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A B S T R A C T

The flow duration curve (FDC) is widely used for river management operations, such as hydropower. Percentile
flows of the FDC express the percent of time a flow is equaled or exceeded, and often need to be predicted for
ungauged basins. Regression models are commonly used to predict percentile flows. However, a major challenge
of this approach is selecting basin characteristics to serve as independent variables. The number of basin
characteristics precludes an analysis of all possible models. Thus, a subset of models are typically evaluated using
an automated regression procedure, like stepwise regression or the more exhaustive branch-and-bound ap-
proach. The latter was used as a baseline approach in this study, and was compared to six other less commonly
used methods from the field of variable (feature) selection. The performance of all seven approaches was
evaluated based on percentile flow regression models developed for a large sample of 918 basins in the United
States. The baseline regression procedure only outperformed principal component analysis, the only method that
did not use the percentile flows to select variables. Of the variable selection methods that used the percentile
flows, the regression procedure performed the worst. This suggests that regression procedures should not be the
first choice among variable selection methods for developing percentile flow regression models. Variables se-
lected based on knowledge of the FDC performed nearly as well as the best overall data-based method (i.e.
random forests). Random forests, and other methods that performed well, emphasized the influence of geology
on percentile flows. A geologic variable (i.e. baseflow index) had the largest effect on predictive performance. All
of the models suffered from large predictive error, and future work should apply a regional approach that groups
similar basins to predict percentile flows.

1. Introduction

The flow duration curve (FDC) is a widely used tool for managing
rivers. The percent of time a flow is equaled or exceeded (i.e. percentile
flow) is a component of the FDC that supplies essential information for
river applications, such as hydropower, wastewater treatment, and
water abstractions (Vogel and Fennessey, 1995). However, gauged flow
data is normally not available to calculate percentile flows. In this case,
methods are used to transfer percentile flows from gauged basins to
ungauged basins.

Regression models are a simple and common method to predict
percentile flows (see the United States (US) Geological Survey
StreamStats Application summarized in Ries et al., 2017). The method
is founded on the idea that climatic and physical basin characteristics
influence the FDC and therefore can be used as independent variables in
percentile flow regression models. A major challenge of this method is

selecting independent variables among many possible basin character-
istics. The number of basin characteristics has grown due to advances in
geographic information systems and remote sensing. A database in the
US called geospatial attributes of gages for evaluating streamflow ver-
sion II (GAGES-II) has over 300 basin characteristics (Falcone, 2011).
Studies to predict percentile flows and other streamflow statistics have
used 251 different basin characteristics as independent variables
(Ssegane et al., 2012).

Given the number of independent variables, it is not possible to
evaluate all models formed from every combination of variables. A
study using only 40 independent variables surpasses a trillion possible
models (i.e. 240–1). For this reason, many studies evaluate a subset of
models using automated regression procedures (e.g. Eash and Barnes,
2017; Hsu and Huang, 2017; Painter et al., 2017). Despite their fre-
quent use, automated regression procedures are widely criticized in the
field of statistics (see Copas, 1983; Flom and Cassell, 2007; Harrell,

https://doi.org/10.1016/j.jhydrol.2020.124975
Received 19 September 2019; Received in revised form 11 January 2020; Accepted 14 April 2020

⁎ Corresponding author at: Monmouth University, 400 Cedar Avenue, West Long Branch, NJ 07764, USA.
E-mail address: gfouad@monmouth.edu (G. Fouad).

Journal of Hydrology 587 (2020) 124975

Available online 18 April 2020
0022-1694/ © 2020 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00221694
https://www.elsevier.com/locate/jhydrol
https://doi.org/10.1016/j.jhydrol.2020.124975
https://doi.org/10.1016/j.jhydrol.2020.124975
mailto:gfouad@monmouth.edu
https://doi.org/10.1016/j.jhydrol.2020.124975
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2020.124975&domain=pdf


2001 for criticisms). Automated regression procedures are known to
produce biased model parameters and, as a result, often underperform
on new data in model validation. Alternative approaches do not use
regression, and select variables according to (1) knowledge of the de-
pendent variable or (2) data-based methods from the field of feature
selection.

1.1. Knowledge-based variable selection

Knowledge-based variable selection uses a conceptual under-
standing of the dependent variable to select independent variables. A
conceptual understanding can be developed based on the literature.
Although this can be subjective, a small number of carefully selected
independent variables is recommended for regression modeling (see
Harrell, 2001 among others). A similar recommendation for ungauged
basin model development suggests that independent variables should
be carefully selected to reflect the processes that influence streamflow
(Castellarin et al., 2013). In doing so, models may be less specific to a
particular dataset and more transferable to ungauged basins.

The FDC has a strong physical underpinning (Vogel and Fennessey,
1995). Geographic variation of the FDC is tied to the water balance
(Yaeger et al., 2012), topographic setting (Ye et al., 2012), and geology
(Cheng et al., 2012) of a region. A modeling study (Yokoo and
Sivapalan, 2011) decomposed the FDC into: (1) high flows contributed
by surface runoff during storm events with a loss factor for infiltration,
(2) average flows reflecting long-term storage conditions influenced by
climate and geology, and (3) low flows supplied by groundwater in the
dry season subject to evapotranspiration losses. This information can be
used to select independent variables associated with the FDC.

1.2. Data-based variable selection

Data-based variable selection methods are developed in the field of
feature selection to reduce large datasets for modeling purposes.
Feature selection can be broadly categorized into methods that (1)
control for redundant (cross-correlated) independent variables and (2)
select a subset of variables based on a specified relation to the depen-
dent variable. The former treats cross-correlated independent variables
(multicollinearity) to address possible model instability on new data
(Dormann et al., 2013). Treating multicollinearity can involve deriving
new latent variables that reduce cross-correlation or screening variables
based on cross-correlation. A disadvantage of these methods is that they
do not use information from the dependent variable. In addition,
multicollinearity may not be a concern for predictions (Harrell, 2001) if
the model data represents systematic relations between variables that
also occur in new data (e.g. snowfall varies with elevation).

A subset of independent variables can be selected based on a
mathematical relation to the dependent variable. The mathematical
relation may express the independent variable’s explanatory power or
probabilistic association with the dependent variable. A variable’s ex-
planatory power is evaluated according to its effect on model perfor-
mance. Models are evaluated by excluding one variable at a time
(Breiman, 2001), or a training algorithm can be used to screen variables
that do not contribute to model performance (Koza, 1994). These
methods are however prone to including irrelevant variables due to
Simpson’s (1951) paradox, a condition in which a relevant variable
becomes irrelevant in the presence of another variable. Methods that
evaluate probabilistic relations to the dependent variable are effective
at filtering irrelevant independent variables (Pearl, 2014). Probabilistic
relations are evaluated based on the conditional probability that an
observed outcome (flow) changes in the presence of another set of
variables (e.g. the balance between precipitation and evapotranspira-
tion changes the probability of observing a particular flow).

The present study compares a typical automated regression proce-
dure to six other less widely used variable selection methods on a large
sample of 918 basins for more generalizable results. The objectives of

this study were to (1) develop regression models to predict percentile
flows for ungauged basins in the US and (2) evaluate the performance
of different variable selection methods for developing the regression
models. Other modeling approaches, such as artificial neural networks,
may be applied to predict percentile flows. However, these approaches
also require variable selection. The choice of a modeling approach is
unlikely to change the relative performance of different variable se-
lection methods. Therefore, regression models were applied here as a
simple and widely used approach. The study addresses the following
research question:

How should independent variables be selected for the regression
modeling of FDC percentile flows?

A hypothesis is that a small number of carefully selected in-
dependent variables may perform similar to evaluating many in-
dependent variables in a data-based approach because multicollinearity
is common among independent variables (Kroll and Song, 2013) and
the FDC can be decomposed into only three distinct physical compo-
nents (Yokoo and Sivapalan, 2011).

2. Methods

2.1. Basins

The study used 918 basins in the GAGES-II database (Falcone, 2011)
classified as “near-natural” with little development. Each basin had to
have 30 years of continuous, daily streamflow record to calculate per-
centile flows (see the next section). The basins were split into 734 ca-
libration basins and 184 validation basins (Fig. 1), meeting a re-
commendation that model validation should be conducted with at least
100 samples (Harrell, 2001). Validation basins were selected at random
within groups based on Köppen climate classes (Peel et al., 2007), three
major rock types (Reed and Bush, 2005), and drainage area. The result
facilitated a “proxy-basin test” (Klemeš, 1986) in which the calibration
and validation basins had similar physiographic conditions (Table 1). A
cross validation approach in which small samples of the data are
iteratively excluded from model development could have been applied,
but was not required given the large calibration and validation sample
sizes, which generally produce stable results (Harrell, 2001). The cali-
bration and validation samples share similar statistical distributions,
which should suppress the effect of multicollinearity on predictions
(Harrell, 2001).

2.2. Percentile flows

Percentile flows were calculated using 30 years of daily streamflow
data to generate stable streamflow statistics for different time periods
(Kennard et al., 2010). The Weibull plotting position was used to cal-
culate the probability of a flow being equaled or exceeded as follows:

=
+

×p r
n( 1)

100
(1)

where p is the exceedance probability of a flow with rank r (in de-
creasing order) among n flow observations. Other equations may be
used to calculate the exceedance probability, but are known to generate
similar results for large records of n > 100 (Sadegh et al., 2016). A
total of 13 percentile flows were calculated at intervals of ten percent
from Q10-Q90, extreme high flows (Q1 and Q5), and extreme low flows
(Q95 and Q99). Each percentile flow was normalized (divided) by the
mean of nonzero flows to compare basins with different flow magni-
tudes (Hope and Bart, 2011).

2.3. Independent variables

The independent variables are described in Table 2. A review of the
literature on FDC prediction and data covering the contiguous US was
conducted to select a representative array of independent variables
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including climatic, topographic, land cover, soil, and geologic basin
characteristics. Climatic characteristics were derived from monthly
data during the same time periods as the streamflow data, except for
daily precipitation variables, which used a 30-year time period from
1981 to 2010 because daily data was not available for all streamflow
time periods. The time period of 1981–2010 was used because it
overlapped with streamflow data from the most basins. The percent of
precipitation delivered as snow is a GAGES-II variable calculated using
long-term data from 1901 to 2000. Forest cover was used to summarize
land cover due to cross-correlation among land cover classes and the
noted effect of forest cover on the FDC (Brown et al., 2013). Geology
was represented using the baseflow index (i.e. the percent of stream-
flow from groundwater), a strong indicator of basin geology (Price,
2011) useful for predicting the FDC in prior studies (see Castellarin
et al., 2013; Eash and Barnes, 2017; Yokoo and Sivapalan, 2011). The
baseflow index was calculated using streamflow data at gauged loca-
tions and interpolated into a grid for ungauged streamflow predictions
(Wolock, 2003). Both non-transformed and natural log-transformed
independent variables were used in variable selection methods. In-
dependent variables were converted to z-scores (i.e. number of standard
deviations from the mean) for variable selection methods sensitive to
variables on different scales (i.e. principal component analysis, sym-
bolic regression, and Bayesian networks).

2.4. Variable selection methods

The independent variables were selected for percentile flow re-
gression models using a number of methods. A summary of each
method follows with references that cover the method in more depth.
Because methods may select a different number of variables, each
method was applied in a way that supplied the top five variables. The
different methods could then be compared for constructing percentile
flow regression models. Again, in the interest of comparing variable

selection methods, regression models were not developed for sub-re-
gions as in some other studies (see Tsakiris et al., 2011 for example).

2.4.1. Automated regression procedure
An automated regression procedure served as the “baseline” ap-

proach commonly used in percentile flow regression modeling studies.
A branch-and-bound procedure was used in lieu of stepwise regression
because it conducts a more exhaustive search of all possible models. To
do so, the branch-and-bound procedure applies the logic that adding an
independent variable should improve the fit of the model. If a variable
is added and model fit is not improved, then the branch of models in-
cluding that variable is eliminated (see Miller, 2002 for a more in depth
review). Model fit was evaluated using the sum of squared residuals
(error). A number of other objective functions could be used, but the
sum of squared residuals was applied as it forms an unbiased estimate
of error variance and reflects the overall fit of the model. An increase in
the sum of squared residuals signaled that a branch of models could be
eliminated. Models were also eliminated based on multicollinearity
measured using the condition number (Belsley et al., 2004). A condition
number>30 was used to eliminate models (Dormann et al., 2013).
Candidate models were ranked using the adjusted coefficient of de-
termination (adjusted R2) to compare models with a different number
of independent variables. Other metrics, like the Akaike information
criterion, can be used to compare models of different complexity, but
are not based solely on how well the model fits the calibration data.
Therefore, models ranked here based on adjusted R2 were in order from
best to worst fit. The five most frequently used independent variables in
the top ten regression models were used in the final percentile flow
regression model.

2.4.2. Hydrologic understanding
Hydrologic understanding of the FDC was used to select a small

number of independent variables based on the conceptual model that

Fig. 1. Map of 734 calibration and 184 validation basins represented by the location of the stream gauge at the basin outlet.

Table 1
Characteristics of 734 calibration (C) and 184 validation (V) basins.

Mean annual flow (mm) Mean annual precipitation (mm) Baseflow index (%) Drainage area (km2) Mean elevation (m)

C V C V C V C V C V

Minimum 1 4 234 287 5 3 2 4 9 16
25th percentile 231 247 798 797 35 32 100 101 276 264
Median 409 412 1106 1100 48 46 292 303 498 470
75th percentile 657 582 1308 1283 61 59 718 751 1194 1090
Maximum 3607 3507 4117 3965 85 82 25,791 8265 3646 3435
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the FDC can be decomposed into high, average, and low flows (Yokoo
and Sivapalan, 2011). The selection process is of course subjective, and
arguments may be made for different independent variables. However,
the variables chosen here are based on readily accessible data for the
contiguous US and a common understanding of the FDC. High flows are
the product of storms related to total precipitation over the course of a
year (MAP). Storm runoff is moderated by infiltration (Soil_Porosity).
The slope of the basin influences the magnitude and duration of high
flows. Average flows are associated with basin storage conditions in-
fluenced by the balance between MAP and PET and geology (BFI). Low
flows in the dry season are generated by baseflow subject to evapora-
tive losses. Together, the conceptual model of different flows was used
to select the following independent variables from Table 2: MAP, PET,
Slope, Soil_Porosity, and BFI.

2.4.3. Principal component analysis
Principal component analysis (PCA) transforms the independent

variables into a new set of uncorrelated variables called principal
components (PCs; see Kroll and Song, 2013 for a more in depth ex-
planation of PCA). Each PC explains a percent of the variance in the
original data. The natural log-transformed independent variables pro-
duced PCs that explained more variance in the data than PCs based on
the non-transformed variables. The first five PCs based on the log-
transformed variables explained 76% of the variance in the data, and
were used for the percentile flow regression models.

2.4.4. Correlation analysis
A correlation analysis was performed to screen cross-correlated

variables. Cross-correlation was assessed using Pearson’s and
Spearman’s coefficients. A coefficient> 0.7 was used to identify cross-
correlated groups of variables (Dormann et al., 2013). A univariate
regression with each percentile flow was conducted to rank both the

non-transformed and natural log-transformed independent variables.
The variable with the largest R2 in a cross-correlated group was ranked
alongside the uncorrelated variables. The top five variables were then
used for the percentile flow regression models.

2.4.5. Random forests
Random forests are regression trees, which apply rules (e.g.

MAP > 1000 mm) to split the data samples (basins) into progressively
smaller groups. The smallest groups (terminal nodes) are averaged to
generate predictions (see Breiman, 2001 for a more in depth review).
The regression trees were developed using random subsets of the ba-
sins, and evaluated for predictive performance using the “out-of-bag”
samples not used to develop the regression trees. The out-of-bag error
decreased until about 100 regression trees, which was the number of
trees used in the analysis. Terminal nodes of the regression trees in-
cluded five basins, or less than 1% of the basins, because the size of the
terminal nodes has little effect on predictions if a small percentage of
the data is used (Svetnik et al., 2003). The number of independent
variables evaluated at each split in the regression tree was determined
based on an analysis of all values (i.e. 1–22) on all percentile flows (i.e.
Q1–Q99). The analysis revealed little difference between the values and a
commonly used rule of thumb (i.e. one-third of the total number of
independent variables rounded down to the nearest whole number).
The number of variables evaluated at each split was seven.

Independent variables were ranked according to the out-of-bag
error. Each variable was randomly permuted, effectively removing that
variable from the predictions. A larger increase in the out-of-bag error
quantified as mean squared error indicated a more important variable,
which received a higher ranking. The top five independent variables
were based on average rankings from 1000 random forests because
rankings can change from one random forest run to the next and an
ensemble approach like this is advised (Saeys et al., 2008). Natural log-

Table 2
Independent variables used in percentile flow regression models, with key references that provide a more in depth definition of the variable. Data source ab-
breviations defined in table footnote.

Variable Units Description Key reference Data source

Climate
MAP mm Mean annual precipitation Hope and Bart (2011) PRISM
Precip_SD mm Standard deviation of annual precipitation Hope and Bart (2011) PRISM
Precip_1D_Max mm Median of annual 1-day maximum precipitation Yadav et al. (2007) PRISM
Precip_Intensity mm/d Precipitation per rainy day Kroll et al. (2004) PRISM
Mean_Temp °C Average daily mean temperature Hope and Bart (2011) PRISM
PET mm Mean annual potential evapotranspiration calculated using the Oudin et al. (2005) equation Oudin et al. (2005) PRISM
Aridity – Aridity index calculated as PET divided by MAP Ssegane et al. (2012) PRISM
Percent_Snow % Percent of precipitation as snow Falcone (2011) GAGES-II
Topography
Area km2 Drainage area Falcone (2011) GAGES-II
Density km/km2 Drainage density calculated as stream length divided by drainage area Ssegane et al. (2012) NHDPlusV2, GAGES-II
Orientation °N Basin angle along main channel Di Prinzio et al. (2011) GAGES-II
Elev m Mean elevation Ssegane et al. (2012) NED
Relief_Ratio % Relief ratio calculated as elevation range divided by basin length along main channel Berger and Entekhabi (2001) NED, GAGES-II
Slope % Mean slope Ssegane et al. (2012) NED
Aspect °N Mean aspect Ssegane et al. (2012) NED
Accumulation km2 Mean flow accumulation expressed as upslope area Povak et al. (2014) NED
TWI – Mean topographic wetness index calculated as ln(accumulation/tan(slope)) Ssegane et al. (2012) NED
Land cover
Forest % Percent forest cover Ssegane et al. (2012) NLCD 1992
Soil
Soil_Porosity % Mean soil porosity expressed as percent pore volume Hope and Bart (2011) CONUS-SOIL
Water_Capacity % Mean water capacity expressed as percent volume at field capacity Mohamoud (2008) CONUS-SOIL
Poorly_Drained % Percent poorly drained including hydrologic soil groups C and D Ssegane et al. (2012) CONUS-SOIL
Geology
BFI % Mean baseflow index derived from a baseflow grid Hope and Bart (2011) BFI48GRD

BFI48GRD: base-flow index 1-km grid for the conterminous United States (Wolock, 2003); CONUS-SOIL: conterminous United States soil characteristics dataset 1-km
grid (Miller and White, 1998); GAGES-II: geospatial attributes of gages for evaluating streamflow version II database (Falcone, 2011); NED: national elevation dataset
30-m grid (https://ned.usgs.gov); NHDPlusV2: national hydrography dataset plus version 2 (https://www.nhdplus.com); NLCD 1992: national land cover database
30-m grid of 1992 (https://www.mrlc.gov), the product year in most streamflow time periods; PRISM: parameter-elevation regressions on independent slopes model
climate data, long-term model (LT81m) 4-km grid product (http://prism.oregonstate.edu).
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transformed independent variables were evaluated for the top five
variables. The form of the variable that generated a larger R2 was used
in the final percentile flow regression model.

2.4.6. Symbolic regression
Symbolic regression evaluates regression models based on a genetic

program, which simulates the evolution of a population (see Koza, 1994
for a review of the genetic programming process). An initial set of in-
dependent variables and mathematical operators were presented to the
program. The operators were limited to addition, subtraction, and
natural log for consistency with the other variable selection methods.
The variables and operators were combined to generate an initial po-
pulation of regression models. The root mean squared error was used to
evaluate the models. A model with less error was more likely to pass on
attributes to the next generation of models. The evolution of the models
was influenced by four parameters: (1) the number of models in the first
generation, (2) the number of models in each subsequent generation,
(3) the number of completely new models generated for each genera-
tion, and (4) the probability that models with less error were combined
to form new models. The parameters were set using a sequential
parameter optimization procedure defined in Bartz-Beielstein and
Zaefferer (2012). The final generation of models was ranked according
to adjusted R2. The top ten models were used as in the automated re-
gression procedure to identify the five most frequently used in-
dependent variables, which were then used in the final percentile flow
regression model.

2.4.7. Bayesian networks
Bayesian networks assess probabilistic relations to the dependent

variable. To do so, a Markov blanket is computed to identify the in-
dependent variables that make the dependent variable statistically in-
dependent of other variables (see Aliferis et al., 2010 for an explanation
of this process). A subset of variables explained the probability of ob-
serving a particular flow, and other variables that had no effect on the
flow’s probability were eliminated. Variables can be eliminated either
by developing part of the Bayesian network around the dependent
variable or directly evaluating the conditional probability of the de-
pendent variable. The latter approach was applied using HITON
Markov blanket (Aliferis et al., 2003), but ultimately discarded because
it eliminated few independent variables.

The Bayesian network was developed around the dependent vari-
able using a local causal discovery algorithm described in Mani and
Cooper (1999). Because the approach selected more than five in-
dependent variables, the Bayesian network was developed five times,
excluding 20% of the basins each time as in a k-fold cross-validation.
The independent variables were ranked based on the number of times
that they were selected by the Bayesian networks. The form of the top
five variables (i.e. non-transformed or natural log-transformed) that
generated a larger R2 was used in the final percentile flow regression
model.

2.5. Regression model evaluation

Regression models used the top five independent variables as fol-
lows:

+ = + +ln Q X X( 1)i 0 1 1 5 5 (2)

where the natural log transformation was used to model skewed per-
centile flows (Qi), a constant of one was added to the percentile flows to
calculate the natural log of zero flows, 0, 1, …, 5 are the model
coefficients, and X1, X2, …, X5 are the non-transformed or natural log-
transformed independent variables.

The regression models were assessed for multicollinearity and pre-
dictive performance. Multicollinearity was assessed using the condition
number (Belsley et al., 2004) to evaluate the redundancy of in-
dependent variables selected by the different variable selection

methods. Predictive performance was assessed using the 184 validation
basins withheld from regression model development. The difference
between observed and predicted percentile flows was evaluated using
R2, Nash and Sutcliffe (1970) efficiency, and relative error calculated as
the absolute difference between observed and predicted values divided
by the observed value plus one to accommodate zero flows.

3. Results

The results compare the following variable selection methods (ab-
breviations in parentheses): automated regression procedure (baseline),
knowledge-based variable selection (expert), principal component
analysis (PCA), correlation analysis (corr), random forests (RF), sym-
bolic regression (SR), and Bayesian networks (BN).

3.1. Multicollinearity

Multicollinearity was not assessed to screen the final percentile flow
regression models because it is generally not a concern given large,
representative samples (Harrell, 2001) and did not impair predictive
performance as shown in the next section. Instead, multicollinearity is
evaluated here to assess the variable selection method’s ability to select
non-redundant independent variables. A larger condition number in-
dicates that the variable selection method chose more redundant vari-
ables (Table 3). The three methods that controlled for multicollinearity
(baseline, PCA, and corr) had the smallest condition numbers. PCA
effectively eliminated multicollinearity by using uncorrelated PCs de-
rived from the independent variables. The baseline regression proce-
dure had the second least multicollinearity because it rejected models
with a condition number>30. This did however result in few models
(18%) having multiple independent variables, and only three in-
dependent variables were used in the largest models, accounting for less
than 1% of the models. The final percentile flow regression models
could have a condition number>30 because, rather than use fewer
variables than other variable selection methods, the baseline regression
procedure selected the five most frequently used independent variables
in high-performing models. The correlation analysis (corr) was the least
effective of methods that treated multicollinearity because pairwise
correlation values failed to account for multicollinearity in the regres-
sion models.

The methods that did not control for multicollinearity (expert, RF,
SR, and BN) had the largest condition numbers (Table 3). Symbolic
regression (SR) and Bayesian networks (BN) had similar levels of
multicollinearity, although Bayesian networks can exclude variables
with similar information (Aliferis et al., 2010). Variables selected based
on hydrologic understanding of the FDC (expert) experienced multi-
collinearity due to correlation between PET and BFI (Pearson correla-
tion coefficient = 0.58 and Spearman correlation coefficient = 0.63),
but neither variable was screened to evaluate a purely knowledge-based
variable selection method. Random forests had the greatest multi-
collinearity possibly because the process of evaluating one variable at a
time can assign similar rankings to cross-correlated variables (Breiman,
2001) and highly ranked variables with the greatest predictive power
were cross-correlated.

Table 3
The average and range of multicollinearity expressed as the condition number
for the 13 percentile flow regression models developed using different variable
selection methods.

Baseline Expert PCA Corr RF SR BN

Minimum 32 1142 2 191 337 31 191
Average 68 8575 2 2124 22,129 6502 6810
Maximum 158 31,437 2 9892 68,792 28,011 21,849
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3.2. Predictive performance

Predictive performance was quantified using the Nash-Sutcliffe ef-
ficiency (NSE) for each percentile flow (Fig. 2). Similar patterns in
performance were observed for R2 and relative error values, and are not
shown here. Performance (i.e. NSE) peaked at the flow equaled or ex-
ceeded 20% of the time (Q20), and steadily declined for lower flows
from Q30-Q99. Extreme high flows (Q01 and Q05) had the lowest perfor-
mance.

The variable selection methods had different levels of predictive
performance (Fig. 2). The baseline regression procedure consistently
had the second worst performance (see flows from Q20-Q99). PCA had
the worst performance (except for Q01) likely because it was the only
method that did not use information from the dependent variables. The
baseline regression procedure and PCA performed the worst despite
controlling for multicollinearity. This indicates the calibration basins
were representative of the validation basins, and multicollinearity did
not impair predictions as in a proxy-basin test (Klemeš, 1986).

The best performance was achieved mostly by methods other than
the baseline regression procedure (Fig. 2). Random forests (RF), sym-
bolic regression (SR), and Bayesian networks (BN) each had the best
performance on three different percentile flows. Random forests per-
formed best where performance peaked atQ20 andQ30, indicating it was
most effective at distinguishing between more influential independent
variables. Average flows from Q40-Q60 were predicted best by symbolic
regression, which notably used fewer than five variables to predict Q50
and Q60, showing that many of the independent variables were re-
dundant or did not have useful information. The same can be said for
lower flows from Q70-Q99 for which symbolic regression used only two
independent variables, but had only slightly lower performance than
the best methods (i.e. less than 16% difference from the maximum NSE
values). The lowest flows fromQ90-Q99 had a large fraction of zero flows
(14%). Bayesian networks predicted these flows best perhaps because it
was most effective at predicting zero flows and able to identify a certain
set of conditions (e.g. low baseflow and high evapotranspiration) as-
sociated with the probability of observing a zero flow. Finally, variables
selected based on hydrologic understanding of the FDC (expert) per-
formed best forQ01, and had NSE values within 12% of the best methods
on average. Therefore, five carefully selected independent variables
were almost as effective as more complex data-based methods that had
access to 22 independent variables.

The overall performance of the different variable selection methods
is summarized as the sum of relative error in Table 4, and largely
confirms prior results. The worst performance (i.e. largest relative
error) belonged to PCA. Other than PCA, the baseline regression pro-
cedure did not perform better than any other method. The simple ap-
proach of selecting variables based on hydrologic understanding

(expert) performed similar to three other data-based methods (corr, SR,
and BN), and had 8% more relative error than random forests (RF),
which minimized relative error the most. These results indicate hy-
drologic understanding is a critical step in predicting the FDC as sug-
gested in Castellarin et al. (2013).

3.3. Selected independent variables

Independent variables selected for a sample of high (Q10), average
(Q50), and low (Q90) percentile flow regression models are shown in
Table 5. Similar variables were chosen for other high, average, and low
flows not shown. Some variables were chosen frequently regardless of
flow (see Aridity, BFI, and Forest). These variables were related to the
overall shape of the FDC, whereas other variables were only related to
certain flows (see MAP, Percent_Snow, and Poorly_Drained). Mean an-
nual precipitation (MAP) was frequently used for high and average
percentile flow regression models, as these flows are fed by rainfall
events and accumulated precipitation over the course of a year (Yokoo
and Sivapalan, 2011). The percent of precipitation delivered as snow
(Percent_Snow) was often used for high percentile flow regression
models, possibly due to the contribution of spring snowmelt to high
flows in alpine rivers (Ye et al., 2012). The percent of a basin covered in
poorly drained soils (Poorly_Drained) was a common independent
variable in low percentile flow regression models. Poorly drained soils
may reduce groundwater supplies for low flows in the dry season
(Cheng et al., 2012). The repeated use of independent variables, both
for different flows and across different variable selection methods, in-
dicates once again that many independent variables were either re-
dundant or not useful. Topographic variables, like mean slope, were
absent from many regression models and not generally useful for pre-
dicting percentile flows.

The variable selection methods had some notable differences in the
variables that they chose for the percentile flow regression models
(Table 5). Most notably, BFI was not used in the baseline regression
models, but was used in at least 12 of 13 percentile flow regression
models formulated by the other variable selection methods. This helps
explain the poor performance of the baseline regression procedure for
many of the percentile flows (see Fig. 2). The baseline regression pro-
cedure rejected models that used BFI due to multicollinearity, whereas

Fig. 2. Nash-Sutcliffe efficiency (NSE) for percentile flow regression models developed using different variable selection methods.

Table 4
Sum of the relative error expressed as a percent for 13 percentile flow regres-
sion models developed using different variable selection methods.

Baseline Expert PCA Corr RF SR BN

Sum (%) 170 147 181 145 139 145 145
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other variable selection methods did not screen for multicollinearity.
BFI elevated multicollinearity because it is related to other climatic,
topographic, land cover, and soil variables (Price, 2011). Despite this,
BFI was a critical variable for raising predictive performance in vali-
dation. Although topographic variables were not generally useful for
predicting percentile flows, they were useful in specific instances.
Symbolic regression (SR) was the only method that used mean aspect
(Aspect) and mean elevation (Elev) to predict Q50 and Q60, and per-
formed the best on these percentile flows (see Fig. 2). Both of these
variables (Aspect and Elev) are likely related to other long-term water
balance and climatic conditions associated with average flows (Ye et al.,
2012). Bayesian networks (BN) performed best on low flows from
Q90-Q99 (see Fig. 2), and unlike other methods, used mean daily tem-
perature (Mean_Temp) and mean annual potential evapotranspiration
(PET), both of which have been tied to low flows in previous work (see
Kroll et al., 2004; Pumo et al., 2013; Yokoo and Sivapalan, 2011).

4. Discussion

Multicollinearity was prominent among independent variables (see
Table 3). This is a well-documented problem in studies that use a
variety of climatic and physical basin characteristics to predict flows
(see Eash and Barnes, 2017; Kroll et al., 2004; Kroll and Song, 2013).
The problem occurs because climatic and physical characteristics co-
evolve over time (e.g. poorly developed soils in arid basins) and are
therefore interdependent (Hrachowitz et al., 2013). Multicollinearity is
less of a problem for model predictions given a large, diverse sample
(Kroll and Song, 2013) as in this study. However, if interpreting model
coefficients is a priority, then an alternative form of regression, like
partial least squares, may be preferred. Regression procedures screen
models for multicollinearity using arbitrary thresholds, like a condition
number> 30 (Dormann et al., 2013). This is an uncertain process since
different statistics, like the determinant of the correlation matrix or
variance inflation factor, can be used to screen models, and these sta-
tistics may be sensitive to the dataset (Snee and Marquardt, 1984). In
this case, the condition number was relaxed to 40 to illustrate the un-
certainty in setting the multicollinearity threshold. After relaxing the
threshold, baseline regression models began to use the critical variable
of BFI, and model performance improved. The question of how to treat
multicollinearity in regression models for predicting flow is an active
area of research (Kroll and Song, 2013), and should be investigated for
percentile flows using a wide variety of models and multicollinearity
statistics as in Dormann et al. (2013).

Predictive performance for the different percentile flows (see Fig. 2)
followed patterns from previous studies, except for the decline in

performance for high flows (see Hashmi and Shamseldin, 2014; Hope
and Bart, 2012; Hsu and Huang, 2017). Like these studies, predictive
performance decreased for lower percentile flows. This is common due
to the complex, non-linear processes that govern low flows (Hope and
Bart, 2011). Furthermore, independent variables may not adequately
represent subsurface properties that influence low flows (Kroll et al.,
2004). This study used BFI and several soil variables to represent sub-
surface properties. Both BFI and poorly drained soils (Poorly_Drained)
were important variables for predicting low flows (see Table 5). Similar
variables related to the storage of a basin should be emphasized in
future low flow studies. The low flows in this study had zero flows,
which may require specialized modeling approaches as in Hope and
Bart (2011). The decline in performance for high flows (Q01 and Q05)
was uncharacteristic of previous studies, and may be due to the large
variance in floods across the contiguous US. Prior studies, like Ssegane
et al. (2012), have had more success in predicting high flows at a re-
gional scale. Dividing the contiguous US into flood regions, as in re-
gional flood frequency analysis (Burn, 1990), may improve the pre-
diction of high flows. Identifying homogenous regions (i.e. similar
basins) reduces the variability of high flows and generally improves the
accuracy of predictions (Burn, 1990). However, this approach was not
applied here because the focus of the study was on comparing variable
selection methods and not on grouping basins for regional predictions.
Overall, the regression models in this study explained about half of the
variance in percentile flows, whereas prior studies have explained
about three-quarters of the variance (see Hope and Bart, 2012; Hsu and
Huang, 2017; Ssegane et al., 2012). Again, the difference may be due to
the scale of this study.

Variable selection method comparisons revealed that conventional
approaches, like a baseline regression procedure and PCA, did not
perform as well as alternative methods (see Table 4). PCA has not im-
proved predictions in previous studies (see Kroll and Song, 2013;
Ssegane et al., 2012), and should only be used if controlling for mul-
ticollinearity is a priority. A baseline regression procedure has per-
formed similarly to Bayesian networks in a previous study (Ssegane
et al., 2012), but the same study found that Bayesian networks more
consistently chose the correct independent variables of a known model
and therefore more accurately represent a system. This can lead to
improved percentile flow predictions, which was the case when com-
paring Bayesian networks to the baseline regression procedure in this
study. The best method varied from percentile flow to percentile flow
(see Fig. 2), a result that substantiates the recommendation to use a
combination of variable selection methods (Ssegane et al., 2012). Per-
centile flow predictions may also be improved through the use of an
ensemble (e.g. model averaging) approach (Waseem et al., 2015).

Table 5
Independent variables selected by different variable selection methods for sample high (Q10), average (Q50), and low (Q90) percentile flow regression models. Variable
selection methods do not include principal component analysis (PCA) and variables selected based on hydrologic understanding of the FDC (expert) because these
methods used the same five independent variables for each percentile flow regression model. The baseline regression procedure (baseline) has Aridity twice as non-
transformed and natural log-transformed independent variables.

Flow Baseline Corr RF SR BN

Q10 Aridity Aridity Aridity Aridity Aridity
Aridity BFI BFI BFI BFI
Percent_Snow Forest MAP Forest Forest
Precip_Intensity MAP Percent_Snow MAP MAP
Water_Capacity Percent_Snow PET Orientation Percent_Snow

Q50 Aridity Aridity Aridity Aspect Aridity
Aridity BFI BFI BFI BFI
Forest Forest Elev Elev Forest
Percent_Snow MAP MAP Forest MAP
Poorly_Drained Soil_Porosity Soil_Porosity – Soil_Porosity

Q90 Aridity Aridity Aridity BFI BFI
Aridity BFI BFI Forest Mean_Temp
Forest Forest Forest – Percent_Snow
Mean_Temp Percent_Snow Poorly_Drained – PET
Poorly_Drained Poorly_Drained TWI – Poorly_Drained
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A small number of independent variables were repeatedly selected
for percentile flow regression models (see Aridity, BFI, and Forest in
Table 5). Aridity (i.e. the ratio of mean annual potential evapo-
transpiration to mean annual precipitation) is a measure of the long-
term water balance generally related to storm runoff (i.e. high per-
centile flows) (Rossi et al., 2016) and groundwater storage conditions
(Istanbulluoglu et al., 2012) that influence average and low percentile
flows (Yokoo and Sivapalan, 2011). The percent of streamflow from
groundwater (BFI) is indirectly related to high percentile flows as an
indicator of infiltration (i.e. a loss factor for storm runoff) (Yokoo and
Sivapalan, 2011), and directly affects average and low percentile flows
(Cheng et al., 2012). BFI describes subsurface drainage, and other
variables that describe groundwater storage (e.g. aquifer thickness) and
groundwater discharge (e.g. a baseflow recession constant) available as
interpolated grids, like BFI, may help predict percentile flows. Forest
coverage (Forest) moderates high to low percentile flows via intercep-
tion and evapotranspiration (Pumo et al., 2013; Yaeger et al., 2012).
Vegetation indices that convey similar information, like leaf area index,
may improve percentile flow predictions in future studies.

Independent variables selected based on hydrologic understanding
of the FDC could be improved based on independent variables fre-
quently used in percentile flow regression models (see previous para-
graph) and predictive performance across the percentile flows (see
Fig. 2). Frequently used variables (i.e. Aridity, BFI, and Forest) could be
used to replace MAP and PET (combined in Aridity) and Slope (not a
frequently used variable). The other two variables could target high and
low percentile flows that had lower predictive performance. Variables
for low percentile flows, like poorly drained soils, aquifer thickness, and
a baseflow recession constant, have been previously discussed. High
percentile flows correlate strongly to variables that describe maximum
precipitation, such as maximum daily precipitation times the fraction of
days without precipitation (Cheng et al., 2012). A revised set of in-
dependent variables based on hydrologic understanding of the FDC is
Aridity, BFI, Forest, a variable that describes subsurface drainage (e.g.
poorly drained soils), and a variable that describes maximum pre-
cipitation (e.g. maximum daily precipitation times the fraction of days
without precipitation).

5. Conclusions

Variable selection methods to develop percentile flow regression
models were compared for a large sample of 918 basins in the United
States. Because of the large sample, multicollinearity (i.e. cross-corre-
lation between independent variables) was not a problem for predictive
performance on the 184 validation basins withheld from model devel-
opment. Instead, high levels of multicollinearity indicate that many
commonly used independent variables, such as an array of different
climatic variables, are redundant. Treating multicollinearity using a
regression diagnostic (i.e. the condition number) and principal com-
ponents was problematic for an automated regression procedure and
PCA, both of which had the worst overall performance of variable se-
lection methods. Other variable selection methods performed better
because they used BFI, a highly important, albeit cross-correlated, in-
dependent variable. The best overall method (i.e. random forests) only
performed marginally better than variables selected based on hydro-
logic understanding of the FDC, which indicates at the very least the
initial set of independent variables should be explicitly linked to hy-
drologic processes that influence the FDC. The best predictive perfor-
mance did not belong to any one method for the various percentile
flows, suggesting that using a combination of variable selection
methods, either to rank variables or develop ensemble models, could
enhance percentile flow regression models. Predictive performance
declined for high and low percentile flows. Independent variables
specifically targeting these flows, such as variables that characterize
storm runoff and basin storage, should be developed in future work.
Homogenous regions that reduce the variance in percentile flows

should also be developed to further advance percentile flow regression
models for the contiguous US. The study was limited to the context of
developing regression models. However, future work may leverage
large datasets such as in this study to use more adaptable model forms
from the field of soft computing. Emphasis of this research thus far has
been on streamflow forecasting (see Yaseen et al., 2019 for example),
but now with access to large basin databases, machine learning models
should be applied to predict percentile flows at ungauged basins.
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