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Abstract

Practical Bayesian nonparametric methods have been developed across a wide variety of contexts. 

Here, we develop a novel statistical model that generalizes standard mixed models for longitudinal 

data that include flexible mean functions as well as combined compound symmetry (CS) and 

autoregressive (AR) covariance structures. AR structure is often specified through the use of a 

Gaussian process (GP) with covariance functions that allow longitudinal data to be more 

correlated if they are observed closer in time than if they are observed farther apart. We allow for 

AR structure by considering a broader class of models that incorporates a Dirichlet Process 

Mixture (DPM) over the covariance parameters of the GP. We are able to take advantage of 

modern Bayesian statistical methods in making full predictive inferences and about characteristics 

of longitudinal profiles and their differences across covariate combinations. We also take 

advantage of the generality of our model, which provides for estimation of a variety of covariance 

structures. We observe that models that fail to incorporate CS or AR structure can result in very 

poor estimation of a covariance or correlation matrix. In our illustration using hormone data 

observed on women through the menopausal transition, biology dictates the use of a generalized 

family of sigmoid functions as a model for time trends across subpopulation categories.

Keywords

Bayesian Nonparametric; Covariance Estimation; Dirichlet Process Mixture; Gaussian process; 
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1 Introduction

Longitudinal data are ubiquitous as evidenced by a plethora of recent books covering the 

topic (Hand and Crowder; 1996; Davidian and Giltinan; 1998; Verbeke and Molenberghs; 

2000; Diggle, Heagerty, Liang and Zeger; 2002; Hardin and Hilbe; 2003; Hedeker and 

Gibbons; 2006; Fitzmaurice, Laird and Ware; 2011). Historically, continuous repeated 

measures data on the same individual were handled under the assumption of, say d, regularly 

spaced observation times and under an assumption of multivariate normality (see for 
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example Johnson and Wichern; 2007). Standard models included the assumption of common 

and either unstructured or structured covariance matrices for repeated observations on each 

individual. Traditional structured covariances arise by incorporating simple random effects.

Modern longitudinal data analysis makes no assumption about regular times of observation, 

and unstructured covariance matrices can result in difficulties due to having a large number 

of parameters relative to the sample size. Many statistical models and methods have thus 

been developed for handling irregular correlated data, e.g. Pullenayegum and Lim (2015).

Alternatively, models for dependent data have been developed (i) by including random 

and/or fixed functions in time, (ii) through the use of various forms of random effects, (iii) 

by using latent stochastic processes, or (iv) through a combination of functions and robust 

methods that accommodate without modeling covariance structure, among others (e.g. Laird 

and Ware; 1982; Zeger and Diggle; 1994; Shi, Weiss and Taylor; 1996; Zhang and Davidian; 

2001; Li, Lin and Müller; 2010; He, Zhu and Fung; 2002). Here, we consider a combination 

of (i – iii), and then incorporate a nonparametric component that will add some degree of 

robustness to our ultimate model.

The first component involves the use of parametric or flexible functions in time, for example 

generalized sigmoid functions that are dictated by the biology in our illustration in Section 5, 

while other applications may require more flexible functions in time; data are allowed to 

have differing trends in distinct subpopulations. Random effects for individuals can be 

modeled with standard parametric distributions, or more flexibly with parametric or 

nonparametric mixtures (Li et al.; 2010). Finally, we incorporate a stochastic process 

component and its generalization to allow for more general covariance structure in time. 

Each of these model components induces its own dependence structure and differing specific 

choices that are made for inclusion in the final model result in distinct covariance structures 

for the observed data.

Another approach offers the possibility of directly modeling the covariance structure. Rather 

than incorporating a stochastic process, for example, Pourahmadi (1999), Daniels and Kass 

(2001), Smith and Kohn (2002) and Daniels and Pourahmadi (2002) directly model the 

covariance matrix for individual responses by reparametrizing the matrix using 

decompositions. Some of these models allow for the incorporation of (time dependent) 

covariates, including time itself, in the covariance structure and thus allow for non-

homogenous structure in time. Some of them allow for shrinking towards some form of 

known structure, like AR structure or independence.

The main goal of this paper is to extend the general class of mixed models for longitudinal 

data by generalizing the GP part to be nonparametric, which to our knowledge has not been 

done. A standard GP model has exponential covariance structure, depends on only two 

parameters, and results in AR correlation of order one. Our premise is that this structure is 

overly simple for many data sets and that generalizing it will result in improvements under 

many circumstances. To this end, we implement a Dirichlet Process mixture model by 

mixing on the parameters of the covariance function of the process, resulting in a DPM of 

processes.
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We present background material in section 2 and we develop our model and discuss 

inferences in section 3. In section 4 we carry out a simulation study that suggests that the 

proposed semi-parametric model can be naturally used as a method to estimate covariance 

and correlation matrices, which outperforms some traditional competing alternatives. 

Section 5 considers longitudinal follicle stimulating hormone (FSH) data as women pass 

through the menopausal transition (Waetjen et al.; 2011). Here, it is believed that the data 

will generally follow sigmoidal curves rising from lower values to higher values according 

to this shape. We build on this and analyze the data using a model for longitudinal FSH 

profiles with a 5-parameter generalization that allows for some departures from sigmoidal 

shape, in addition to the flexible proposed correlation structure. Comparison with alternative 

models are also provided. Conclusions are presented in section 6. Some technical and Monte 

Carlo simulation details are presented in Appendix A.

2 Background Material

In this section, we concentrate on providing an appropriate context for our proposed model, 

which will include background material for a number of other models and methods from the 

literature. We also discuss the Dirichlet Process and the Dirichlet Process Mixture.

2.1 Structured Covariances: Unequally Spaced Times of Observation

Assume that observations are made on individual i at times , namely yi = {yij : 

j = 1,…, ni}′. Thus yi is ni × 1. At time tij we allow for a vector of possibly time dependent 

covariates , and assume that . Define the ni × (p 

+ 1) design matrix , leading to an assumed mean vector E(yi) = μi = 

Xiβ. Then allow for a corresponding ni × q design matrix Zi, with q ≤ p and with the column 

space of Zi restricted to be contained in the column space of Xi. A traditional model for 

longitudinal data formulated with these ingredients is the general linear mixed model of 

Laird and Ware (1982).

Since we model trends in time, let fi(t) be a particular function of time for individual i. This 

could be a parametric form that is allowed to differ according to particular characteristics of 

individuals, as in the illustration presented in Section 5 where we analyze hormone data 

collected on women who are going through menopause. We consider generalized sigmoidal 

functions of time that are allowed to be different for eight distinct types of women (varying 

according to age and race/ethnicity; see (5) and Figure 3). Other circumstances will require 

alternative parametric non-linear functions, for example with growth curve data (Davidian 

and Giltinan; 1998). In general, however, we would allow for the possibility of flexible 

(smooth) functions that can be approximated by various types of basis functions with 

unknown (possibly random) coefficients. See for example Shi et al. (1996), Zhang and 

Davidian (2001), He et al. (2002), and Li et al. (2010).

Our model will be based on a well known generalization of the linear mixed model (Diggle; 

1988) that also allows for AR structure, namely
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(1)

where Hi(ϕ) is ni × ni and has a structural form, and where . The vectors ξ 
and ϕ contain variance-covariance parameters for bi and wi, respectively. In situations where 

a specific functional specification does not fit the data well, the fixed and/or random effects 

parts of the model may be augmented to include basis functions such as splines.

The vectors wi are generated by mean zero Gaussian stochastic processes, {wi(t) : t > 0}. If 

, with ρ(s) = ρs, the resulting stationary process is an Ornstein-

Uhlenbeck process (OUP), (Rasmussen and Williams; 2006). The OUP gives an exponential 

covariance function and induces AR structure. Zeger and Diggle (1994) used ρ(s) = α + (1 − 

α)ρs. There are additional choices, including the possibility that  could depend on t, 
resulting in a nonhomogeneous OUP (Zhang et al.; 1998). Taylor et al. (1994) used an 

integrated OUP (integrating over an OUP with exponential covariance function) that results 

in a covariance function that depends on both t and s. With structured covariance functions, 

the marginal covariance matrix for yi is 

. Diggle and Verbyla (1998) developed 

an alternative nonparametric estimator of the covariance function, based on sample 

variogram ordinates and squared residuals.

Model (1) allows for functional components and thus is quite general. But (1) can be even 

more general, namely, the model for the bi’s can be flexible as well. In the context of mixed 

models, Verbeke and Lesaffre (1996); Zhang and Davidian (2001); Kleinman and Ibrahim 

(1998a,b); Mukhopadhyay and Gelfand (1997); Müller and Rosner (1997) all developed 

flexible models for the random effects. More recently, Li, Lin and Müller (2010) developed 

a Bayesian semiparametric approach to model (1), without the GP, that allowed for 

flexibility in both the functional part, using smoothing splines, and using a DP model for the 

random effects.

The combination of choosing which terms to include in (1), and making particular choices 

for H(ϕ) and D(ξ), when the corresponding effects are included in the model, determines the 

covariance structure for the data. There are obviously many choices. Using the Bayesian 

approach, there is also the issue of selecting prior distributions for ϕ and ξ, as well as other 

parameters, resulting in yet more choices.

2.2 Reparametrizing Covariances by Decomposition

An alternative approach to modeling longitudinal data involves modeling the covariance 

matrices for the yi’s (Pourahmadi; 1999; Pourahmadi and Daniels; 2002; Daniels and 

Pourahmadi; 2002; Smith and Kohn; 2002). In all of these approaches the authors take 

advantage of the Cholesky factorization of a covariance matrix, namely that, for a given 

covariance matrix Σ, there exists a lower triangular T with ones on the diagonal, and 

diagonal λ such that TΣT′ = λ. The components of λ are only restricted to be positive, and 
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the off diagonal elements of T are unrestricted. Smith and Kohn (2002) simplify this 

structure resulting in greater parsimony. Pourahmadi (1999) seeks parsimony by modeling 

all parameters as functions of covariates (including time), thus reducing the number of 

parameters.

A major issue for Bayesian analysis in this setting is the choice of prior distribution for the 

covariance matrix. In the unstructured case, the inverse Wishart has been a standard choice. 

The historically standard so-called noninformative prior is the Jeffreys (1961) prior, while 

Yang and Berger (1994) developed a reference prior that results in considerably improved 

frequentist properties at the expense of increased computational effort. Leonard and Hsu 

(1992), Daniels and Kass (2001), Daniels and Pourahmadi (2002) and Pourahmadi and 

Daniels (2002) provide further Bayesian developments. For an approach that focuses on the 

correlation matrix, see Liechty et al. (2004).

2.3 The Dirichlet Process and Dirichlet Process Mixture

The DP is most easily characterized by the Sethuraman (1994) construction of it. Let G0 be a 

known distribution and let M > 0 be a positive constant. Then we say G ~ DP (G0, M) 

provided

where δυ(·) defines point mass at υ and where  with  Beta(1, M). 

Thus G is a random distribution that is discrete with probability one. G0 is called the base or 

centering distribution since E(G) = G0. For any appropriate set A, G(A) ~ Beta(M G0(A), M 

G (Ac)), and thus  as M → ∞. For small M, there is much more flexibility 

than for large M.

The DPM takes advantage of the discreteness of the DP. Consider a parametric density 

function that depends on parameters ν, f(·|ν), and let ν|G ∼ G, G ~DP (G0, M). We obtain 

the DP mixture , using the Sethuraman (1994) 

construction.

3 General Model and Inference

In this section, we build on the generic model (1) by generalizing the GP part using DP 

mixtures of Gaussian processes. The bi’s are modeled with parametric distributions to avoid 

identifiability problems. We first develop the DPM of GPs, then we discuss the full model 

and finally, posterior inference, which is based on Markov chain Monte Carlo (MCMC) 

approximation to the joint posterior. Details of its implementation are given in the Appendix 

A.
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3.1 DPM of GPs

Our extension of model (1) aims at introducing flexibility beyond the exponential covariance 

structure implied by the OUP, which was discussed in the next paragraph after (1). Consider 

first the GP, wi, for the ith subject, with covariance matrix of the form , 

where  and . Recall that  are the times at 

which observations yi={yij : j=1,…,ni}′ for the ith subject are made. We model ϕ\G~G with 

G~DP(G0,M) so that

(2)

an infinite mixture of multivariate normal densities, where , and the ωk’s 

were defined in subsection 2.3. The base distribution G0 will be discussed below. A related 

spatial DP with exponential covariance function in the base distribution was developed in 

Gelfand et al. (2005).

Model (2) implies clustering on autocorrelation structure across subjects. Moreover, using 

the Sethuraman construction above, we have . 

Thus, if the ith subject has equally spaced times between observations, the corresponding 

covariance matrix has homogeneous diagonals with decreasing values for s = 1, 2,…, 

resulting in a clear generalization of simple AR(1). This hypothetical individual would have 

a covariance matrix for their wi that is an example of a Toeplitz matrix (Ray; 1970). 

However, individuals in data with irregular times of observation would not.

As usual in DPM models, it is useful to break the mixture (2) by introducing latent 

parameters ϕ1,…, ϕn so that the model can be stated hierarchically. We now extend (1) using 

(2) and propose the following hierarchical model for the entire data set y1,…, yn:

(3)

where μi = Xiβ and wi and bi are assumed independent for all 1 ≤ i ≤ n. This model thus 

extends the exponential covariance function of the OUP as noted earlier by allowing 

individual structures that can be clustered across subjects through the ϕi parameters. From 

here on, we will often refer to model (3) as the nonparametric autoregressive model (NPAR).
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One advantage of the OUP structure built in model (3) is that  can be analytically 

inverted and is a tridiagonal matrix, which follows by considering results available from the 

theory of antedependent random variables (Gabriel; 1962; Zimmerman and Núñez-Antón; 

2010). Details are given in the Appendix B. In particular, the problem of evaluating f(wi|ϕi) 

is further simplified by using this form for the inverse covariance matrix to show that if 

, then letting  for k = 1, …, ni − 1

(4)

Thus we obtain f(wi|ϕi) as the product of ni univariate normal probability densities, which 

makes it very simple to obtain the full conditional distribution of wi in the Gibbs sampling 

algorithm to be discussed later. Without these simplifications, the MCMC method would 

involve the inversion of potentially n distinct covariance matrices at each iteration. This is 

expensive computation that is saved by having explicit forms for the inverses, resulting in 

the simplification of model specification (3).

3.2 Marginal Augmented Data Likelihood and Prior Specification

Let y = (y1, y2, …, yn), b = (b1, …, bn), w = (w1, …, wn), ϕ = (ϕ1, …, ϕn) and define θ = (σ2, 

ξ, ϕ). As usual in DP-related models, inference involves marginalizing the random G to 

obtain the marginal prior distribution for ϕ, which has the well known Polya’ Urn 

representation (Blackwell and MacQueen; 1973; Escobar; 1994)

Consider now the augmented data likelihood arising from model (3)

which we combine with p(σ2, β, ξ, ϕ) = p(σ2)p(β)p(ξ)p(ϕ), the marginal prior distribution, 

where we assume a priori independence of the four components. The corresponding joint 

posterior is then

The first term in the product of the augmented data likelihood is the Nni(μi + Zibi + wi, σ2I) 

pdf evaluated at yi. The second term is the Nr(0, D(ξ)) pdf evaluated at bi. The third term is 

obtained as the product of the normal densities given in (4). We assume a proper prior for ξ 
and we introduce a precise form when we get to the examples. For example, if the bi’s are 
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scalars corresponding to random intercepts, then , and we would assign an inverse 

gamma distribution to it. Our choice for G0 is the cross product of a U(0, 1) distribution 

(corresponding to the ρi’s) and a U(0, C) distribution (corresponding to the standard 

deviations, σi’s). We consider specific cases of the NPAR model (3) in the sequel.

3.3 Posterior Inferences

We approximate the joint posterior using Gibbs sampling. We require the full conditional 

distributions

Most of these are either standard distributions or can be handled with standard MCMC 

methods. The full conditional for ϕ is also non standard, but many algorithms have been 

developed for handling this part. Neal (2000) summarizes them, and also develops some new 

algorithms, in conjugate and non-conjugate cases. In our non-conjugate case, we apply 

Neal’s algorithm number 8. Details are given in Appendix A.

4 Estimating Covariance Structure

Since our paper emphasizes the importance of modeling/accommodating dependence in 

longitudinal data, we now explore how well our model works for estimating different 

covariance structures. For simplicity, we consider a particular version of our model (3). 

Covariance estimation is briefly discussed in subsection 4.1, and simulation based 

comparisons are given is subsection 4.2.

4.1 Methods

Consider the simplified version of the NPAR model (3)

with no covariates, where e is a vector of ones, and . This model features a fixed 

overall intercept, and random intercepts and DPMs of OUPs for sampling units. We let ni = 

k for all i, and assume tij = tj, namely that all individuals are observed at the same times. 

Under these assumptions, there is a common covariance matrix, say Σ, to estimate. There are 

of course other possible choices of NPAR depending on the circumstances. We are mainly 

interested in exhibiting the robustness of this choice to a number of possible covariance 

choices that would not be in the same form as the parametric version of this model. The 

posterior mean,

where J is a matrix of ones, is a natural estimate of Σ.

Quintana et al. Page 8

J Am Stat Assoc. Author manuscript; available in PMC 2017 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For comparison, we consider two Bayesian approaches to the simple unstructured model yi ~ 

N(μ, Σ). The straw man approach involves placing an inverse Wishart prior distribution on Σ 
(Inv-Wishart(13, diag{100, 11})). We also consider the computationally and conceptually 

nice prior of Daniels and Pourahmadi (2002), which was discussed in subsection 2.2.

We now introduce three common loss functions, which result in three distinct estimators that 

have been used for the estimation of general covariances:

where the first estimator minimizes mean squared error loss, the second estimator minimizes 

the loss function

and the third minimizes

(Yang and Berger; 1994).

In the next subsection, we make comparisons based on simulated data. While we only use 

, regardless of the choice of loss function, when we use the other two models, we 

apply the estimator that is optimal for the choice of loss function.

4.2 Simulations

We simulated data from compound symmetry (CS), AR, mixture of CS and AR and from a 

non-standard structure. We generated 100 data sets each with 100 sequences of length 11, 

with mean 0 and covariance matrices as follows:

For each estimator and each of the four types of data, we obtained the root mean squared 

error (RMSE); results are given in Tables 1 and 2 for covariance and correlation matrices, 

respectively. The RMSE is the square root of the average squared error. Namely, let Λ be a 

covariance or correlation matrix, and define λ to be the corresponding vector of unique 

parameter values in Λ. Let  be the vector of corresponding estimates based on simulated 

data set i. Then
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where ‖·‖ denotes Euclidean distance.

Comparisons among models should be made for each loss function and covariance model 

combination. When estimating these particular covariance structures, the NPAR model 

appears to dominate the others across the board. The Daniels and Pourahmadi (2002) model 

dominates the inverse Wishart for loss functions L1 and L2. When estimating correlation 

matrices, all models seem roughly equivalent on RMSE except for the relatively poor 

performance of NPAR under strictly AR structure. With the other two loss functions, the 

NPAR model appears to dominate while the Daniels and Pourahmadi (2002) method 

dominates the inverse Wishart.

We are not surprised that our estimator, which was designed to specifically model 

longitudinal correlation structure, could be superior to estimators that were designed to be 

optimal according to various loss functions that were not specifically intended for use with 

longitudinal data. It is worth pointing out that this is obviously a very small simulation 

study.

5 Hormone Data

In this section, we analyze hormone data that were collected on women during the 

menopausal transition. The data are described in subsection 5.1. We consider comparisons 

with several other models that are described in subsection 5.2. The data are analyzed in 

subsection 5.3.

5.1 The Data

We consider a small subset of data that were obtained from the Study of Women Across the 

Nation (SWAN), which is a multicenter prospective cohort study of women from five racial/

ethnic groups at seven sites who have been followed to characterize the menopausal 

transition. The eligibility criteria for the SWAN cohort at baseline were: age of 42 to 52 

years; self-identification as one of the five racial/ethnic groups (African American, 

Caucasian, Chinese, Japanese, Hispanic); and pre- or early peri-menopausal. The exclusion 

criteria included: (i) no menstrual period in more than 3 months before enrollment; (ii) 

having had a hysterectomy and/or bilateral oophorectomy before enrollment; and (iii) 

current lactation, or exogenous hormone use. Moreover, the women in this subsample must 

have completed transition to post-menopause, must not have used hormones during this 9-

year period (one year of “baseline” data and 8 years of followup), must have complete serum 

hormone data for all follow-up years baseline through visit 9, and all serum hormone values 

during pre- and early peri-menopause must have been in a time window of days two through 

five of the menstrual cycle. The reason for these restrictions is to have the purest and most 

complete sample in terms of follow-up hormone information. An expanded description of 
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the study and of data related to ours is given in Waetjen et al. (2011). Additional details can 

be found at the SWAN web site (www.swanstudy.org/).

Our main interest here is to model the annual follicle stimulating hormone (FSH) 

concentrations through the menopausal transition with the goal of finding a model that fits 

the data well. Concentrations of FSH and other hormones have been modeled to increase 

according to a (four parameter) sigmoidal shape (Dennerstein et al.; 2007). SWAN measured 

FSH and other hormone concentrations from serum samples annually in days two through 

five of the menstrual cycle for women who were still menstruating or on any day that 

women came in for their annual visit if they were postmenopausal. Times of observation 

were centered on the year of final menstrual period (FMP), namely ti = 0 corresponds to the 

year in which the final menses occurred, which is defined to be the actual time of last 

menses before a 12 month period in which there were none. Thus year -3 is 3 years prior to 

the FMP, and year +3 is three years after. The data included women who started at year −8 

continuing through year 0, and women starting at year −2 and continuing through year 6 

(after FMP). Covariates considered to affect the overall levels of concentration were: (i) 

race/ethnicity (Hispanics were excluded due to retention problems at the one site that 

recruited Hispanic participants), and (ii) age at the beginning of the study, dichotomized as 

(≤ 46/> 46) years. Our subset of the data included 9 observations for each of 162 women, 

and contained no missing observations. Methods for handling missing data in longitudinal 

studies are discussed at great length in Daniels and Hogan (2008).

In Appendix C, we show plots of the actual data and their averages corresponding to the age 

by race-ethnicity categories. From these plots it is clear that a simple sigmoid (“S”) shape 

could be inadequate for modeling curve shapes. We thus consider more general shapes in the 

next section.

Our data are similar to a subset of the data in Waetjen et al. (2011) in which the goal was to 

ascertain any relationship between serum estradiol (E2) and incidence of urinary 

incontinence symptoms during the menopausal transition. Our data included an extra year of 

data beyond that analysis, but do not include other covariates considered there, nor do they 

include information about incontinence. As a followup to this study, it will be possible to 

consider joint modeling of the hormone profile and the time to event, such as first onset of 

incontinence. Many instances of joint modeling occur in the literature, for example see 

Tsiatis and Davidian (2004) for an overview of frequentist approaches or Hanson, Branscum 

and Johnson (2011) for semiparametric Bayesian approaches.

5.2 Models for Comparison

We modeled the FSH concentrations, {yi : i = 1, …, 162, ni = 9}, in several ways. For all 

models, we allowed for distinct fixed functional effects, in time, that were either linear or 

“generalized sigmoidal” for each of the eight combinations of age and race/ethnicity. In 

addition we considered the possibility of adding (i) a DPM of OU processes, (ii) simple 

random effects, and/or (iii) a particular DPM of parametric random effects distributions, 

which is a Bayesian nonparametric generalization of random effects. The way we modeled 

functional fixed effects for age and race/ethnicity was to allow all coefficients for the linear, 

or sigmoidal, forms to be different depending on the particular combination of covariates.
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Let c(i) ∈ {1, 2, …, 8} be an indicator variable describing the particular combination of four 

races and two ages corresponding to subject i. Here, we set , where βℓ is the 

vector of fixed parameters associated with combination ℓ. We also make use of the five 

parameter generalized sigmoid curve that was discussed in Ricketts and Head (1999):

(5)

where

in which case the fixed effects become μij = S(tij|βc(i)). The parameter vectors are now five-

dimensional and the curves defined by (5) are not restricted to be monotone, as would be the 

case of a pure sigmoidal curve. However, if β3 and β5 are both positive, then (5) is monotone 

and increasing, and if both are negative, then it is decreasing. For the moment we focus on 

the both positive case. We have that β1 is the lower asymptote, and β1 + β2 is the upper 

asymptote. Setting t = β4, we see that this is the point at which the curve is half way between 

asymptotes. In the special case where β3 = β5 > 0, it follows that the slope of the sigmoid at 

the midpoint is higher for larger β3 = β5. In the general case we can see that as t becomes 

small, ft tends to zero, and as t becomes large, ft tends to one. So for small values of t, 
relative to β4, the rate of increase of the 5 parameter sigmoid tends to be governed by the 

part of the function with β5, and for large values, relative to β4, it tends to be governed by 

the part with β3. Thus the function is allowed to increase at different rates to the left and to 

the right of β4. Similar statements can be made if β3 and β5 are both negative. If one of these 

is negative and the other positive, (4) need not be monotone as will be seen in our data 

analysis where this is the case.

Using a model with fixed effects specified through (5) we can compare the estimated mean 

profiles for the eight groups when these curves are fitted, and we can also use the model for 

prediction of future or missing values. We have selected (5) for biological reasons, but could 

have used a variety of flexible forms to capture time trends.

We consider four specific models and two simplified versions:

I. Sigmoid mean with random intercept plus OUP:

where ,  are individual-specific random effects, e is 

a vector of ones, wi is distributed as a DPM of OUPs as specified in (3), and 

where S(ti|βc(i)) is a vector with entries S(tij|βc(i)) for j ∈ {1, …, 9}.

II. Linear mean and linear random effects plus OUP:
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with , r = 0, 1.

III. Sigmoid mean, simple random effects and no OUP:

where  are individual-specific random effects. This is a parametric 
model.

IV. Sigmoid mean, DPM for random effects and no OUP: This model is a 

generalization of Model III that requires some explanation. It is more general due 

to use of a nonparametric structure for the random effects distributions, which 

are modeled exchangeably for the eight categories through the use of a particular 

choice of DPM. The model correlates these eight distributions in the sense of 

MacEachern (1999, 2000) and De Iorio et al. (2004, 2009), who have defined 

and developed various Dependent Dirichlet Processe (DDP) models. Our model 

for the random effects will be a particular DDP. We emphasize that no 

longitudinal correlation structure is built into this model. The model is described 

briefly below, and then discussed more carefully in Appendix D.

where , where zc(i) is a vector with seven zeros and one one in the 

slot that corresponds to the age by race-ethnicity group c(i), and γi is 8 × 1. Then 

let  with G ~ DP (M, G0), and ηi ~ N(0, s2), so we have a DPM of 

ANOVA models for bi. Specify the centering measure to be G0 = N(λ, Ψ), with 

λ|Ψ ~ N(λ0, Ψ), and Ψ ~ IW (νℓ, Ψ0). By analogy with (2), the induced 

random-effects distribution can be expressed as 

, where 

 and the weights {ωℓ} are as in subsection 2.3. A standard 

choice for M is one, which we adopt. The parameters λ and Ψ add flexibility to 

the model, but are not explicit objects of interest. They are easily handled in the 

MCMC approximation to the joint posterior.

V. Same as I but with ρi = 0 for all i: The DP mixture of OUPs is based on the 

parameters only. All the rik quantities from (4) are zero and the wik Gaussian 

variables are iid zero mean in this case.

VI. Same as II but with ρi = 0 for all i: The DP mixture of OUPs is based on the 

parameters only. As in model V, all the rik quantities are zero and all the wik 

Gaussian variables are iid zero mean.

Quintana et al. Page 13

J Am Stat Assoc. Author manuscript; available in PMC 2017 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Models I and II are NPAR models, while III and IV combine some of the model features we 

have discussed so far and thus constitute interesting alternatives for the purpose of 

comparing results. Models V and VI are simplifications of I and II, respectively.

5.3 Data Analysis

We first fitted models (I–VI) from subsection 5.2 and calculated log pseudo-marginal 

likelihood (LPML) statistics for each model; see Christensen et al. (2010), Section 4.9.2, or 

Gelfand and Dey (1994). This criterion for model selection was first introduced by Geisser 

and Eddy (1979) and has been used extensively for model selection in recent years; see for 

example Hanson, Branscum and Johnson (2011).

Using generic notation, let ℳ denote a model, and for an independent sample {y1, …, yn} 

with yi|θ, ℳ ~ fi(·|θ, ℳ), f(yi|y(i), ℳ) is defined as the predictive density of observation i in 

the data based on all the data except yi; yi might be a scalar or a vector. This has also been 

termed as the conditional predictive ordinate (CPOi) (eg. Gelfand and Dey; 1994). The 

pseudo-marginal likelihood is defined to be . Models with large values of 

the LPML are preferable to those with small values. In standard linear models, there are 

well-known formulas for CPOs. The standard generic MCMC based computational formula 

for CPO is

where {θ1, …, θs} is an MCMC sample from the joint posterior of all unknown parameters 

and latents in the generic model. Our LPML and CPO are slightly more complicated, but 

straight forward to calculate.

The pseudo-marginal likelihood for our problem is defined to be 

, where f(yij|y(ij), Xi, ℳ) is the predictive density, under 

model ℳ, corresponding to individual i at time j based on the data minus yij. LPML values 

are given in Table 3. The clear winners are the sigmoid and linear NPAR models, with the 

sigmoid-OUP model being the overall winner. Models III, IV and VI are clearly the worst; 

recall that model III is a sigmoid-parametric model, model IV uses the DDP to model 

random effects in the absence of OUP structure and model VI uses linear rather than 

sigmoid structure, and leaves AR structure out of the OUP. The in between model, model V, 

includes sigmoid structure but leaves AR structure out of the OUP. It thus seems clear based 
on this criterion that we prefer a model with both sigmoid and full OUP structure.

Figure 1 shows plots of fitted values under model I (posterior mean of S(ti | β(c(i)))+bi+wi) 

for eight randomly selected women, one from each age by race/ethnicity combination. The 

fitted values are quite close to the observed values. Observe the different time scales for each 

woman, which depend on when they entered the study. The corresponding figure for model 

II (not shown) is virtually identical to the eye. 95% probability intervals, calculated 

separately at each of the observed time points. Figure 2 shows dramatic differences in fitted 
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values for participant 41, depending on model. The plots for participant 41 based on models 

II (linear OUP) and model III (sigmoid parametric) are not shown because they were 

virtually identical to those for models I (sigmoid OUP) and IV (sigmoid DDP), respectively. 

The parametric and DDP sigmoid models fit a strictly increasing sigmoid shaped curve for 

participant 41 with no downturn at the end. But, it has to also be noted that patient 41 left the 

study at the time of FMP, so it may be expected that a down turn would have come sometime 

later; see Figure 3.

In response to a referee’s query, based on their concern that intervals in Figure 1 were 

narrow and that the fits might involve over-fitting, we plotted predicted values and 

corresponding intervals for patient 1 based on using predictive distributions that use all data, 

and also based on predictive distributions that use all the data except for the case being 

predicted. This plot is given in Appendix E, and shows that case deleted predictions track the 

data well, but not as well as the full data based predictions. Moreover, prediction intervals 

based on case deletion are considerably wider, as would be expected.

Figure 3 shows model based future predictions (posterior mean curves) for the eight 

different types of patient, all on the same time scale. It thus makes sense to compare shapes 

and levels across race/ethnicity for the same age group, and between age groups for the same 

race/ethnicity. Generally speaking, all models that include sigmoid mean functions predict 

that women’s FSH hormones will go up sigmoidally, and then curve downwards toward the 

end of the time frame, regardless of age-race/ethnicity category. Model II on the other hand 

predicts a simple linear increase in FSH hormone values in contrast to the others. We would 

have little to say about the distinctions in the eight Model II plots in Figure 3. However, the 

sigmoid based models tended to achieve their maximum values of FSH levels at or around 

the time of FMP. The most notable departure from that trend is the group of younger 

Chinese women, who were estimated to achieve their peak between one and two years after 

FMP. Also the estimated level of the peak was noticeably lower for the younger Chinese 

than it was for younger Japanese and Caucasian women, and the estimated peak FSH levels 

for older African Americans were noticeably lower than the corresponding estimates for 

Japanese and Caucasians. Our final inferences relate to the curves from model I, but the 

general trends discussed here are the same for all three sigmoid based models.

Statistical inferences are straight forward. First, consider the timing of the modeled FSH 

maximum. At each MCMC iteration, we numerically calculate the time that corresponds to 

the maximum level achieved in the modeled sigmoid curve for each covariate combination, 

resulting in a numerical approximation to the posterior distribution of the time it takes to 

achieve the maximum, relative to FMP. Figure 4 gives posterior estimates and 95% 

probability intervals for all eight combinations. The most dramatic inference is that Chinese 

women who are 46 years old and under at baseline achieve their maximum approximately 

between one and three years after FMP with 95% posterior probability, while corresponding 

intervals for younger women in the other race/ethnic groups are below this interval. The 

posterior probabilities that the timing of the maximum for younger Chinese women would 

be greater than that for African Americans, Caucasians and Japanese are 0.987, 0.9998 and 

0.9990, respectively.
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Intervals for African Americans, Caucasians and Chinese (see Figure 4) are above zero, so 

these maxima are evidently achieved after FMP. Among older women at baseline, there is a 

0.95 posterior probability that timing for African Americans is greater than for Caucasians. 

The posterior probability that the difference in timing comparing younger to older Chinese 

women is positive, is one to four decimal places. There is a clear statistical difference in 

timing comparing age groups for Chinese women but not for the other groups.

We next compared slopes among women in the eight groups. The slope was taken to be the 

slope of a straight line that connects the values of the modeled FMP curve at the time of the 

maximum value minus 4 years and the time of the maximum value. These lines can be 

imagined by looking at the curves in Figure 4. Estimated slopes and 95% PIs for younger 

African Americans, Caucasians, Chinese and Japanese are 13.5 (9.9, 16.5), 15.3 (12.7, 17.4), 

5.3 (1.8,7.6) and 18.1 (13.2, 22.6), respectively. The interval for younger Chinese women is 

lower and does not overlap any of the other intervals, so there is clearly a statistically 

important difference in their slope over this range than for all other race/ethnicities. The 

other slopes do not appear to be practically different from one another.

Finally, we estimated correlations among repeated responses on a new patient with equally 
spaced times of observation based on the joint predictive distribution under Model I. The 

estimated Toeplitz correlations for these times that were {1, 2, …, 8} years apart were: 

{0.43, 0.27, 0.21, 0.17, 0.15, 0.14, 0.14, 0.13}, respectively, which is quite distinct from AR 

structure. We observe that, after about four years, the correlations flatten out around 0.14. 

With a typical AR structure, the estimated correlations would continue to decrease across 

time.

6 Conclusions

Longitudinal data have often been modeled using functional models in time in conjunction 

with random effects in order to cope with longitudinal correlation. While it is clear that the 

actual dependence among repeated observations on the same individual will be somewhat 

accommodated by such models, it is not clear to what extent. Consequently, other authors 

have used Gaussian processes that incorporate AR structure that allows for higher 

correlation between observations that are observed closer in time than those observed farther 

apart. However, such correlation is constrained to be a power of the time difference. GP 

models with more complex covariance functions have been employed to lessen this issue, 

and to cope with possible lack of stationarity. In this paper, we developed a generalization of 

many popular existing models for longitudinal data that results in a novel and somewhat 

general Toeplitz structure for the GP part of the model. Moreover, at least in our example, 

we noticed that models without the GP part were noticeably less adequate than models that 

included EOP structure, according to the LPML criterion.

We showed, for our data, that the NPAR model with local linear structure is able to capture 

shapes in the actual hormone profiles. However, we also found that, for interpretive 

purposes, it was necessary to replace linear structure with sigmoid structure, which resulted 

in a larger LPML and where it was possible to make inferences about the different shapes of 

curves associated with distinct covariate combinations. For the data analyzed, it would not 
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have been sufficient to only incorporate sigmoid structure with either parametric or 

nonparametric random effects. It was necessary to also incorporate longitudinal correlated 

random effects, which was accomplished through an NPAR model.

As previously mentioned, a number of authors have developed models for handling non-

stationary data. The NPAR model (3) is general enough to adopt non-stationary forms. One 

such example is model II from subsection 5.2, since the variance of yi depends on the vector 

of times ti. Another example would follow by adding a sigmoid function with random effects 

for coefficients to model I in subsection 5.2. We could also model the log of σ2 to be either a 

known functional form of time, like a polynomial, or to specify some form of nonparametric 

model for it. Finally, we could generalize our NPAR model by extending the DP to a DDP. 

Here, the model would include separate DP mixtures of OU processes for each age by 

ethnicity category, and they would be made to be dependent in the same way that was 

described in Appendix D for the DDP part of Model IV. While quite feasible, we did not 

pursue this particular modeling line in the FSH application because the proposed model 

already fits the sample profiles quite well, and because the simulation study suggests that the 

cluster-specific covariance structures are reasonably well estimated.

Finally, a referee asked that we compare our DP mixture model, Model I, with with 

comparable models that involved parametric finite mixtures. We did this and results are 

given in Appendix F. The bottom line is that our Model I was a substantial improvement on 

all models considered there.
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Appendix A: Details for Posterior Simulation

Under the assumed prior distributions, and in the linear mean case, the full conditionals for β 
and for bi are multivariate normal and are easily determined and sampled. When sigmoid 

curves (5) are used, updating β is done through random walk-type Metropolis within Gibbs 

steps. The full conditional for σ is easily handled by another random walk Metropolis within 

Gibbs step. In the simple case of the bi’s being only random intercepts and with an inverse 

gamma prior on the corresponding variance component, the full conditional for  is also 

inverse gamma. In general, if D(ξ) is diagonal, and if independent inverse gamma priors are 

assigned to the r components, then the full conditional for ξ will consist of r independent 

inverse gamma distributions. These comments apply whether or not there are functional 

components (in both the fixed effects and in the random effects parts). However more 

complex priors may be warranted in this case. The full conditional for component wi is 

obtained using (4) by first obtaining the full conditional for wi1 given everything else except 

the remaining components of wi. Then the full conditional for wi2 is obtained, given 

everything else and the new iterate for wi1, and so on for the rest of the components of wi. 

All of these distributions are easily determined, computed and sampled.

What remains are the full conditionals for the components of ϕ. MCMC algorithms for DP 

mixtures have been developed by several authors, including Escobar (1994), MacEachern 

and Müller (1998) and Neal (2000), among others. Conditional conjugacy means that a 

particular full conditional is in the same form as the prior for the particular factor. Thus if it 

is well known how to sample from the prior, it is possible to sample from the corresponding 

full conditional. For our DPM, we have f(w | ϕ)p(ϕ), where after marginalization over G, 

p(ϕ) is determined by the Polya urn scheme (Blackwell and MacQueen; 1973). From here, it 

is standard to obtain the full conditionals

where the (i) notation means all other components except i. Due to exchangeability,

The final result is simple to obtain directly, or can be obtained from formulas (3.2–4) in Neal 

(2000), as well as from the aforementioned references. We have

where g0 is the pdf corresponding to G0 and κ is the normalizing constant. Notice the 

integrals involved here. In the conjugate case, the integrals have analytic expressions due to 

the choice of G0. In our non-conjugate case, however, we use Algorithm 8 in Neal (2000), 
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which allows for simulating some auxiliary variables that avoid these integrations altogether. 

We now describe this algorithm as it applies to our problem.

Let k denote the number of unique values in ϕ (i.e., the number of clusters), and let η1, …, 

ηk denote such values. Define si to be an indicator of cluster membership, so that . 

The values of the si variables are themselves immaterial, but are treated only as class 

indicators. The idea of Neal (2000) consists of introducing m temporary additional auxiliary 

parameters ηk+1, …, ηk+m, drawn from G0, that are associated with “empty clusters”, i.e., 

related to no observation, and that are discarded if unused. The Gibbs sampler acts first by 

updating the configuration indicators s = (s1, …, sn). Let k− the number of distinct sj for j ≠ 

i, and denote by  the number of sj for j ≠ i that are equal to ℓ. By exchangeability and the 

fact that the sj values are arbitrary, when updating si we can assume that we are updating si 

for the last observation and that the sj for other observations have values in {1, …, k−}. It 

then follows that the prior probability P (si = ℓ | s(i)) is given by  for 1 ≤ ℓ ≤ k− 

and by (M/m)/(M + n − 1) for k− < ℓ ≤ k− + m.

Combining the previous representation with the likelihood factor f(wi | ϕ), the relevant step 

in Algorithm 8 in Neal (2000) works as follows for i = 1, …, n. Let h = k−+m, and label the 

sj in {1, …, k−}. If si = sj for some j ≠ i, draw independent values from G0 for , …, ηh. 

If sj ≠ si for all j (i.e., observation i was in a singleton), assign si the label k−+1 and draw 

independent G0 values for , …, ηh. Then, resample si from

where κ is an appropriate normalizing constant.

To conclude the resampling step, drop all the η parameters that are not associated with 

observations, and draw ηℓ from the corresponding full conditional, which amounts to the 

posterior distribution of ηℓ | {wi : si = ℓ}.

Appendix B: Inverse of H∼(ρ)

Let t1 < ⋯ < tn be real constants and write  for k= 1, …, n − 1. Consider the 

generic symmetric n × n matrix  with entries  for k= 1, …, n, and for ℓ < 

k

For instance, when n = 4,
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This form is identical to that of antedependence. It then follows that (Zimmerman and 

Núñez-Antón; 2010)

and  otherwise. In addition, we have that

For instance, again in the n = 4 case,

and
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Appendix C: Plot of All Data According to Age and Race-Ethnicity Status

Figure 5. 
Raw data plots. Thick black line is the average by group.

Appendix D: Details for Dependent Dirichlet Process

The random effects for the eight age by race-ethnicity categories in Model IV were modeled 

using a DPM of normal distributions. The mixing is on an eight dimensional vector with 

each component corresponding to one of the eight categories. Here, we discuss the 

underlying DDP model that is induced by this model.

Let Ξ = {1, 2, …, 8} denote the eight categories. Our model corresponds to specifying 

marginal DPM models for the random effects distribution for each of these categories, and a 

bit more. Namely, if we let bi|c(i) = k, γ ∼ N(γk, s2) = N(z′c(i)γ, s), and let γk | Gk ∼ Gk, 

with Gk ∼ DP (M, G0k), k = 1, …, 8, where G0k is the kth marginal of G0, then these 

marginal distributions are identical to the corresponding induced marginal distributions 

based on Model IV. By the Sethuraman construction,  where 

. Thus each of the eight random effects distributions is a DP mixture of normal 

distributions where the mixing is on the mean for that group. In the extreme case with very 
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large M, this is just a parametric normal random effects distribution. At the other end of the 

spectrum, this specification allows for mixtures of normals, that could be multimodal, for the 

random effects distributions. Then the “a bit more” part involves the fact that the collection 

of distributions {Gk : k ∈ Ξ} are allowed to be correlated. The collection is obviously 

expressed as , where we now recognize that the vectors 

 are iid in j, and that the components of these vectors are iid G0, (conditional 

on (λ, Ψ)) which are assumed to be multivariate normal with non-diagonal covariance 

matrix in our specification. Note that the set of random probability measures {Gk: k ∈ Ξ} is 

thus constructed from a single set of stick-breaking weights {wj: j ≥ 1} and a single set of 

atoms {γj: j ≥ 1}. These common elements are what in the end induce dependence among 

the probability measures Gk. Thus we have described a collection of Dirichlet Processes that 

are dependent, which is termed as a DDP by its inventor (MacEachern; 1999, 2000). The 

purpose of the dependence is so that strength can be borrowed across the eight populations, 

which is the standard purpose of hierarchical model specifications such as the one here. 

MacEachern’s definition of the DDP was more general in the sense that Ξ is allowed to be 

more general. There have now been many applications of the DDP to various problems, see 

for example De Iorio et al. (2004, 2009), and Dunson et al. (2007), among many others.

Appendix E: Prediction Plots for Patient 1 with and without the Response 

Being Predicted
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Figure 6. 
Predictions and prediction bands based on all data and case deleted data: Solid and dotted 

gives predictions and intervals based on all data; dashed give predictions and intervals based 

on case deleted data.

Appendix F: Comparison Between Model I and a Parametric Finite Mixture 

Model

We make a comparison between our selected model, model I, and the more traditional finite 

K-term mixture model for a variety of values of K. These models are meant to be 

simplifications of our model I in the sense that the mixtures of the OU process parameters, 

, are now classical fixed finite dimensional mixtures, rather than DPMs. Specifically, 

we consider w1, …, wn to be generated from the mixture distribution

where  and (π1, …, πK) ∼ Dirichlet(1, …, 1). Here G0 is the same baseline 

distribution considered earlier for model I. These models are indexed by the number of terms 

in the mixture, K, but otherwise are the same. They include a sigmoid function part that is 

identical to the one considered in the paper and where a separate function is allowed for the 

8 age by ethnicity categories. They also include random effects terms, b, Gaussian process 

terms, w, and error terms, ε. These models were fit in WinBUGS for K = 2, …, 10, and 

LPML values were obtained in each instance. The range of LPMLs was −7700.2, for K = 3, 

to −7665.4 for the model with K = 5. The model with K = 5 wins. However, since the LPML 

for our model I is −5966, it is a clear winner over all of the finite mixture models. In fact, all 

of our models I–VI have much larger LPML values than these.
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Figure 1. 
Fitted FSH values and 95% intervals for eight randomly selected individuals using model I. 

Note the different scales.
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Figure 2. 
Fits for patient 41
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Figure 3. 
Predictions of future hormone concentrations for eight types of women, using Model I
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Figure 4. 
Comparisons of estimated time to maximum (and 95% posterior probability intervals) over 

the eight covariate combinations, using Model I
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