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ABSTRACT OF THE THESIS

Combining Physics with Machine Learning:

Case Study of Shape from Polarization

by

Yunhao Ba

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2019

Professor Achuta Kadambi, Chair

Shape from Polarization (SfP) recovers an object’s shape from polarized photographs of the

scene. In previous works, the SfP algorithms use idealized physical equations to recover the

shape. These previous approaches are error-prone when real-world conditions deviate from

the idealized physics. In this thesis, we propose a physics-based neural network to address

the SfP problem. Our algorithm fuses deep learning with synthetic renderings (derived from

physics) to exceed the quality of all previous SfP methods. A two-stage encoder is used to

resolve the longstanding problem of ambiguities. Our results of surface normal recovery are

an improvement upon methods that utilize physics-based solutions alone.
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CHAPTER 1

Introduction

1.1 Overview

This thesis studies how physical priors can be combined with neural networks, using a

difficult imaging problem as a case study. There is a logic to combining model-based priors

with neural networks. Model-based methods may robustly describe simple parts of the

system, while neural networks can describe complex portions of a system, where closed-form

models may not be available. Additionally, as compared to using naive neural networks

alone, the use of models enables a form of regularization on the neural network output. The

end-result, as we show in this thesis, is a performance improvement and a potential step

toward guaranteeing physically realizable solution spaces.

Combining physics and deep learning is a problem not without subtleties. As we study

in this thesis, many of the physical models are centuries old - how do we create a common

embedding space where neural network weights map to physical equations? These questions

are central, not only to this thesis, but also recentw work. For example, [KWR17, PLD18,

AWF18] show the effectiveness of combining physical knowledge with deep learning, while

[DSH17, SSO18, LYC17] exhibit the advantages of incorporating deep learning with some

existing models. However, there is a key differentiator between prior work and this thesis.

Most of the existing methods assume that the physical models that characterize the system

are known. This thesis scales to the new goal of when there is considerable uncertainty

in physical equations as well as pattern recognition. For that reason, this thesis selects an

inverse problem in imaging that is known to have a poor physical solution: Shape from

Polarization (SfP).
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We have picked this problem as an ideal case study because its physical solutions are

formulated under ideal assumptions, and suffer from the ambiguity problem, and the polar-

ization data is usually noisy, which is difficult for normal deep learning frameworks to learn

from. While we are advancing our understanding of the broad question of physics-based

machine learning, we are also making progress toward the concrete computer vision problem

of SfP.

1.2 Shape from Polarization

Inverse problem is the process of retrieving system parameters based on the observations

of the system. The general difficulties of inverse problems might be summarized as follows:

1. Observations may not be sufficient to recover the whole system; 2. Obtaining the exact

parameters usually requires search within a massive parameter space. SfP is a classic inverse

problem in physics-based computer vision. The goal is to recover the shape of an object from

polarized photographs of a scene. The motivation is easy to grasp: light reflecting off an

object has a polarization state that relates to the object’s shape. Unfortunately, recovering

surface normals through SfP is very difficult.

One physical challenge in SfP is the ambiguity problem. This problem arises because

a linear polarizer cannot distinguish between polarized light that is rotated by π radians.

This results in two confounding estimates for the azimuth angle. Previous work in SfP has

used additional information to constrain the ambiguity problem. For instance, [MEF12] use

shape from shading constraints to correct the ambiguities. Other authors assume surface

convexity to constrain the azimuth angle [MTH03, AH06]. Yet another solution is to use

a coarse depth map to constrain the ambiguity [KTS15, KTS17]. Figure 2.2 compares the

tradeoffs of our proposed technique with these alternatives.

Another physical challenge in SfP is the refractive problem. SfP requires knowledge

of per-pixel refractive indices. Previous work has used hard-coded values to estimate the

refractive index of scenes. This leads to a relative shape that is recovered with refractive

distortion. Another physical challenge is the noise problem. SfP is ill-conditioned, requiring

2



Polarization PhotosScene

0 deg 45 deg

90 deg 135 deg

Deep Shape from Polarization

Physics-based
CNN

Naive CNN
has Errors

Figure 1.1: The novelty of this thesis is to use physics-based neural networks to ad-

dress the shape from polarization (SfP) problem. Ordinarily, SfP uses physics-based

equations to convert polarized photos into surface normal maps. Here, we show two machine

learning approaches for SfP. Using learning-only results in artifacts on a simple object, while

a physics-based neural network is more successful. Please see the inset for comparison.

input images that are relatively noise-free. Ironically, a polarizer reduces the captured light

intensity by 50 percent, worsening the effects of Poisson shot noise.

We address these SfP pitfalls by moving away from a physics-only solution, toward the

realm of data-driven techniques. A reasonable first attempt could apply vanilla convolutional

neural networks (CNN) to the SfP problem. Unfortunately, machine learning alone is not

a satisfactory solution. As illustrated in Figure 1.1, a naive CNN implementation does not

work even on the simplest of scenes. In contrast to prior work, we fuse both physics and

deep learning in symbiosis. This hybrid approach outperforms previous SfP methods.

1.3 Contributions

In context of prior work in SfP, this thesis demonstrates three technical first attempts:

1. implementing deep learning for the SfP problem;

2. incorporating physics into the deep learning approach; and

3. providing the first dataset to enable data-driven SfP.
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Scope: Because this is only a first attempt, the proposed solution is not perfect, par-

ticularly when obtaining the shape of objects with mixed reflectivities. However, all prior

methods in SfP fail in this scenario. While our physics-based approach to neural networks

does outperform the individual strategy of physics and learning alone, this may just be a

first attempt at the problem.

1.4 Notation

Symbol Meaning

φ phase of received light sinusoid

Imax maximum intensity of of received light sinusoid

Imin minimum intensity of of received light sinusoid

φpol polarizer rotation angle

I(φpol) intensity of received light sinusoid with a polarizer angle of φpol

Iφpol polarized image with a polarizer angle of φpol

ϕ azimuth angle

θ zenith angle

ρ degree of polarization

n refractive index

W width of the image

H height of the image

N ground truth surface normal map

N̂ estimated surface normal map from the network

N diff surface normal map from diffuse polarization model

N spec1 the first surface normal map from specular polarization model

N spec2 the second surface normal map from specular polarization model

Table 1.1: Notation table

4



CHAPTER 2

Background

2.1 Related Work

Polarized light has exhibited remarkable potentials on shape recovery as shown in Figure 2.1.

However, there is no previous work that takes the advantage of data-driven deep learning

techniques to enhance the performance. This thesis sits at the seamline of deep learning

and SfP, offering unique performance tradeoffs from prior work. Refer to Figure 2.2 for an

overview.

Shape from polarization infers the shape (usually represented in surface normal) of a

surface by observing the correlated changes of image intensity with the polarization infor-

mation. Changes of polarization information could be captured by rotating a linear polarizer

in front of an ordinary camera [Wol97, AE18] or polarization cameras using a single shot

in real time (e.g., PolarM [Pol17] camera used in [YTL18]). Conventional shape from po-

larization decodes such information to recover the surface normal up to some ambiguity. If

only images with different polarization information are available, heuristic priors such as the

surface normals on the boundary and convexity of the objects are employed to remove the

ambiguity [MTH03, AH06]. Photometric constraints from shape from shading [MEF12] and

photometric stereo [Dv01, NNT15, Atk17] complements polarization constraints to make the

normal estimates unique. If multi-spectral measurements are available, surface normal and

its refractive index could be estimated at the same time [HRH10, HRH13]. More recently,

a joint formulation of shape from shading and shape from polarization in a linear manner is

shown to be able to directly estimate the depth of the surface [SRT16, TSZ17, SRT18]. This

thesis is a first attempt at studying deep learning and SfP together.
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Figure 2.1: The power of polarized light for shape recovery (a) The Kinect depth of a

cup (b) Three polarized images with different polarizer angles (c) The enhanced depth with

polarization cues. (This figure is adapted from [KTS15])

Figure 2.2: Summarizing the tradeoffs of our proposed physics-based neural net-

works (NN) versus physics-only and learning-only approaches.
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Polarized 3D involves stronger assumptions than SfP and has different inputs and out-

puts. Recognizing that SfP alone is a limited technique, the Polarized 3D class of methods

integrate shape from polarization with a low resolution depth estimate. This additional

constraint allows not just recovery of shape but also a high-quality 3D model. The low

resolution depth could be achieved by employing two-view [MKI04, AH05, BVM17], three-

view [CZS18], multi-view [MSB16, CGS17] stereo, or even in real time by using a SLAM

system [YTL18]. These depth estimates from geometric methods are not reliable in tex-

tureless regions where finding correspondence for triangulation is difficult. Polarimetric cues

could be jointly used to improve such unreliable depth estimates to obtain a more complete

shape estimation. A depth sensor such as the Kinect can also provide coarse depth prior

to disambiguate the ambiguous normal estimates given by SfP [KTS15, KTS17]. The key

step that characterizes Polarized 3D is a holistic approach that rethinks both SfP and the

depth-normal fusion process. The main limitation of Polarized 3D is the strong requirement

that there be a coarse depth map, which is not true for our proposed technique.

Data-driven computational 3D imaging approaches draw much attention in recent years

thanks to the powerful modeling ability of deep neural networks. Various types of convolu-

tional neural networks (CNNs) are designed and trained to enable 3D imaging for different

types of sensors and measurements. From single photon sensor measurements, a multi-scale

denoising and upsampling CNN is proposed to refine depth estimates [LOW18]. CNNs also

show advantage in solving phase unwrapping, multipath interference, and denoising jointly

from the raw time-of-flight measurements [MHM17, SHW18]. From multi-directional lighting

measurements, a fully-connected network is first proposed to solve photometric stereo for gen-

eral reflectance with a pre-defined set of light directions [SSS17]. Then the fully-convolutional

network with an order-agnostic max-pooling operation [CHW18] and the observation map

invariant to the number and permutation of the images [Ike18] are concurrently proposed to

deal with an arbitrary set of light directions. Normal estimates from photometric stereo can

also be learned in an unsupervised manner by minimizing the reconstruction loss [TM18].

The challenge with existing deep learning frameworks is that they do not leverage the unique

physics of polarization.
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2.2 Physical Solution

Our objective is to reconstruct surface normals N̂ from a set of polarized images {Iφ1 , Iφ2 ,

..., IφM} with different rotations of polarizer angles. For a specific polarizer angle φpol,

the intensity at a pixel of a captured image follows a sinusoid variation under unpolarized

illumination:

I(φpol) =
Imax + Imin

2
+
Imax − Imin

2
cos(2(φpol − φ)), (2.1)

where φ denotes the phase angle, and Imin and Imax are lower and upper bounds for the

observed intensity. Equation 2.1 has a π-ambiguity in context of φ: two phase angles, with

a π shift, will result in the same intensity in the captured images. Based on the phase angle

φ, the azimuth angle ϕ can be retrieved with π
2
-ambiguity as follows [CGS17]:

φ =


ϕ, if diffuse reflection dominates

ϕ− π
2
, if specular reflection dominates

. (2.2)

The zenith angle θ is related to the degree of polarization ρ, which can be written as:

ρ =
Imax − Imin
Imax + Imin

. (2.3)

When diffuse reflection is dominant, the degree of polarization can be expressed with the

zenith angle θ and the refractive index n as follows [AH06]:

ρ =
(n− 1

n
)2 sin2 θ

2 + 2n2 − (n+ 1
n
)2 sin2 θ + 4 cos θ

√
n2 − sin2 θ

. (2.4)

The effect of n is not decisive, and we assume n = 1.5 throughout the rest of this thesis.

With this known n, Equation 2.4 can be rearranged to obtain a close-form estimation of the

zenith angle for the diffuse dominant case.

When specular reflection is dominant, the degree of polarization can be written as [AH06]:

ρ =
2 sin2 θ cos θ

√
n2 − sin2 θ

n2 − sin2 θ − n2 sin2 θ + 2 sin4 θ
. (2.5)

8



Figure 2.3: SfP lacks a unique solution due to the ambiguity problem. Here, two

different surface orientations could result in the same exact polarization signal, represented

by dots and hashes. The dots represent polarization out of the plane of the thesis and the

hashes represent polarization within the plane of the board. Based on the measured data, it

is unclear which orientation is correct.

Equation 2.5 can not be inverted analytically, and solving the zenith angle with numerical

interpolation will produce two solutions if we do not introduce additional constraints. For

real world objects, specular reflection and diffuse reflection are mixed depending on the

surface material of the object. As shown in Figure 2.3, the ambiguity in the azimuth angle

and uncertainty in the zenith angle are fundamental limitations of SfP. Overcoming these

limitations through physics-based neural networks is the primary focus of this thesis.

9



CHAPTER 3

Physics-based Learning Model

3.1 Learning with Physics

Large amounts of labeled data are critical to the success of neural networks. To alleviate

the burden of data requirement, one possible method is to incorporate physical priors during

learning. However, it is essentially difficult to use physical information for SfP tasks due to

the following reasons: 1. Polarization normals contain ambiguous azimuth angles. 2. Spec-

ular reflection and diffuse reflection coexist simultaneously, and determining the proportion

of each type is complicated. 3. Polarization normals are usually noisy, especially when the

degree of polarization is low. Shifting the azimuth angles by π or π
2

could not reconstruct

the surface normals properly for noisy images.

Due to the above reasons, regularization from the physical azimuth angle or the physical

zenith angle will degrade the network performance and lead to a fragile model. Therefore,

instead of using physical solutions as regularization, we directly feed both the polarized

images and the ambiguous surface normals into the network, and leave the network to learn

how to combine physical solutions with the polarized images effectively. The estimated

surface normals can be structured as following:

N̂ = f(Iφ1 , Iφ2 , ..., IφM ,N diff ,N spec1,N spec2) (3.1)

where f(·) is the proposed prediction model, {Iφ1 , Iφ2 , ..., IφM} is a set of polarized images,

and N̂ is the estimated surface normals. We use diffuse model in Section 2.2 to calculate

N diff , and N spec1,N spec2 are the two solutions from specular model.

The remaining question is to contrive a way to combine ambiguous surface normals

with polarized images in the network. Simply concatenating N diff ,N spec1,N spec2 with

10



Layer Encoder block

1 Conv[(3× 3), m, m× 2, stride=2], BN, LeakyReLU

2 Conv[(3× 3), m× 2, m× 2, stride=1], BN, LeakyReLU

3 Conv[(3× 3), m× 2, m× 2, stride=1], BN, LeakyReLU

Layer Decoder block

1 Deconv[(3× 3), m, m
2

, stride=2], BN, LeakyReLU

2 Conv[(3× 3), m
2

, m
2

, stride=1], BN, LeakyReLU

3 Conv[(3× 3), m
2

, m
2

, stride=1], BN, LeakyReLU

Table 3.1: Convolutional layers in each encoder-block and decoder-block.

Conv[(k × k), a, b, stride=s] represents a 2D convolutional layer with kernel size of (k × k),

a input channels, b output channels, and s stride. Deconv denotes a 2D transposed convo-

lutional layer, and BN denotes a batch normalization layer. We use LeakyReLU [MHN13]

with a negative slope of 0.1 as the activation function.

polarized images did not show us the expected enhancement based on our testing results. One

explanation for that is the low-level features from polarized images and the low-level features

from ambiguous normals are different, and it is burdensome for convolutional layers to learn

these two types of features concurrently. An alternative method is to use two separate

encoder streams to encode these two types of features at the low-level stage, and merge

the high-level features in deeper layers. With the proposed two-stream encoder, ambiguous

normals can implicitly direct the network to learn some physical information and serve as a

good initialization to improve generalizability.

3.2 Network Architecture

Our network structure is illustrated in Figure 3.1. It consists of two independent encoders to

extract features from polarized images and ambiguous surface normals separately and a com-

mon decoder to output surface normal N̂ . A variation of U-Net [RFB15] and LinkNet [CC17]

11
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Figure 3.1: Overview of our proposed physics-based neural networks. The network

is designed according to the encoder-decoder architecture in a fully convolutional manner.

We use addition operation as the mixer to integrate both low-level and high-level features

from polarized images and ambiguous surface normals.

is used to connect encoder block and decoder block at the same hierarchical level. We argue

that addition is superior to concatenation when merging feature maps, since it achieves com-

parable performance, yet requires less memory and computational power in general based

on our testing results.

There are 7 encoder blocks to encode the input into a tensor of dimensionality B×1024×

2 × 2 to guarantee the receptive field, where B is the minibatch size. The encoded tensor

is then decoded by the same number of decoder blocks to produce the estimated surface

normals N̂ . An `2-normalization layer is appended after the last decoder block to convert

corresponding feature maps into surface normals. Table 3.1 shows the structure of each en-

coder and decoder block. Two additional feature extractors containing 3 convolutional layer

of kernel size 3× 3 are placed before the first encoder block to prepare feature maps suitable

for downsampling purpose. We use convolutional layers with stride of 2 for downsampling,

and transposed convolutional layers for upsampling. Batch normalization layers [IS15] are

inserted after each layer, except the output layer, where batch normalization would cause

distortion of the estimated surface normals N̂ . After batch normalization, LeakyReLU with

a negative slope of 0.1 is used for the activation function.

12



For the image encoder, pictures captured with a polarizer at angles φpol ∈ {0◦, 45◦, 90◦, 135◦}

are selected for training and testing. It is sufficient to solve the polarization cues with three

values of φpol, nevertheless we use four values to ensure the robustness over noise. The four

polarized images are stacked to form a tensor of dimensionality 4×H ×W , where H ×W

is the spatial resolution of polarized images. Our motivation is that, since the relative 3D

information from polarization is essentially from the the intensity difference between polar-

ized images, it is beneficial for convolutional layers to learn this difference by concatenating

images along the channel dimension as input. For the normal encoder, we use the identical

architecture for the sake of feature map addition. We use ground truth surface normals to

supervise the physics-based neural networks with the cosine similarity loss function:

Lcosine =
1

W ×H

W∑
i

H∑
J

(1− 〈N̂ ij,N ij〉), (3.2)

where 〈·, ·〉 denotes the dot product, N̂ ij is the estimated surface normal at pixel location

(i, j), and N ij is the corresponding ground truth of surface normal. This loss is minimized

when N̂ ij and N ij have identical orientation.
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CHAPTER 4

Dataset and Implementation Details

4.1 Dataset

To train the physics-based neural network, polarization images with corresponding normal

maps are needed. However, neither synthetic nor real datasets for such a purpose are publicly

available. We therefore create the first real and synthetic datasets for data-driven SfP as

shown in Figure 4.2.

Real dataset: A camera with a layer of polarizers above the photodiodes [Luc18] is used

to capture four polarized images at angles 0◦, 45◦, 90◦ and 135◦ in a single shot. Then a

structured light based 3D scanner [SHI18] (with single shot accuracy no more than 0.1 mm,

point distance from 0.17 mm to 0.2 mm, and a synchronized turntable for automatically

registering scanning from multiple viewpoints) is used to obtain high-quality 3D shapes.

Our real data capture setup is shown in Figure 4.1. The scanned 3D shapes are aligned from

the scanner’s coordinate system to the image coordinate system of the polarization camera

by using the shape-to-image alignment method adopted in [SMW19]. Finally, we compute

for surface normals of the aligned shapes by using the Mitsuba renderer [Jak10] as ground

truth. In total, we capture 65 sets (with 4 polarized images plus a surface normal map) of

real data, and we use 58 sets of them for training and the remaining 7 sets for testing and

quantitative evaluation.

Synthetic dataset: The scanned real data are not sufficient in terms of scale and lighting

variation for training a deep neural network. We further create a synthetic dataset to com-

plement the real one. We use the normal maps provided in [SMW19], since they cover a great

14



Object

Polarization Camera

Scanner

Figure 4.1: Physical setup to capture polarized images. We use a polarization camera

to capture four polarimetric measurements of an object in a single shot. The scanner is put

next to the camera for obtaining the 3D shape of the object. The setup is put in an indoor

environment with typical office lighting.
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Figure 4.2: Overview of our real (upper part) and synthetic (lower part) datasets.

We show 10 objects (out of 58) in the training set of our real dataset, and 10 objects

(out of 10) of our synthetic dataset. In each example, we show I0 on top of I45, I90, I135

with thumbnail sizes, and the corresponding normal maps are shown below the polarization

images. Note the polarization camera captures gray scale images, which are used as input

for computation.

diversity of geometry from a simple sphere to surfaces with highly delicate structures. Given

a normal map, we calculate the diffuse shading by assuming the Lambertian reflectance and

a distant environment map [Deb08], as I0, I45, I90, I135 are calculated using Equation 2.1.

By using 10 different environment maps on 10 different normal maps, we obtain 100 sets of

synthetic data, and all these data are used for training.

4.2 Software Implementation

Our model was implemented in PyTorch [PGC17], and trained for 500 epochs with a batch

size of 64. It took 8 hours for the network to converge with a single NVIDIA Titan V GPU.

We used Adam optimizer [KB14] with default parameters (β1 = 0.9 and β2 = 0.999), and
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the base learning rate was set to be 0.01. The learning rate was multiplied with a factor

of 0.8 when loss reached the plateau regions during the training process. We tried both He

initialization [HZR15] and Xavier [GB10] on the convolutional weights, and the performance

of Xavier initialization is slightly better. For data augmentation, images patches of size

256× 256 are randomly cropped during training, and a patch is discarded if its foreground

ratio is less than 20%. No random rescaling is used to preserve the original high-resolution

details and aspect ratio. The final prediction is the average of 32 shifted input to preserve

the accuracy at boundaries of each patch.

4.3 Implementing Comparisons to Physics-only SfP

We used a test dataset consisting of scenes that include ball, horse, vase, half painted

vase, Christmas, flamingo, rabbit. On this test set, we compared performance between

our proposed method and three physics-only methods for SfP: 1. [SRT16]. 2. [MEF12].

3. [MTH03, AH06]. The first method recovers the depth map directly, and we only use the

diffuse model due to the lack of specular reflection masks. The surface normals are obtained

from the estimated depth with bicubic fit. Both the first and the second methods require

lighting input, and we use the estimated lighting from the first method during comparison.

The second method also requires known albedo, and following convention, we assume a

constant albedo. All the comparison codes were provided by Smith et al. [SRT16] 1.

1https://github.com/waps101/depth-from-polarisation
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CHAPTER 5

Result and Discussion

In this section, we evaluate our model with the presented challenging real-world scene bench-

mark, and compare it against three physics-only methods for SfP. Mean angular error (MAE)

is selected as the metric to quantify the accuracy of the estimated surface normals during

comparison.

5.1 Machine Learning Alone is Insufficient

As illustrated in Figure 1.1, a naive approach to deep learning that does not incorporate

physics is insufficient. On one of the simplest scenes possible (a white ping-pong ball), the

naive neural network cannot recover accurate surface normals. There is only slight difference

between images with different polarized angles, and it is difficult for a naive neural net to

learn from these differences with limited number of training samples. The proposed method

incorporates multiple physical solutions. Therefore, apart from learning from pure polarized

images, which is difficult, the network can also learn from physical solutions, which may be

easier. Generalizability of the network is thus improved, and it becomes realistic for the

network to predict high-quality normals in this case.

5.2 Choice of Loss Function is Important

As shown in Figure 5.1, the choice of loss function affects both the quantitative error and the

recovery of qualitative detail. Use of the `2 loss function results in an overall smoothened

result, while the `1 shows widening of the ridges in the vase. The cosine loss function is
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Ground Truth
Cosine Loss*
[MAE: 11.4°]

l1 Loss Function
[MAE: 14.7°]

l2 Loss Function
[MAE: 18.6°]

Figure 5.1: Choice of neural network loss function affects result quality. Motivated

by this example, we choose the cosine loss function as it returns the lowest error and appears

to recover relatively more detail. Compared results are obtained on a small training set with

32 training samples (16 synthetic samples, 16 real samples).

closest to the ground truth and is used in all other scenes from the thesis. The success of

cosine loss may come from its emphasis on the orientation information. Both `1 and `2 loss

will penalize the length of estimated surface normals, however, the normalization layer at

the end has already constrained the normal length.

5.3 Improved Performance on Shiny and Detailed Scene

Here, we show improved performance on a relatively shiny scene with surface details. As

illustrated in Figure 5.2, the proposed method of physics-based NN achieves the highest

qualitative and quantitative accuracy. Worth noting is that, the result from [SRT16] does not

perform well on the horse scene because the simple hybrid reflection model and spherical

harmonics based lighting model are not well satisfied for horse scene, and the estimated

depth becomes inaccurate, which results in a normal map with a large error.
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Ground Truth Proposed Method
MAE:  27.0°

[Smith 2016]
MAE: 91.9°

[Mahmoud 2012]
MAE: 70.4°

[Miyazaki 2003]
MAE: 68.3°

Figure 5.2: Our method can handle shiny scenes with high-frequency details.

Although the proposed method does not recover all of the detail that was present in ground

truth, global errors in shape are not present. By comparison, the physics-only methods

exhibit large errors in shape recovery.

5.4 Improved Performance in Noise-degraded Environments

Here, we show that the physics-based NN approach outperforms physics-only approaches

when the noise level drops. As illustrated in Figure 5.3, the input to each of the methods are

noisy polarization images. This noise was generated in simulation to mimic low light levels

(when shot noise dominates). The proposed physics-based NN approach shows a qualitative

and quantitative improvement over the physics-only methods. Our proposed approach of

using a physics-based neural network works in low noise levels because of the encoder-decoder

architecture. Both polarized images and physical solutions will be downsampled into a

condensed feature map by the encoder, and the decoder has to use this condensed feature

map to recover the normal map. With limited number of parameters, the network has to

learn some intrinsic representation of the input, which gives us the robustness over noise.

5.5 Additional Scenes

Over all tested scenes in the thesis, the proposed physics-based neural network outperforms

physics-only methods from [MTH03, MEF12, SRT16]. In particular, Figure 5.4 shows that

the proposed method recovers surface normals that are quantitatively and qualitatively clos-
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Proposed Method
MAE:  26.5°

[Smith 2016]
MAE: 88.5°

[Mahmoud 2012]
MAE: 67.7°

Noisy Polarized
Images

Figure 5.3: The proposed method handles cases when the input images are noisy.

Noise-tolerant performance is particularly important when using polarizing optics; a polar-

izing filter reduces the light intensity by 50 percent.

est to ground truth. The large region-wise anomalies on many of the results from [MTH03]

are to do with the region-growing constraint on the convexity that is imposed. The method

of [MEF12] uses shading constraints which require a distant light source, which is not the

case for tested scenes. Finally, the results in [SRT16] are explained both by the use of 4 po-

larized images as input (ordinarily the method requires 18), as well as change in the lighting

direction.

5.6 SfP Still Fails on Mixed Material Scenes

This thesis, like other SfP methods, is unable to solve the mixed material problem. This

problem occurs when the polarimetric signal is not just due to surface geometry, but also

material effects. Figure 5.5 shows one such scene, consisting of a vase painted with two

different styles of paint. While the physics-based NN result has the lowest quantitative

error, none of the SfP methods are correct. There is a texture copy artifact at the point

where the paints change.
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Ground Truth Proposed Method
MAE: 12.1°

[Smith 2016]
MAE: 34.0°

[Mahmoud 2012]
MAE: 43.0°

[Miyazaki 2003]
MAE: 48.8°

Ground Truth Proposed Method
MAE:  9.7°

[Smith 2016]
MAE: 40.6°

[Mahmoud 2012]
MAE: 38.9°

[Miyazaki 2003]
MAE: 50.1°

Ground Truth Proposed Method
MAE:  17.6°

[Smith 2016]
MAE: 37.1°

[Mahmoud 2012]
MAE: 47.3°

[Miyazaki 2003]
MAE: 49.7°

Ground Truth Proposed Method
MAE:  11.5°

[Smith 2016]
MAE: 39.1°

[Mahmoud 2012]
MAE: 48.7°

[Miyazaki 2003]
MAE: 45.2°

Figure 5.4: The proposed method has the least error in recovering normal maps.

We compare with SfP papers from [SRT16], [MEF12] and [MTH03]. Not shown is the

performance from [AH06], which behaves similarly to [MTH03].

22



Scene

Ground Truth

[Miyazaki 2003]
MAE: 47.5°

Proposed Method
MAE: 11.5°

[Smith 2016]
MAE: 38.1°

[Mahmoud 2012]
MAE: 38.5°

Figure 5.5: All SfP methods, including the proposed method, fail on a scene with

mixed paints. A texture copy artifact is seen in all the SfP methods at the point of material

transition. While all SfP methods can be seen as failing in that regard, the proposed method

still has the lowest error.
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CHAPTER 6

Conclusion

In summary, we have presented a first attempt at physics-based deep learning to handle the

challenging SfP problem. The proposed method is shown to outperform previous methods

that do not leverage machine learning. Surprisingly, using only machine learning is also

sub-optimal, even for the most simplistic of scenes (cf. Figure 1.1). This underscores the

importance of incorporating physics into the deep learning pipeline.

Although our performance improvement holds for all tested scenes, several open problems

remain unsolved. We find that existing SfP methods (including this thesis) fail on scenes

with mixed reflectivity. It would be interesting to study how material properties could be

incorporated into the physics-based NN architecture. Part of the solution may also rely on

expanding the training dataset, to include a wider variety of object materials and paints. For

these types of computational photography problems, where the capture procedure is labor

intensive, it is likely that dataset sizes will be small. This underscores the importance of

including physical priors in the network model. With this inclusion, we were able to obtain

results from a relatively small dataset size.

The lessons learned in this ”Deep Shape from Polarization” study may also apply to

a future ”Deep Polarized 3D” study. The physics-only family of Polarized 3D techniques

benefit from robust integration of surface normals with a depth prior. The state-of-the-art

Polarized 3D integration has been performed with a simplistic matrix inversion [KTS15]. A

physics-based NN approach might be able to learn this elementary function to potentially

obtain state-of-the-art results.

Beyond error metrics, there are other benefits to using deep learning pipelines. The

feedforward pass can be computed in real-time. This is in contrast to physics-only SfP
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techniques, which tend to have long compute times [KTS15]. This benefit will become more

apparent with the advancement of specialized computational architectures tailored toward

deep learning. Overall, this thesis’s results appear to validate the direction of jointly studying

deep learning and SfP. The compassion between the naive neural network and the proposed

physics-based neural network also verifies the effectiveness of physical information in the

conventional deep learning architectures.
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