

=
1

T

t∑
j=1

∂f(vj ; θ)

∂θ

Go(θ) :=E

[
∂f(vj ; θ)

∂θ

]
.

We consider the following set of assumptions which are common under the fixed-b asymp-

totic framework [24, 25, 27, 54]. Let
p→ and

d→ indicate convergence in probability and

convergence in distribution, respectively.

Assumption 1: θ̂T
p→ θ0 and θ0 is an interior point of Θ.

Assumption 2: G⌊rT ⌋(θ̃T )
p→ rG0 uniformly in r ∈ [0, 1] for any θ̃T whose elements are

between the corresponding elements of θ̂T and θ0.

Assumption 3: WT is positive semi-definite and WT
p→ W∞ where W∞ is a matrix of

constants and G′
0W∞G0 is positive definite.

Assumption 4: T−1/2
∑⌊rT ⌋

t=1 ut
d→ ΛBd(r) where

Ω =
∞∑

j=−∞
E
[
f(vt; θ0)f(vt−j , θ0)

′] (2.1)

=
∞∑

j=−∞
E[ut, u

′
t−j ]

=

∞∑
j=−∞

Γ(j)

= ΛΛ′

8



where Bd(r) is a standard d-dimensional Brownian motion, and Γ(j) is the autocovariance

matrix at lag j.

Assumption 5: (i) The sequence ut is a stationary Gaussian process. (ii) For any c ∈ Rd,

the spectral density of c′ut is bounded above and away from zero in a neighborhood around

the origin. (iii) For some r ∈ [0, 2 + η] and η > 0,

hr :=

∞∑
s=−∞

|s|r|Γ(s)| <∞. (2.2)

Assumptions 1-3 are straight forward and standard in the literature. Assumption

4 is required for the functional central limit theorem (FCLT). This assumption is less strict

than in other settings. For example, Andrews [1] requires that f(vt; θ0) is a zero mean fourth-

order α-mixing process which implies assumption 4. See works by [45, 54, 58, 64] for a larger

discussion on sufficient conditions under various settings. Assumption 5 provides conditions

for deriving the bias of LRV estimators and obtaining expressions for the distribution of

the test statistics under fixed-b assumptions [27, 54].

Lemma 1: Under assumptions 1 - 4,

T 1/2(θ̂T − θ0)
d→(G0W∞G0)

−1G0W∞ΛBp(1) + op(1)

∼N(0, V )

where V = (G′
0W∞G0)

−1(G′
0W∞ΛΛ′W∞G

′
0)(G

′
0W∞G0)

−1.

Begin proof.
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Following the work of [25, 54], under Assumption 2 we have the following Taylor Series

approximation

gT (θ̂T ) ≈gT (θ0) +GT (θ0)(θ̂T − θ0) + op(1).

Multiply both sides of the equation by GT (θ̂T )
′WT ,

GT (θ̂T )
′WT gT (θ̂T ) ≈GT (θ̂T )

′WT gT (θ) +GT (θ̂T )
′WTGT (θ0)(θ̂T − θ0) + op(1).

Observe that we pick θ̂T such that it minimizes gT (θ̂T )WT gT (θ̂T ). Alternatively, we can

think of θ̂T as the estimator such that G′
T (θ̂T )WT gT (θ̂T ) = 0 by using the chain rule,

0 ≈GT (θ̂T )
′WT gT (θ) +GT (θ̂T )

′WTGT (θ0)(θ̂T − θ0) + op(1).

Solve for (θ̂T − θ0) and multiply both sides by T−1/2,

T 1/2(θ̂T − θ0) ≈
[
GT (θ̂T )

′WTGT (θ0)
]−1

GT (θ̂T )
′WTT

−1/2gT (θ0).

Under Assumption 3 and Assumption 4 we have the following result,

T 1/2(θ̂T − θ0)
d→(G0W∞G0)

−1G0W∞ΛBp(1) + op(1).

■

Let r() be a d × 1 vector of twice differentiable functions, and R(θ) = ∂r(θ)
∂θ′ .

Consider the following set of hypotheses,

H0 : r(θ0) = 0

HA : r(θ0) ̸= 0.

(2.3)

Using the δ-method and Lemma 1 we know that

T 1/2r(θ̂T )
d→ N

(
0, R(θ0)

′V R(θ0)
)
.

10



The typical Wald test statistics in this setting would be

FT =(T )r(θ̂T )
[
R(θ̂T )

′V̂ R(θ̂T )
]−1

r(θ̂T )/d (2.4)

tT =T−1/2r(θ̂T )
[
R(θ̂T )

′V̂ R(θ̂T )
]−1

where

V̂ =
[
GT (θ̂T )

′WTGT (θ̂T )
]−1

GT (θ̂T )
′WT Σ̂TWTGT (θ̂T )

[
GT (θ̂T )

′WTGT (θ̂T )
]−1

and (θ̂T , Σ̂T ) are consistent estimates of (θ,Σ).

2.2 Long Run Variance Estimators

Many estimators for the LRV have been proposed, and SV estimators are per-

haps the most common. SV estimators are seen in many applications and fields, and go

by different names. In econometrics they are called heteroskedastic and autocorrelation

consistent/robust (HAC/HAR) estimators [41, 65], and in time series they may be called

kernel estimators [1, 11]. These estimators are also used in the frequency domain [49],

and in MCMC applications [62]. SV estimators consist of two tuning parameters, a kernel

function and a bandwidth parameter. We can construct the SV estimator in the following

ways,

Ω̂T =

T−1∑
h=−(T−1)

κ∗
(
h

bT

)
Γ̂(h) (2.5)

=

T−1∑
h=−(T−1)

κ∗
(
h

bT

)
1

T

T−h∑
t=1

ûtû
′
t+h

=
1

T

T∑
t=1

T∑
h=1

κ∗
(
t− h

bT

)
ûtû

′
h

11



where Γ̂(h) is an estimator for the autocovariance function Γ̂(h), and ût is a plug in estimator

for ut,

ût =−R(θ̂T )
(
G′

T (θ̂T )WTGT (θ̂T )
)−1

G′
T (θ̂T )WT f(vt, θ̂T ).

Figure 2.1: Mother Kernels, class K1

We typically choose the kernel for an SV from the following class of functions:

K1 ={κ∗ : R → [−1, 1]
∣∣∣κ∗(x) = κ∗(−x), κ∗(0) = 1, c2 <∞,

∫ ∞

0
κ∗(x)xdx <∞,

κ∗ is piece wise smooth,K∗(ω) ≥ 0,∀ω > 0},

where K∗(ω) = 1
2π

∫∞
−∞ κ∗(u) exp(−iuω)du is the Fourier transformation of κ∗ and ci =∫∞

−∞ (κ∗(u))i du. The most common functions in this class only produce non-negative

weights, with a notable exception being the quadratic spectral kernel, defined below. Re-

quiring that kernel functions be piece wise smooth is convenient both mathematically and

in practice. Symmetry ensures that are estimator will not have imaginary numbers [49].
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Restricting the squared integral and first moment of the kernel to be finite is necessary to de-

rive fixed-b distributional expressions, and requiring K∗(u) to be non-negative ensures that

the SV estimator is positive semi-definite. The following kernel functions are all common,

belong to class K1, and are illustrated in Figure 2.1:

Bartlett κ(x) =


1− |x| if |x| ≤ 1

0 if otherwise

;

Parzen κ(x) =



1− 6x2 + 6|x|3 if 0 ≤ |x| ≤ 1
2

2(1− |x|)3 if 1
2 ≤ |x| ≤ 1

0 if otherwise

;

Quadratic Spectral κ(x) =
25

12π2x2

(
sin(6πx/5)

6πx/5
− cos(6πx/5)

)
.

Alternatively, we can construct the SV estimator in the frequency domain by

evaluating the spectral density function at frequency zero,

ĥ(ω) =

∫ π

−π
IT (θ)WT (ω − θ)dθ

=
1

2π

T−1∑
h=−(T−1)

κ∗
(
h

bT

)
Γ̂(h) exp(−ihω)
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where

IT (ω) =
1

2π

T−1∑
s=−(T−1)

Γ̂(s) exp(−isω)

WT (ω) =
1

2π

T−1∑
s=−(T−1)

κ∗
( s

bT

)
exp(−isω)

= bT
∞∑

j=−∞
K∗ (bT (ω + 2πj)) .

The function IT (ω) is the estimated periodogram andWT (ω) is the weight assigned

to each frequency. The weight function is directly related to the Fourier transformation of

the kernel, WT (ω) = ⌊bT ⌋
∑∞

j=−∞K∗ (⌊bT ⌋ (ω + 2πj)) [49, page 447].

It is well known that using standard small-b limiting theory results in an inflated

Type 1 error rate [1, 25]. The inflated error rate is largely attributed to the bias and the

variability of the SV estimator. For illustrative purposes we outline sources of bias and

variability below for a positively correlated second order stationary process.
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Ω =
∞∑

h=−∞
Γ(h)

≥
T−1∑

h=−(T−1)

Γ(h) Finite Sampling (2.6)

≈
T−1∑

h=−(T−1)

T−h∑
t=1

1

T − h
E[ût, û

′
t+|h|] Estimation (2.7)

≥
T−1∑

h=−(T−1)

T−|h|∑
t=1

1

T
E[ûtû

′
t+|h|] Autocov. Estimator (2.8)

=
T−1∑

h=−(T−1)

Γ̂(h)

=

⌊bT ⌋∑
h=−⌊bT ⌋

E[Γ̂(h)] +

−(⌊bT ⌋+1)∑
h=−(T−1)

E[Γ̂(h)] +
T−1∑

h=(⌊bT ⌋+1)

E[Γ̂(h)]

≥
⌊bT ⌋∑

h=−⌊bT ⌋

E[Γ̂(h)] + 0 + 0 Bandwidth (2.9)

≥
⌊bT ⌋∑

h=−⌊bT ⌋

κ∗
(
h

bT

)
E[Γ̂(h)] Kernel Function (2.10)

The first source of bias (2.6) is unavoidable in the estimation process. Recall

the LRV is comprised of an infinite sum of the autocovariance matrices, but due to finite

sampling it is only feasible to estimate the first T − 1 autocovariance matrices. However, it

is usually not concerning to ignore the autocovariance matrices beyond lag T − 1 because

they typically tend towards zero as the lag increases.

The next component (2.7) introduces variability due to the estimation process of

Ω in general. This variability is also influenced by estimating parameters to obtain an es-

timate for ut. We typically use plug-in estimated parameters instead of the hypothesized

parameters in the estimation process because the former has higher power [10, 55]. Observe
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that the test statistic FT has both a random numerator and denominator. By Slutsky’s

theorem the test statistic converges to a χ2 distribution as the sample goes to infinity, but

this limiting distribution does not capture the variability in the denominator. For finite

samples, the variability inherent to estimating Ω has a cascading affect on the variability of

test statistic. The tails of the true distribution of the test statistic using finite samples are

heavier than the χ2 limiting distribution because of the two sources of variability. A analo-

gous effect is observed in the classical univariate iid setting where we use the t-distribution

instead of the standard normal distribution to capture the extra variability induced by es-

timating the variance. When the sample size exceeds 30 the distributions are the same up

to several decimal places. In contrast, for highly correlated data the sample size must be

exceptionally large to have a similar effect.

Next we see that the lag-h autocovariance estimator is biased by having T in the

denominator instead of T − |h|. This biased autocovariance estimator is common, and is

used in most computer programs because it has less variability. This bias is less pronounced

when h is small relative to T , and when h is closer to T the decrease in variability by using

the biased estimator is typically a worthy trade [49, Section 5.3.3]. It is also needed to

ensure the estimate is positive semi-definite.

The bandwidth parameter (2.9) dictates the proportion of non-zero autocovariance

matrices we considered for the estimator, further limiting the amount of autocovariance

matrices incorporated in the estimation process. It also proportionally effects the weights

of the kernel function. We will refer to the expected value of the sum of the autocovariance

matrices beyond lag ⌊bT ⌋, including those beyond lag T − 1, as the finite sampling bias.
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In general, the bias and variability of the estimator of Ω have an inverse relationship with

b. The variability of the estimator decreases as the bandwidth parameter decreases, and in

contrast, the bias increases as the bandwidth parameter decreases. This relationship will

be further illustrated in Theorem 1.

We also have bias attributed to the kernel function (2.10), which is typically one

of the largest sources of bias and directly affects variability [5]. The kernel function down

weights the remaining non-zero autocovariance matrices creating a negative bias; however,

this down weight also scales the variability attributed to each autocovariance matrix to be

smaller. We refer to the kernel bias as the expected value of the sum of the difference

between the down weighted autocovariances and their respective true values.

Figure 2.2: Autocovariance functions for an AR(1) model correlation coefficient ρ = .25
and ρ = .75 using a bandwidth of b = 0.022.

Not explicitly represented here is the dimensionality bias, the biases listed above

become more impactful when the number of restrictions under null hypotheses is larger,
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which is related to the number of parameters in the model because d ≥ p. There is also

the strength of the correlation to consider. Consider estimating the LRV from a standard

AR(1) model with Bartlett kernel κ∗, sample size T = 200, and b = 0.022. In Figure 2.2 we

plot the theoretical autocovariance function with autocorrelation coefficient ρ = 0.25 and

ρ = 0.75, and overlaid the kernel function with the given bandwidth. The estimated LRV

is the sum of the product of the estimated autocovariance and the weight generated by the

kernel function. The kernel function and the finite sampling bias are listed in the top corner

of each figure. Observe that correlation strength effects both the kernel and finite sampling

bias, both of which are more pronounced in the presence of higher correlation.

Individually the components of the SV estimation process listed above are not

typically of concern and several are unavoidable. However, together these components can

have a cascading effect on the test statistic and consequently the testing procedures. Most

of these aspects cause the test statistic to be larger than what we would otherwise expect,

which is why we can observe an inflated Type 1 error rate for positively correlated second

order stationary processes.

2.2.1 Lugsail Estimators

Several works have focused on optimizing SV estimators while restricting the ker-

nels to class K1 [1, 27, 49, 57], the constant challenge being balancing bias and variability.

Recently a new estimation procedure has been proposed by Vats and Flegal [61] to offset

the negative bias inherent to the kernels in K1. This estimator has two characterizations.
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It can be thought of as a linear combination of SV estimators with different bandwidths

where κ∗ ∈ K1,

Ω̂
(L)
T =

1

1− c
Ω̂T,b −

c

1− c
Ω̂T,b/r, (2.11)

or as a SV estimator with a transformed kernel function that belongs in a broader class of

kernels, K2. We reference the first interpretation as the lugsail estimator. For the second

interpretation we refer to the transformed kernel as the lugsail kernel, and the original

kernel function as the mother kernel, which is part of class K1. This terminology is similar

to that used for the steep origin kernels [46]. Let K2 be the set of lugsail kernels,

K2 ={κ(·) : R → (−∞,∞)
∣∣∣κ∗ ∈ K1, c ∈ [0, 1), r ≥ 1, κ(x) =

1

1− c
κ∗(x)− c

1− c
κ∗(xr)}.

Class K2 expands the range of kernel functions we can consider for SV estimators.

When r = 1 and c = 0 then the lugsail kernel is equal to it’s mother kernel, i.e. K1 ⊂ K2.

Lugsail kernels do not necessarily share the same properties as the mother kernels. For

example, for κ ∈ K2 − K1 the weights may exceed 1, and K(θ) is no longer guaranteed to

be non-negative. For simplicity assume κ ∈ K2 and κ∗ ∈ K1 unless otherwise stated.

For all kernels κ ∈ K2 we define their corresponding characteristic component as

defined by Parzen [42],

q = max

{
q : q ∈ N+, gq = lim

x→0

1− κ(x)

|x|q
<∞

}
(2.12)

where gq is the generalized derivative of the kernel. The statistics q and gq are useful for

describing specific kernel characteristics. For the Bartlett, Parzen, and quadratic spectral

kernels q is equal to 1, 2, and 2, respectively. A necessary condition for positive semi-

definiteness is that q ≤ 2 [49].
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This lugsail estimator has four tuning parameters b, c, r, and the mother kernel.

The aim of the new tuning parameters (r, c) is to inflate the weight function to offset the

negative kernel and finite sampling bias inherent to the mother kernel. There are no firm or

optimal guidelines for picking (r, c), but a rule-of-thumb has been recommended [61]. If any

arbitrary sequence of random variables that has an underlying process similar to that of an

AR(1) model with correlation coefficient ρ ∈ {[0, 0.7), [0.7, 0.95), [0.95, 1)} then we classify

the situation as moderate, high, or extreme, respectively. The recommended settings for

these three situations are in Table 2.1. The recommendations are in response to the strength

of the correlation because the biases of the SV estimator are more pronounced for data sets

with higher correlation [61]. Observe that the adaptive setting relies on an initial estimate

for the parameter b. We recommend using the optimal zero lugsail bandwidth in Chapter

5 as the initial estimate, or another comparable testing optimal rule.

Correlation Lugsail Transformation r cr
Mother 1 0

Moderate Zero 2 r−q

Moderate-High Adapt 2 log(T )−log(⌊bT ⌋)+1
rq(log(T )−log(⌊bT ⌋))+1

High-Extreme Over 3 2
(1+rq)

Table 2.1: Lugsail Parameter Recommendations.

The zero lugsail kernel is designed to have an asymptotic kernel bias of zero, which

will be apparent in Theorem 1. It is similar to that of a flat-top estimator in that it ‘flattens’

the kernel function around the origin [48]. In contrast, the adaptive and over lugsail kernels

generate weights that exceed one, which over correct for the kernel bias to offset the finite
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sampling bias. Figure 2.3 contains an illustration of the lugsail kernels that correspond to

the settings listed in Table 2.1.

Figure 2.3: Kernel functions in K2 with mother (solid black), zero (dashed red), adaptive
(dotted blue), and over (dot-dashed green) lugsail settings. Adaptive lugsail kernel was
generated with the initial bandwidth b = 0.022.

Theorem 1: Let κ ∈ K2, q0 ≤ q, and assume that bT → ∞ as T → ∞, but at a slower

rate. Under Assumption 5iii

Bias(Ω̂T ) =− (bT )−q0gq0hq0 + o
(
(bT )−q0

)
=

(
1− crq0

1− c

)
(bT )−q0g∗q0hq0 + o

(
(bT )−q0

)
V ar(vec(Ω̂T )) = (c2b) (Id2 +Kdd)Ω⊗ Ω+ o(b)

where ⊗ is the Kronecker product, and Knm is a n×m commutation matrix.

Begin proof.
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We follow the work of Priestly [49, pg 459] and Parzen [42]. Begin by plugging in the

estimator for Ω̂T , accounting for the bias of autocovariance function Γ̂(s), and rearranging

terms,

Bias(Ω̂T ) =E
(
Ω̂T

)
−

∞∑
s=−∞

Γ(s)

=E

 T−1∑
s=−(T−1)

κ∗
( s

bT

)
Γ̂(s)

−
∞∑

s=−∞
Γ(s)

=

T−1∑
s=−(T−1)

κ∗
( s

bT

)
E
(
Γ̂(s)

)
−

∞∑
s=−∞

Γ(s)

=

T−1∑
s=−(T−1)

κ∗
( s

bT

)(
1− |s|

T

)
Γ(s)−

∞∑
s=−∞

Γ(s)

=
T−1∑

s=−(T−1)

(
κ∗
( s

bT

)(
1− |s|

T

)
− 1

)
Γ(s)

−
∞∑

|s|≥T

Γ(s)

=
T−1∑

s=−(T−1)

(
κ∗
( s

bT

)
− 1
)
Γ(s)− 1

T

T−1∑
s=−(T−1)

|s|Γ(s)

−
∞∑

|s|≥T

Γ(s). (2.13)

The bias expression in (2.13) has three components: the first term is caused by the kernel

function alone, the second term is the ‘interaction’ between the kernel function and the

autocovariance estimator, and the last term comes from finite sampling. Our given assump-

tion implies that ((bT )q0/T ) → 0 as T → ∞. This lets us replace the last two terms with

o((bT )−q0), and we are left with
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Bias(Ω̂T ) =
T−1∑

s=−(T−1)

(
κ∗
( s

bT

)
− 1
)
Γ(s) + o

(
(bT )−q0

)
.

To assess the asymptotic bias we take the limit of the first term as T goes to infinity. Under

the given assumptions,

lim
T→∞

∑T−1
s=−(T−1)

(
κ∗
(

s
bT

)
− 1
)
Γ(s)

=− lim
T→∞

T−1∑
s=−(T−1)

(
1− κ∗

( s

bT

))
Γ(s)

=− lim
bT→∞

T−1∑
s=−(T−1)

(
1− κ∗

( s

bT

))
Γ(s)

=−
T−1∑

s=−(T−1)

lim
bT→∞

(
1− κ∗

( s

bT

))
Γ(s)

=−
T−1∑

s=−(T−1)

lim
1/bT→0

(
1− κ∗

( s

bT

))
Γ(s)

=−
T−1∑

s=−(T−1)

lim
s/bT→0

(
1− κ∗

( s

bT

))
Γ(s)

=−
T−1∑

s=−(T−1)

lim
s/bT→0

(
1− κ∗

(
s
bT

))
(s/bT )q0

Γ(s)bT−q0 |s|q0

=−
T−1∑

s=−(T−1)

gqΓ(s)bT
−q0 |s|−q0

=− (bT )−q0gq0hq0 .

By linearity of expectations we can find the bias expression for κ ∈ K2. The proof in

Theorem 1b can be found in [49, 61] among others.

■
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Bartlett Parzen QS

q 1 2 2

Mother c∗1 1.00 0.75 1.25
c∗2 0.67 0.54 1.00
g∗q 1.00 6.00 1.42

Zero c1 1.5 0.80 1.52
c2 1.33 0.60 1.29
gq 0 0 0

Adaptive c1 1.64 0.81 1.57
c2 1.57 0.62 1.36
gq -0.273 -1.35 -0.32

Over c1 2 0.81 1.51
c2 2.33 0.57 1.31
gq -1.00 -6.00 -1.42

Table 2.2: Kernel Summary Statistics.

Through Theorem 1 we observe that the asymptotic kernel bias and asymptotic

variability of the SV estimator is reflected through gq and c2, respectively. In addition, the

characteristic component q plays a large role in the estimation process. We also note that

the bias expression captures the bias from the kernel but nothing more. Table 2.2 contains a

summary of useful kernel statistics. Notice how the generalized derivative changes under the

different settings. The mother kernel’s generalized derivative is g∗q , and the corresponding

lugsail generalized derivative is gq =
(
1−crq

1−c

)
g∗q . This indicates that the lugsail generalized

derivative is typically less than the mother kernel’s generalized derivative. We can also

see the effect of over correction for the adaptive and over lugsail kernel because the sign

for the expression of bias will change, which is by design. We observe from Table 2.2 and

Theorem 1 that the more inflated the kernel function is, the more c2 increases, and hence

the variability of Ω̂T .

24



With the exception of the zero lugsail kernel, lugsail kernels will have the same

characteristic component (q) as the mother kernel. Due to its ‘flatness’ the zero-lugsail ker-

nel has an infinite characteristic component, just like the flat top kernels and the truncated

kernel (κ(x) = 1 for x < b, 0 elsewhere). Therefore q0 in Theorem 1 is limited by the

underlying model instead of the kernel function. For the standard class of autoregressive

processes with moving average (ARMA) residuals we can think of the spectral density as

possessing an essentially infinite number of derivatives [48]. This is a major advantage for

the zero lugsail kernel function because the overall bias of the SV estimator is dominated

by (bT )−q.

2.2.2 Centered Kernels

Another modification we implement is centering our error terms. Let κbT (t, s) =

κ
(
t−s
bT

)
, and observe κb(·, ·) : [0, 1]× [0, 1] → R. We continue to use the SV estimator with

lugsail kernels but instead of using the raw estimated errors we use the de-meaned estimated

error,

Ω̂T =
1

T

T∑
t=1

T∑
s=1

κbT (t, s) (ût − û)(ûs − û)′. (2.14)

We can think of this procedure as another transformation of the kernel function, which we

can see by factoring and rearranging terms, i.e.
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Figure 2.4: Riemann-Sum Approximation of Bartlett Kernel

Ω̂T =
1

T

T∑
t=1

T∑
s=1

κbT (t, s)
[
ûtû

′
s − ûtû

′ − û′sû+ uû
′
]

=
1

T

T∑
t=1

T∑
s=1

κbT (t, s)ûtû
′
s −

1

T

T∑
t=1

T∑
s=1

κbT (t, s)ûtû
′

− 1

T

T∑
t=1

T∑
s=1

κbT (t, s)ûû
′
s + ûû

′ 1

T

T∑
t=1

T∑
s=1

κbT (t, s).

Notice that
∑T

s=1 κbT (t, s)
1
T =

∫ 1
0 κb

(
t
T , r

)
dr as T → ∞ for any t, a Riemann integral. An

illustration of this is in Figure (2.4). This lets us further simplify,

Ω̂T =
1

T

T∑
t=1

T∑
s=1

κbT (t, s)ûtû
′
s −

T∑
t=1

[∫ 1

0
κb

(
t

T
, r

)
dr

]
ûtû

′

−
T∑

s=1

[∫ 1

0
κb

(
τ,
s

T

)
dτ

]
ûû′s + T ûû

′
∫ 1

0

∫ 1

0
κb(τ, r)dτdr.
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We further substitute û and rearrange terms,

Ω̂T =
1

T

T∑
t=1

T∑
s=1

κbT (t, s)ûtû
′
s −

T∑
t=1

[∫ 1

0
κb

(
t

T
, r

)
dr

]
ût

{
1

T

T∑
s=1

ûs

}′

−
T∑

s=1

[∫ 1

0
κb

(
τ,
s

T

)
dτ

]{
1

T

T∑
t=1

ût

}
û′s

+ T

{
1

T

T∑
t=1

ût

}{
1

T

T∑
s=1

ûs

}′ ∫ 1

0

∫ 1

0
κb(τ, r)dτdr

=
1

T

T∑
t=1

T∑
s=1

κbT (t, s)ûtû
′
s −

1

T

T∑
t=1

T∑
s=1

[∫ 1

0
κb

(
t

T
, r

)
dr

]
ût {ûs}′

− 1

T

T∑
t=1

T∑
s=1

[∫ 1

0
κb

(
τ,
s

T

)
dτ

]
{ût} û′s

+
1

T

T∑
t=1

T∑
t=1

{ût} {ûs}′
∫ 1

0

∫ 1

0
κb(τ, r)dτdr

=
1

T

T∑
t=1

T∑
s=1

[
κbT (t, s)−

∫ 1

0
κb

(
t

T
, r

)
dr −

∫ 1

0
κb

(
τ,
s

T

)
dτ

+

∫ 1

0

∫ 1

0
κb(τ, r)dτdr

]
ûtû

′
s.

Therefore, the estimator in equation (2.14) is equal to

Ω̂T =
1

T

T∑
t=1

T∑
s=1

κ̃

(
t− s

bT

)
ũtũ

′
s, (2.15)

where

κ̃bT (t, s) := κbT (t, s)−
∫ 1

0
κb

(
t

T
, r

)
dr −

∫ 1

0
κb

(
τ,
s

T

)
dτ +

∫ 1

0

∫ 1

0
κb(r, τ)drdτ (2.16)

and ũt = ût − û. The kernel function κ̃ is known as the ‘centered’ kernel. We define a new

class of centered lugsail kernels K3,

K3 ={κ̃ : R → [−1, 1]
∣∣∣ where κ̃ is defined in (2.16) with κ ∈ K2}.

The centered kernel function was proposed by Hall [10] and used by others [30,

54, 55]. In GMM estimation procedures it is assumed that the model is correctly specified
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and that the moment conditions in (2.1) are valid. However, when tests are over specified

or mis-specified the power of the test suffers. A more powerful test is obtained when used

the centered kernel regardless if the moment conditions in (2.1) are correct. The centered

kernels inherit the properties described in Table 2.2 of the kernel they are constructed with,

although they induce an additional bias term due to centering the errors [49, 63], which we

refer to as the de-meaning bias.

Corollary 1: Let κ̃ ∈ K3, q0 ≤ q, and assume that bT → ∞ as T → ∞, but at a slower

rate. Under Assumption 4 and 5iii

Bias(Ω̂T ) =

(
1− crq0

1− c

)
(bT )−q0g∗q0hq0 − Ωc1b+ o

(
(bT )−q0

)
.

Begin proof.

In Theorem 1a we used errors terms that are not de-meaned, which have the expected value:

E(Γ̂(s)) =
(
1− |s|

T

)
Γ(s), due to the bias of the autocovariance estimator. Suppose that

E(ût) = µ, then this standard estimator for Γ(s) can be rewritten as, Γ̂(s) = 1
T

∑T−s
t=1 (ût −

µ)(ût+s − µ)′. In most frameworks under the null hypothesis we have µ = 0. However,

we are instead relying on the de-meaned errors and want to find the expected value for

Γ̃(s) = 1
T

∑T−|s|
t=1 (ût − û)(ût+|s| − û)′. We can do this by breaking down the components of

Γ̂(s),
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Γ̂(s) =
1

T

T−|s|∑
t=1

(ût − µ)(ût+|s| − µ)′

=
1

T

T−|s|∑
t=1

[
(ût − û) + (û− µ)

] [
(ût+|s| − û) + (û− µ)

]′
=
1

T

T−|s|∑
t=1

[
(ût − û)(ût+s − û)′ + (ût − û)(û− µ)′

+ (û− µ)(ût+|s| − û)′ + (û− µ)(û− µ)′
]
.

We approximate 1
T

∑T
t=1(ut − µ) ≈ 1

T

∑T−|s|
t=1 (ut − µ) ≈ 0 to further simplify,

Γ̂(s) ≈ 1

T

T−|s|∑
t=1

[
(ût − û)(ût+|s| − û)′

]
+
T − |s|
T

(µ− û)(û− µ)′.

By rearranging terms, using Assumption 4, and taking the expected value we obtain,

Γ̂(s) ≈Γ̃(s) +
T − |s|
T

V ar
(
û
)

Γ̃(s) ≈Γ̂(s)− T − |s|
T

V ar
(
û
)

E
(
Γ̃(s)

)
=

(
1− |s|

T

)
Γ(s)− T − |s|

T 2
Ω.

Therefore, the expected value of Ω̂T with kernel function κ̃ is equal to equation (2.13) from

Theorem 1a plus the additional term,
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−
T−1∑

s=−(T−1)

κ∗
( s

bT

) (T − |s|)
T 2

Ω =− Ω

T−1∑
s=−(T−1)

(
1− |s|

T

)
κ∗
( s

bT

) 1

T

=− Ω

T−1∑
s=−(T−1)

(
1− |s|

T

)
κ∗
(
|s|
bT

)
1

T

=− Ω

∫ T−1

−(T−1)

(
1− |s|

T

)
κ∗
(
|s|
bT

)
ds

=− Ω

∫ bT

−(bT )

(
1− |s|

T

)
κ∗
(
|s|
bT

)
ds.

In the last step we recognize Riemann-Stieltjes integral. To simplify we use a u-substitution

with w = s
b , and recall properties of mother kernels,

−
T−1∑

s=−(T−1)

κ∗
( s

bT

) (T − |s|)
T 2

Ω =− Ω

∫ T

−T
bκ∗

(w
T

)
dw + 2Ω

∫ T

0
wb2κ∗

(w
T

)
dw

=− Ωc1b+ o
(
bT−q0

)
.

We have shown the result for a centered mother kernel. For a centered lugsail kernel we

can use linearity of expectations.

■

The additional bias term in Corollary 1 is due to de-meaning the errors. It follows

the results of Priestley [49, Section 5.3], and also corresponds the Edgeworth expansion

result by Velasco & Robinson [63, Lemma 2 & Lemma 6].

We must issue a note of caution. We have used the terms finite sampling bias,

bandwidth bias, kernel bias, de-meaning bias, and dimensionality bias; however, these as-
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pects of the estimation process are also intimately related to the variability of Ω̂T . For

convenience we follow convention and continue referring to these components as biases.
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Chapter 3

Asymptotic Behavior of the Test

Statistics

3.1 Test Statistic Corrections

Most applications utilize large sample tests which rely on familiar limiting distri-

butions for the test statistic by assuming the sample size is infinite. Large sample tests

are typically valid under a wide variety of settings which results in robust procedures and

streamline processes. They are particularly useful because exact distributions are not al-

ways tractable, difficult to compute, and not as versatile. However, large sample tests may

not be ‘good enough’ to accurately capture the behavior of the test statistic in practice.

For example, a standard one sample mean test with iid normal data with unknown variance

can rely on the standard normal distribution or a t-distribution, the former being the large

sample test and the latter being the exact test. The distributions are the same up to a
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certain margin of error when the sample size is over 30, so for many applications there is no

practical discrepancy between the two procedures. In other scenarios the sample size needs

to be impractically large to observe a similar behavior, causing the observed error rate to be

off by an egregious amount from the prescribed rate when using large sample distributions,

and resulting in a statistically invalid test.

Rubin [51] describes two different criteria for statistical validity in the frequentest

(non-Bayesian) context, randomized validity and confidence validity. Randomized validity

is when the observed Type I error rate is equal to α, and confidence validity is when the

observed Type I error rate is less than or equal to α. In either case, the rejection rate of the

procedure should be no larger than α, which is a standard requirement for Neyman-Pearson

based testing procedures [50]. In cases where our test statistic is not well represented by

the large sample limiting distribution there are generally two techniques used to correct

the discrepancy [3]: an alternative limiting distribution that better captures the properties

of finite sampling, or a new test statistic that is better approximated by the large sample

limiting distribution.

A conservative version of a combination of techniques for dependent stationary

univariate data has been purposed by Tukey [60] for modeling the distribution of Ω̂T ,

ν
ĥ(ω)

h(ω)
∼ χ2

ν

where ν = (bc2)
−1 is known as the equivalent degrees of freedom. The thought process, as

described by Priestly [49, page 466], is if a linear process {Yt} has normally distributed error

terms then each IT (ω) is an independent χ2 random variable and ĥ(ω) is a weighted linear

combination. However, these weights are typically unequal and hence Tukey’s adjustment

33



is used to scale the test statistic and select a χ2 distribution such that the finite sample

mean and variance of the test statistic match the limiting distribution.

For our purposes we focus on the distribution of the test statistic FT , which has a

χ2 large sample limiting distribution [1, 49]. This limiting distribution relies on the common

assumption that T → ∞, and an additional assumption specific to this setting that Tb→ ∞

at a slower rate than T . Because of this additional assumption the limiting distribution

and related findings are referred to as small-b asymptotic theory. As already discussed in

Chapters 1 and 2, this limiting distribution typically does not represent the test statistic

well because it does not capture the variability due to estimating the LRV and the bias the

of the estimator.

Like the Tukey procedure above, we propose a combination of techniques to better

capture the finite sample properties of the test statistic. The test procedure relies on an

alternative nonstandard limiting distribution under the assumption that T → ∞ but holds

b as a fixed value. This nonstandard limiting distribution is not tractable, so we further

approximate the probabilities using various procedures. The resulting liming distribution

and related findings are referred to as fixed-b asymptotic theory [24, 25]. We denote the

fixed-b random variable as F∞(d, b) ∼ F∞(d, b) and observe that

FT
d→F∞(d, b)

=Bd(1)
′Qd(b)

−1Bd(1)/d

=Bd(1)
′
[∫ 1

0

∫ 1

0
κ

(
r − s

bT

)
dB̃d(r)dB̃d(s)

]−1

Bd(1)/d (3.1)

where Qd(b) is a random variable independent of the standard d-dimensional Brownian

process Bd(1), and B̃d(r) is standard d-dimensional Brownian bridge process [25, 29, 54].
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The fixed-b distribution F∞(d, b) is dependent on the kernel function, bandwidth, and the

number of restrictions under the null. This is in contrast to the standard small-b limiting

distribution which only takes into account the number of restrictions under the null. We

will denote cαd (b) as the α fixed-b critical value, i.e. P (F∞ ≥ cαd (b)) = α.

The other adjustments we make are to the test statistic through the estimation

process of Ω̂T . We utilize the kernels in K3, i.e. centered lugsail kernels. The lugsail kernel

addresses the Type 1 error rate distortion due to the kernel bias, and the centering of the

kernel results in higher power when the model is mis-specified. With the alternative fixed-b

limiting theory and kernel adjustments we have a more powerful testing procedure that

achieves the prescribed Type 1 error rate at a faster rate.

3.2 Fixed-b Limiting Distribution

This section derives some of the more technical components of the fixed-b distri-

bution under robust general assumptions. Proposition 1 derives different representations of

the fixed-b distribution. Lemma 2 obtains general statistics of interest for kernels in class

K3 that do not rely on model assumptions for the data. Lemma 3 derives moments and

related statistics for a random variable presented in Proposition 1b. Lastly, in Theorem 2

we present an expression for the fixed-b distribution under general settings. The following

results largely follow Sun [54] but in the context of lugsail estimators.

Proposition 1: Let κ ∈ K2 and it’s corresponding center kernel be κ̃ ∈ K3.
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(a) The following are all equal,∫ 1

0

∫ 1

0
κ

(
t− s

b

)
dB̃d(t)dB̃d(s) =

∫ 1

0

∫ 1

0
κ̃

(
t− s

b

)
dB̃d(t)dB̃d(s)

=

∫ 1

0

∫ 1

0
κ̃

(
t− s

b

)
dBd(t)dBd(s). (3.2)

(b) For fixed-b random variable F∞(d, b) with kernel κ̃,

dF∞(d, b)
d
=

||η||2

v11·2
(3.3)

where η ∼ N(0, Id), and v11·2 = v11 − v12v
−1
22 v21 is a random quantity such thatv11 v12

v21 v22


is the sum of independent but not necessarily identically distributed Whisart random

variables where v11 ∈ R, v21 ∈ R(d−1)×1 , v12 ∈ R1×(d−1), and v22 ∈ R(d−1)×(d−1).

Begin proof.

The result from Proposition 1a can be shown using properties of the centered kernels [54,

page 662]. For Proposition 1b we begin by recalling some properties of Itô integrals which

will be useful for proving part (a) and (b) [26]. For some function k (t, s) : [0, 1]× [0, 1] → R

the Itô integral is,∫ b

a

∫ b

a
k(t, s)dBd(t)dBd(s) = lim

n→∞

n∑
i=1

n∑
j=1

k(ti−1, sj−1)

× [Bd(ti)−Bd(ti−1)] [Bd(sj)−Bd(sj−1)]
′ . (3.4)

If we let t and s have the same increments we can rewrite this again as∫ b

a

∫ b

a
k(t, s)dBd(t)dBd(s) = lim

n→∞

n∑
i=1

n∑
j=1

k(ti−1, tj−1)

× [Bd(ti)−Bd(ti−1)] [Bd(tj)−Bd(tt−1)]
′ . (3.5)
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We further note a property about the expectation of the product of two Brownian motions,

E {[Bd(ti)−Bd(ti−1)] [Bd(tj)−Bd(tj−1))]} =


0 if ti ̸= tj

ti − ti−1 if ti = tj .

(3.6)

When (ti ̸= tj) the expect value of the product is 0 due to independent increments. When

(ti = tj) the expected value is (ti− ti−1) which is equal to the variance for the increment of

the Brownian motion.

We now begin with Proposition 1b. Consider a series of constants {λn}∞n=1 and

orthonormal functions {ϕn(t)}∞n=1, i.e.
∫
ϕn(s)ϕm(s)ds = 0 if m ̸= n and 1 if otherwise,

such that

κ̃b(t, s) =
∞∑
n=1

λnϕn(t)ϕn(s). (3.7)

We can choose any sequence of othornomal functions and corresponding constants so (3.7)

holds. For example, we can consider the discrete Fourier transform for the even function κ̃

with ϕk(t) =
√
2 cos(2πkr) when k = (0, 1, 2, . . . ) [16, 52]. From the expansion in (3.7) we

can approximate the equation (3.2),∫ 1

0

∫ 1

0
κ̃

(
t

b
,
s

b

)
dBd(t)dB

′
d(s) =

∫ 1

0

∫ 1

0

∞∑
n=1

λnfn(t)fn(s)dBd(t)dB
′
d(s) (3.8)

=
∞∑
n=1

λn

[∫ 1

0
fn(t)dBd(t)

] [∫ 1

0
fn(s)dB

′
d(s)

]
(3.9)

=

∞∑
n=1

λnζnζ
′
n (3.10)

where ζn
iid∼ N(0, Ip) because we used orthonormal functions, and ζnζ

′
n

iid∼ Wishartd(Id, 1).

Using (3.10) we can now use an alternative version of (3.1) which is easier to work with,

dF∞(d, b)
d
= η′

[ ∞∑
n=1

λnζnζ
′
n

]−1

η (3.11)
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where η ∼ N(0, Id) by properties of Brownian motions. We define a new orthornormal

matrix

H =

η
′/||η||
(1×d)∏′

((d−1)×d)


where || · || is the Euclidean norm. With this new orthornomal matrix we have the following

property

H
(d×d)

η
(d×1)

= ||η|| e1
(d×1)

where e1 = (1, 0, 0, . . . , 0)′. Using this matrix we can form a new expression,

dF∞(d, b)
d
=η′

[ ∞∑
n=1

λnζnζ
′
n

]−1

η

= η′

[ ∞∑
n=1

λn(H
′H)ζnζ

′
n(H

′H)

]−1

η

= η′

[
H ′

∞∑
n=1

λn(Hζn)(Hζn)
′H

]−1

η

= η′(H)−1

[ ∞∑
n=1

λn(Hζn)(Hζn)
′

]−1

(H)η

= (Hη)′

[ ∞∑
n=1

λn(Hζn)(Hζn)
′

]−1

(Hη)

= ||η||e′1

[ ∞∑
n=1

λn(Hζn)(Hζn)
′

]−1

||η||e1

= ||η||2e′1

[ ∞∑
n=1

λn(Hζn)(Hζn)
′

]−1

e1.

Observe that Hζn|H has the same distribution as ζn [54], therefore,

dF∞(d, b)
d
= ||η||2e′1

[ ∞∑
n=1

λnζnζ
′
n

]−1

e1.
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To find an expression for the inverse of the random matrix we use a block matrix method

[20]. Let M be some m×m matrix with the following partition,

M =

 c
(1×1)

b
((m−1)×1)

b′
(1×(m−1))

A
((m−1)×(m−1))

 .
Then the inverse of the matrix is

M−1 =

 1
k − 1

k b
′A−1

− 1
k b

′A−1 A−1 + 1
kA

−1bb′A−1


where k = c− b′A−1b. Using this property,

e′1

( ∞∑
n=1

λnζnζ
′
n

)−1

e1 =e
′
1


 v11

(1×1)

v12
((d−1)×1)

v21
(1×(d−1))

v22
((d−1)×(d−1))




−1

e1

=(v11 − v12v
−1
22 v21)

−1

=v−1
11.2.

Thus, dF∞(d, b)
d
= ||η||2

v11·2
as desired.

■

In Proposition 1a we observe that when relying on κ̃ ∈ K3 we can rewrite the

fixed-b distribution expression in equation (3.1) using standard Brownian motions instead

of a Brownian bridge processes, which can make calculations easier. We also rely on a series

representation of a kernel function, a common tool used for WOS and series estimators

[27, 39, 44, 53, 54]. An important distinction between this result and Sun’s [54] is that

we are not restricting ourselves to an eigen value series expansion in equation (3.10). The
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only kernels to guarantee equality in equation (3.10) using the eigen value version of the

expansion are the positive semi-definite kernels [18] of K1. We instead utilize a Fourier

series expansion that is applicable to class K2. However, the eigen value version of the

expansion for a K1 kernel could be used to construct a basis for some K2 kernels but it

would not be guaranteed to be orthonormal.

We note that sometimes the WOS and series estimators rely on orthonormal basis

functions and sometimes replace the weights {λn} with a constant value. For example, they

may use only the first K elements in the series and replace the weights with 1
K . This creates

an equally weighted sum of orthonormal functions, and when integrating over Brownian

motions we obtain an equally weighted linear combination of independent standard Wishart

random variables.

Recall the Wishart distribution is a multivariate generalization of the Gamma

distribution and is commonly used to model the covariance matrix for random vectors [21].

As discussed, for univariate data sets Ω̂T can be thought of as a unequally weighted sum of

independent χ2 random variables. For multivariate processes with equal weights, Ω̂T is the

equal in distribution to a scaled finite sum of independent Wishart random variables. This

makes our test statistic FT resemble a Hotelling’s T 2 distribution, which is directly related

to an standard F distribution. Hotelling’s T 2 distribution is a multivariate generalization

of the t-distribution. Observe, if v ∼ Nd(0, Id) and M ∼ Wishart(Id,K), then

X :=Kv′M−1v

∼T 2(d,K)

→
(
K − d+ 1

dK

)
X ∼Fd,K−d+1.
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In these situations one may forgo the typical FT statistic and instead capitalize on the

relationship between the Wishart distribution and the F distribution and use the following

scaled test statistic

F ∗
T =

(
K − d+ 1

K

)
FT

for d > 1. This scaled version of the test statistic is common [27, 29, 53] and similar to

that of a Bonferroni-type correction [3]. However, our estimation procedure is not equally

weighted thus we continue using the standard FT test statistic.

Since Ω̂T does not have a Wishart distribution we cannot take advantage of the

Hotelling T 2 and F distribution connection. Instead we utilize alternative methods. Propo-

sition 1b obtains yet another expression for the fixed-b random variable. The pivotal com-

ponent in this expression is the random variable v11·2 which captures the variability of the

estimation process for Ω̂T .

Another useful observation is that the random variables ζn and η are independent

for all n [54]. We can observe this using Itô’s integral (3.4), expectation properties for

Brownian motions as described in equation (3.6), and Riemann-Stieltjes integration,
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Cov(ζn, η) =E [ζnη]

=E

[∫ 1

0
ϕn(t)dBd(t)

∫ 1

0
dBd(s)

]

= lim
n→∞

E

( n∑
i=1

ϕn(ti−1)[Bd(ti)−Bd(ti−1)]

) n∑
j=1

[Bd(tj)−Bd(tj−1)]


= lim

n→∞

(
n∑

i=1

ϕn(ti−1)[ti − ti−1]

)

=

∫ 1

0
ϕn(t)dt

=0.

This mirrors the representation in equation (3.1) derived in the original fixed-b works by

Kiefer and Vogelsang [24, 25] in that the random variables in the numerator and the de-

nominator of the expressions are independent.

We next derive general center kernel properties that will be useful for modeling

the behavior of v11·2.

Lemma 2: Let κ̃ ∈ K3. As b→ 0 and T → ∞, we have

(a) µ1 :=
∫ 1
0 κ̃b(t, t)dt ≈ 1− bc1 +O(b2)

(b) µ2 :=
∫ 1
0

∫ 1
0 [κ̃b(t, s)]

2 dtds =
∑∞

n=1(λm)2 ≈ bc2 +O(b2).

Begin proof of Lemma 2a.
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Define

µ1 :=

∫ 1

0
κ̃b(t, t)dt

=1−
∫ 1

0

∫ 1

0
κb(t, s)dtds

µ2 :=

∫ 1

0

∫ 1

0
[κ̃b(t, s)]

2dtds

=

(∫ 1

0

∫ 1

0
κb(t− s)dtds

)2

+

∫ 1

0

∫ 1

0
κ2b(t− s)dtds

− 2

∫ 1

0

∫ 1

0

∫ 1

0
κb(t− p)κb(t− q)dtdqdp.

Recall the following identities and representations [59],

sin2(x) =
1− cos(2x)

2
(3.12)

cos2(x) + sin2(x) = 1 (3.13)∫ ∞

−∞

(
sin(x/c)

x

)2

dx =
π

|c|
,∀c ∈ R (3.14)∫ 1

0
cos (λ(t− s)) ds =

1

λ
sin (λt)− 1

λ
sin (λ(t− 1)) (3.15)

exp(it) = cos(x) + i sin(x). (3.16)

Define the following Fourier transformations and the corresponding inverse transformations,

K1(λ) =
1

2π

∫ ∞

−∞
κ
(x
b

)
exp

(
−iλx
b

)
dx κ

(x
b

)
=

∫ ∞

−∞
K1(λ) exp

(
iλx

b

)
dλ

K2(λ) =
1

2π

∫ ∞

−∞
κ2
(x
b

)
exp

(
−iλx
b

)
dx κ2

(x
b

)
=

∫ ∞

−∞
K2(λ)

(
iλx

b

)
dλ.
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Using the inverse Fourier transformations we derive an expression for
∫ 1
0

∫ 1
0 κb(t− s)dtds,

∫ 1

0

∫ 1

0
κb(t− s)dtds =

∫ 1

0

∫ 1

0

∫ ∞

−∞
K1(λ) exp

(
−iλ

(
t

b
− s

b

))
dtds

=

∫ 1

0

∫ 1

0

∫ ∞

−∞
K1(λ) exp

(
−iλ t

b

)
exp

(
iλ
s

b

)
dtdsdλ

=

∫ ∞

−∞
K1(λ)

[∫ 1

0
exp

(
−iλ t

b

)
dt

] [∫ 1

0
exp

(
iλ
s

b

)
ds

]
dλ.

We integrate the inside terms, use Euler’s formula in equation (3.16), and properties of

imaginary numbers,

∫ 1

0

∫ 1

0
κb(t− s)dtds =

∫ ∞

−∞
K1(λ)

[
−i (exp(iλ/b)− 1)

(λ/b)

] [
sin(λ/b) + i (cos(λ/b)− 1)

(λ/b)

]
dλ

=

∫ ∞

−∞
K1(λ)

(
b

λ

)2

[−i (cos(λ/b) + i sin(λ/b)− 1)]

× [sin(λ/b) + i (cos(λ/b)− 1)] dλ

=

∫ ∞

−∞
K1(λ)

(
b

λ

)2

[−i (cos(λ/b)− 1) + sin(λ/b)]

× [sin(λ/b) + i (cos(λ/b)− 1)] dλ

=

∫ ∞

−∞
K1(λ)

(
b

λ

)2 [
{i (cos(λ/b)− 1)}2 + sin2(λ/b)

]
dλ

=

∫ ∞

−∞
K1(λ)

(
b

λ

)2 [
(1− cos(λ/b))2 + sin2(λ/b)

]
dλ

=

∫ ∞

−∞
K1(λ)

(
b

λ

)2 [(
cos2(λ/b)− 2 cos(λ/b) + 1

)
+ sin2(λ/b)

]
dλ.
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We further use the identities in equations (3.13), (3.12), and (3.14) to continue to simplify,

∫ 1

0

∫ 1

0
κb(t− s)dtds =

∫ ∞

−∞
K1(λ)

(
b

λ

)2

[2− 2 cos(λ/b)] dλ

=

∫ ∞

−∞
2K1(λ)

(
b

λ

)2

[1− 1 cos(λ/b)] dλ

=

∫ ∞

−∞
4K1(λ)

(
b

λ

)2

sin2
(
λ

2b

)
dλ

=

∫ ∞

−∞
4b2K1(λ)

(
sin
(
λ
2b

)
λ

)2

dλ

=

∫ ∞

−∞
[K1(λ)−K1(0) +K1(0)] 4b

2

(
sin
(
λ
2b

)
λ

)2

dλ

=

∫ ∞

−∞
K1(0)4b

2

(
sin
(
λ
2b

)
λ

)2

dλ

+

∫ ∞

−∞
[K1(λ)−K1(0)] 4b

2

(
sin
(
λ
2b

)
λ

)2

dλ

=K1(0)4b
2 π

2b
+

∫ ∞

−∞
[K1(λ)−K1(0)] 4b

2

(
sin
(
λ
2b

)
λ

)2

dλ

=K1(0)2bπ +

∫ ∞

−∞
[K1(λ)−K1(0)] 4b

2

(
sin
(
λ
2b

)
λ

)2

dλ. (3.17)

Now we concentrate on the the last component of (3.17) and drop the constants. Recall the

identity in equation (3.12) and rearrange terms,

∫∞
−∞

[
K1(λ)−K1(0)

λ2

] (
sin2

(
λ
2b

))
dλ

=

∫ ∞

−∞

[
K1(λ)−K1(0)

λ2

](
sin2

(
λ

2b

)
− 1

2
+

1

2

)
dλ

=

∫ ∞

−∞

[
K1(λ)−K1(0)

λ2

](
sin2

(
λ

2b

)
− 1

2

)
dλ+

∫ ∞

−∞

[
K1(λ)−K1(0)

λ2

](
1

2

)
dλ

=

∫ ∞

−∞

[
K1(λ)−K1(0)

λ2

](
cos

(
λ

b

))
dλ+

(
1

2

)∫ ∞

−∞

[
K1(λ)−K1(0)

λ2

]
dλ. (3.18)

45



Recall the Riemann-Lebesgue Lemma [8], if the Lebesgue integral of |f | is finite, then the

Fourier transform of f satisfies

∫
f(x)exp(−izx)dx→ 0

as |z| → ∞. Observe K1(0) =
c1
2π is a constant, K1(λ) is finite and even because the Fourier

transform of an even function is even, and thus consequentially K1(λ)−K1(0)
λ2 is a finite even

function. We further observe that

∫ ∞

−∞

[
K1(λ)−K1(0)

λ2

](
cos

(
λ

b

))
dλ

is the cosine representation of Fourier transformations for even functions. Thus, we expect

it to tend towards 0 by Riemann-Lebesgue Lemma as 1
b → ∞ (or b → 0). Therefore we

have the following,

∫ 1

0

∫ 1

0
κb(t− s)dtds =K1(0)2bπ +

(
4b2

2

)∫ ∞

−∞

[
K1(λ)−K1(0)

λ2

]
dλ+ o(b2).

(3.19)

Again by recognizing properties of Fourier transformations of even functions we can substi-

tute: K1(λ) = (2π)−1
∫∞
−∞ κ

(
x
b

)
cos
(
λx

b

)
dx,

∫ 1

0

∫ 1

0
κb(t− s)dtds =K1(0)2bπ +

(
2b2

π

)∫ ∞

−∞

∫ ∞

−∞
κ
(x
b

)(cos (λxb )− c1

λ2

)
dxdλ+ o(b2).

(3.20)
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We now consider three cases for c1: c1 = 1, c1 < 1, and c1 > 1. We first consider the case

when c1 = 1. Using these identities in equations (3.12) and (3.14), and properties of mother

kernels we obtain

∫ 1

0

∫ 1

0
κb(t− s)dtds =K1(0)2bπ +

(
2b2

π

)∫ ∞

−∞

∫ ∞

−∞
κ
(x
b

) sin2 (λ2 x
b

)
λ2

dxdλ+ o(b2)

=K1(0)2bπ +

(
2b2

π

)∫ ∞

−∞

∫ ∞

−∞
κ(y)

sin2
(
λ
2y
)

λ2
dydλ+ o(b2)

=K1(0)2bπ +

(
2b2

π

)∫ ∞

−∞

∫ ∞

−∞
κ(y)

sin2(λy/2)

λ2
dydλ+ o(b2)

=K1(0)2bπ + b2
∫ ∞

−∞

∫ ∞

−∞
κ(y)|y|dydλ+ o(b2)

≈K1(0)2bπ +O(b2) + o(b2)

≈bc1 +O(b2).

Next we consider the case when c1 < 1. Observe that ∀y and ∀λ

−κ(y)
(
cos(λy)− 1

λ2

)
< κ(y)

(
cos(λy)− c1

λ2

)
< κ(y)

(
cos(λy)− 1

λ2

)
−κ(y)

(
sin2(λy/2)

λ2

)
< κ(y)

(
cos(λy)− c1

λ2

)
< κ(y)

(
sin2(λy/2)

λ2

)
−
∫ ∞

−∞
k(y)|y|dy <

∫ ∞

−∞

∫ ∞

−∞
κ(y)

(
cos(λy)− c1

λ2

)
dydλ <

∫ ∞

−∞
k(y)|y|dy.

Define s :=
∫∞
−∞

∫∞
−∞ κ(y)

(
cos(λy)−c1

λ2

)
dydλ <∞ and hence

∫ 1

0

∫ 1

0
κ(t− s)dtds ≈bc1 − b2s+ o(b2)

≈bc1 +O(b2).

Lastly for the case when c1 > 1. We can rewrite c1 into components c1 = c1.1 + c1.r, where

c1.1 = 1 and c1.r = c1 − 1. Then,
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(
2b2

π

) ∫∞
−∞

∫∞
−∞ κ(y)

(
cos(λy)−c1

λ2

)
dydλ+ o(b2)

=

(
2b2

π

)∫ ∞

−∞

∫ ∞

−∞
κ(y)

(
cos(λy)− c1.1 − c1.r

λ2

)
dydλ+ o(b2)

=

(
2b2

π

)∫ ∞

−∞

∫ ∞

−∞
κ(y)

(
cos(λy)− c1.1

λ2

)
dydλ

−
(
2b2

π

)∫ ∞

−∞

∫ ∞

−∞
κ(y)

(c1.r
λ2

)
dydλ+ o(b2)

≈O(b2).

Thus µ1 =
∫ 1
0 κ̃b(t, t)dt ≈ 1− bc1 +O(b2) as desired.

■

Begin proof of Lemma 2b.

First we focus on the term
∫ 1
0

∫ 1
0 κ

2
b(t − s)dtds. Using the same arguments as Lemma

2a, we can replace all instances of K1 with K2. Recalling the mother kernel property:∫∞
−∞ κ2(x)x2dx <∞, we get the following,

∫ 1

0

∫ 1

0
κb(t− s)dtds ≈ bc2 +O(b2). (3.21)

We next consider:
∫ 1
0

∫ 1
0

∫ 1
0 κb(t − p)κb(t − q)dtdqdp. We start with an alternative repre-

sentation of the familiar integral using the Fourier transforms and inverses from Lemma 2a

with kernel function κ, and use properties of Fourier transforms and even functions

∫ 1

0
κb(t− s)ds =

∫ 1

0

(∫ ∞

−∞
K1(λ) exp

(
−iλ(t− s)

b

)
dλ

)
ds

=

∫ 1

0

(∫ ∞

−∞
K1(λ) cos

(
λ(t− s)

b

)
dλ

)
ds

=

∫ ∞

−∞

∫ 1

0
K1(λ)cos

((
λ(t− s)

b

)
dx

)
dλ.
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We use the identity in equation (3.15) and rewrite the integral using a u-substitution with

x = λ/b,

∫ 1

0
κb(t− s)ds =−

∫ ∞

−∞
K1(λ)

(
b

λ

)[
sin

(
λ(t− 1)

b

)
− sin

(
λt

b

)]
dλ

=− b2
∫ ∞

−∞
K1(xb)

(
1

x

)
[sin (x(t− 1)) sin (xt)] dx. (3.22)

We rewrite the triple integral with the expression in equation (3.22),

∫ 1
0

∫ 1
0

∫ 1
0 κb(t− p)κb(t− q)dtdqdp

=

∫ 1

0

[∫ 1

0
κb(t− p)dp

] [∫ 1

0
κb(t− q)dq

]
dt

=

∫ 1

0

[∫ 1

0
κb(t− p)dp

]2
dt

=b2
∫ 1

0

[∫ ∞

−∞
K1(xb)

(
1

x

)
[sin (x(t− 1))− sin (xt)] dx

]2
dt

=b2
∫ 1

0

[∫ ∞

−∞
K1(xb)

(
1

x

)
sin (x(t− 1)) dx−

∫ ∞

−∞
K1(xb)

(
1

x

)
sin (xt) dx

]2
dt.

For each x, K1(xb) ≈ K1(0) + o(1) = K1(0)(1 + o(1)) as b→ 0,

∫ 1
0

∫ 1
0

∫ 1
0 κb(t− p)κb(t− q)dtdqdp

≈b2K2
1 (0)

∫ 1

0

[∫ ∞

−∞

1

x
sin (x(t− 1)) dx−

∫ ∞

−∞

1

x
sin (xt) dx

]2
dt(1 + o(1)).

We further use a u-substitution, the property that K1(0) =
c1
2π , and the identity (3.14) to

simplify terms,
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∫ 1
0

∫ 1
0

∫ 1
0 κb(t− p)κb(t− q)dtdqdp

≈b2K2
1 (0)

∫ 1

0

[
2

∫ ∞

−∞

1

y
sin (y) dy

]2
dt(1 + o(1))

=b2c21(2π)
−2

∫ 1

0

[
2

∫ ∞

−∞

1

y
sin (y) dy

]2
dt(1 + o(1))

=b2c21(2π)
−2

∫ 1

0
22π2dt(1 + o(1))

=b2c21 + o(b2).

Therefore, we have the following

µ2 ≈[bc1 +O(b2)]2 + [bc2 +O(b2)]− 2[b2c21 +O(b2)]

=[bc1]
2 + bc2 − 2[bc1]

2 +O(b2)

=bc2 +O(b2).

■

In Lemma 2 no model or distributional properties of the data are used except

for the implicit assumption that T → ∞. The terms µ1 and µ2 can be thought of as

adjacent summary statistics to those presented in Table 2.2 for κ̃ ∈ K3 when accounting

for the bandwidth parameter. We will see in Lemma 3 that these summary statistics for

K3 are related to the first two moments of the random variable v11·2 in a similar way as

the summary statistics in Table 2.2 for the kernels in class K2 are related to the bias and

variance of Ω̂T as presented in Theorem 1.

When using κ̃ ∈ K3 constructed with κ∗ ∈ K1, i.e. a centered mother kernel, we

have the additional observation that µ1 is equal to the sum of the eigen values because of

positive semi-definite properties. In contrast, κ̃ ∈ K3 constructed with κ ∈ K2, i.e. all
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centered lugsail kernels, µ2 is equal to the sum of squared eigen values despite the lack of

guaranteed positive semi-definiteness.

With the information in Lemma 2 we can derive the first two moments of v11·2.

Lemma 3: Let κ̃b ∈ K3. As b→ 0 and T → ∞, we have

(a) E(v11 − v12v
−1
22 v21) = 1− bc1 − bc2(d− 1) + o(b)

(b) E
[
(v11 − v12v

−1
22 v21)

2
]
= 1− 2b(c1 − c2)− 2(d− 1)bc2 + o(b)

(c) E
[
(v11 − v12v

−1
22 v21)− 1

]2
= 2bc2 + o(b)

Begin proof of Lemma 3a.

We start with expectation of v11, and utilize Itô’s integral (3.4). Recall that (t, s) have the

same support [0, 1] and we can choose the same partition for both dimensions,

E {v11} =E

{∫ 1

0

∫ 1

0
κ̃b(t, s)dB1(t)dB

′
1(s)

}

= lim
n→∞

E


n∑

i=1

n∑
j=1

κ̃b(ti−1, sj−1) [B1(ti)−B1(ti−1)] [B1(sj)−B1(sj−1))]


= lim

n→∞
E


n∑

i=1

n∑
j=1

κ̃b(ti−1, tj−1) [B1(ti)−B1(ti−1)] [B1(tj)−B1(tj−1))]


= lim

n→∞

n∑
i=1

n∑
j=1

κ̃b(ti−1, tj−1)E {[B1(ti)−B1(ti−1)] [B1(tj)−B1(tj−1))]} .
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We further recall that that non-overlapping increments are independent as illustrated in

equation (3.6). We use this property along with Riemann-Stieltjes integration, and Lemma

2 to obtain

E {v11} =

n∑
i=1

κ̃b(ti−1, ti−1)E
{
[B1(ti)−B1(ti−1)]

2
}

=

n∑
i=1

κ̃b(ti−1, ti−1) [ti − ti−1]

=

∫ 1

0
κ̃b(t, t)dt

=µ1

=1− bc1 +O(b2).

Similarly for v22,

E {v22} = (1− bc1)1(d−1) +O(b2). (3.23)

Using the representation in equation (3.7) we observe the following properties.∫ 1

0
κ̃b(t, s)ϕn(t)dt =λnϕn(s)∫ 1

0
ϕn(t)dt =0.

Let ζn :=
∫ 1
0 ϕn(t)dBd(t) ∈ Rd, then∫ 1

0

∫ 1

0
κ̃b(t, s)dBp(t)dB

′
p(s) =

∫ 1

0

∫ 1

0

∞∑
n=1

λnϕn(t)ϕn(s)dBd(t)dBd(s)

=

∞∑
n=1

λn

(∫ 1

0
ϕn(t)dBd(t)

)(∫ 1

0
ϕn(s)dBd(s)

)

=

∞∑
n=1

λnζnζ
′
n (3.24)

where ζn
iid∼ N(0, 1) and ζnζ

′
n

iid∼ Wishart(Id, 1). Observe that

∞∑
n=1

λnζnζ
′
n

p→
∞∑
n=1

λn1d (3.25)
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where
∑∞

n=1 λn ∈ R1. We further observe that ξn :=
∫ 1
0 ϕn(t)dBd−1(t) ∈ Rd−1, which

inherits the same properties. Next we consider v12v
−1
22 v21. Observe that v12 ⊥ v22 ⊥ v21.

We utilize the property in equation (3.24) for ξn, the results in Lemma 2, and convergence

properties of random variables and continuous functions [50, pg 290] to obtain
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E
{
v12v

−1
22 v21

}
=E

{(∫ 1

0

∫ 1

0
κ̃b(t, s)dB1(t)dB

′
d−1(s)

)
×
(∫ 1

0

∫ 1

0
κ̃b(t, s)dBd−1(t)dB

′
d−1(s)

)−1

×
(∫ 1

0

∫ 1

0
κ̃b(t, s)dB

′
1(t)dBd−1(s)

)}
=E

{(∫ 1

0

∫ 1

0
κ̃b(t, s)dB1(t)dB

′
d−1(s)

)}
× E

{(∫ 1

0

∫ 1

0
κ̃b(t, s)dBd−1(t)dB

′
d−1(s)

)−1
}

× E

{(∫ 1

0

∫ 1

0
κ̃b(t, s)dB

′
1(t)dBd−1(s)

)}
=E

{(∫ 1

0

∫ 1

0
κ̃b(t, s)dB1(t)dB

′
d−1(s)

)}

× E


( ∞∑

n=1

λnξnξ
′
n

)−1


× E

{(∫ 1

0

∫ 1

0
κ̃b(t, s)dB

′
1(t)dBd−1(s)

)}
=E

{(∫ 1

0

∫ 1

0
κ̃b(t, s)dB1(t)dB

′
d−1(s)

)}
× µ−1

1 1d−1

× E

{(∫ 1

0

∫ 1

0
κ̃b(t, s)dB

′
1(t)dBd−1(s)

)}
=µ−1

1 E

{(∫ 1

0

∫ 1

0
κ̃b(t, s)dB1(t)dB

′
d−1(s)

)}
× E

{(∫ 1

0

∫ 1

0
κ̃b(t, s)dB

′
1(t)dBd−1(s)

)}
=µ−1

1 E

{(∫ 1

0

∫ 1

0
κ̃b(t, s)dB1(t)dB

′
d−1(s)

)
×
(∫ 1

0

∫ 1

0
κ̃b(t, s)dB

′
1(t)dBd−1(s)

)}
.
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Replace s with τ1 and τ2, and use the definition of Itô’s integral in equation (3.4) for the

inner integrals of the last two terms and choose the same partition. We further use the

property that non-overlapping increments are independent as illustrated in equation (3.6),

and Riemann-Stieltjes integration, to simplify

E
{
v12v

−1
22 v21

}
=µ−1

1 E

{(∫ 1

0

∫ 1

0
κ̃b(t, τ1)dB1(t)dB

′
d−1(τ1)

)
×
(∫ 1

0

∫ 1

0
κ̃b(t, τ2)dB

′
1(t)dBd−1(τ2)

)}
=µ−1

1 lim
n→∞

E

{(∫ 1

0

n∑
i=1

κ̃b(t, τ1) [B1(ti)−B1(ti−1)] dB
′
d−1(τ1)

)

×

(∫ 1

0

n∑
i=1

κ̃b(t, τ2) [B1(ti)−B1(ti−1)] dBd−1(τ2)

)}

=µ−1
1 lim

n→∞
E{∫ 1

0

∫ 1

0

n∑
i=1

n∑
j=1

κ̃b(ti−1, τ1)κ̃b(tj−1, τ2)

× [B1(ti)−B1(ti−1)] [B1(tj)−B1(tj−1)] dB
′
d−1(τ1)dBd−1(τ2)}

=µ−1
1 lim

n→∞
E{∫ 1

0

∫ 1

0

n∑
i=1

κ̃b(ti−1, τ1)κ̃b(ti−1, τ2)

× [ti − ti−1] dB
′
d−1(τ1)dBd−1(τ2)}

=µ−1
1 E

{∫ 1

0

∫ 1

0

(∫ 1

0
κ̃b(t, τ1)κ̃b(t, τ2)dt

)
dB′

d−1(τ1)dBd−1(τ2)

}

Observe the non-random middle component above. We use substitution with the represen-

tation in equation (3.7) to obtain
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∫ 1

0
κ̃b(t, τ1)κ̃b(t, τ2)dt =

∫ 1

0

( ∞∑
m=1

λmϕm(t)ϕm(τ1)

)( ∞∑
n=1

λnϕn(t)ϕn(τ2)

)
dt

=
∞∑

m=1

∞∑
n=1

λmλn

(∫ 1

0
ϕm(t)ϕn(t)dt

)
ϕm(τ1)ϕn(τ2)

=

∞∑
n=1

λ2nϕn(τ1)ϕn(τ2).

We use the property in equation (3.24) for ξn to further simplify,

(∫ 1
0

∫ 1
0

[∫ 1
0 κ̃b(t, τ1)κ̃b(t, τ2)dt

]
dB′

d−1(τ1)dBd−1(τ2)
)

=

(∫ 1

0

∫ 1

0

[ ∞∑
n=1

(λn)
2ϕn(τ1)ϕn(τ2)

]
dB′

d−1(τ1)dBd−1(τ2)

)

=

∞∑
n=1

λ2nξ
′
nξn.

We recognize that ξ′iξi
iid∼ χ2

(d−1), which means that
∑∞

n=1 λ
2
nξ

′
nξn

p→
∑∞

n=1 λ
2
n(d− 1) where∑∞

n=1 λ
2
n = µ2 ∈ R1. Therefore,

E
{
v12v

−1
22 v21

}
=µ−1

1 E

{(∫ 1

0

∫ 1

0
κ̃b(t, τ1)dB1(t)dB

′
d−1(τ1)

)
×
(∫ 1

0

∫ 1

0
κ̃b(t, τ2)dB

′
1(t)dBd−1(τ2)

)}
=µ−1

1 E

{ ∞∑
n=1

λ2nξ
′
nξn

}

=
µ2
µ1

(d− 1)(1 + o(1))

=
bc2 +O(b2)

1− bc1 +O(b2)
(d− 1)(1 + o(1))

=bc2(d− 1) + o(b).

■

56



Begin proof of Lemma 3b.

Next we consider v211. We use Itô’s integral in equation (3.4),

E[v211] =E

{(∫ 1

0

∫ 1

0
κ̃b(t1, s1)dB1(t1)dB

′
1(s1)

)
(∫ 1

0

∫ 1

0
κ̃b(t2, s2)dB1(t2)dB

′
1(s2)

)}
(3.26)

= lim
n→∞

E

 n∑
i=1

n∑
j=1

κ̃b(ti−1, sj−1) [B1(ti)−B1(ti−1)] [B1(sj)−B1(sj−1)]


×

(
n∑

l=1

n∑
h=1

κ̃b(tl−1, sh−1) [B1(tl)−B1(tl−1)] [B1(sh)−B1(sh−1)]

)
(3.27)

= lim
n→∞

n∑
i=1

n∑
j=1

n∑
l=1

n∑
h=1

κ̃b(ti−1, sj−1)κ̃b(tl−1, sh−1)E {[B1(ti)−B1(ti−1)]

× [B1(sj)−B1(sj−1)] [B1(tl)−B1(tl−1)] [B1(sh)−B1(sh−1)]} . (3.28)

There are three cases to consider: (i = j, l = h), (i = l, j = h), (i = h, j = l). We review

the first case using the format in equation (3.27). Using expecation properties for Brownian

motions illustrated in equation (3.6) coupled with Riemann-Stieltjes integration we obtain

E
(∑n

i=1 κ̃b(ti−1, ti−1) [B1(ti)−B1(ti−1)]
2
)(∑n

l=1 κ̃b(tl−1, tl−1) [B1(tl)−B1(tl−1)]
2
)

=

(
n∑

i=1

κ̃b(ti−1, ti−1) [ti − ti−1]

)(
n∑

l=1

κ̃b(tl−1, tl−1) [tl − tl−1]

)

=

(∫ 1

0
κ̃b(t, t)dt

)2

.

We next review the second case, i.e. (i = l, j = h), using the format of equation (3.28).

Again by using expectation properties for Brownian motions illustrated in equation (3.6)

coupled with Riemann-Stieltjes integration we obtain

57



∑n
i=1

∑n
j=1 κ̃b(ti−1, sj−1)κ̃b(ti−1, sj−1)E

{
[B1(ti)−B1(ti−1)]

2 [B1(sj)−B1(sj−1)]
2
}

=

n∑
i=1

n∑
j=1

κ̃b(ti−1, sj−1)κ̃b(ti−1, sj−1) [ti − ti−1] [sj − sj−1]

=

∫ 1

0

∫ 1

0
κ̃b(t, s)

2dtds.

By symmetry, the second and third cases return the same result. Therefore, by using Lemma

1 we can rewrite the expected value of equation v211 as

E(v211) =E

{(∫ 1

0

∫ 1

0
κ̃b(t1, s1)dB1(t1)dB

′
1(s1)

)(∫ 1

0

∫ 1

0
κ̃b(t2, s2)dB1(t2)dB

′
1(s2)

)}
=

(∫ 1

0
κ̃b(t, r)dt

)2

+ 2

∫ 1

0

∫ 1

0
κ̃b(t, s)

2dtds

=µ21 + 2µ2

=(1− bc1 + o(b))2 + 2bc2 + o(b)

=1− 2b(c1 − c2) + o(b).

Next we consider v11v12v
−1
22 v21. Recall v11 ⊥ v12 ⊥ v22 ⊥ v21, which implies that v11 ⊥

v12v
−1
22 v21. Using this independence relationship we obtain
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E[v11v12v
−1
22 v21] =E

{∫ 1

0

∫ 1

0
κ̃b(t, s)dB1(t)dB

′
1(s)∫ 1

0

∫ 1

0
κ̃b(t, τ1)dB1(t)dB

′
d−1(τ1)[∫ 1

0

∫ 1

0
κ̃b(t, s)dB1(t)dB

′
d−1(τ1)

]−1

∫ 1

0

∫ 1

0
κ̃b(t, τ2)dB1(t)dB

′
d−1(s)

}
=E{v11}E{v12v−1

22 v21}

≈{(1− bc1 + o(b)}{bc2(p− 1) + o(b)}

=bc2(p− 1) + o(b)− b2c1c2(p− 1) + o(b)bc1

=bc2(p− 1) + o(b) + o(b) + o(b)

=bc2(p− 1) + o(b).

Next we consider v12v
−2
22 v21v12v

−1
22 v21. Let V =

[∫ 1
0

∫ 1
0 κ̃b(t, s)dBd−1(t)dB

′
d−1(s)

]−1
for ease

of notation. Use Itô’s integral from equation (3.4), and let u1, . . . , un be the partition for t

and s,
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E[v12v
−2
22 v21v12v

−1
22 v21]

=E

{∫ 1

0

∫ 1

0
κ̃b(t, s)dB1(t)dB

′
d−1(s)[∫ 1

0

∫ 1

0
κ̃b(t, s)dB1(t)dB

′
d−1(s)

]−1

∫ 1

0

∫ 1

0
κ̃b(t, s)dB

′
1(t)dBd−1(s)∫ 1

0

∫ 1

0
κ̃b(t, s)dB1(t)dB

′
d−1(s)[∫ 1

0

∫ 1

0
κ̃b(t, s)dB1(t)dB

′
d−1(s)

]−1

∫ 1

0

∫ 1

0
κ̃b(t, s)dB

′
1(t)dBd−1(s)

}

= lim
n→∞

E


n∑

i=1

n∑
j=1

n∑
l=1

n∑
h=1

∫ 1

0
κ̃b(ui−1, s

(1))[B1(ui)−B1(ui−1)]dB
′
d−1(s

(1))V

×
∫ 1

0
κ̃b(t

(2), uj−1)[B1(uj)−B1(uj−1)]dBd−1(t
(2))

×
∫ 1

0
κ̃b(ul−1, s

(3))[B1(ul)−B1(ul−1)]dB
′
d−1(s

(3))V

×
∫ 1

0
κ̃b(t

(4), uh−1)[B1(uh)−B1(uh−1)]dBd−1(t
(4))

}
. (3.29)

We only need to consider three cases: (i = j, l = h), (i = l, j = h), (i = h, j = l). Under

the first case equation (3.29) is equal to the following,

lim
n→∞

E


n∑

i=1

n∑
j=1

∫ 1

0
κ̃b(ui−1, s

(1))[ui − ui−1]dB
′
d−1(s

(1))V

∫ 1

0
κ̃b(t

(2), ui−1)dBd−1(t
(2))

∫ 1

0
κ̃b(uj−1, s

(3))[uj − uj−1]dB
′
d−1(s

(3))V

∫ 1

0
κ̃b(t

(4), uj−1)dBd−1(t
(4))

}
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= lim
n→∞

E

{
n∑

i=1

∫ 1

0

∫ 1

0
κ̃b(ui−1, s

(1))κ̃b(t
(2), ui−1)[ui − ui−1]dB

′
d−1(s

(1))V dBd−1(t
(2))

×
n∑

j=1

∫ 1

0

∫ 1

0
κ̃b(uj−1, s

(3))κ̃b(τ
(4), uj−1)[uj − uj−1]dB

′
d−1(s

(3))V dBd−1(t
(4))

 .

We utilize Riemann-Stieltjes integration and the property in equation (3.24) to further

simplify E(v11v12v
−1
22 v21) under the first case,

E

{∫ 1

0

∫ 1

0

[∫ 1

0
κ̃b(τ1, s

(1))κ̃b(t
(2), τ1)dτ1

]
dB′

d−1(s
(1))V dBd−1(t

(2))

×
∫ 1

0

∫ 1

0

[∫ 1

0
κ̃b(τ2, s

(3))κ̃b(t
(4)τ2)dτ2

]
dB′

d−1(s
(3))V dBd−1(t

(4))

}
=E

{∫ 1

0

∫ 1

0

[ ∞∑
m=1

λ2mϕm(s(1))ϕm(t(2))

]
dB′

d−1(s
(1))V dBd−1(t

(2))

×
∫ 1

0

∫ 1

0

[ ∞∑
m=1

λ2mϕm(s(1))ϕm(t(2))

]
dB′

d−1(s
(3))V dBd−1(t

(4))

}

=E

{
trace

(∫ 1

0

∫ 1

0

[ ∞∑
m=1

λ2mϕm(s(1))ϕm(t(2))

]
dB′

d−1(s
(1))V dBd−1(t

(2))

)

× trace

(∫ 1

0

∫ 1

0

[ ∞∑
m=1

λ2mϕm(s(1))ϕm(t(2))

]
dB′

d−1(s
(3))V dBd−1(t

(4))

)}
.

The last step was obtained by recognizing that for an arbitrary for a d × 1 vector a and

d × d matrix V , a′V a = trace(a′V a). We further simplify E(v11v12v
−1
22 v21) under the first
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case by using the cyclical property of trace operator, the property in equation (3.25), and

properties of convergence in probability and continuous functions [50, pg 290],

E

{
trace

(
V

∫ 1

0

∫ 1

0

[ ∞∑
m=1

λ2mϕm(s(1))ϕm(t(2))

]
dBd−1(t

(2))dB′
d−1(s

(1))

)

× trace

(
V

∫ 1

0

∫ 1

0

[ ∞∑
m=1

λ2mϕm(s(3))ϕm(t(4))

]
dBd−1(t

(4))dB′
d−1(s

(3))

)}

=E

{
trace

(
V

∞∑
m=1

λ2mξmξ
′
m)

)
trace

(
V

∞∑
m=1

λ2mξmξ
′
m

)}

=E

trace
(
V

∞∑
m=1

λ2mξmξ
′
m)

)2


=E

trace
([ ∞∑

n=1

λnξnξ
′
n

] ∞∑
m=1

λ2mξmξ
′
m)

)2


≈µ
2
2

µ21
(d− 1)2(1 + o(1)).

We next review the second case, (i = l, j = h). From equation (3.29),

lim
n→∞

E


n∑

i=1

n∑
j=1

∫ 1

0
κ̃b(ui−1, s

(1))[ui − ui−1]dB
′
d−1(s

(1))V

×
∫ 1

0
κ̃b(t

(2), uj−1)[uj − uj−1]dBd−1(t
(2))

×
∫ 1

0
κ̃b(ui−1, s

(3))dB′
d−1(s

(3))V

∫ 1

0
κ̃b(t

(4), uj−1)dBd−1(t
(4))

}
.
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We further simplify E(v11v12v
−1
22 v21) under case 2 by using Riemann-Stieltjes integration

and symmetric properties,

lim
n→∞

E


n∑

i=1

n∑
j=1

∫ 1

0

∫ 1

0
κ̃b(ui−1, s

(1))κ̃b(ui−1, s
(3))[ui − ui−1]dB

′
d−1(s

(1))V

×
∫ 1

0

∫ 1

0
κ̃b(t

(2), uj−1)κ̃b(t
(4), uj−1)[uj − uj−1]dBd−1(t

(2))dB′
d−1(s

(3))V dBd−1(t
(4))

}
=E

{∫ 1

0

∫ 1

0

[∫ 1

0
κ̃b(τ3, s

(1))κ̃b(τ3, s
(3))dτ3

]
dB′

d−1(s
(1))V

×
∫ 1

0

∫ 1

0

[∫ 1

0
κ̃b(t

(2), τ4)κ̃b(t
(4), τ4)dτ4

]
dBd−1(t

(2))dB′
d−1(s

(3))V dBd−1(t
(4))

}
=E

{∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

[∫ 1

0
κ̃b(τ3, s

(1))κ̃b(τ3, s
(3))dτ3

] [∫ 1

0
κ̃b(t

(2), τ4)κ̃b(t
(4), τ4)dτ4

]
× dB′

d−1(s
(1))V dBd−1(t

(2))dB′
d−1(s

(3))V dBd−1(t
(4))
}

=E

{∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

[∫ 1

0
κ̃b(t

(2), τ3)κ̃b(τ3, s
(3))dτ3

] [∫ 1

0
κ̃b(τ4, s

(1))κ̃b(t
(4), τ4)dτ4

]
× dB′

d−1(s
(1))V dBd−1(t

(2))dB′
d−1(s

(3))V dBd−1(t
(4))
}
.

We continue to simplify under case 2 in a similar fashion as in case 1. Namely, we use a

relationship between vectors and matrices (a′V a = trace(a′V a)), the cyclical property of the

trace operator, the property equation (3.24), and properties of convergence in probability

and continuous functions [50, pg 290],
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Etrace

{∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

[∫ 1

0
κ̃b(t

(2), τ3)κ̃b(τ3, s
(3))dτ3

]
×
[∫ 1

0
κ̃b(τ4, s

(1))κ̃b(t
(4), τ4)dτ4

]
dB′

d−1(s
(1))V dBd−1(t

(2))dB′
d−1(s

(3))V dBd−1(t
(4))

}
=Etrace

{
V

∫ 1

0

∫ 1

0

[∫ 1

0
κ̃b(t

(2), τ3)κ̃b(τ3, s
(3))dτ3

]
dBd−1(t

(2))dB′
d−1(s

(3))

× V

∫ 1

0

∫ 1

0

[∫ 1

0
κ̃b(τ4, s

(1))κ̃b(t
(4), τ4)dτ4

]
dBd−1(t

(4))dB′
d−1(s

(1))

}
=Etrace

{
V

∞∑
n=1

λ2nξnξ
′
nV

∞∑
m=1

λ2mξmξ
′
m

}

=trace
{
µ−1
1 1(d−1)µ21(d−1)µ

−1
1 1(d−1)µ21(d−1)

}
≈(d− 1)

µ22
µ21

(1 + o(1)).

By symmetry the third and second case yield the same result. Therefore,

E[v12v
−2
22 v21v12v

−1
22 v21] ≈

(
µ2
µ1

)2 (
(d− 1)2 + 2(d− 1)

)
(1 + o(1))

=

(
µ2
µ1

)2

(d− 1) (d+ 1) (1 + o(1))

≈o(b)

E
[
(v11 − v12v

−1
22 v21)

2
]
=E

[
v211 − 2v11v12v

−1
22 v21 + v12v

−1
22 v21v12v

−1
22 v21

]
≈1− 2b(c1 − c2)− 2bc2(d− 1) + o(b).

■

Begin proof of Lemma 3c.

The expected value of
[
(v11 − v12v

−1
22 v21)− 1

]2
is obtained directly from the previous results,
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E
[
(v11 − v12v

−1
22 v21)− 1

]2
=E

[
(v11 − v12v

−1
22 v21)

2
]
− 2E(v11 − v12v

−1
22 v21) + 1

=1− 2b(c1 − c2)− 2bc2(d− 1)− 2 [1− bc1 − bc2(d− 1)] + 1 + o(b)

=2bc2 + o(b).

■

Lemma 3 is concerned with calculating the first two moments of the random vari-

able v11·2. We see that this function is concentrated around 1, but is influenced by b, c1 and

c2. This is expected given the relationship with the χ2 distribution in the univariate case

and the standard Wishart distribution in the multivariate case. For both Lemma 2 and

Lemma 3 we rely on the assumptions that b → 0 and T → ∞ but there is no restrictions

on the relationship between these quantities.

Theorem 2: As b→ 0 and T → ∞, we have

P (dF∞(d, b) ≤ z) = Gd(z)−G′
d(z)z (c1 + c2(d− 1)) b+G′′

d(z)z
2c2b+ o(b)

where Gd(z) is the cumulative distribution function function of a χ2 random variable with

degrees of freedom d at z, and G′
d(z) is its first derivative.

Begin proof.
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We start by applying Proposition 1, and then take a Taylor series expansion around z. Let

z̃ be some real value between z and zv11·2,

P (dF∞(d, b) ≤ z) =E [Gd(z(v11·2))]

≈Gd(z) +G′
d(z)E [(zv11·2 − z)] +

1

2
G′′

d(z̃)E
[
(zv11·2 − z)2

]
=Gd(z) +G′

d(z)E [(zv11·2 − z)]

+
1

2

(
G′′

d(z̃) +G′′
d(z)−G′′

d(z)
)
E
[
(zv11·2 − z)2

]
=Gd(z) +G′

d(z)zE [(v11·2 − 1)] +
1

2
G′′

d(z)z
2E
[
(v11·2 − 1)2

]
+

1

2

(
G′′

d(z̃)−G′′
d(z)

)
z2E

[
(v11·2 − 1)2

]
.

We further approximate by using the results in Lemma 3,

P (dF∞(d, b) ≤ z) ≈Gd(z) +G′
d(z)z (−bc1 − bc2(d− 1)) +

1

2
G′′

d(z)z
2 (2bc2) + o(b)

=Gd(z)−G′
d(z)z (c1 + c2(d− 1)) b+G′′

d(z)z
2 (c2) b+ o(b).

■

The first component of Theorem 2 is the standard small-b χ2 distributional ap-

proximation. As our sample size increases and b decreases this term alone is acceptable as

there will be no practical contribution from the remaining terms and we can use the large

sample inference procedures. However, as already discussed, this is typically not sufficient

for finite samples.

The random variable v11·2 captures many of the bias and variance properties of Ω̂T .

In all components beyond the small-b distributional approximation we see a dependence on

the kernel function and the bandwidth as expected. The value c2(d−1) in the second term is
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dependent on the number of hypotheses restrictions, disappearing in the 1-dimensional case

and increasing as more restrictions are added. The value bc1 in the second term arises from

calculating the first moment of v11·2 and is generally reflecting the uncertainty in parameter

estimation through use of the centered kernel [54]. The value c2b in the third term can be

viewed as the approximate asymptotic variability of v11·2, which is observed via Lemma 3

and recognizing V ar(v11·2) ≈ 2bc2 + o(b2). The random variable v11·2 reflects variability of

parameter estimation through the use of the centered kernel, is dependent on a bandwidth

parameter and kernel function, and suffers from dimensionality bias.

Figure 3.1: Fixed-b density of FT using the Bartlett kernel at b = 0.07 with mother (solid
black), zero (dashed red), adaptive (dotted blue), and over (dot-dashed green) lugsail set-
tings. Small-b density (dashed grey) provided as a reference.
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Figure 3.2: Fixed-b density of FT using the Parzen kernel at b = 0.07 with mother (solid
black), zero (dashed red), adaptive (dotted blue), and over (dot-dashed green) lugsail set-
tings. Small-b density (dashed grey) provided as a reference.

However, as evident in Theorem 1, the asymptotic bias attributed to the kernel

function is reflected through (bT )−qgqhq, which is not present in the expression for the fixed-

b distribution in Theorem 2. In general, the fixed-b random variables capture the variability

of Ω̂T , but not the bias. This is reflected in Figures 3.1-3.3 as we observe the longer tails

for the more extreme lugsail settings. In these figures we have the density functions for

univariate fixed-b random variables F∞ estimated using 10,000 simulations with a sample

size of T = 1000 and b = 0.07. In each figure there are five density functions: the standard

χ2
1 (dashed grey), mother kernel (solid black), zero lugsail kernel (dashed red), adaptive

lugsail kernel (dotted blue), and over lugsail (dot-dashed green). Each fixed-b density relies
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Figure 3.3: Fixed-b density of FT using the quadratic spectral kernel at b = 0.07 with mother
(solid black), zero (dashed red), adaptive (dotted blue), and over (dot-dashed green) lugsail
settings. Small-b density (dashed grey) provided as a reference.

on the centered version of the kernel, using the Bartlett, Parzen, and quadratic spectral

mother kernels in Figures 3.1, 3.2, and 3.3, respectively.
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Chapter 4

Finite Sample Behavior of the

Lugsail Estimator

The previous chapter presented distributional representations and expressions for

probabilities for the fixed-b random variable F∞. The results use a fixed bandwidth and rely

on Brownian motions, and hence model the behavior of the test statistic FT using an infinite

sample [1, 40]. The fixed-b assumption was imposed for the distributional representations

in Proposition 1, but relaxed when approximating associated probabilities. This limiting

framework is applicable to a wide variety of settings; however, it is well known that their

may be large discrepancies between the exact distribution of a test statistic with a finite

sample and a large sample limiting distribution. In this chapter we produce a probability

expression for FT generated with a finite sample under a classic but common and versatile

setting. We revisit the fixed-b distribution again in Chapter 5.
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We also introduce a new assumption that to the best of our knowledge is not

used elsewhere in this space. This assumption expands the expression for the bias of Ω̂T

introduced in Theorem 1 and Corollary 1 in order to incorporate the finite sample bias.

Assumption 6: Let κ̃ ∈ K3, and assume that bT → ∞ as T → ∞, but at a slower rate.

Then there exists some value cb as a function of b such that,

Bias(Ω̂) =E[Ω̂]− Ω

=− (bT )−q gqhq − Ωc1b− Ωcb − o ((bT )q) . (4.1)

The first term comes from Theorem 1, it is an asymptotic expression for the kernel

bias utilizing κ ∈ K2 ∪K3. The second component comes from Corollary 1 and arises from

the de-meaning of the error terms. The term Ωcb is novel and represents the finite sampling

bias, which we assume is proportional to the true LRV as a function of b. Provided the

data is finite, for data sets generated by even the simplest of models with serial correlation

we expect cb to be nonzero.

Assumption 6 is natural and critical for understanding the bias of lugsail estima-

tors. For κ∗ ∈ K1 the dominating source of bias is typically attributed to the kernel, which

we assume has weights that decrease at a faster rate then the autocovariance function.

Typically other components are comparatively negligible and difficult to represent robustly,

hence they are usually ignored. Since zero lugsail estimators have g∞ = 0, the other sources

of bias become more crucial. We can estimate cb with moderate model structures which we

explore in the subsequent chapter.
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For now we focus on deriving general probability expressions with a finite sample

using the Gaussian location model,

yt = θ0 + wt, (4.2)

where yt, θ0, and wt are all p × 1 vectors, t = (1, . . . , T ), and wt is a Gaussian random

process with zero mean and variance-covariance matrix Σw. We consider the following set

of hypotheses,

H0 : Rθ = Rθ0

HA : Rθ = Rθ0 +RΛT−1/2δ,

(4.3)

where R is a d × p real valued matrix, Ω = ΛΛ′, and δ is uniformly distributed on the

real d dimensional sphere centered at the origin and with radius δ [27, 54]. The Guassian

location model at (4.2) with moment conditions f(yt, θ) = (y − θ) is a special version of

a GMM model [11, 54]. With these exactly identified moment conditions we can select

any arbitrary weighting matrix because we have the same number of moment conditions as

unknown parameters (m = p). With GT = −Ip and WT = Ip, under Lemma 1 we have

√
TR

[
θ̂T − θ0

]
d→ N(0,Ω).

The typical F and t test statistics are given by

FT =
[√

TR
(
θ̂T − θ0

)]′
Ω̂−1
T

[√
TR

(
θ̂T − θ0

)]
/d (4.4)

tT =
√
TRθ̂T Ω̂

−1/2
T

where Ω̂T is a SV estimator defined in (2.5) with κ̃ ∈ K3, and ut = R(yt − θ̂T ). Using the

small-b limiting distribution under the null hypothesis the test statistic dFT converges to a

χ2 random variable with d degrees of freedom.
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Up until this point we have discussed the estimator for Ω̂T but not θ̂T . We will

primarily focus on the ordinary least squares (OLS) estimator θ, which for the model in

equation (4.2) is θ̂OLS = 1
T

∑T
t=1 yt. However, there are some properties we will utilize

from generalized least squares (GLS) estimators, θ̂GLS =
[
(lT ⊗ Ip)′Ω−1

v (lT ⊗ Ip)
]−1

(lT ⊗

Ip)′Ω−1
v y, where lT

(T×1)

is a vector of ones, v
(pT×1)

= [v′1, . . . , v
′
T ]

′ is the observed data, and

V ar (vec(v)) = Ωv. For the Gaussian location model the observed data is vt = yt. Observe

that the FT test statistic in equation (2.4) relies on the function r(·) and the estimator Ω̂T ,

both of which depend on θ̂T . The estimate for θ̂T does not need to be the same for both

components for Lemma 1 to hold [11, 54]. In fact, if both components rely on θ̂OLS , then

we can not say that r(θ̂OLS) and Ω̂T (θ̂OLS) are generally independent. Instead we can rely

on r(θ̂GLS) and Ω̂T (θ̂OLS), which results in a better test statistic to work with analytically

and practically [11]. From this point on assume Ω̂T relies on the OLS estimator θ̂OLS unless

otherwise stated, let θ̂T represent any consistent estimator of θ, and let θ̂OLS and θ̂GLS be

the OLS and GLS estimators of θ. Furthermore,

FOLS =
[√

TR
(
θ̂OLS − θ0

)]′
Ω̂−1
T

[√
TR

(
θ̂OLS − θ0

)]
/d

FGLS =
[√

TR
(
θ̂GLS − θ0

)]′
Ω̂−1
T

[√
TR

(
θ̂GLS − θ0

)]
/d.

In the following Proposition we confirm the independence of (θ̂GLS − θ) and ut,

which lets us establish independence between the numerator and denominator of FGLS . This

again mimics the independence seen in the fixed-b distribution representation in equation

(3.1) and Proposition 1, and will be useful for obtaining probability expressions. Later in

Lemma 4 we establish a connection between FGLS and FOLS .
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Proposition 2: Under Assumption 5i and 5ii,

θ̂GLS − θ ⊥ ût, (4.5)

for t = (1, . . . , T ).

Begin proof.

We use similar steps as Sun [54]. Let û
(dT×1)

= [û′1, . . . , ûT ]
′. Observe, that

ût = R
(d×p)

(yt − θ̂OLS)

= R(yt − y)

= R(vt − v)

and (lT l
′
T /T ⊗ Ip)v is equal to the Tp × 1 vector [v, . . . v]′. Thus [(IT − lT l

′
T /T )⊗ Ip] v =

[v1 − v, . . . , vT − v]′ and û = (R ⊗ IT ) [(IT − lT l
′
T /T )⊗ Ip] v. If Cov(θ̂GLS − θ, ût) = 0

(p×d)
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for all t, then equivalently, Cov
([

(lT ⊗ Ip)′Ω−1
v (lT ⊗ Ip)

]−1
(lT ⊗ Ip)Ω−1

v v, û
)
= 0

(p×Td)

. We

check this relation using algebraic manipulation,

Cov(θ̂GLS − θ, û) =Cov
([

(lT ⊗ Ip)′Ω−1
v (lT ⊗ Ip)

]−1
(lT ⊗ Ip)Ω−1

v v,

(R⊗ IT )
[
(IT − lT l

′
T /T )⊗ Ip

]
v
)

=E
{[

(lT ⊗ Ip)′Ω−1
v (lT ⊗ Ip)

]−1
(lT ⊗ Ip)Ω−1

v vv′
[
(IT − lT l

′
T /T )⊗ Ip

]}
× (R⊗ IT )′ + 0

=E
{[

(lT ⊗ Ip)′Ω−1
v (lT ⊗ Ip)

]−1
(lT ⊗ Ip)Ω−1

v Ωv

[
(IT − lT l

′
T /T )⊗ Ip

]}
× (R⊗ IT )′

=E
{[

(lT ⊗ Ip)′Ω−1
v (lT ⊗ Ip)

]−1
(lT ⊗ Ip)′

[
(IT − lT l

′
T /T )⊗ Ip

]}
× (R⊗ IT )′

=E
{[

(lT ⊗ Ip)′Ω−1
v (lT ⊗ Ip)

]−1
}

× (lT ⊗ Ip)′
[
(IT − lT l

′
T /T )⊗ Ip

]
(R⊗ IT )′

=E
{[

(lT ⊗ Ip)′Ω−1
v (lT ⊗ Ip)

]−1
}

× (l′T ⊗ Ip)
[
(IT − lT l

′
T /T )⊗ Ip

]
(R⊗ IT )′

=E
{[

(lT ⊗ Ip)′Ω−1
v (lT ⊗ Ip)

]−1
}

×
(
l′T (IT − lT l

′
T /T )

)
⊗ [Ip] (R⊗ IT )′.

Observe that l′T (IT − lT l′T /T ) produces a 1×T vector with elements
[
(1− 1

T )−
∑T−1

t=1
1
T

]
=

0. Therefore, (l′T (IT − lT l
′
T /T ))⊗ [Ip] = 0

(p×pT )

and Cov(θ̂GLS − θ, û) = 0
(p×dT )

, as desired.

■

Lemma 4: Under Assumption 4 and 5,
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(a) P (dFGLS ≤ z) = E
[
Gp(zΞ

−1
T )
]
+O(T−1)

(b) P (dFOLS ≤ z) = P (pFGLS ≤ z) +O(T−1)

where

ΞT
(1×1)

(
Ω̂T

)
=e′T [Ω

1/2Ω̂−1
T Ω1/2]eT

eT
(d×1)

=
Ω
−1/2
GLS

√
TR(θ̂GLS − θ0)

||Ω−1/2
GLS

√
TR(θ̂GLS − θ0)||

and ΩGLS is the variance of
√
TR(θ̂GLS − θ0).

Begin proof of Lemma 4a.

Let ΞT (Ω̂T ) = ΞT for ease of notation. Define ΥT := ||Ω−1/2
GLS

√
TR(θ̂GLS − θ0)||2 and

ΞT,GLS := e′TΩ
1/2
GLSΩ̂

−1
T Ω

1/2
GLSeT . We can rewrite the definition of FGLS in equation (4.4)

using these values,

dFGLS =
[√

TR(θ̂GLS − θ0)
]′
Ω̂−1
T

[√
TR(θ̂GLS − θ0)

]
=

{[√
TR(θ̂GLS − θ0)

]′
Ω
−1/2
GLS

}
Ω
1/2
GLSΩ̂

−1
T Ω

1/2
GLS

{
Ω
−1/2
GLS

[√
TR(θ̂GLS − θ0)

]}
=||Ω−1/2

GLS

√
TR(θ̂GLS − θ0)||e′TΩ

1/2
GLSΩ̂

−1
T Ω

1/2
GLSeT ||Ω

−1/2
GLS

√
TR(θ̂GLS − θ0)||

=||Ω−1/2
GLS

√
TR(θ̂GLS − θ0)||2e′TΩ

1/2
GLSΩ̂

−1
T Ω

1/2
GLSeT

=ΥTΞT,GLS .
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By Proposition 2, ΥT and ΞT,GLS are independent. Also observe that e′TΩ
1/2
GLSΩ̂

−1
T Ω

1/2
GLSeT =

||e′TΩ
1/2
GLSΩ̂

−1/2
T ||2 > 0, thus we can take the inverse of ΞT,GLS . We obtain an expression for

P (dFGLS ≤ z) using these facts and the tower rule of expectation,

P (dFGLS ≤ z) =P (ΥTΞT,GLS ≤ z)

=P (ΥT ≤ z (ΞT,GLS)
−1)

=E
(
Gp(z (ΞT,GLS)

−1)
)

=E

(
Gp

(
z
(
e′TΩ

1/2
GLSΩ̂

−1
T Ω

1/2
GLSeT

)−1
))

.

By the mean value theorem, for ϵ,M ∈ R+ and ϵ′ ∈ (0, ϵ)

Gd(x+ ϵT )−Gd(x)

ϵT
=G′

d(x+ ϵ′T )

Gd(x+ ϵT )−Gd(x) =(ϵT )−1G′
d(x+ ϵ′T ),

and because |G′
d(x)| < M <∞ (bounded function), we further observe,

|Gd(x+ ϵT )−Gd(x)| <(ϵT )−1M = O(T−1)

⇒ Gd(x+ ϵT )−Gd(x) =O(T−1)

Gd(x+ ϵT ) =Gd(x) +O(T−1).

Using the mean value theorem result and recognizing ΩGLS = Ω(1 + O(T−1)), we obtain

the final result

P (dFGLS ≤ z) =E

(
Gp

(
z
(
e′T
{
Ω(1 +O(T−1))

}1/2
Ω̂−1
T

{
Ω(1 +O(T−1))

}1/2
eT

)−1
))

=E
[
Gp

(
zΞ−1

T

)]
+O(T−1).

■
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Proof of Lemma 4b.

Define the following:

• ζ1T = 2(
√
TR∆)′Ω̂−1Ω

1/2
T,GLSeT

• ζ2T = (
√
TR∆)′Ω̂−1

T (
√
TR∆)

• ζT = ζ2T + ζ1T
√
ΥT

• ∆ = θ̂GLS − θ0 − (θ̂OLS − θ0) ⇒ (θ̂OLS − θ0) = ∆+ (θ̂GLS − θ0).

We begin by deriving an alternative expression for dFOLS in terms of the dFGLS ,

dFOLS =
[√

TR(θ̂OLS − θ0)
]′
Ω̂−1
T

[√
TR(θ̂OLS − θ0)

]
=
[√

TR(θ̂GLS − θ0) +
√
TR∆

]′
Ω̂−1
T

[√
TR(θ̂GLS − θ0) +

√
TR∆

]
=
[√

TR(θ̂GLS − θ0)
]′
Ω̂−1
T

[√
TR(θ̂GLS − θ0)

]
+
[√

TR∆
]′
Ω̂−1
T

[√
TR∆

]
+ 2

[√
TR∆

]′
Ω̂−1
T

[√
TR(θ̂GLS − θ0)

]
=dFGLS + ζ2T + 2(

√
TR∆)′Ω̂−1

T Ω
1/2
T,GLS

Ω
−1/2
T,GLS

√
TR(θ̂GLS − θ0)

||Ω−1/2
T,GLS

√
TR(θ̂GLS − θ0)||

√
ΥT

=dFGLS + ζ2T + 2(
√
TR∆)′Ω̂−1

T Ω
1/2
T,GLSeT

√
ΥT

=dFGLS + ζ2T + ζ1T
√

ΥT .

Therefore,

P (dFOLS ≤ z) =P (dFGLS + ζ2T + ζ1T
√
ΥT ≤ z)

=P
(
ΥTΞT,GLS + ζ2T + ζ1T

√
ΥT ≤ z

)
.
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Define F (a, b, c) = P
(
ΥT c+ b+ a

√
ΥT ≤ z

)
. Let

Fa = ∂
∂aF Faa =

(
∂
∂a

)2
F

Fb =
∂
∂bF Fbb =

(
∂
∂b

)2
F

Fab =
∂
∂a

∂
∂bF.

Take a multivariate Taylor Series approximation for variables a and b, both around 0,

F (ζ1T , ζ2T ,ΞT,GLS) ≈F (0, 0,ΞT,GLS)

+ Fa(0, 0,ΞT,GLS)(ζ1T ) +
1

2
Faa(0, 0,ΞT,GLS)(ζ1T )

2

+ Fb(0, 0,ΞT,GLS)ζ2T +
1

2
Fbb(0, 0,ΞT,GLS)(ζ2T )

2

+ Fab(0, 0,ΞT,GLS)(ζ1T ζ2T ). (4.6)

From Proposition 2 we observe that ΥT is independent of (ζ1T , ζ2T ,ΞT,GLS). Therefore,

E [F (ζ1T , ζ2T ,ΞT,GLS)] ≈E [F (0, 0,ΞT,GLS)]

+ E[Fa(0, 0,ΞT,GLS)(ζ1T )] +
1

2
E[Faa(0, 0,ΞT,GLS)(ζ1T )

2]

+ E[Fb(0, 0,ΞT,GLS)ζ2T ] +
1

2
E[Fbb(0, 0,ΞT,GLS)(ζ2T )

2]

+ E[Fab(0, 0,ΞT,GLS)(ζ1T ζ2T )]

=E [F (0, 0,ΞT,GLS)]

+ E[Fa(0, 0,ΞT,GLS)]E[ζ1T ] +
1

2
E[Faa(0, 0,ΞT,GLS)]E[ζ21T ]

+ E[Fb(0, 0,ΞT,GLS)]E[ζ2T ] +
1

2
E[Fbb(0, 0,ΞT,GLS)]E[ζ22T ]

+ E[Fab(0, 0,ΞT,GLS)]E[ζ1T ζ2T ].
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Observe that E[ζ2T ] = O(T−1) and E[ζ21T ] = O(T−1), hence

E [F (ζ1T , ζ2T ,ΞT,GLS)] ≈E [F (0, 0,ΞT,GLS)] + E[Fa(0, 0,ΞT,GLS)]E[ζ1T ]

+O
(
E[ζ21T ]

)
+O (E[ζ2T ]) +O

(
E[ζ22T ]

)
+O (E[ζ1T ζ2T ])

=E [F (0, 0,ΞT,GLS)] + E[Fa(0, 0,ΞT,GLS)]E[ζ1T ] +O(T−1).

Let fe(x) be the probability density function (pdf) of eT , then

E[Fa(0, 0,ΞT,GLS)ζ1T ] =

∫
E[Fa(0, 0,ΞT,GLS)ζ1T |eT = x]fe(x)dx

=

∫
E[Fa(0, 0, x

′Ω
1/2
GLSΩ̂

−1
T Ω

1/2
GLSx)]2(

√
TR∆)′Ω̂−1Ω

1/2
GLSxfe(x)dx.

We note that eT is a standard normal vector, Ω̂T is an even function of the estimated errors,

and ∆ is an odd function of the estimated errors. The product of an odd function and even

functions results in an odd function, and the integral of an odd function on a symmetric

interval about zero is zero. Thus, E[Fa(0, 0,ΞT,GLS)ζ1T ] = 0, and

P (dFOLS ≤ z) ≈E [F (0, 0,ΞT,GLS)] +O(T−1)

=P (ΥTΞT,GLS < z) +O(T−1)

=P (dFGLS < z) +O(T−1).

■

The test statistic FGLS was used to obtain a probability expression in terms of

a familiar distribution by using the tower property. In Lemma 4b we further establish

an expression for the probability of FOLS , and see the two statistics are asymptotically

equivalent. A similar property holds for θ̂OLS and θ̂GLS which are also asymptotically

equivalent [9].
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The random variable Ξ−1
T serves a similar role as v11·2 in that it is harnessing the

variability and the general behavior of Ω̂T . In the next Lemma we establish an expansion

for Ξ−1
T in a similar spirit as Lemma 3 for v11·2.

Lemma 5: Let κ ∈ K2 ∪ K3 and assume that bT → ∞ as T → ∞, but at a slower rate.

Under Assumption 5 and 6,

(a) The Taylor series expansion of Ξ−1
T around ΞT (Ω) is

Ξ−1
T ≈ 1 + L+Q+ remainder

(b) E(L) = −(bT )−qgqwq − c1b− cb + o((bt)−q)

(c) E(Q) = −bc2(d− 1) + o(b)

(d) E(L2) = 2c2b+ o(b)

where

• L
(1×1)

= Dvec(Ω̂T − Ω)

• Q
(1×1)

= 1
2vec(Ω̂T − Ω)′(J1 + J2)vec(Ω̂T − Ω)

• D
(1×d2)

=
([
e′TΩ

−1/2
]
⊗
[
e′TΩ

−1/2
])

• J1
(d2×d2)

=
[
2Ω−1/2(eT e

′
T )Ω

−1/2
]
⊗
[
Ω−1/2(eT e

′
T )Ω

−1/2
]

• J2
(d2×d2)

= −
[
Ω−1/2eT e

′
TΩ

−1/2 ⊗ Ω−1
]
Kdd (Id2 +Kdd)

• wq = d−1trace
(∑∞

j=−∞ |j|qΓ(j)Ω−1
)

= d−1trace
(
hqΩ

−1
)
, the trace of the scaled

version of the Parzen generalized qth derivative at the origin.
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Begin proof of Lemma 5a.

First we observe that

ΞT (Ω) =e
′
T [Ω

1/2Ω−1
T Ω1/2]eT

=e′T eT

=1.

Therefore, Ξ−1
T (Ω) = 1. We next compute the first derivative of Ξ−1

T with respect to Ω̂T

using the chain rule, and adopt the notation ∂
∂vec(Ω̂)

= d,

∂

∂vec
(
Ω̂
)Ξ−1

T =− Ξ−2
T

∂

∂vec
(
Ω̂
)ΞT

dΞ−1
T =− Ξ−2

T dΞT

=− Ξ−2
T d

[
e′TΩ

1/2Ω̂−1
T Ω1/2eT

]
=− Ξ−2

T e′TΩ
1/2dΩ̂−1

T Ω1/2eT .

We can use the matrix chain rule to observe that: −dΩ̂−1 = Ω̂−1
T (dΩ̂T )Ω̂

−1
T . Hence,

dΞ−1
T =Ξ−2

T e′TΩ
1/2Ω̂−1

T (dΩ̂T )Ω̂
−1
T Ω1/2eT .
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Furthermore, observe that for some matrix Y
(d×d)

with components [Y ]i,j = yij , and vector

r
(1×d)

= [r1, . . . , rp] we have,

rY r′ =

[
r1 . . . rp

]

y11

. . .

ypp




r1

...

rp



=

[∑
j rjyj1 . . .

∑
j rjyjp

]

r1

...

rp


=
∑
i

ri

∑
j

rjyji

 .

We further recall that the Kronecker product (r⊗ r)
(1×pp)

vec(Y )
(dd×1)

=
∑

i

∑
j rirjyij = rY r′. Let

r = e′TΩ
1/2Ω̂−1 and recall dvec

(
Ω̂T

)
= 1 by definition,

dΞ−1
T =− Ξ−2

T rdΩ̂T r
′

=Ξ−2
T [r⊗ r] dvec

(
Ω̂T

)
=Ξ−2

T

[(
e′TΩ

1/2Ω̂−1
)
⊗
(
e′TΩ

1/2Ω̂−1
)]
dvec

(
Ω̂T

)
=Ξ−2

T

[(
e′TΩ

1/2Ω̂−1
T

)
⊗
(
e′TΩ

1/2
T Ω̂−1

)]
.

Now we evaluate dΞ−1
T at Ω. Recall that ΞT (Ω) = 1, thus Ξ−2

T (Ω) = 1, and

dΞ−1
T (Ω) =

[(
e′TΩ

−1/2
)
⊗
(
e′TΩ

−1/2
)]

:=D.
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We continue with the second derivative. Let f(x) and g(x) = g1(x) + g2(x) be arbitrary

differentiable functions. Using the chain rule and product rule derive the following expres-

sion,

∂

∂x
f−2(x)g(x) =(−2)f−3(x)

(
∂

∂x
f(x)

)
g(x) + f−2(x)

(
∂

∂x
g(x)

)
=(−2)f(x)−3

(
∂

∂x
f(x)

)
g(x) + f−2(x)

(
∂

∂x
g1(x)

)
+ f−2(x)

(
∂

∂x
g2(x)

)
=D1 +D2 +D3.

The above notation is a general expression, for our case we have the following,

d
∂Ξ−1

∂
[
vec(Ω̂)

]′ = D1 +D2 +D3

where f(x) = ΞT and g(x) =
[(
e′TΩ

−1/2Ω̂−1
T

)
⊗
(
e′TΩ

−1/2Ω̂−1
T

)]
D1 =− 2Ξ−3

T dΞT

[(
e′TΩ

1/2Ω̂−1
T

)
⊗
(
e′TΩ

1/2Ω̂−1
T

)]
D2 =− Ξ−2

T

[(
e′TΩ

1/2(dΩ̂−1
T )
)
⊗
(
e′TΩ

1/2Ω̂−1
)]

D3 =− Ξ−2
T

[(
e′TΩ

1/2Ω̂−1
T

)
⊗
(
e′TΩ

1/2(dΩ̂−1
T )
)]

=D2Kdd.

We can find alternative representations for these terms. For example, observe that

dΞT =
[(
e′TΩ

1/2Ω̂−1
T

)
⊗
(
e′TΩ

1/2Ω̂−1
T

)]
dvec

(
Ω̂T

)
=dvec

(
Ω̂T

)′ [(
e′TΩ

1/2Ω̂−1
T

)
⊗
(
e′TΩ

1/2Ω̂−1
T

)]′
,
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a relationship observed during the derivation for the first derivative of Ξ−1
T . We can substi-

tute this term inside of D1,

D1 =− 2Ξ−3
T dvec

(
Ω̂T

)′ [(
e′TΩ

1/2Ω̂−1
T

)
⊗
(
e′TΩ

1/2Ω̂−1
T

)]′
×
[(
e′TΩ

1/2Ω̂−1
T

)
⊗
(
e′TΩ

1/2Ω̂−1
T

)]
.

We can also find an alternative representation for D2 and D3. In this alternative represen-

tation we can use a result from earlier, that −dΩ̂−1
T = Ω̂−1

T (dΩ̂T )Ω̂
−1
T , and observe

D2 =− Ξ−2
T

[(
e′TΩ

1/2dΩ̂−1
T Ω̂T Ω̂

−1
T

)
⊗
(
e′TΩ

1/2Ω̂−1
T

)]
=Ξ−2

T

[(
e′TΩ

1/2Ω̂−1
T (dΩ̂T )Ω̂

−1
T

)
⊗
(
e′TΩ

1/2Ω̂−1
T

)]
=Ξ−2

T

[(
Ω̂−1
T (dΩ̂T )Ω̂

−1
T Ω1/2eT

)′
⊗
(
e′TΩ

1/2Ω̂−1
T

)]
=Ξ−2

T

[(
Ω̂−1
T (dΩ̂T )

[
e′TΩ

1/2Ω̂−1
T

]′)′
⊗
(
e′TΩ

1/2Ω̂−1
T

)]
=Ξ−2

T

[(
ZY r′

)′ ⊗ (e′TΩ1/2Ω̂−1
T

)]
where Z = Ω̂−1

T , Y = dΩT , and r =
[
e′TΩ

1/2Ω̂−1
T

]
. Notice vector ZY r′ = vec(ZY r′) and

vec(ZY r′) = (r ⊗ Z)vec(Y ), which gives us

D2 =Ξ−2
T

[(
vec(ZY r′)

)′ ⊗ (e′TΩ1/2Ω̂−1
)]

=Ξ−2
T

[
((r ⊗ Z)vec(Y ))′ ⊗

(
e′TΩ

1/2Ω̂−1
T

)]
.

Substituting values back in we obtain,

D2 =Ξ−2
T

[(([
e′TΩ

1/2Ω̂−1
T

]
⊗ Ω̂−1

T

)
dvec

(
Ω̂T

))′
⊗
(
e′TΩ

1/2Ω̂−1
T

)]
=Ξ−2

T dvec
(
Ω̂T

)′ [([
e′TΩ

1/2Ω̂−1
T

]
⊗ Ω̂−1

T

)′
⊗
(
e′TΩ

1/2Ω̂−1
T

)]
=Ξ−2

T dvec
(
Ω̂T

)′ [(
e′TΩ

1/2Ω̂−1
T

)′
⊗ Ω̂−1

T ⊗
(
e′TΩ

1/2Ω̂−1
T

)]
.
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Now we can calculate the second derivative of Ξ−1
T at Ω. Recall dvec

(
Ω̂
)
= 1, ΞT (Ω) = 1,

and (A⊗B)(C ⊗D) = (AC)⊗ (BD). Therefore,

∂2ΞT (Ω)

∂vec
(
Ω̂
)
∂vec

(
Ω̂
) =2(1)

([
e′TΩ

−1/2
]′
⊗
[
e′TΩ

−1/2
]′)([

e′TΩ
−1/2

]
⊗
[
e′TΩ

−1/2
])

−
([
e′TΩ

−1/2
]′
⊗ Ω−1 ⊗

[
e′TΩ

−1/2
])

(Id2 +Kdd)

=2
[
Ω−1/2eT e

′
TΩ

−1/2
]
⊗
[
Ω−1/2eT e

′
TΩ

−1/2
]

−
[
e′TΩ

−1/2
]′
⊗ Ω−1 ⊗

[
e′TΩ

−1/2
]
(Id2 +Kdd)

=2
[
Ω−1/2eT e

′
TΩ

−1/2
]
⊗
[
Ω−1/2eT e

′
TΩ

−1/2
]

−
[
Ω−1/2eT e

′
TΩ

−1/2 ⊗ Ω−1
]
Kdd (Id2 +Kdd)

:=J1 + J2.

■

Begin proof of Lemma 5b.

Recall Proposition 2, which implies eT ⊥ Ω̂T . Therefore, under Assumption 6 we have,

E(L) =E[Dvec(Ω̂T − Ω)]

=Ee′TΩ
−1/2(Ω̂T − Ω)Ω−1/2eT

=− (bT )−qEe′TΩ
−1/2(gqhq)Ω

−1/2eT − (c1 + cb)Ee
′
TΩ

−1/2ΩΩ−1/2eT + o
(
(bT )−q

)
≈− (bT )−qEe′TΩ

−1/2(gqhq)Ω
−1/2eT − (c1 + cb) + o

(
(bT )−q

)
.
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For a symmetric matrix A
(d×d)

and row vector r
(d×1)

: r′Ar =
∑

j rj (
∑

i riaij) and [Arr′]ij =

rj (
∑

i aijri). Therefore trace(Arr′) = r′Ar =
∑

j rj (
∑

i aijri). We further observer that

E[eT e
′
T ] = IdE

(
1

||Ω−1/2
GLS

√
T (R0θ̂GLS−r0)||

)
= 1

d . With these properties we obtain,

E(L) ≈− (bT )−qgqE
[
trace

(
Ω−1/2hqΩ

−1/2eT e
′
T

)]
− (c1 + cb) + o

(
(bT )−q

)
=− (bT )−qgqE

[
trace

(
hqΩ

−1eT e
′
T

)]
− c1 − cb + o

(
(bT )−q

)
=− (bT )−q gq

d
trace

(
hqΩ

−1
)
− c1 − cb + o

(
(bT )−q

)
=− (bT )−qgqwq − c1 − cb + o

(
(bT )−q

)
.

■

Begin proof of Lemma 5c.

Let V,B,C be arbitrary d × d square matrices, and (a, b) be arbitrary d × 1 vectors. We

will rely on the following properties:

(V ⊗B)vec (C) = vec
(
V CB′) (4.7)

trace(A′B) = trace(AB′) (4.8)

a′b = trace(ba′) (4.9)

(A⊗B)(C ⊗D) = (AC)⊗ (BD). (4.10)

Furthermore, if (A,B,C,D) are all symmetric matrices,

trace(ABCD) = trace(ACDB). (4.11)
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We start by finding an expression for E(Q) = 1
2E
[
vec

(
Ω̂T − Ω

)
(J1 + J2)

(
Ω̂T − Ω

)]
. We

first study just the J1 term. Using property (4.7),

1

2
E

[
vec

(
Ω̂T − Ω

)′
J1vec

(
Ω̂T − Ω

)]
=
2

2
E

[
vec

(
Ω̂T − Ω

)′ [
Ω−1/2eT e

′
TΩ

−1/2
]

⊗
[
Ω−1/2eT e

′
TΩ

−1/2
]
vec

(
Ω̂T − Ω

)]
=E

[
vec

(
Ω̂− Ω

)′
vec

{
Ω−1/2eT e

′
TΩ

−1/2
]

×
(
Ω̂− Ω

)
Ω−1/2eT e

′
TΩ

−1/2
}]

=E

[(
e′TΩ

−1/2
(
Ω̂− Ω

)
Ω−1/2eT

)2]
=E[(X ′AX)2]

where A = Ω−1/2
(
Ω̂− Ω

)
Ω−1/2, [A]ij = Aij ,X = eT . Using the tower property of expec-

tations and Proposition 2 we can rewrite this as the following,

E[(X ′AX)2] =E

∑
i,j

∑
m,l

AijAlmXiXjXlXm


=E

∑
i,j

∑
m,l

AijAlmE[XiXjXlXm|A]


=
∑
i,j

∑
m,l

E[AijAlm]E[XiXjXlXm].

Without loss of generality, if Xi is different from (Xj , Xl, Xm), then E[XiXjXlXm] = 0

[23, 52]. Thus, we only care about four cases: (i = j = l = m), (i = j, l = m), (i = l,m = j),

and (i = m, j = l). Furthermore, E[X4
i ] =

3
d(d+2) and E[X2

iX
2
j ] =

1
d(d+2) . We break up the

expectation into these four cases,
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∑
i,j

∑
m,l

AijAlmE[XiXjXlXm] =
∑

i=j=l=m

A2
iiE(X4

i ) +
∑
i=j

∑
l=m

AiiAjjE[X2
iX

2
m]

+
∑
i=l

∑
j=m

A2
ijE[X2

iX
2
j ] +

∑
j=l

∑
j=l

A2
ijE[X2

iX
2
j ]

=
∑

i=j=l=m

A2
iiE(X4

i ) +
∑
i=j

∑
l=m

AiiAjjE[X2
iX

2
m]

+ 2
∑
i=l

∑
j=m

A2
ijE[X2

iX
2
j ]

=
∑

i=j=l=m

A2
ii

(
3

d(d+ 2)

)
+
∑
i=j

∑
l=m

AiiAjj

(
1

d(d+ 2)

)

+ 2
∑
i=l

∑
j=m

A2
ij

(
1

d(d+ 2)

)
.

We still need the expected value of the A terms. Notice that the off-diagonals of A squared

are 0, i.e. E[A2
ij ] = 0 for i ̸= j. Therefore,

∑
i,j

∑
m,l

E [AijAlm]E[XiXjXlXm] =
∑

i=j=l=m

E[A2
ii]

(
3

d(d+ 2)

)
+
∑
i=j

∑
l=m

E[AiiAjj ]

(
1

d(d+ 2)

)

=

(
3

d(d+ 2)

)
E [trace (AA)]

+

(
1

d(d+ 2)

)
E
[
trace2 (A)− trace(AA)

]
=

(
1

d(d+ 2)

)
2
[
E [trace(AA)] + E

[
trace2(A)

]]
.

Next we find E[trace(AA)]. We use the trace property illustrated in equation (4.8) to

rearrange,
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E[trace(AA)] =E
[
trace

(
vec′(A)vec(A)

)]
=E

[
trace

(
vec′(Ω−1/2(Ω̂T − Ω)Ω−1/2)vec(Ω−1/2(Ω̂T − Ω)Ω−1/2)

)]
=E

[
trace

(
vec′(Ω̂T − Ω)(Ω−1/2 ⊗ Ω−1/2)(Ω−1/2 ⊗ Ω−1/2)vec(Ω̂T − Ω)

)]
=E

[
trace

(
(Ω−1/2 ⊗ Ω−1/2)vec(Ω̂T − Ω)vec′(Ω̂T − Ω)(Ω−1/2 ⊗ Ω−1/2)

)]
.

To further simplify we use Theorem 1, a trace property of symmetric matrices illustrated

in equation (4.11), and a multiplication property of matrices in equation (4.10),

E[trace(AA)] =trace
(
(Ω−1/2 ⊗ Ω−1/2)V ar

(
vec(Ω̂T

)
(Ω−1/2 ⊗ Ω−1/2)

)
≈bc2trace

(
(Ω−1/2 ⊗ Ω−1/2) (Id2 +Kdd) (Ω⊗ Ω) (Ω−1/2 ⊗ Ω−1/2)

)
+ o(b)

=bc2trace
(
(Ω−1/2 ⊗ Ω−1/2) (Ω⊗ Ω) (Ω−1/2 ⊗ Ω−1/2) (Id2 +Kdd)

)
+ o(b)

=bc2trace
(
(Ω0 ⊗ Ω0) (Id2 +Kdd)

)
+ o(b)

=bc2trace (Id2 +Kdd) + o(b)

=bc2 [trace (Id2) + trace (Kdd)] + o(b)

=bc2
[
d2 + d

]
+ o(b).

Next we derive E
[
trace2(A)

]
. To further simplify we use a trace property for symmetric

matrices illustrated in equation (4.11), and observe that (
∑

iAii)
2 =

∑
i

∑
j AiiAjj,

E
[
trace2(A)

]
=E

[
trace2

(
Ω−1/2(Ω̂T − Ω)Ω−1/2)

)]
=E

[
trace2

(
(Ω̂T − Ω)Ω−1)

)]
=E

[
trace

(
(Ω̂T − Ω)Ω−1)

)
trace

(
(Ω̂− Ω)Ω−1)

)]
=E

[
vec′

(
(Ω̂T − Ω)Ω−1)

)
vec(

(
(Ω̂T − Ω)Ω−1)

)]
.
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Let [Ω̂T − Ω]ij = ϕij , and [Ω−1]ij = ωij . For i ̸= j, E(ϕ2ij) = 0, and for (i, j) = (l, k) we

have that E(ϕijϕlk) = 0. Hence vec′
(
(Ω̂T − Ω)Ω−1)

)
vec

(
(Ω̂T − Ω)Ω−1)

)
=
∑

l(ϕω)
2
l =∑

l ϕ
2
llω

2
ll. We also observe that

vec′(Ω−1)vec(Ω̂T − Ω)vec′(Ω̂T − Ω)vec(Ω−1) =

(∑
l

(ωϕ)l

)(∑
h

(ωϕ)h

)

=
∑
l

∑
h

(ωϕ)l
∑
l

(ωϕ)h

=
∑
l

(ωϕ)2l

=
∑
l

ω2
llϕ

2
ll.

Therefore vec′
(
(Ω̂T − Ω)Ω−1)

)
vec(

(
(Ω̂T − Ω)Ω−1)

)
= vec′(Ω−1)vec(Ω̂T − Ω)vec′(Ω̂T −

Ω)vec(Ω−1), and we have the following,

E
[
trace2(A)

]
=E

[
vec′(Ω−1)vec(Ω̂T − Ω)vec′(Ω̂T − Ω)vec(Ω−1)

]
.

Furthermore by Theorem 1 and property (4.7),

E
[
trace2(A)

]
=vec′(Ω−1)V ar(vec(Ω̂T ))vec(Ω

−1)

≈bc2vec′(Ω−1) (Ω⊗ Ω) (Id2 +Kdd) vec(Ω
−1) + o(b)

=2bc2vec
′(Ω−1) (Ω⊗ Ω) vec(Ω−1) + o(b)

=2bc2vec
′(Ω−1)vec(ΩΩ−1Ω) + o(b)

=2bc2vec
′(Ω−1)vec(Ω) + o(b)

=2bc2d+ o(b).
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We now have what we need for 1
2E
[
vec′

(
Ω̂T − Ω

)
J1vec

(
Ω̂T − Ω

)]
,

1

2
E
[
vec′

(
Ω̂T − Ω

)
J1vec

(
Ω̂T − Ω

)]
=

1

d(d+ 2)

[
2E (trace(AA)) + E

(
trace2(A)

)]
≈ 1

d(d+ 2)

[
2(bc2)(d

2 + d) + 2bc2d
]
+ o(b)

=
2bc2d

d(d+ 2)
[(d+ 1) + 1] + o(b)

=
2bc2

(d+ 2)
[d+ 2] + o(b)

=2bc2 + o(b).

Next we derive 1
2E
[
vec′

(
Ω̂T − Ω

)
J2vec

(
Ω̂T − Ω

)]
. Recall for a symmetric commutation

matrix KddK′
dd = Idd. Utilizing this relationship, property (4.7), and property (4.9) we

obtain,

vec′
(
Ω̂T − Ω

)
J2vec

(
Ω̂T − Ω

)
=− vec′

(
Ω̂T − Ω

) [
Ω−1/2eT e

′
TΩ

−1/2 ⊗ Ω−1
]
Kdd

× (Id2 +Kdd) vec
(
Ω̂T − Ω

)
=− vec′

(
Ω̂T − Ω

) [
Ω−1/2eT e

′
TΩ

−1/2 ⊗ Ω−1
]
Kddvec

(
Ω̂T − Ω

)
− vec′

(
Ω̂T − Ω

) [
Ω−1/2eT e

′
TΩ

−1/2 ⊗ Ω−1
]
Iddvec

(
Ω̂T − Ω

)
=− 2vec′

(
Ω̂T − Ω

) [
Ω−1/2eT e

′
TΩ

−1/2 ⊗ Ω−1
]
vec

(
Ω̂T − Ω

)
=− 2vec′

(
Ω̂T − Ω

)
vec

(
Ω−1(Ω̂T − Ω)Ω−1/2eT e

′
TΩ

−1/2
)

=− 2vec′
(
Ω̂T − Ω

)
vec

(
Ω−1/2AeT e

′
TΩ

−1/2
)

=− 2trace
(
vec

(
Ω−1/2AeT e

′
TΩ

−1/2
)
vec′

(
Ω̂T − Ω

))
=− 2trace

(
Ω−1/2AeT e

′
TΩ

−1/2(Ω̂T − Ω)
)
.
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We can permute the arrangements of symmetric matrices within the trace operator, and

use trace property (4.9) to simplify,

=− 2trace
(
AeT e

′
TΩ

−1/2(Ω̂T − Ω)Ω−1/2
)

=− 2trace
(
AXX ′A

)
=X ′AAX.

Next we find the expected value of X ′AAX. By the tower property and Proposition 2,

E[X ′AAX] =E

∑
i,j,l

AilAljXiXj


=E

∑
i,j,l

AilAljE[XiXj |A]


=
∑
i,j,l

E [AilAlj ]E [XiXj ]

Recall: E[XiXj ] = 0 if i ̸= j, and A is symmetric. Therefore,

E[X ′AAX] =
∑
l

∑
i=j

E [AilAli]E
[
X2

i

]
=
∑
l

∑
i=j

E [AilAli]
1

d

=
∑
l

∑
i=j

E
[
A2

il

] 1
d

=
∑
i=j=l

E
[
A2

ii

] 1
d

=E [trace(AA)]
1

d

=
1

d

[
c2b(d

2 + d)
]

=c2b(d+ 1).
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Hence,

1

2
E
[
vec′

(
Ω̂T − Ω

)
J2vec

(
Ω̂T − Ω

)]
=
1

2
(−2)c2b(d+ 1)

=− c2b(d+ 1).

We now have the components needed to obtain the expected value of Q,

E[Q] =
1

2
E
[
vec′

(
Ω̂T − Ω

)
(J1 + J2)vec

(
Ω̂T − Ω

)]
≈2bc2 − c2b(d+ 1) + o(b)

=c2b[2− d− 1] + o(b)

=− c2[d− 1]b+ o(b).

■

Begin proof of Lemma 5d.

We next derive the expected value of L2,

E[L2] =E
[
Dvec

(
Ω̂T − Ω

)
Dvec

(
Ω̂T − Ω

)]
=E

[
Dvec

(
Ω̂T − Ω

)
vec′

(
Ω̂T − Ω

)
D′
]

=E

[(
e′TΩ

−1/2 ⊗ e′TΩ
−1/2

)
vec

(
Ω̂T − Ω

)
vec′

(
Ω̂T − Ω

)(
e′TΩ

−1/2 ⊗ e′TΩ
−1/2

)′]
=E

[(
e′TΩ

−1/2 ⊗ e′TΩ
−1/2

)
vec

(
Ω̂T − Ω

)
vec′

(
Ω̂T − Ω

)(
e′TΩ

−1/2 ⊗ e′TΩ
−1/2

)′]
.
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By Proposition 2 and Theorem 1, and multiplication property in equation (4.10) we obtain,

E[L2] ≈c2bE
[(
e′TΩ

−1/2 ⊗ e′TΩ
−1/2

)
(Id2 +Kdd) (Ω⊗ Ω)

(
e′TΩ

−1/2 ⊗ e′TΩ
−1/2

)′]
+ o(b)

=2c2bE

[(
e′TΩ

−1/2 ⊗ e′TΩ
−1/2

)
(Ω⊗ Ω)

(
e′TΩ

−1/2 ⊗ e′TΩ
−1/2

)′]
+ o(b)

=c2bE
[(
e′TΩ

−1/2 ⊗ e′TΩ
−1/2

)(
Ω1/2eT ⊗ Ω1/2eT

)]
+ o(b)

=2c2bE
[(
e′T eT ⊗ e′T eT

)]
+ o(b)

=2c2bE
[(
e′T eT

)2]
+ o(b).

Let X = eT as before, then

E
[(
e′T eT

)2]
=E

(∑
i

X2
i

)2


=E

∑
i

∑
j

X2
iX

2
j


=E

∑
i=j

X4
i +

∑
i ̸=j

X2
iX

2
j


=d

(
3

d(d+ 2

)
+ (d2 − d)

(
1

d(d+ 2)

)
=

1

d+ 2
(3 + (d− 1))

=1.

Therefore, E(L2) ≈ 2c2b+ o(b) as desired.

■

The assumptions of this Lemma are required because of the reliance on Propo-

sition 2, the expression for the variance in Theorem 1, and the expression for the bias in

Assumption 6.
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The proofs for Lemma 4 and 5 closely follow Sun [52, 54], except it incorporates

the finite sampling bias through Assumption 6 and it is specific to SV estimators with

κ ∈ K2∪K3, instead of series estimators and mother kernels. In Theorem 1 and Assumption

6 we observe that the asymptotic bias of Ω̂T attributed to the kernel can be represented

through (bT )−qgqhq; however, in most contexts (bT )−qgqwq comes up more regularly when

finding expressions for probabilities. The value wq is dependent on the kernel only through

q. The kernels in class K1 are positive-semi definite, and have guaranteed q ≤ 2. Kernels in

class K2 largely inherit the same q as their generating mother kernel with the exception of

the zero lugsail kernels that have g∞ = 0. Estimating the exact wq for each scenario is not

practical so practitioners often use a rudimentary but effective estimate of wq by relying

on an AR(1) model with auto regressive coefficient ρ [1, 27, 2]. This gives us w1 = 2ρ
1−ρ2

,

and w2 = 2ρ
(1−ρ)2

. With this standard approach we can readily obtain approximations for

(bT )−qgqwq for all kernels κ ∈ K2 ∪ K3.

Theorem 3: Let κ ∈ K2 ∪ K3 and assume that bT → ∞ as T → ∞, but at a slower rate.

Under Assumptions 4, 5, and 6,

(a) P (dFOLS ≤ z) = Gd(z) +G
′′
d(z)z

2c2b−G′
d(z)z[c1 + c2(d− 1)]b

−G′
d(z)zcb − (bT )−qG′

d(z)zgqwq + o(b) + o ((bT )−q)

(b) Pδ(dFOLS ≤ z) = Gd,δ2 (z) +G
′′

d,δ2 (z) z
2c2b−G′

d,δ2(z)z[c1 + c2(d− 1)]b

−G′
d,δ2(z)zcb − (bT )−qG′

d,δ2 (z) zgqwq + o(b) + o ((bT )−q).

Begin proof of Theorem 3a.
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Use similar steps as in [54]. Using Lemma 4 and Lemma 5,

P (dFOLS ≤ z) =E
[
Gd

(
zΞ−1

T

)]
≈E [Gd (z(1 + L+Q))] + remainder.

We next take the Taylor Series expansion of Gd (z(1 + L+Q)) around Gd(z),

P (dFOLS ≤ z) ≈E
{
Gd(z) +

Gd(z)

1!
z(L+Q) +

G′′
d(z)

2
z2(L+Q)2

}
+ remainder

=Gd(z) +
Gd(z)

1!
zE(L+Q) +

G′′
d(z)

2
z2E

(
(L+Q)2

)
+ remainder

≈Gd(z) +
Gd(z)

1!
zE(L+Q) +

G′′
d(z)

2
z2E

(
L2
)
+ remainder.

We next use the results of Lemma 5. We further observe that the derivatives of G′
d(x) and

G′′
d(x) are bounded, and use a similar argument from Lemma 4 to simplify,

P (dFOLS ≤ z) ≈Gd(z) +
Gd(z)

1!
z (−(bT )qgqwq − c1b− cb − bc2(d− 1)) +

G′′
d(z)

2
z2 (2c2b)

+ o(b) + o
(
(bT )−q

)
=Gd(z) +G

′′
d(z)z

2bc2 −G′
d(z)z[cb + c1b+ c2(d− 1)b]− (bT )−qG′

d(z)gqwq

+ o(b) + o
(
(bT )−q

)
.

■

Proof of Theorem 3b.

Define

eδ
(d×1)

:=
Ω
−1/2
GLS

[
R
√
T (θ̂GLS − θ0)

]
+ δ

||Ω−1/2
GLS

[
R
√
T (θ̂GLS − θ0)

]
+ δ||

Υδ
(1×1)

:=||ΩGLS

[
R
√
T (θ̂GLS − θ0)

]
+ δ||2

Ξδ
(1×1)

:=e′δΩ
1/2
GLSΩ̂

−1
T Ω

1/2
GLSeδ.
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Using similar arguments as in Lemma 4, under HA with non-centrality parameter δ2

dFGLS = ΥδΞδ

which implies

Pδ (dFOLS ≤ z) =Pδ (ΥδΞδ ≤ z) +O(T−1)

=EGd,δ2
(
zΞ−1

T

)
+O(T−1)

for some z ∈ R. Use similar steps as in Lemma 5 and Theorem 3a,

Pδ(dFOLS ≤ z) =Gd,δ2 (z) +G
′′

d,δ2 (z) b (z)
2 c2

−G′
d,δ2(z)z[cb + c1b+ c2(d− 1)b]

− (bT )−qG′
d,δ2 (z) zgqwq + o(b) + o

(
(bT )−q

)
.

■

The first three terms of Theorem 3a are the same as the first terms as the fixed-

b random variable F∞ in Theorem 2. These terms capture the variability of Ω̂T , but

also contain the de-meaning bias term c1b which is not dependent on sample size. The

discrepancy between Theorem 3a and Theorem 2 comes from the bias components that are

specific to the sample size, i.e. the dominate kernel bias term and the finite samping bias.

The expression in Theorem 3b largely shares the same general properties.
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Chapter 5

Optimal Bandwidth for the Lugsail

Estimator

5.1 Alternative Loss Functions and Bandwidth Rules

Classical inference procedures often have the strict but common set of assumptions

that the error terms are approximately normal, iid, and homoskedastic. In contrast robust

inference procedures utilize SV estimators which are designed to handle a wider variety of

error structures that may not meet these assumptions. The robust SV estimator depends

on two tuning parameters, a bandwidth and a kernel function. Research has largely focused

on optimizing the bandwidth.

When searching for a bandwidth for robust estimation the goal is to select b such

that for all |s| > bT we have that Γ(s) ≈ 0 [49], which we refer to as the fundamental

principal of bandwidth selection. Practitioners can arbitrarily pick such a b for each scenario
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by studying the autocovariance function, but this is usually highly subjective, variable, and

tedious. Hence, bandwidth rules emerged that are data driven and adaptive. These rules

allow practitioners to automatically procure a reasonable b without much discernment.

Politis [47] proposed a such a rule for the class of flat top kernels with the fundamental

principle in mind. Let ρ̂(s) = Γ̂(s)/Γ̂(0),

m = argmin
m∈N+

{
ρ̂(m̂+ k) < c

√
log(T )/T for k = 1, . . . ,KT

}
,

c ∈ R+, KT = O(log(T )), and 1 ≤ KT ≤ T . For a Bartlett flat top kernel it is recommended

to use c = 2, KT = max(5, ⌊log(T )⌋), which results in the bandwidth rule

bft =
2m

T
. (5.1)

A limitation of this rule is that it will never attain zero, even in the presence of no correlation.

It is also highly variable and computationally burdensome as it relies on the estimation of

several random components.

Most other bandwidth rules are motivated by loss functions, and historically MSE

has been a popular loss function for picking an optimal bandwidth for LRV estimators.

Andrews [1] proposed a rule based on AMSE that has been commonly used; for the Bartlett

mother kernel with VAR(1) random errors and correlation coefficient matrix ρ1d we can

simplify this rule to

bmse = 1.1447

(
2ρ̂

(1− ρ̂)2
1

T

)2/3

. (5.2)

The AMSE rule is intuitive, relies on classical statistical principals and is easy to use.

However, it accounts for correlation in only how it relates to the asymptotic kernel bias.

It also induces a paradox for kernels with infinite characteristic components: the typical
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dominate asymptotic bias term is zero, thus we optimize according to asymptotic variance

alone and obtain bmse = 0, resulting in a clearly non-optimal biased estimate.

Although practical, bandwidth rules often rely on proxy objectives, and in the

quest of generality miss nuances of individual finite samples. Recent efforts have been made

on loss functions and rules designed around the prime objective of the estimator, inference.

To achieve statistical validity it is well known that inference procedures should have an

observed Type 1 error rate less than or equal to α. Most these rules focus on this goal,

with only minimal consideration of power. Let τ ∈ [0, 1], eI(b) denote the Type 1 error

rate, eII(b) denote the Type 2 error rate, ∆s = eI(b)− α denote the size distortion, ∆max
p

denote the maximum size-adjusted power loss, and ∆I
p =

∫
∆p(δ)d

∏
δ(δ) be the integrated

density function over the non-centrality parameter δ. As summarized by Lazarus et al. [27],

following testing centered rules have been considered for kernels in class K1,

(a) τ |∆s|+ (1− τ)∆max
p

(b) τ |∆s|+ (1− τ)∆I
p

(c) τ∆2
s + (1− τ)

(
∆max

p

)2
(d) τeI(b) + (1− τ)eII(b)

(e) argmax
b

(1− eII(b)) such that eI(b) ≤ α(1 + τ).

The loss functions above require a tuning parameter τ , with little guidance on how

to select τ except for the general suggestion that τ ≈ 0.9 for functions (a)-(d), and τ ≈ 0.1

for (e) to emphasize the importance of Type 1 error [27, 29, 54]. The loss functions (a), (b),

and (d) can be thought of as a weighted average of bias and variance due to size distortion
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being dominated by the bias of Ω̂T , and power being heavily influenced by variability of

Ω̂T [27, 56]. The function (c) instead resembles a modified version of MSE, because it can

be viewed as a weighted average of bias squared and variance. The loss function (e) yields

a different bandwidth depending on the direction of correlation, accounting for the fact

that a negatively correlated data set generally produces a less biased estimate for LRV [54].

Coverage probability error has also been considered for series estimators [53].

We follow a spirit similar to the loss function (e) proposed by Sun [54], and the

general construction of Neyman-Pearson like testing procedures. We also account for finite

sampling bias as a way to incorporate the fundamental principle.

5.2 Approximating Error Rates

5.2.1 Finite Sample Bias

To obtain an expression for Type 1 and Type 2 error we must approximate cb,

and we use an auto-regressive model of order 1. Consider the Gaussian location model

in equation (4.2), let ϵt
iid∼ Np(0,Ωϵ) and A be a known absolutely summable non-random

matrix. We can model the error terms wt as

wt = Awt−1 + ϵt
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and refer to ϵt as the disturbances. With this construction we can calculate the true LRV

for the random variable yt, whose variability is contained in the error wt [34, 62]. We start

by deriving Γ(h),

Γ(h) =Cov(wt, wt−h)

=E
[
wtw

′
t−h

]
=E

[
(Awt−1 + ϵt−1)w

′
t−h

]
=E

[
Awt−1w

′
t−h

]
+ E

[
ϵt−1w

′
t−h

]
.

This helps us recognize that

Γ(h) =


AΓ(−1) + Ωϵ if h = 0

AΓ(h− 1) if h > 0.

(5.3)

The equations (5.3) are known as the Yule-Walker equations. With this information we

recognize that if we know Γ(0), A, and Ωϵ then Γ(h) can be solved recursively for all h. As

a first step we must find Γ(0) utilizing Ωϵ and A,

Γ(0) =AΓ(1)′ +Ωϵ

=AΓ(0)A′ +Ωϵ

vec(Γ(0)) =vec
[
AΓ(0)A′ +Ωϵ

]
=(A⊗A)vec(Γ(0))) + vec(Ωϵ)

vec(Γ(0))(I −A⊗A) =vec(Ωϵ)

vec(Γ(0)) =(I −A⊗A)−1vec(Ωϵ).

103



We now derive the the true value of Ω,

Ω =
∞∑

j=−∞
Γ(j)

=Γ(0) +

∞∑
j=1

R(j) +

∞∑
j=1

Γ(j)′

=Γ(0) +
∞∑
j=1

AjΓ(0) +
∞∑
j=1

(
Aj

1Γ(0)
)′

=
∞∑
j=0

AjΓ(0) +
∞∑
j=0

(
AjΓ(0)

)′ − Γ(0)

=(I −A)−1Γ(0) + Γ(0)(I −A′)−1 − Γ(0).

If A = ρ1p for |ρ| < 1, then Ωii =
1

(1−ρ)2
[Ωϵ]i,i. Concentrating on one diagonal element of

the LRV we obtain an estimate for the finite sampling bias,

Ωiicb ≈
∑

|s|>⌊bT ⌋

Γii(s)

=
∞∑

s=∞
Γii(s)−

⌊bT ⌋∑
s=−⌊bT ⌋

Γii(s)

=2
∞∑

s=⌊bT ⌋+1

Γii(s)

We plug in Γii(s) by using the Yule-Walker equations, use the geometric series identity∑∞
k=n r

k = r
1−rr

n, and substitution with Ωii =
1

(1−ρ)2
[Ωϵ]i,i,
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Ωiicb ≈2Γii(0)

 ∞∑
s=⌊bT ⌋+1

ρs


=2Γii(0)

(
ρ

1− ρ
ρ⌊bT ⌋+1

)
=2

1

(1− ρ)(1 + ρ)
[Ωϵ]i,i

ρ

1− ρ
ρ⌊bT ⌋+1

=Ωii
2ρ

1 + ρ
ρ⌊bT ⌋+1

=Ωii
2ρ2

1 + ρ
ρ⌊bT ⌋.

This leads us to the following proposition.

Proposition 3: Under Assumption 6, we approximate the finite sampling bias as

cb ≈
2ρ̂2

1 + ρ̂
ρ̂bT . (5.4)

5.2.2 Asymptotic Error Rates

With Theorem 2, Theorem 3, and Proposition 3 we can derive accessible expres-

sions for Type 1 and Type 2 error when utilizing fixed-b critical values that incorporate the

finite sampling bias.

Corollary 2: Let κ̃ ∈ K3 and assume that bT → ∞ as T → ∞, but at a slower rate. Using

test statistic dFOLS and fixed-b critical values, under Assumptions 4, 5, and 6,

(a) eI(b) ≈ α+G′
d(χ

α
d )χ

α
d

2ρ2

1+ρρ
bT + (bT )−qG′

d(χ
α
d )χ

α
d gqwq

(b) 1− eII(b) ≈ 1−Gd,δ2(χ
α
d )−

[
δ2

2 G
′

(d+2),δ2(χ
α
d )−G′

d,δ2(χ
α
d )(d− 1)

]
χα
d c2b

+G′
d,δ2(χ

α
d )χ

α
d

2ρ2

1+ρρ
bT +G′

d,δ2(χ
α
d )χ

α
d c1b+ (bT )−qG′

d,δ2(χ
α
d )χ

α
d gqwq.
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Begin proof of Corollary 2a.

We begin with the Type 1 error expression. By Theorem 2,

1− P (dF∞ ≤ z) =1−Gd(z)−G
′′
d(z) (z)

2 c2b+Gd(z)z[c1 + c2(d− 1)]b+ o(b)

=1−Gd(z)−G
′′
d(z) (z)

2 c2b+Gd(z)z[c1 + c2(d− 1)]b+ o(b)

set
=α+ o(b).

By Theorem 3,

1− P (dFT,OLS ≤ z) =1−Gd(z)−G
′′
d(z) (z)

2 c2b+G′
d(z)z[cb + c1 + c2(d− 1)b]

− (bT )−qG′
d(z)zgqwq + o

(
(bT )−q

)
=1−Gd(z)−G

′′
d(z) (z)

2 c2b+G′
d(z)z[c1 + c2(p− 1)]b+G′

d(z)z[cb]

− (bT )−qG′
d(z)zgqwq + o

(
(bT )−q

)
.

Recognizing components from Theorem 2 we can rewrite the above expression,

1− P (dFT,OLS ≤ z) =α+G′
d(z)z[cb]− (bT )−qG′

d(z)zgqwq + o(b) + o
(
(bT )−q

)
.

Observing dcαd (b) ≈ χα
d + o(b), and using the approximation in Proposition 3 we have,

eI(b) ≈ α+G′
d(χ

α
d )χ

α
d

2ρ2

1 + ρ
ρbT + (bT )−qG′

d(χ
α
d )χ

α
d gqwq.

■

Begin proof of Corollary 2b.

Let z = dcαd (b) for ease of notation. Recall from Theorem 3,

Pδ(dFOLS ≤ z) =Gd,δ2 (z) +G
′′

d,δ2 (z) (z)
2 c2

−G′
d,δ2(z)z[cb + c1 + c2(d− 1)b]

− (bT )−qG′
d,δ2 (z) zgqwq + o(b) + o

(
(bT )−q

)
. (5.5)
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We wish to rewrite this expression so that it has more accessible terms. We will utilize a

Cornish-Fisher type expansion as in Sun [54, Theorem 4] and Lazarus et al. [27, Theorem

1]. Cornish-Fisher expansions are used to approximate quantiles of a random variable using

the first few cumulants of the Gaussian distribution [15, 31], provided the random variable

being approximated has a Gaussian limiting distribution. Cornish-Fisher type expansions

broaden this result to include non-Gaussian limiting distributions [13]. For our purposes

we use the χ2 limiting distribution to approximate the fixed-b critical value z as b→ 0,

z = dcαd (b) ≈χα
d −

G
′′
d (χ

α
d )

G
′
d

(
χα
d

) (γ1
6

)
≈χα

d −
G

′′
d (χ

α
d )

G
′
d

(
χα
d

) (c2 (χα
d )

2
)
b+O(b)

where γ1 is the skewness of the F∞ random variable. As already mentioned, dF∞(b, d) →

χ2
d; the Cornish-Fisher type expansion above gives a structure to this approximation that

helps us rearrange terms. We plug in the expansion into the first term of (5.5) and further

approximate with a Taylor series expansion around χ2
d,

Gd,δ2(z) ≈Gd,δ2

(
χα
d −

G
′′
d(χ

α
d )c2 (χ

α
d )

2

G
′
d(χ

α
d )

b

)

≈Gd,δ2(χ
α
d )−G

′

d,δ2(χ
α
d )

(
G

′′
d(χ

α
d )c2 (χ

α
d )

2

G
′
d(χ

α
d )

)
b+O(b).

We plug this new representation back into (5.5),

Pδ(dFOLS ≤ z) =Gd,δ2(χ
α
d )−G

′

d,δ2(χ
α
d )

(
G

′′
d(χ

α
d )c2 (χ

α
d )

2

G
′
d(χ

α
d )

)
b

+G
′′

d,δ2 (z) (z)
2 c2 −G′

d,δ2(z)z[cb + c1 + c2(d− 1)b]

− (bT )−qG′
d,δ2 (z) zgqwq +O(b) + o

(
(bT )−q

)
.
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We further substitute z = dcαd (b) ≈ χα
d +O(b) to rearrange terms,

Pδ(dFOLS ≤ z) ≈Gd,δ2(χ
α
d )−G

′

d,δ2(χ
α
d )

(
G

′′
d(χ

α
d )c2 (χ

α
d )

2

G
′
d(χ

α
d )

)
b

+G
′′

d,δ2(χ
α
d )(χ

α
d )

2c2 −G′
d,δ2(χ

α
d )χ

α
d [cb + c2(d− 1)b]

− (bT )−qG′
d,δ2(χ

α
d )χ

α
d gqwq +O(b) + o

(
(bT )−q

)
.

Using the result from Sun [54, Theorem 5],

G
′′

d,δ2(χ
α
d )−G

′

d,δ2(χ
α
d )

(
G

′′
d(χ

α
d )

G
′
d(χ

α
d )

)
=

δ2

2χα
d

G
′

(d+2),δ2(χ
α
d ),

we can further simplify terms

Pδ(dFOLS ≤ dcαd (b)) ≈Gd,δ2(χ
α
d ) +

δ2

2
G

′

(d+2),δ2(χ
α
d )χ

α
d c2b

−G′
d,δ2(χ

α
d )χ

α
d [cb + c1 + c2(d− 1)b]

− (bT )−qG′
d,δ2(χ

α
d )χ

α
d gqwq +O(b) + o

(
(bT )−q

)
.

We use Proposition 3 to reach our final expression:

eII(b) ≈Gd,δ2(χ
α
d ) +

δ2

2
G

′

(d+2),δ2(χ
α
d )χ

α
d c2b−G′

d,δ2(χ
α
d )χ

α
d

2ρ2

1 + ρ
ρbT

−G′
d,δ2(χ

α
d )χ

α
d [c1 + c2(d− 1)b]− (bT )−qG′

d,δ2(χ
α
d )χ

α
d gqwq.

■

Expressions in Corollary 2 are similar to [27, 29, 54]. We obtain the expression in

Corollary 2a by recognizing the behavior that a fixed-b critical value captures for a finite

data set. That is, the Type 1 error rate and the distortion thereof. The distortion arises
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from the kernel bias and the finite sample bias, the only bias terms in Assumption 6 that

explicitly disappear as the sample size goes to infinity.

In Corollary 2b we essentially obtain another representation for Theorem 3b. Here

we applied a Cornish-Fisher type expansion, a Taylor series approximation, an asymptotic

representation of a fixed-b critical value, and a distribution approximation in order to re-

construct the expression in Theorem 3b to have more practical terms to better understand

the behavior of FT under the alternative hypothesis. We observe that the finite sampling

bias and kernel bias decrease power as b increases, as expected. The term with coefficient

c2 increases or decreases power as a function b depending on the context. This term largely

captures the asymptotic distributional effects of Ω̂T on the inference procedure. Lastly, the

de-meaning bias term increases power as a function of b, an expected property that has

been shown in other contexts [10].

As alluded by the testing optimal loss functions in the previous sections, quantify-

ing Type 2 error (and power) in a robust inference setting is not as straight forward as size

distortion. In general, we expect overall power to decrease as variability increases. This is

because distributions under the null and alternative are difficult to distinguish if the tails

are very heavy. In contrast, the negative bias of the LRV has the opposite effect on power

as it does for Type 1 error in that a negative bias improves power.

To further illustrate these effects consider the following scenario motivated by a

thought experiment from Rubin [51]. Suppose you generate a confidence interval for a

univariate data set using two different approaches. Confidence bounds are generated via

the formula θ̂ ±
(
Ω
T

)1/2
zα, where we refer to

(
Ω
T

)1/2
zα as the margin of error. Suppose for
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procedure A that Ω is known (the oracle test), thus the zα only needs to account for the

distribution of θ̂ and the margin of error is the same each time the study is repeated.

Further suppose for procedure B that Ω is unknown and estimated with a mod-

erately variable and negatively biased SV estimator Ω̂T , and that the bandwidth is given.

SV estimators are mean invariant, so for both procedures shifts along the real line are at-

tributed to the estimated mean and not Ω. The negative bias indicates that E
(
Ω̂T

)
is less

than Ω, thus the confidence intervals generated under procedure B are on average narrower

than procedure A. We further note that the SV estimator Ω̂T has a positively skewed dis-

tribution (see Chapter 3 for connections to χ2 distribution). Because of this asymmetry

the majority of estimates will be smaller than E
(
Ω̂T

)
, with outliers being much larger.

This is the cascading effect of SV estimators. The asymmetric density indicates the major-

ity of estimates will be smaller than E(Ω̂T ), which is already less than the true value Ω.

Hence, if procedures B uses the zα intended for procedure A then the confidence intervals

for procedure B will typically be much narrower than procedure A because the bias and

distributional shape of Ω̂T . When creating confidence intervals the role of the term zα is

to capture the distributional properties of the random elements in the procedure. The zα

from procedure A only accounts for the randomness of estimating θ and not Ω.

Previously, we have said that the fixed-b distribution accounts for the variability of

Ω̂T , but that is a bit simplistic. Further suppose that procedure B now has a different LRV

estimator that is infeasibly symmetrically distributed, but with the same bias and variance

as before. Then the performance of procedure B would become closer to the performance
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of procedure A, despite the bias and variance being the same. It is more accurate to say the

fixed-b distribution accounts for the distribution of Ω̂T , instead of simply saying variability.

It was previously mentioned that there are two types of corrections that can be

made when there is a discrepancy between an inference procedure and limiting distribution:

adjustments to estimates so they converge faster to the limiting distribution, and selecting a

different limiting distribution that captures more nuanced finite sample behavior [3]. When

we use fixed-b limiting theory for procedure B we account for the asymptotic distributional

properties of estimating both θ and Ω. However, the confidence intervals under procedure B

are still expected to have sub-optimal Type 1 error because Ω̂T is negatively biased. Using

the lugsail estimator addresses the issue of bias. These effects are observed in Corollary 2a,

where we see the higher level terms from Theorem 3a disappear when utilizing fixed-b critical

values, but terms intrinsic to bias persist. The lugsail estimator has a zero asymptotic kernel

bias which further decreases the size distortion in comparison to the classical mother kernels.

For our thought experiment the only way to decrease power was to increase the

sample size, as we were given a bandwidth. However, the ability to control sample size

is limited in real world applications, so instead we rely on our choices for the bandwidth

and kernel function to control testing behavior. As discussed throughout, and illustrated

in Theorem 1, the bandwidth is directly related to the behavior of Ω̂T . Therefore, it is

reasonable to use different bandwidths between the different lugsail settings. Although in

an ideal setting we would select a bandwidth to minimize the size distortion, i.e. b =

1, the overall variability would suffer and the distribution under the null and alternative

hypothesis would be nearly indistinguishable for most practical cases under the alternative
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hypothesis. To control testing mechanics it is necessary to obtain a parsimonious estimator

that incorporates as many relevant autocovariance matrices but no more.

We observe that the Type 1 error rate converges to α as the bandwidth increases.

We further observe that the Type 2 error rate is a concave function. If we pick b in order to

optimize the Type 1 error then this always results in a bandwidth of 1, which is impractical.

When picking b to minimize Type 2 error we obtain a bandwidth of 0 or 1, depending on

the context.

Instead we select b a where Type 1 error rate begins to stabilize. That is, when

the improvement on Type 1 error from increasing b becomes increasingly marginal. When

the Type 1 error stabilizes, increasing b is largely decreasing power with minimal effect on

the Type 1 error rate.

5.3 Zero-Lugsail Bandwidth Rule

We choose the smallest bandwidth where the Type 1 error is in the neighborhood

of α. The optimization rule can be summarized as follows,

bopt =min {b ∈ [0, 1] : eI(b) ≤ α+ τ} . (5.6)

For zero lugsail kernels simplifies to

bopt =min

{
b ∈ [0, 1] : b ≥ log

(
τ

G′
d(χ

α
d )χ

α
d

1 + ρ

2ρ2

)
1

log(ρ)

1

T

}
. (5.7)

The curve of the Type 1 error rate in Corollary 2a as a function of b in the presence of

correlation results in a shape of an ‘L’ or an arm, which is illustrated in Figure 5.1. This
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arm like shape is commonly observed in loss functions, and the general consensus is to select

a tuning parameter that is located near the ‘elbow’ (the bend of the curve), or just past it

[19]. Observe that the curve converges to origin as the correlation decreases or sample size

increases. It also shifts both horizontally and vertically as the significance level changes,

generally to the origin as α decreases.

If we select an arbitrary constant τ ∈ R+ we risk the possibility that the Type 1

error curve never falls in the neighborhood, or obtaining a bandwidth parameter that is not

‘past the elbow’ and too far ‘up the arm’ in the wrong direction. We instead use

τ =− α1/(2d)

T log(ρ)
, (5.8)

to select a bandwidth where the the Type 1 error rate begins to stabilize. The τ in equation

(5.8) is related to the derivative of the Type 1 error rate. When the Type 1 error rate

begins to stabilize, the derivative of the Type 1 error rate also begins to stabilize and

becomes increasing close to 0. Instead of finding a bandwidth that minimizes Type 1 error

rate, i.e. where the derivative is 0, we are picking a point where the derivative is near 0.

By picking τ according to (5.8) we are picking the smallest bandwidth b at the point at

which the Type 1 error rate becomes mostly flat instead of mostly vertical regardless of

the strength of the correlation, sample size, or significance level. We get this effect for any

τ0 ∈ [0, 1] such that τ = − τ0
T log(ρ) , with values closer to zero having a farther clearance

from the elbow. We define the ‘elbow’ as the point where t0 = 1. However, using the

value τ0 = α1/(2d) creates a small clearance from the elbow that naturally tightens for

higher significance levels and accounts for the dimensionality bias which greatly effects the

behavior of the testing procedure. For example, with α = 0.05 and d = 1, the bandwidth
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rule selected is at the point were a 1% increase in b is associated with a 0.22% decrease in

Type 1 error rate. Meaning we observe an increasingly marginal decrease in error compared

to the increase in bandwidth. With this rule it is possible to obtain bandwidths of 0 when

the data set has low correlation and a large sample size.

Figure 5.1 shows the asymptotic Type 1 error rate under various sample sizes,

significance levels, and correlations. The bandwidth bopt in equation (5.7) is indicated with

a circle, and adjusts to the curve as expected. Highly correlated data is expected to digress

from the origin, and thus the bopt rule is larger in these settings. Similarly, smaller data

sets also digress from the origin.

ρ \ α 0.100 0.050 0.025 0.010

0.15 0.0055 0.0053 0.0051 0.0045
0.20 0.0076 0.0074 0.0071 0.0065
0.25 0.0097 0.0096 0.0092 0.0084
0.30 0.0120 0.0118 0.0113 0.0105
0.35 0.0144 0.0142 0.0136 0.0126
0.40 0.0170 0.0167 0.0161 0.0150
0.45 0.0199 0.0196 0.0189 0.0176
0.50 0.0232 0.0228 0.0220 0.0205
0.55 0.0269 0.0265 0.0256 0.0239
0.60 0.0314 0.0309 0.0298 0.0278
0.65 0.0367 0.0362 0.0349 0.0325
0.70 0.0434 0.0427 0.0412 0.0383
0.75 0.0519 0.0511 0.0492 0.0456
0.80 0.0635 0.0625 0.0600 0.0553
0.85 0.0803 0.0789 0.0755 0.0691
0.90 0.1075 0.1053 0.1001 0.0902

Table 5.1: Various bopt Values for the Zero Lugsail Kernel with T = 200.

Table 5.1 lists values for bopt according to (5.7) for a sample size of T = 200 under

various settings. We note that the optimal bandwidth decreases as α decreases despite
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Figure 5.1: Expected Type 1 error rate of zero lugsail kernels as a function of b for d = 1,
α = (0.05, 0.01), T = (200, 500), and ρ = .25 (solid black), 0.50 (dashed red), 0.75 (dotted
green), 0.90 (dot-dashed blue). Circles indicate Type 1 error rate at bopt.
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enforcing a tighter neighborhood, this is because the curve almost always shifts horizontally

to the origin as the significance level increases.

The bandwidth rule bopt in equation (5.7) with τ in (5.8) is ideal for zero lugsail

kernels. Many of the other bandwidth rules discussed depended on the kernel function

through q. Similarly, this rule relies on the fact that zero lugsail estimators have q = ∞,

and no other kernel information. The class of flat top kernels proposed by Politis [48, 47]

also have q = ∞ but are constructed in a different fashion. Under the right settings some

flat top kernels are equivalent to zero lugsail kernels, e.g. the Bartlett kernel. Although this

rule in equation (5.7) does not immediately apply to the class flat top kernels generally, it

is reasonable to presume with minor modifications the results can be extended to include

the them.

Determining the best parameter for an ‘L’ shaped function is not a particularly

new problem. Functions with similar behaviors are sometimes referred to as scree, knee,

or elbow plots in clustering problems [19]. There are different methods used in clustering

to select a tuning parameter based on an elbow plot. One method is to select the tuning

parameter at the point of maximum curvature [66]. The curvature at a point is the radius

of a circle that best approximates the curve of that point, with a curvature of zero indicting

the point is on a straight line. Optimization methods sometimes select tuning parameter

for elbow plots by using maximum curvature which can be determined via a grid search. A

numerical investigation found that the bopt rule proposed with recommended τ is typically

between the elbow and the point of maximum curvature, and the three values converge as
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the sample size increases. An advantage of the bopt rule is that it does not require a grid

search, automatically adjusts to the significance level, and accounts for dimensionality bias.

Although we can select a smaller τ0 to obtain an even smaller size distortion,

we found this rule of thumb suffers only a mild power loss and typically falls between the

conservative elbow rule (τ0 = 1) and aggressive rule of selecting a bandwidth that maximizes

curvature.

5.4 Extensions to the Zero-Lugsail Bandwidth Rule

The bandwidth rule bopt in (5.7) differs from most other rules because of its reliance

on finite sampling bias instead of kernel bias. It is not immediately applicable to non-zero

lugsail settings, i.e. mother, adaptive, or over. To use a comparable rule with adaptive or

over lugsail settings we recommend substituting a candidate b value for the kernel bias term

in the Type 1 error expression in Corollary 1a and continue using the loss function in (5.6)

with the recommended τ in (5.8). This results in a slightly modified version of (5.7). The

effective bandwidth bopt becomes smaller than the bandwidth rule for zero lugsail kernels.

This is expected since over and adaptive lugsail kernels induce a positive bias which makes

the overall net bias negligible at a faster rate than zero lugsail kernels, requiring a smaller

bandwidth. With positively biased kernels it may even be possible to neutralize the finite

sampling bias. We recommend using the zero lugsail rule in (5.7) as the candidate b value.

For mother kernels we cannot use the same procedure without modifying τ be-

cause the negative kernel bias cause the the curve to shift vertically away from the origin

and therefore there is no longer a b that meets the criteria in (5.6) using the recommended
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τ . Instead we recommend using the zero bandwidth rule described in (5.7) as a rudimentary

and effective approach. This obtains an optimal bandwidth for mother kernels according

to their finite sampling bias exclusively, instead of the kernel bias exclusively which con-

trasts what most other bandwidth rules consider. Presumably a slightly larger bandwidth

would be more desired for mother kernels, but this criteria would still result in something

reasonably close.

There is also the possibility of utilizing a loss function of τ that considers the

behavior of the derivative of the size distortion for both the finite sampling bias and kernel

bias, again finding a b where the derivative is near 0. However, in most instances no closed

form solution exists, so one must resort to a numerical method. Additional investigation

on ways to incorporate both sources of biases is warranted.

Furthermore, there is also the consideration of negatively correlated data. Through-

out this document we have been under the premise that the data is positively correlated.

With negatively correlated data the issue of bias is less problematic because of the oscilla-

tory nature of the autocovariance function. Although one may substitute ρ with |ρ| in the

bandwidth rule (5.7) with a zero lugsail kernel, it would result in an unnecessarily large loss

in power. The mother kernel with the same bandwidth rule would be a more reasonable

approach. The major issue for inference with negatively correlated data is not bias but the

distributional properties of Ω̂T .

Lastly, the bandwidth rule we suggested is built with an estimated ρ. For multi-

variate data multiple values for ρ can be considered. We suggest using a weighted average of
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the estimated autocorrelation coefficients, or selecting the largest value that was estimated.

Both techniques are common practice [1, 33].
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Chapter 6

Robust Testing In Practice

6.1 Estimate Corrections

Lugsail kernels do not guaranteed a positive semi-definite estimate which we can

verify by observing that there exists some ω ∈ [0, 2π] such thatK(ω) ≤ 0. Although the true

LRV is positive semi-definite, our estimates for Ω̂T need to be positive definite so the test

statistic FT is defined and the inverse of Ω̂T exists. The lack of positive semi-definiteness

is not new to LRV estimators. The truncated kernel, and flat top kernels also suffer from

this problem, where several corrections have been purposed [35, 36, 37, 61]. We suggest

implementing a simple correction that still generates a consistent estimator as b → 0 at a

slower rate than T → ∞. Let Ω̂
(L)
T be the unadjusted lugsail estimator, Ω̂

(M)
T be an SV

estimator generated with κ∗ ∈ K1, and I be the set of indices such that
[
Ω̂
(L)
T

]
i,i

≤ 0. We

define the new positive semi-definite corrected lugsail estimator as
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[
Ω̂+
T

]
i,j

=


[
Ω̂
(M)
T

]
i,j

if (i = j) and i ∈ I

[
Ω̂
(L)
T

]
i,j

if otherwise

. (6.1)

The estimator Ω̂+
T simply replaces values that in the estimate that are non-positive

using a mother a kernel.

Figure 6.1: Proportion of zero (dashed red), adaptive (dotted blue), and over (dot dashed
green) lugsail estimators corrected for lack of positive definiteness using 50,000 simulations.

In Figure 6.1 we observe the proportion of times a lugsail estimator with d = 1 for

the Bartlett, Parzen, and quadratic spectral kernels was corrected using the zero (dashed

red), adaptive (dotted blue), and over (dot dashed green) lugsail settings. Simulations were

generated under the settings described in Section 7.2 using 50,000 simulations. A correction

becomes more likely as b increases as expected because autocovariance matrices with higher

lags are more variable and utilize less data. Larger data sets are expected to need fewer

corrections because the estimator is asymptotically positive semi-definite.
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There is also the issue of an estimator being computationally positive definite.

Despite being mathematically positive semi-definite sometimes estimates have exceptionally

small or large elements that are beyond the scope of the software to handle. This happens as

d and b increase, and is typically only observed under simulation experiments with extreme

and unlikely settings. In these instances the nearPD() function is used from the R package

Matrix to correct estimates to be more manageable.

Because positive semi-definiteness is no longer guaranteed for lugsail estimators the

motivation for using the biased autocovariance estimator Γ̂(s) diminishes. We can instead

revert back to the unbiased autocovariance estimator T
T−s Γ̂(s) to further decrease bias

[48, 49]. However, we will continue to use the conventional estimator Γ̂(s) to be consistent

with current software and practices.

6.2 Procedure

The heteroskadistic and autocorrelation robust inference procedure with a testing

optimal zero lugsail estimator can be outlined as follows.

1. Specify the the significance level α, and the hypotheses

H0 : R(θ − θ0) = 0

HA : R(θ − θ0) ̸= 0

where R is a (d× p) known matrix of interest specific to the application.

2. Estimate θ by ordinary least squares (OLS) and obtain the residuals ût. Center the

residuals, ũt = ût − û.
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3. Fit an VAR(1) model with autocorrelation matrix ρ1p to the centered residuals and

compute ρ̂.

4. Specify the kernel κ ∈ K2.

5. Compute the automatic bandwidth using the rule in equation (5.6).

6. Calculate Ω̂
(L)
T using equation (2.5) with the centered errors and selected kernel from

the previous steps.

7. Check for positive definiteness, and obtain the estimator Ω̂+
T as described in equation

(6.1).

8. Calculate the test statistic FOLS in equation (4.4) with the LRV estimator Ω̂+
T .

9. Obtain the critical value cαd (b) using an appropriate fixed-b table.

10. Compare test statistic to fixed-b critical value and reject the null hypothesis if FOLS >

cαd (b).

The utilization of centered errors, lugsail kernels, fixed-b critical values, and the

data driven bandwidth rule are all minor modifications that add little to no practical com-

plexity for the practitioner compared to similar procedures in heteroskedastic and autocorre-

lation robust settings [40, 56]. The procedure is robust in the sense that it is asymptotically

valid for a wide variety of error structures. Although there are several steps that require

some discernment, we can also think of this procedure as being robust to the choices of the

practitioner as most choices will still yield a favorable performance.
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The first choice is that of R, which is typically 1p unless there is another application

specific relation of interest. There is no statistical motivation for the choice of R.

The next choice comes from the estimation of the finite sample bias and ρ. We

have recommended a simple, popular, and effective but crude approach in Proposition 3.

If there is reasonable motivation for approximating the behavior of the error terms with

another structure, then the procedure can be modified to do so but it may not result in a

closed form solution for bopt. For multivariate data sets a few other modifications to step 4

were discussed in Section 5.3. This estimation step is not novel, and some semblance of it

appears in most automatic bandwidth procedures [1, 2, 27, 29, 53, 54, 56].

Next the practitioner must determine which kernel function to select. We recom-

mend considering the broad class of lugsail kernels K2, recall K1 ⊂ K2. Historically, robust

inference procedures restricted the possible kernels to class K1. Among the kernels in class

K1 two are especially pertinent, the quadratic spectral kernel and the Bartlett kernel. The

quadratic spectral kernel has been shown to have optimal asymptotic MSE [1], achieves the

envelope of the size-adjusted power, is optimal among other testing focused bandwidth rules

with fixed-b critical values [57], and is equivalent to a weighted orthonormal series estima-

tor [27]. In contrast, the Bartlett kernel is computationally efficient and is asymptotically

equivalent to a batch means estimator [4, 62]. In general mother kernels with q = 2 tend

to preform marginally better according to a variety of metrics [49, Sec 7.5]; however, there

typically is not a large discrepancy between kernels in K1. We have chosen the Bartlett

kernel for the simulation study in the subsequent chapter due to its popularity, efficiency,
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and its readable connections to the batch means and flat top (with zero lugsail settings)

estimators.

In regards to the lugsail settings we recommend selecting the mother lugsail set-

tings when ρ̂ < 0, and the zero lugsail setting when ρ̂ > 0; for ρ̂ ≈ 0 the two settings are

equivalent. For exceptionally large samples and highly correlated data the over and adaptive

lugsail settings can be utilized instead. Highly correlated data negatively impacts power,

and the increased variability of the over and adaptive lugsail settings further decrease it.

We recommend selecting the over or adaptive lugsail settings according to Table (2.1), but

only when the data set is substantially large.

Lastly, there is the tuning parameter τ which is used to obtain bopt. We have

suggested picking a τ that is responsive to the behavior of the Type 1 error by picking

a bandwidth where the Type 1 error deteriorates at a faster rate than the bandwidth

grows. Following the guidelines in Chapter 5. It is tempting to select some small τ0 where

τ = −τ0
T log(ρ) to ensure a bandwidth clears the elbow with room to spare but such a practice

without an adequately large sample size is likely to result in a substantial loss of power.

It is recommended to not deviate from our recommendation without justification, because

although Type 1 error would be improved marginally, the Type 2 error would suffer greatly.

Through simulation it was observed that out of all these components the bandwidth is the

most critical which follows the results of others [2, 14]. Robustness to bandwidth selection

is improved as sample size increases.
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Chapter 7

Examples

To asses the validity of our findings we might ask ourselves the questions: How

well do the derived expressions represent the truth? How does the testing procedure compare

to alternative procedures? How do lugsail settings influence testing performance? To address

these broad prompts we conduct a simulation study with a variety of classic yet common

scenarios in time series and econometric applications that are often used as benchmarks

[1, 28, 29, 61]. We caution that we cannot address these questions comprehensively due

to the range of applicability, but instead rely on fundamental models to showcase general

trends.

In Section 7.1 we begin with generating our fixed-b critical values and represen-

tations thereof. In Section 7.2 we use a VAR(1) model with d = 1, 2, 3, 4 and observe the

behavior of the error curves and power function. In Section 7.3 we concentrate on various

different model structures in econometrics and compare Type 1 error rates. For Sections 7.2

and 7.3 all results were generated using 1000 simulations, α = 0.05 and the Bartlett kernel
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with mother and zero lugsail settings. We leave the exploration of adaptive and over lugsail

kernels as a future project. In Section 7.4 we showcase our model with an application in

finance. Section 7.5 concludes with a discussion.

7.1 Fixed-b Critical Values

The fixed-b distribution is not generally tractable, so to obtain critical values we

follow the work of Kiefer & Vogelsong [25], Sun et al. [56], and Lazarus et al. [29]. We

simulate 50,000 replicates of normalized random vectors with T = 1000 from an independent

standard normal distribution.

Mother Zero
b \ d 1 2 3 4 1 2 3 4

0.005 3.846 3.009 2.635 2.417 3.884 3.043 2.684 2.475
0.010 3.880 3.071 2.692 2.489 3.969 3.183 2.812 2.629
0.015 3.929 3.132 2.758 2.555 4.067 3.294 2.953 2.787
0.020 3.975 3.189 2.827 2.635 4.164 3.429 3.115 2.972
0.025 4.033 3.239 2.902 2.704 4.287 3.559 3.288 3.181
0.030 4.085 3.298 2.978 2.781 4.409 3.701 3.469 3.418
0.035 4.143 3.364 3.037 2.863 4.485 3.862 3.673 3.696
0.040 4.191 3.429 3.109 2.946 4.580 4.017 3.943 4.063
0.045 4.245 3.491 3.194 3.038 4.757 4.223 4.228 4.549
0.050 4.310 3.557 3.273 3.122 4.865 4.414 4.622 5.233
0.055 4.358 3.614 3.340 3.216 5.008 4.632 5.049 6.190
0.060 4.422 3.690 3.414 3.306 5.174 4.931 5.589 7.985

...
...

...
...

...
...

...
...

...

Table 7.1: Bartlett Critical Value Table for Mother and Zero Lugsail Kernels at α = 0.05.

We approximate the fixed-b distribution for the Bartlett, Parzen, and quadratic

spectral kernels with mother, zero, adaptive (initial b = 0.022), and over lugsail settings

for b = 0.005, 0.010, 0.015, . . . , 0.990 and d = 1. In addition we further approximated the
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distribution for the Bartlett kernel under various lugsail settings for d = 1, 2, 3, 4. We use

the quantiles of these simulated distributions to obtain fixed-b critical values which are then

organized into tables. An example of such a table for the Bartlett kernel using the mother

and zero lugsail settings at α = 0.05 is provided in Table 7.1.

Some authors extrapolate critical value relationships across bandwidths for a given

kernel, d, and significance level using the model,

cvαd (b) = a0 + a1b+ a2b
2 + a3b

3. (7.1)

This model is fitted via OLS using the critical value tables. It is common to fix the intercept

to be the small-b critical value because of the relationship between small-b and fixed-b

asymptotics. We have plotted the fixed-b distribution of the test statistic under various

settings when d = 1 in Figures 7.1 - 7.3. On the left side of the figure we have density

functions for a specified bandwidth and denoted the specific critical value across the different

settings. On the right side of the figure we have the fitted critical value curves from equation

(7.1). The points that intersect the vertical line correspond to the critical values for the

specific the bandwidth, kernel and significance level.

When fitting the critical value model in equation (7.1) we observed an R2 of 0.990

or higher for all settings with d = 1. However, we found that using the critical value tables

directly was more accurate especially for smaller bandwidths and higher dimensions. We

use the fixed-b critical values for the remainder of the simulations.
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Figure 7.1: Colors indicate the mother (solid black), zero (dashed red), adaptive (dotted
blue), and over (dot-dashed green) lugsail settings. The small-b asymptotic values are in
dashed grey. Left : Fixed-b density for FT with d = 1 and b = 0.05 using Bartlett lugsail
kernels. Vertical lines indicate the α = 0.05 critical values. Right : Fitted critical values
of FT using using Bartlett lugsail kernels. Vertical line intersection indicates the critical
values for b = 0.05 for the various lugsail kernels. Intersection points match vertical lines
on the left plot.
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Figure 7.2: Colors indicate the mother (solid black), zero (dashed red), adaptive (dotted
blue), and over (dot-dashed green) lugsail settings. The small-b asymptotic values are in
dashed grey. Left : Fixed-b density for FT with d = 1 and b = 0.1 using Bartlett lugsail
kernels. Vertical lines indicate the α = 0.05 critical values. Right : Fitted critical values
of FT using using Bartlett lugsail kernels. Vertical line intersection indicates the critical
values for b = 0.1 for the various lugsail kernels. Intersection points match vertical lines on
the left plot.
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Figure 7.3: Colors indicate the mother (solid black), zero (dashed red), adaptive (dotted
blue), and over (dot-dashed green) lugsail settings. The small-b asymptotic values are in
dashed grey. Left : Fixed-b density for FT with d = 1 and b = 0.1 using Bartlett lugsail
kernels. Vertical lines indicate the α = 0.1 critical values. Right : Fitted critical values of
FT using using Bartlett lugsail kernels. Vertical line intersection indicates the critical values
for b = 0.1 for the various lugsail kernels. Intersection points match vertical lines on the
left plot.

131



7.2 Accuracy of Approximation

First consider a Gaussian location model with VAR(1) error terms wt, and inde-

pendent standard normal disturbances ϵt as described in Section 5.2. The primary goal of

this section is to asses if the testing procedure preforms as expected. We simulate results

for a VAR(1) process with T = 500, d = (1, 2, 3, 4), ρ = (0, 0.75), small-b and fixed-b critical

values, and the mother and zero lugsail settings. For each scenario we present the results

into three plots: bandwidth versus Type 1 error rate, bandwidth versus Type 2 error rate,

and noncentrality parameter versus power.

For Type 2 error rate we must select a point under the alternative hypothesis. It

is customary to select a point δ2 under the alternative hypothesis such that the asymptotic

power is around 50% - 75% [6, 54, 57]. In other words, select δ2 such that Pδ2 (ϱ ≥ χα
d ) = .50

(or .75) where ϱ ∼ χ2
d,δ2 . We choose to generate data under the alternative hypothesis

HA : R(θ − θ0) = RΛT−1/2δ where δ2 corresponds to the point where asymptotic power is

approximately 0.66. Lazarus et al. [29] discovered through simulation that maximum size

adjusted power loss (∆max
p ) for mother kernels typically occus at this point regardless of d.

Recall that fixed-b critical values are still asymptotic critical values that may not accurately

represent finite data sets and not achieve a test with a rejection rate of size α. Size adjusted

power is the power of the test when using critical values that have been adjusted to be

exact. Size-adjusted power loss is the difference in power when using asymptotic critical

values and exact critical values. Per the discussion in Chapter 5 we observed that when we

adjust the critical values from small-b to fixed-b the power of the test suffers; however, the

tests do not have the same α level because of the testing mechanics, thus the two scenarios
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are not really comparable. The concept of size adjusted power was conceived in order to

give a fairer comparison across procedures [29]. The maximum size adjusted power loss is

largest difference in power between the adjusted and unadjusted critical values. Lazarus et

al. [29] determined that for mother kernels with fixed-b critical values this point typically

occurs at δ2 = 0.66. This could also be thought of as the point at which the true power

data is the least represented by the asymptotic power. We have selected this point for

comparison and Table 7.2 contains the δ2 values used.

d 1 2 3 4

δ2 2.43 3.25 3.81 4.27

Table 7.2: δ2 Values for d = 1, 2, 3, 4.

We further note that the AMSE rule bmse in equation 5.2 was founded for mother

kernels using small-b critical values, the classical approach for robust estimation, and bopt

in equation 5.7 was founded for zero lugsail kernels with fixed-b critical values. We have

indicated the bmse and bopt values for their respective scenarios in the Type 1 and Type 2

error plots.

In addition, we plot the performance for mother kernels using fixed-b critical values

and zero lugsail kernels with small-b critical values to better observe the effects of the two

mechanics. We have not indicated any specific bandwidth points under these scenarios for

the error plots. However, the power function must be plotted using a specified bandwidth,

we chose bmse for mother kernels and bopt for zero lugsail kernels for convenience.
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Figure 7.4: Inference performance metrics for a VAR(1) process with d = 1. Dashed lines
indicate small-b critical values, and solid lines are fixed-b critical values. Red indicates the
mother Bartlett kernel, and blue indicates the zero lugsail Bartlett kernel. The triangles
and circles indicate bmse and bopt respectively. The power curve has been drawn using bmse

for the mother kernels, and bopt for the zero lugsail kernels. The Type 2 error rate is at a
fixed point under the alternative hypothesis.
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Figure 7.5: Inference performance metrics for a VAR(1) process with d = 2. Dashed lines
indicate small-b critical values, and solid lines are fixed-b critical values. Red indicates the
mother Bartlett kernel, and blue indicates the zero lugsail Bartlett kernel. The triangles
and circles indicate bmse and bopt respectively. The power curve has been drawn using bmse

for the mother kernels, and bopt for the zero lugsail kernels. The Type 2 error rate is at a
fixed point under the alternative hypothesis.

135



Figure 7.6: Inference performance metrics for a VAR(1) process with d = 3. Dashed lines
indicate small-b critical values, and solid lines are fixed-b critical values. Red indicates the
mother Bartlett kernel, and blue indicates the zero lugsail Bartlett kernel. The triangles
and circles indicate bmse and bopt respectively. The power curve has been drawn using bmse

for the mother kernels, and bopt for the zero lugsail kernels. The Type 2 error rate is at a
fixed point under the alternative hypothesis.
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Figure 7.7: Inference performance metrics for a VAR(1) process with d = 4. Dashed lines
indicate small-b critical values, and solid lines are fixed-b critical values. Red indicates the
mother Bartlett kernel, and blue indicates the zero lugsail Bartlett kernel. The triangles
and circles indicate bmse and bopt respectively. The power curve has been drawn using bmse

for the mother kernels, and bopt for the zero lugsail kernels. The Type 2 error rate is at a
fixed point under the alternative hypothesis.
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When ρ = 0 the optimal bandwidth is bmse = bopt = 0, and the LRV estimators

are the same for all four scenarios. The discrepancy between the performance of the Type

1 error and Type 2 error plots is largely due to variability. The large bandwidths increase

variability which is why the Type 1 error rate begins to inflate using the small-b critical

values. The fixed-b critical values are bandwidth specific and account for the distributional

effects of Ω̂T . Type 1 error does not suffer from increasing the bandwidth while using fixed-

b critical values, but the Type 2 error is worse for fixed-b critical values then for small-b.

Accounting for the increased variability inflates the critical values and the distributions

become hard to distinguish. The power is the same for all scenarios as each curve was

plotted using b = 0 at which both the zero lugsail and mother kernels are equivalent, and

the fixed-b and small-b critical values converge.

When ρ = .75 we observe an arm like shape for Type 1 error as expected. Higher

correlation tends to be more notorious to model. We observe that zero lugsail kernel with

fixed-b critical value essentially attains the prescribed error rate. We further observe using

fixed-b critical values the zero lugsail kernel is closer to the prescribed error rate for nearly

all values of b. The power curve also changes in the presence of correlation. Difference

between the dashed lines and solid lines are due to variability, and the difference between

the colors are due to bias. The larger the bandwidth the more the curves diverge from each

other as expected.
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7.3 Comparing Procedures Mechanics

In this section we compare the Type 1 error rates for a variety of econometric

models. Let {wt} be an unknown stationary process with mean zero and finite variance

that is possibly correlated or heteroskedastic. We further define

x̃′t =(x̃t,1, . . . , x̃t,p) β′ =(γ, θ1, . . . , θp)

x′t =(1, x̃′t) =(γ, θ′)

X =[x′1, x
′
2, . . . , x

′
T ] Y ′ =[y1, . . . , yT ]

where β ∈ Rp+1 is a vector of parameters to be estimated, {yt} is a sequence of observed

random variables, and X is an observed (T × (p+ 1)) matrix. For our simulation study we

use the common linear model structure:

yt = x′tβ + wt. (7.2)

where t = 1, . . . , T . To estimate β we use ordinary least square (OLS) estimators.

β̂ =(X ′X)−1X ′Y

=

(
T∑
t=1

xtx
′
t

)−1( T∑
t=1

xtyt

)

To conduct inference on the parameters β, we require the covariance matrix for

β. We first construct Ω̂T from equation (2.14) using ût = xtyt and κ ∈ K2. Let M =

( 1
TX

′X)−1, then the covariance matrix of β is M Ω̂TM where the ith diagonal element is
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the variance for βi. Let et
iid∼ Np(0,1p). We generate X using an auto-regressive process of

the following form,

x̃t = ρx̃t−1 + et. (7.3)

That is, each x̃t,i is an independent AR(1) process. We consider the following different

structures for the error term wt.

• AR1-HOMO: An auto-regressive model of order 1 with homoskedastic disturbances

[1, 54, 61]. Let ϵt
iid∼ N(0, 1), and

wt = ρwwt−1 + ϵt. (7.4)

• AR1-HET: An auto-regressive process of order 1 with heteroskedastic disturbances

[1, 11, 65]. Let a0 = 5, a1 = .25, ϵt
iid∼ N(0, 1), and

wt =
√
a0 + a1wt−1vt

vt =ρvvt−1 + ϵt.

• ARMA-G: A simple auto regressive moving average model, ARMA(1,1), with stan-

dard Gaussian disturbances. Let Zt
iid∼ N(0, 1), ϵt

iid∼ N(0, 1), ψz = 0.5, and

wt =Zt + ψzZt−1 + ρwwt−1 + ϵt. (7.5)

• ARMA-L: A simple auto regressive moving average model, ARMA(1,1), with stan-

dard Laplace disturbances. Let Zt and ψz = 0.5 be as defined in equation (7.5),

ϵt
iid∼ Laplace(0, 1), and

wt =Zt + ψzZt−1 + ρwwt−1 + ϵt.
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In general we consider a range of values and let 0 < ρ = ρw = ρv < 1. The first

model AR1-HOMO is self evident, it is used as the backbone of the bandwidth rule for our

procedure, and of most procedures in this space [1, 61]. We next consider the model AR1-

HET, a commonly used model for errors with serial correlation and heteroskedasticy [1, 11,

65]. The last two models are ARMA-L and ARMA-G are used to explore different error

processes with Gaussian and non-Gaussian disturbances. The ARMA models considered

are based off of McElroy & Politis [35] and Lazarus et al. [28].

Our test is invariant to our choice of β so we generate the data with γ = 0 and

θi = 0 for i = 1, . . . , p. We test the hypotheses that the first coefficient after the intercept

is zero, i.e. H0 : θ1 = 0, using α = 0.05 and the Bartlett kernel. Our test statistic can be

expressed as,

FOLS =
[√

T
(
θ̂1,T − θ1,0

)]′ [
M Ω̂−1

T M
]
22

[√
T
(
θ̂1,T − θ1,0

)]
/d

=
T θ̂21,T

V ar(θ̂1)

Different sample sizes, various ρ’s, and four different procedures are considered. We use

the procedure outlined in Section 6.2 with zero lugsail kernel and the absolute value of ρ̂

to obtain bopt. We also consider the bandwidth rule bft with a zero lugsail kernel using

both fixed-b and small-b critical values as this procedure depends on the behavior of the

autocovariance function alone and not testing mechanics. Lastly, we consider the classical

procedure with the mother kernel and small-b critical values. The results are presented in

Tables 7.3, 7.4, 7.5 and 7.6.
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Fixed-b Small-b
ρ bopt bft bft bmse

0.00 0.044* 0.045 0.049+ 0.045
0.25 0.079 0.068*+ 0.072 0.069

T=200 0.50 0.089 0.076*+ 0.079 0.086
0.75 0.104*+ 0.148 0.159 0.117
0.90 0.151*+ 0.189 0.212 0.193

0.00 0.062*+ 0.066 0.067 0.063
0.25 0.067 0.061*+ 0.063 0.063

T=500 0.50 0.061 0.063 0.065 0.057*+
0.75 0.087*+ 0.104 0.106 0.091
0.90 0.111*+ 0.119 0.123 0.124

0.00 0.035* 0.037 0.038+ 0.035
0.25 0.069 0.058*+ 0.060 0.058

T=1000 0.50 0.060 0.063 0.064 0.058*+
0.75 0.061 0.072 0.077 0.057*+
0.90 0.089*+ 0.096 0.104 0.098

Table 7.3: Results with AR(1)-Homoskadiscity error terms. The ∗ denotes the smallest
Type 1 error rate, and the + denotes the setting closes to the prescribed α.

Fixed-b Small-b
ρ bopt bft bft bmse

0.00 0.056 0.054 0.058 0.053*+
0.25 0.086 0.074*+ 0.080 0.075

T=200 0.50 0.087 0.073*+ 0.077 0.078
0.75 0.087*+ 0.119 0.123 0.101
0.90 0.157*+ 0.198 0.218 0.214

0.00 0.067 0.070 0.072 0.066*+
0.25 0.054 0.050+ 0.051 0.049*

T=500 0.50 0.058 0.060 0.061 0.055*+
0.75 0.070*+ 0.099 0.103 0.080
0.90 0.097*+ 0.108 0.116 0.118

0.00 0.047 0.046* 0.050+ 0.049
0.25 0.072 0.061*+ 0.062 0.063

T=1000 0.50 0.068*+ 0.071 0.072 0.071
0.75 0.071*+ 0.082 0.083 0.076
0.90 0.072*+ 0.082 0.090 0.083

Table 7.4: Results with AR(1)-heteroskedasticy error terms. The ∗ denotes the smallest
Type 1 error rate, and the + denotes the setting closes to the prescribed α.
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Fixed-b Small-b
ρ bopt bft bft bmse

0.00 0.052*+ 0.057 0.063 0.054
0.25 0.084 0.067*+ 0.068 0.069

T=200 0.50 0.062 0.057*+ 0.066 0.062
0.75 0.092*+ 0.132 0.140 0.113
0.90 0.142*+ 0.175 0.203 0.197

0.00 0.056 0.051 0.056 0.05*+
0.25 0.075 0.068 0.069 0.067*+

T=500 0.50 0.069*+ 0.075 0.076 0.071
0.75 0.062*+ 0.070 0.075 0.071
0.90 0.093*+ 0.105 0.126 0.128

0.00 0.051+ 0.057 0.057 0.049*
0.25 0.048+ 0.037* 0.039 0.039

T=1000 0.50 0.049*+ 0.061 0.062 0.054
0.75 0.061 0.071 0.072 0.06*+
0.90 0.082*+ 0.091 0.097 0.109

Table 7.5: Results with ARMA(1,1) error terms with Gaussian disturbances. The ∗ denotes
the smallest Type 1 error rate, and the + denotes the setting closes to the prescribed α.

Fixed-b Small-b
ρ bopt bft bft bmse

0.00 0.056 0.060 0.066 0.053*+
0.25 0.067 0.061 0.065 0.060*+

T=200 0.50 0.076 0.069*+ 0.075 0.072
0.75 0.084*+ 0.132 0.136 0.106
0.90 0.148*+ 0.181 0.209 0.199

0.00 0.081 0.078 0.079 0.077*+
0.25 0.064 0.053*+ 0.053 0.055

T=500 0.50 0.063*+ 0.068 0.069 0.067
0.75 0.084*+ 0.102 0.108 0.093
0.90 0.116*+ 0.129 0.143 0.146

0.00 0.054 0.057 0.058 0.052*+
0.25 0.066 0.053*+ 0.054 0.054

T=1000 0.50 0.059*+ 0.069 0.072 0.060
0.75 0.066*+ 0.073 0.077 0.069
0.90 0.065*+ 0.072 0.079 0.079

Table 7.6: Results with ARMA(1,1) error terms with Laplace disturbances. The ∗ denotes
the smallest Type 1 error rate, and the + denotes the setting closes to the prescribed α.
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Across the different procedures, sample sizes, and ρ’s the observed Type 1 error

rate closest to the prescribed rate was typically the procedure that relied on bopt. In par-

ticular, for ρ = 0.9 the bandwidth rule bopt prevailed in all instances. When correlation

was low the rates where more comparable as expected. Interestingly, we observe a larger

difference between the procedures for the models AR1-HET and ARMA-L, with the bopt

prevailing. This suggests the bopt procedure is more robust to complicated error structures.

In instances when bopt is not the optimal choice it is typically near it.

7.4 Application

Following the work of Pellatt & Sun [43] and Chang et al. [2] we investigate how

interest rates of securities with varying maturities move together. We consider the 10 year

United States Treasury bond (T-bond) yield as a response variable and the 3 month United

State Treasury bill (T-bill) yield as a explanatory variable. The data is recorded monthly

from January 1962 and December 2007 for a total sample size of 512, and was collected

from Federal Reserve Economic Data (FRED) of the St. Louis FED. The range was chosen

because beginning 1962 the 10 year T-bond was recorded more frequently, and the Federal

reserve system adopted drastic changes in response to the Global Financial Crisis (GFC)

of 2008 [2, 43]. Figure 7.8 contains a plot of the two sequences overlaid. It is believed

that in general the rates move together with a ‘parallel shift’. That is, a a change in the

explanatory variable corresponds to a change in the response variable in the same direction

with equal strength. We construct the following model,
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yt = β0 + β1xt + wt,

where wt is an unknown error process. We test the hypothesis H0 : β1 = 1 against the

alternative hypothesis that HA : β1 ̸= 1.

Figure 7.8: 10 Year United States Treasury Bond Yield and 3 Month United States Treasury
Bill Yield from January 1962 to December 2007.

We present our results in a similar manor as McElroy & Politis [35]. The test

statistic, calculations, and testing procedures are similar to those in Section 7.3. We also

continue to use the Bartlett kernel and a significance level of α = 0.05.
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Lugsail Type CV Type Bandwidth FOLS Lower Upper

Zero Fixed-b bopt = 0.0682 3.7545 0.6329 1.0117
Zero Fixed-b bft = 0.0833 3.7846 0.6195 1.0252
Zero Small-b bft = 0.0833 3.7846** 0.6610 0.9837

Mother Small-b bmse = 0.0919 4.6339** 0.6606 0.9841

Table 7.7: Various testing statistics of interest for four different testing procedures. Columns
indicate the respective kernels and critical values used. Under the given constructions we
produce the generated bandwidth, test statistic, and bounds of a 95% confidence interval
for β1. Test statistics denoted with * indicate significance at the 5% level, and ** indicate
significance at the 1% level. The estimated autocorrelation coefficient is ρ̂ = 0.924, and
coefficient is β̂1 = 0.822.

The testing results are consistent with the simulation study in the previous section.

The largest test statistic corresponds to the mother kernel which is caused by the negative

bias of the LRV estimator. Furthermore, the confidence interval is narrow under small-

b asymptotics, as it does not account for the estimation of the LRV. The zero lugsail

estimator under fixed-b asymptotics fail to reject the null hypotheses which corresponds to

expert opinion [2, 43]. Although this cannot be used as validation for the procedure, it is

encouraging.

7.5 Discussion

The beginning of this chapter posed three questions. We attempted to address

them all throughout, albeit to different degrees. In Section 7.2 we observe the behavior of

Type 1 error, Type 2 error, and power. The fixed-b asymptotic framework accounts for the

variability that causes the Type 1 error rate to inflate as b increases despite Ω̂T being less

biased. This is evident by the dashed lines in Figures 7.4 - 7.7. The zero lugsail estimator

in contrasts addresses the asymptotic bias and has smaller size distortion in comparison
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to the mother lugsail settings at the same bandwidth, as expected. The testing mechanics

work well as they address different issues. The Type 2 error curve is not strictly concave

like the asymptotic expression, but has a concave like behavior. The power is also less for

zero lugsail estimators then mother estimators as expected.

In regards to procedure mechanics our recommended procedure was typically op-

timal or near optimal as illustrated in Section 7.3. The largest differences in performance

typically occurred at higher correlations, and for the AR1-HET and ARMA-L models. This

suggests that the recommended procedure is comparatively more robust to complex error

structures. In Section 7.2 we observed that for nearly any set bandwidth the recommended

procedure yields a smaller size distortion. However, we select b specific to the estimator

and setting so a comparison of this sort is not as informative. In Sections 7.2 and 7.3 we

presented the bft optimal value for comparison. This rule is intended for flat top estimators

and generally yields similar results to bopt, with bopt having slightly better performance.

The bandwidth rule bopt has an advantage that it is designed to work for all zero lugsail

kernels, versus bft is only immediately applicable to the Bartlett zero lugsail kernel.

We only considered the zero and mother kernel lugsail settings and leave additional

settings for future work. There is a distinct and noteworthy advantage in regards to Type

1 error when using a zero lugsail estimator. The cost of this improvement is felt in power

loss, which makes selecting an appropriate bandwidth imperative. The bandwidth rule we

propose lands at a conservative point just past the elbow and is specific to the testing

scenario.
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