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Summary
There is a paucity of information concerning the developmental neurotoxicity (DNT) hazard posed by industrial and environ-
mental chemicals. New testing approaches will most likely be based on batteries of alternative and complementary (non-animal) 
tests. As DNT is assumed to result from the modulation of fundamental neurodevelopmental processes (such as neuronal differen-
tiation, precursor cell migration or neuronal network formation) by chemicals, the first generation of alternative DNT tests target 
these processes. The advantage of such types of assays is that they capture toxicants with multiple targets and modes-of-action. 
Moreover, the processes modelled by the assays can be linked to toxicity endophenotypes, i.e., alterations in neural connectivity 
that form the basis for neurofunctional deficits in man. The authors of this review convened in a workshop to define criteria for 
the selection of positive/negative controls, to prepare recommendations on their use, and to initiate the setup of a directory of 
reference chemicals. For initial technical optimization of tests, a set of > 50 endpoint-specific control compounds was identified. 
For further test development, an additional “test” set of 33 chemicals considered to act directly as bona fide DNT toxicants is 
proposed, and each chemical is annotated to the extent it fulfills these criteria. A tabular compilation of the original literature 
used to select the test set chemicals provides information on statistical procedures, and toxic/non-toxic doses (both for pups  
and dams). Suggestions are provided on how to use the > 100 compounds (including negative controls) compiled here to 
address specificity, adversity and use of alternative test systems.
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Such knowledge is critically important for understanding how to 
use DNT test compounds for the evaluation and optimization of 
novel test systems. For example, toxicants acting on the thyroid 
may trigger DNT by decreasing thyroid hormone levels important 
for nervous system development, but such indirect effects would 
not be easily detectable in in vitro systems based on specific neu-
rodevelopmental processes.

Literature searches recently identified a larger list of DNT 
compounds that can be used as a reference set for developing and 
evaluating alternative test systems. A list of 66 compounds with 
different types of positive and negative controls, and respective 
comments on mode-of-action was compiled specifically for DNT 
assay establishment. Amongst this list, only 10 toxicants fulfilled 
the stringent selection criterion of human evidence. A larger list of 
about 100 compounds was compiled as part of a published work-
shop report describing criteria to be applied in DNT test system 
establishment (Crofton et al., 2011). This list has been comple-
mented with additional background information (e.g., reference 
to the respective animal studies) and re-published to support the 
development of high-throughput screening systems (Mundy et al., 
2015). This extensive list contains both direct- and indirect-acting 
compounds, and the quality of the underlying publications shows 
a large variability. For the present study, a different approach was 
taken to assemble a list of reference compounds. The main goals 
were (i) to identify a practicable number of chemicals for assay 
development (about 30 compounds); (ii) to define clear selection 
criteria with regards to the published data and the statistical meth-
ods applied to the data reported in these publications; (iii) to doc-
ument failures to fulfill the selection criteria, and to communicate 
considerations concerning the use of this compound set for assay 
development. The intention was not to investigate all potential 
DNT compounds. For this process, a group of scientists assem-
bled at a workshop developed an initial list of suggested com-
pounds. During the follow-up period, four independent rounds of 
review by different subgroups of scientists with relevant expertise 
resulted in a consensus set of 33 DNT test compounds.

1.2  Adverse outcome pathways and  
fundamental neurobiological processes
Assays (see Box 1 for a glossary) for rapid screening of chemicals 
with a potential to cause DNT will likely use in vitro approaches 
or alternative models (Bal-Price et al., 2010; Coecke et al., 2007; 
Smirnova et al., 2014) that are compatible with high throughput 
screens. The feasibility and utility of such tests is based on the mea-
surement of cellular perturbations relevant to neurodevelopment 
in humans (Bal-Price et al., 2015b; Kadereit et al., 2012; Lein et 
al., 2005). The predictive power of these assays will depend on the 
strength of association between the test endpoints assessed and 
the neurodevelopmental impairment observed in exposed human 
populations (or representative mammalian animal models). 

In order to facilitate the development and use of molecular and 
cellular endpoints in predictive assays, the concept of the adverse 
outcome pathway (AOP) has recently been introduced (Ankley et 
al., 2010). AOPs are conceptual constructs that link a molecular 
initiating event (MIE) and an adverse outcome (AO) at the level 
of the whole organism (Tab. 1). A MIE is the initial point of con-
tact between a chemical and a specific biomolecule that results in 

1  Introduction

1.1  DNT testing and test compound selection
Developmental neurotoxicity (DNT) may be broadly defined 
as an adverse change in the structure or function of the nervous 
system that manifests after exposure to a chemical during the 
prenatal or gestational period (Mundy et al., 2015). Notably, the 
adverse change can manifest well after the toxicant exposure 
has ended, a phenomenon referred to as “delayed consequence 
of early life exposure”. This definition raises questions as to the 
type and magnitude of change considered to be a relevant adverse 
effect. For practical purposes, any statistically significant change 
may be regarded as an alert for a potential DNT hazard, and then 
be followed up by more detailed studies. Most considerations of 
DNT focus on the central nervous system, but it may be ques-
tioned whether the peripheral nervous system, the gastrointestinal 
nervous system and/or other neural crest-derived tissues should 
be included in DNT studies. 

Traditional approaches for generating data relevant to DNT 
hazard are largely based on animal testing according to OECD  
TG 426 and similar standardized protocols developed by national 
regulatory authorities. Such testing is time- and resource-con-
suming, which explains why currently only about 200 such 
studies have been performed with most directed towards pesti-
cides and only a handful focused on industrial chemicals. Even 
amongst high production volume compounds, only a few have 
been studied for DNT hazards (Crofton et al., 2012; Rovida et al., 
2011). It is also not clear whether these animal testing procedures 
are sufficiently sensitive to identify all hazardous substances that 
may affect the developing human brain. For instance, a guideline 
study on methylmercury, one of the best characterized DNT com-
pounds that targets animals and man, failed to show adverse ef-
fects in rats when classical endpoints were considered. Only when 
specific imaging and transcriptomics endpoints were included did 
this toxicant demonstrate adverse effects on the developing rat 
nervous system (Radonjic et al., 2013).

Epidemiological studies are an alternate approach to identify 
DNT toxicants relevant to man. However, these studies can be 
particularly challenging due to the time lag between exposure 
and outcome measurement, and due to the multitude of potential-
ly confounding factors (genetic variability, complex exposures, 
lifestyle factors, etc.) that affect the complex endpoints studied 
(e.g., neuropsychological, behavioral or cognitive performance 
tests). Until 2006, only six compounds (lead, mercury, arsenic, 
PCBs, toluene, ethanol) had been identified unambiguously by 
epidemiological approaches (Grandjean and Landrigan, 2006); 
further studies since then have expanded this list to include flu-
oride, manganese, tetrachloroethylene, chlorpyrifos, DDT and 
PBDEs (Grandjean and Landrigan, 2006, 2014). Valproic acid 
needs to be added to this list based on clinical evidence (Kadereit, 
2012; Balmer, 2012). Thus, the total number of chemicals (n = 
13) identified via clinical/epidemiological studies is rather low 
to use as a reference chemical set for evaluating or establishing 
new test systems. Moreover, the epidemiological approach for 
identifying DNT chemicals provides negligible information as to 
whether these neurotoxic compounds are direct-acting DNT com-
pounds, and which neurodevelopmental processes are perturbed. 
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Test methods vs test systems

Test system 
Cellular (or biochemical) system used for a test method (e.g., 
“proliferating hESC” or “neuronally-differentiating PC-12 
cells” or “organotypic brain slices”). The term is often used in-
terchangeably with “in vitro system”, or sometimes also termed 
“biological model”. The test system is only one component of a 
test or “test method”. Good performance of a test system does not 
imply good functioning of a test method. Acceptability criteria 
for a test system (e.g., at least 75% of the differentiated cells 
staining positive for nestin under control conditions) are differ-
ent from acceptability criteria for the test method using the test 
system (e.g., inhibition of differentiation by a specified positive 
control by at least 35%, and alteration of normal differentiation 
by a defined negative control by less than 10%).

Test method 
A procedure, based on a test system, used to obtain information 
on the biological effects of a substance. A toxicological test 
method consists of four major components (i.e., test system, 
exposure scheme, endpoint, prediction model), and it produces 
a test result (information regarding the ability of a substance or 
agent to produce a specified biological effect under specified 
conditions). The term is used interchangeably with “test” and 
“assay” in the literature. A test method can have several analyt-
ical endpoints.

Prediction model
A formula or algorithm (e.g., formula, rule or set of rules) used 
to convert the results generated by a test method into a prediction 
of the (toxic) effect of interest. Also referred to as decision crite-
ria. A prediction model contains four elements: (1) a definition 
of the specific purpose(s) for which the test method is to be used, 
(2) specifications of all possible results that may be obtained, 
(3) an algorithm that converts each study result into a prediction 
of the (toxic) effect of interest, and (4) specifications as to the 
accuracy of the prediction model (e.g., sensitivity, specificity, 
and false positive and false negative rates). In this context, the 
‘data interpretation procedure (DIP)’ is of interest. It signifies 
any algorithm for interpreting data from one or more informa-
tion sources. The output of a DIP is typically a prediction (e.g., 
prediction of skin sensitization potential from peptide binding 
data and/or chemical structure).

Acceptance criteria 
Criteria defined before performing an assay to determine wheth-
er it is valid, i.e., whether the data can be used. Typical issues of 
acceptance criteria comprise: “Has the actual run or plate of the 
test method functioned (e.g., are the endpoint values for PC and 
NC in the right range)?”, “Is the test method performing within 
the desired range of variability (e.g., are the standard deviations 

Box 1: Glossary for assay definition and setup

of PC and NC in the right range)?” Note: acceptance criteria can 
also be defined for an analytical endpoint or for a test system.

Endpoint 
The biological or chemical process, response or effect assessed 
in a test system by a specific analytical method/assay, e.g., “vi-
ability” as measured by LDH-release, expression of a marker 
as measured by PCR, or beating of cardiomyocytes evaluated 
by an imaging system. Note that each endpoint may be assessed 
by different analytical methods. For instance, “viability” may 
be assessed by LDH-release, resazurin reduction, cell counting 
or measurement of ATP. “Differentiation” may be measured by 
PCR quantification of a differentiation marker or by morphom-
etry (e.g., beating of cardiomyocytes evaluated by an imaging 
system).

Analytical endpoint 
An endpoint of a test system (e.g., proliferation, differentiation 
or viability) may be quantified by different analytical methods 
(measurement endpoints). It is important to distinguish such 
analytical endpoints (referring to the methods used) from (test 
system) endpoints that refer to the biological concept evaluated.

In vitro system 
This term has various meanings in the literature, i.e., it is little 
defined. It is sometimes used to signify a cell/tissue culture 
system used as the basis for the development of a test method. 
In this sense, it corresponds to a test system (as above). (Note: 
In biochemistry, the term is often used for cell-free systems, as 
opposed to cellular (living) systems. Cell culture assays, i.e., in 
vitro assays in a toxicological sense, are often called “in vivo 
systems” in biochemistry).

Assay 
This term is used in a broader or narrower sense depending on 
the field, similar to “test method”. In a narrower sense, “assay” 
can refer to an analytical procedure (e.g., protein determina-
tion, PCR). In a wider sense, “assay” is used interchangeably 
with “test method”. A classic example is the Ames assay, 
which comprises a complex test system of growing and plating 
bacteria under different conditions together with an analytical 
procedure based on the counting of colonies. 

Reference compounds and statistics

Positive/negative control (PC/NC) 
A PC is a compound or condition that triggers a response, i.e., 
a change of the endpoint from baseline in a predicted direction 
and to a certain specified extent. An NC for a test method is a 
compound or condition that should not trigger a response, i.e., 
it should not change the endpoint from baseline. The perfor-
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mance of PC and NC can be used to define acceptance criteria 
of a test.

Endpoint-specific controls 
Chemicals known to reliably and consistently alter the endpoint 
of a test system at a mechanistic level. These are also referred 
to as “endpoint-selective controls” or “mechanistic tool com-
pounds”. This would be the first set of compounds used during 
test system setup to obtain information on the biological/ 
toxicological behavior of the test system and its dynamic range.

Training set chemicals 
This set should include chemicals known (preferably from in 
vitro systems) to reliably elicit a response, or no response, with 
respect to the endpoint of interest. The goal of using this set 
is proof-of-concept that the test method can rapidly and effi-
ciently screen moderate numbers of chemicals with reasonable 
predictivity. A training set of chemicals can be used to optimize 
an assay (test method), to set acceptability criteria, and to build 
a prediction model.

Testing set chemicals 
This set would be used to validate and possibly improve the 
prediction model. For DNT, this set should include chemicals 
known to affect (and also some that definitely do not affect) in 
vivo developmental neurotoxicity endpoints. The goal of using 
testing set chemicals is also to demonstrate the ability of the 
assay to test larger numbers of chemicals. 

General cytotoxicity (GC) 
The term is used when a compound triggers cell death that is 
not specific for the cell type used in the assay but would occur 
in most cells at the same concentration and within a similar time 
frame. For many test methods, it is important to measure specific 
adverse effects that occur at concentrations below those trigger-
ing cell death in the test system. Therefore, the verification of test 
conditions not triggering GC is important for many tests.

Unspecific controls (UC) 
Often refers to compounds displaying GC. For some test sys-
tems, it is sufficient to work with PC and NC. For other test 
systems, it is important to demonstrate a difference between 
compounds that act specifically, and compounds that lead to 
changes of the endpoint because they trigger GC. For instance, 
a test may be designed to determine the metabolic fingerprint of 
cell cycle blockers. Such a test would require the examination 
of UC and the comparison of their profile with PC compounds.

Highest non-cytotoxic concentration (HNCC) 
The highest concentration of a compound that does not trig-
ger GC. The HNCC is important, as it allows the detection of 
specific adverse effects with highest likelihood. It defines the 
highest concentration to be used in test systems examining 
particular toxic effects independent of GC. Testing at concen-
trations higher than the HNCC may lead to artifacts.

Replicates within one experiment 
These are also called “technical replicates” and can take two 
different forms: A: the repeated performance of an analysis on 
the same sample, e.g., duplicate PCR, Western blot or FACS 
determinations. B: the determination of an endpoint from more 
than one culture well, with all these wells being incubated in 
parallel on the same day in the same experiment.

Independent experiments 
These are also called “biological replicates” and should not be 
confused with technical replicates in different dishes. A bio-
logical replicate is a separate experiment, usually on another 
day, with independent cell batches, new test solutions, etc. A 
biological replicate can comprise several technical replicates.

Robustness/ruggedness 
A measure of a methods’ capacity to remain unaffected by small 
variations in method parameters and environmental conditions. 
Testing of robustness provides an indication of a test’s reli-
ability during normal usage. Sometimes a distinction is made 
between robustness and ruggedness. The latter focuses on the 
reproducibility of the test results obtained for identical sam-
ples under normal test conditions that underlie unintentional 
changes (room temperature, source of human sample material, 
lot variation of reagents, operator-dependent variables, weather 
conditions, etc.). Robustness testing would explore the insen-
sitivity of a test to deliberate variations in the test environment 
or setup (incubation time, temperature, cell passage number, 
sample storage, cell density, type of culture dish, etc.)

Dynamic range 
Determination of the extent of measurable change that can be 
detected for an endpoint and whether both increases and de-
creases from untreated control can be measured.

Test concepts

Fundamental biological process 
In the context of DNT, this refers to “fundamental neurode-
velopmental process”. These processes include precursor cell 
proliferation, neuronal and glial cell differentiation and apopto-
sis, synaptogenesis and myelination, and are also termed “key 
biological processes” or “key neurodevelopmental events”. 
They need to be distinguished from signaling events or more 
basic mechanisms, in that fundamental biological processes 
represent a higher (superordinate) level of organization that 
comprises many signaling mechanisms and targets of molecu-
lar initiating events. They are “fundamental”, as failure of any 
of them may result in DNT. Importantly, these processes can be 
modeled using in vitro test systems, and each such test system 
has the advantage of capturing (identifying) many different 
toxicants acting by different molecular mechanisms. Note: 
fundamental biological processes are not to be confused with 
key events (KE) in an AOP.
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Molecular initiating event (MIE) and key events (KE) 
An MIE is the initial point of contact between a chemical and a 
specific biomolecule that results in a cascade of KE leading to 
an adverse outcome.

Adverse outcome pathways (AOPs) 
Conceptual constructs that link a MIE to an adverse outcome 
at the level of the whole organism. The AOP links existing 
knowledge along one or more series of causally connected KE 
between two points – MIE and an adverse outcome (AO). AOP 
are not compound-specific, but a theoretical construct applica-
ble to multiple compounds.

Toxicity endophenotypes (TEP) 
Altered functional or structural connectivity or responsiveness 
of specific regions of the nervous system as a consequence of 
exposure to xenobiotic(s). TEP represent the level of organiza-
tion that links in vitro test systems for fundamental biological 
processes to apical DNT endpoints in vivo (exophenotypes).

Integrated approach to testing and assessment (IATA) 
An approach based on multiple information sources used for 
hazard identification, hazard characterization and/or safety 
assessment of chemicals. An IATA integrates and weighs all 
relevant existing evidence and guides the targeted generation of 
new data, where required, to inform regulatory decision-mak-
ing regarding potential hazard and/or risk.

Tab. 1: Examples of events relevant for adverse outcome pathways (AOP) linking exposure to DNT chemicals to human toxicity  
An AOP represents a series of measurable key events (KE) with biologically plausible connections. They connect a molecular  
initiating event (MIE) to an adverse outcome (AO) in an individual. The AOP is a concept that provides a framework for organizing 
knowledge about the progression of toxicity events across scales of biological organization. Here examples are given for MIE,  
for KE (on the cellular and organ level), and for AO, i.e., the manifestation relevant for man, that may be triggered by DNT chemicals.  
The cellular KE correspond to fundamental neurodevelopmental processes as detailed in Fig. 2.

Molecular initiating  
events (MIE)

•  Modulation of the function of 
ion channels

•  inhibition of assembly or 
disassembly of cytoskeletal 
elements 

•  inhibition of key enzymes 
(e.g., acetylcholine esterase 
or receptor tyrosine kinases) 

•  inhibition of the mitochondrial 
respiratory chain 

•  inhibition of transporters 
on the cell membrane or 
organellar membranes

•  inhibition or stimulation of 
nuclear receptors

•  inhibition of cell-cell or cell-
matrix contacts 

•  inhibition of DNA synthesis 

•  modulation of epigenetic 
processes (e.g., histone 
modifications or DNA 
methylation) 

•  etc. 

Key events (KE) –  
cellular responses 

•  Neural precursor proliferation 

•  migration 

•  gliogenesis 

•  neuronal differentiation

•  neurite growth (axons, 
dendrites) 

•  synaptogenesis

•  oligodendrogenesis

•  myelination 

•  programmed cell death

•  neuroinflammation 

•  etc. 

Key events (KE) –   
organ responses

•  S. nigra dopaminergic 
neuron degeneration

•  Hippocampal dentate gyrus 
neuronal dysarray

•  Hypomyelination in 
periventricular white matter 

•  lissencephaly

•  microcephaly

•  holoprosencephaly 

•  altered EEG pattern

•  attenuated prepulse 
inhibition 

•  altered contents of serotonin 
in a brain region

•  altered threshold to  
seizure-inducing treatment

•  etc.

Adverse outcomes (AO) 

•  Reduced learning ability

•  shortened attention span

•  autism spectrum disorders

•  reduced memory and 
executive functions

•  anxiety 

•  reduced mood control and 
stress resilience 

• etc.
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processes is the formation of functional signaling networks, and 
both experimental and clinical studies demonstrate that disrup-
tion of the spatiotemporal patterns or magnitude of any of these 
fundamental processes can significantly alter network connectiv-
ity and thus impair neural network function (Tab. 2) (Barone et al., 
2000; Berger-Sweeney and Hohmann, 1997; Deoni et al., 2011; 
Deutsch et al., 2010; Gatto and Broadie, 2010; Jones et al., 2000; 
Semrud-Clikeman and Ellison, 2009; Smirnova et al., 2015). Be-
cause cell-based assays that replicate these fundamental neurode-
velopmental processes integrate effects across multiple molecu-
lar targets and mechanisms of action, and simple organism-based 
models additionally integrate effects across multiple cell types 
and organ systems, these alternative models can “cast a wide net” 
for detecting chemicals that act through diverse, and potentially 
unknown, MIE. Multiple such assays have been developed, e.g., 
using combinations of human neural cell types, or model organ-
isms like zebrafish, and work with such methods is ongoing to 
clarify which of the perturbations that are observed show suffi-
cient sensitivity and specificity to be used for predictions of hu-
man adverse effects (Bal-Price et al., 2015b, 2012; Crofton et al., 
2011, 2012; Smirnova et al., 2014; van Thriel et al., 2012). 

1.3  Linking of test systems and apical DNT endpoints
AOP represent one of several concepts that have been developed 
to describe the chain of events that link exposure of a biological 
system to a xenobiotic with the hazard it poses. The concepts dif-
fer according to their focus on particular components within the 
chain of events, and on the intended use of the construct. Quan-
titative descriptions of the network of cellular events that decide 
the eventual cell fate are the focus of the “pathways-of-toxicity” 
approach (Bouhifd et al., 2015; Hartung and McBride, 2011; 

a cascade of key events (KE) leading to an AO (Bal-Price et al., 
2015b; Leist et al., 2014). For example, the binding of domoic 
acid to the glutamate receptor can result in a series of events that 
result in seizures and memory loss (Bal-Price et al., 2015b; Leist 
et al., 2014; Watanabe et al., 2011). 

In the case of chemicals that cause DNT, most AOPs lack  
sufficient quantitative features (i.e., quantifiable key event rela-
tionships (KER), such as activation thresholds and quantitative 
time-concentration-effect relationships) to allow specific associ-
ations between the MIE and toxicity manifested at higher levels 
of biological organization. For this reason, it has been suggest-
ed that the first generation of new test methods for DNT should 
focus on the assessment of a chemical’s ability to interfere with 
“fundamental neurodevelopmental processes” (Lein et al., 2005; 
Bal-Price et al., 2015a). Studies on neurodevelopment in a variety 
of invertebrate, non-mammalian vertebrate and mammalian or-
ganisms (including man) indicate that the fundamental biological 
processes of neurodevelopment are remarkably conserved across 
species (Albright et al., 2000; Cowan et al., 1997; Thomas, 2001; 
Thor, 1995; Tropepe and Sive, 2003), even though small but dis-
tinct differences exist at the mechanistic level, especially the tim-
ing of events (Balmer et al., 2014; Smirnova et al., 2015). These 
fundamental biological/neurodevelopmental processes include 
neural cell proliferation and differentiation, neuronal and glial 
cell migration, axonal and dendritic outgrowth as well as synapse 
formation and stabilization, apoptosis and myelination (Fig. 1) 
(Hoelting et al., 2015; Smirnova et al., 2015; van Thriel et al., 
2012). Additional overarching processes, mostly limited to patho-
logical situations, reflect different states of glial activation, of-
ten termed neuroinflammation (Falsig et al., 2004; Kuegler et al., 
2010, 2012; Zerrate et al., 2007). The final outcome of the tightly 
regulated spatiotemporal execution of these neurodevelopmental 

Fig. 1: Representation of the key events (KE) of neurodevelopment at the cellular level 
Several fundamental neurodevelopmental processes are absolutely necessary for nervous system development, and therefore well-
conserved across species. Moreover, the processes known from in vivo studies can be relatively faithfully modeled in vitro. It is assumed  
that DNT exert their toxicity because they disturb at least one of these processes. Therefore, disturbances of the processes depicted  
here are KE of AOP relevant for DNT.
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Fig. 2: Toxicity endophenotypes
For development of relevant model systems, we need approaches 
for linking the observable DNT effect (= exophenotype; see red box) 
triggered by a xenobiotic to effects that this compound has in in 
vitro test systems (yellow circles). Toxicity endophenotypes (orange 
box) form the conceptual link between what is observed in man or 
experimental animals and on what test systems model. They are 
a description of the altered biological state of the nervous system 
(e.g., neuronal disarray in the frontal cortex) in vivo that causes the 
externally observable DNT phenotype (e.g., reduced IQ). Thus, 
toxicity endophenotypes (TEP) describe the altered functional or 
structural connectivity or responsiveness of parts of the nervous 
system triggered by xenobiotics. The TEP results from the disturbance 
of one or several fundamental biological processes (e.g., neurite 
growth). Notably, there may be a delay or lag of years between 
disturbance of a process by a chemical and the observation of DNT 
effects (dashed arrows linking processes and TEP). Both the setup of 
model systems and the characterization of tool compounds to validate 
such systems requires that we establish the following connections: 
(1) exophenotype to TEP (the exophenotype is the only robust and 
relevant starting point for identification of DNT compounds known at 
present); (2) association of TEP with disturbed biological process(es) 
that led to the TEP; (3) link of in vitro test system endpoint to prediction 
of a disturbed biological process in vivo. The fundamental biological 
processes as such (but not the TEP) may be modeled by alternative 
test systems. Thus, the test systems are inspired by the biological 
processes (green arrows), but the outcome of test systems predicts to 
some extent certain TEP (e.g., inhibited neuronal migration predicts 
neuronal disarray and/or a deficit in neuronal number in a brain 
region). In this sense, TEP represent the level of organization that links 
in vitro test systems for fundamental biological processes to apical 
DNT endpoints (exophenotypes).

Tab. 2: Apical in vivo endpoints of DNT translated to DNT endpoints in vitro 
In vivo studies use various methods to evaluate DNT. These can be roughly classified as anatomical measures (e.g., morphology, 
histopathology) or as functional measures (e.g., motor, sensory and cognitive function). These methods assess various outcomes (e.g., 
malformations detected by anatomical measures) or changes (increase/decrease) in functional parameters. Each of these outcomes 
derives from changes in cellular biology (e.g., altered apoptosis, cell migration or cell proliferation may lead to size differences of brain 
regions). The cell biological changes may be modeled by in vitro or alternative test methods.

Methods in vivo Outcome Cell Biological Causes

Gross morphology Brain measures↑↓	 → Proliferation, apoptosis 
 Brain parts missing → Proliferation, differentiation 
 Malformation → Proliferation, migration, differentiation

Histopathology Necrosis → Cytotoxicity 
 Pyknosis → Apoptosis, necrosis 
 Neuronal degeneration → Neurotoxicity 
 Astrocytosis → Glia proliferation, GFAP content 
 Layer thickness ↑↓ → Proliferation, migration, myelination, cell death

Morphometry Layer thickness ↑↓ → Proliferation, migration, myelination 
 Morphology → Proliferation, migration, differentiation

Learning/memory/motor activity ↑↓ → Synaptogenesis 
  → Network formation 
  → Specific death of neuronal subpopulations 
  → Myelination
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in vitro test systems that reflect only one of the few biological 
processes relevant for DNT (Westerink, 2013). This has three 
important consequences. The first is that evaluation of test sys-
tem performance (predictivity) with ‘known’ DNT chemicals is 
problematic using the standard approach of statistical correlation. 
The first type of misinterpretation is the false negative result. If 
a test system does not react to a given DNT compound, the test 
system would be interpreted as lacking sensitivity, even though 
many DNT compounds would correctly show no effect in a given 
test system. In these cases, compounds cause their toxicity by af-
fecting fundamental biological processes that are not captured by 
the test system in question. For instance, test systems that evaluate 
neurite extension or synapse formation would not be expected 
to react to methylazoxymethanol (MAM), an established DNT 
chemical (Penschuck et al., 2006) that affects precursor cell pro-
liferation. A second type of misinterpretation/pitfall is the false 
positive result that occurs if a test system reacts to a compound 
that does not cause DNT in humans (in vivo) but which alters 
the biological process evaluated in this system. For instance, if 
MAM, a compound that specifically affects dividing cells, shows 
an effect in a test system of synapse formation, this would most 
likely be a false positive, from the point of view of mechanistic 
toxicology. However, it needs to be noted that it could be a true 
positive affecting a target different from DNA that has simply not 
yet been identified in in vivo systems due to their low sensitivity 
and high noise. Practical examples for such a case are found when 
examining literature on direct effects of chlorpyrifos on biologi-
cal systems in vitro. For instance, voltage-gated calcium channels 
are inhibited by the parent compound, while the well-established 
inhibition of acetylcholine esterase is more sensitive to the oxon 
metabolite (Meijer et al., 2014a,b). 

The second consequence is that sets of compounds other than 
‘gold standard DNT chemicals’ are required to initially evaluate 
the performance of in vitro test systems. Such chemicals should 
affect the known biology and mechanisms of the test system in 
defined and, preferentially, specific ways. These compounds, here 
termed “endpoint-specific controls” or “endpoint-specific refer-
ence compounds” (Tab. 3), are in many cases not known to be 
associated with DNT. Therefore, the evaluation of the usefulness 
and relevance of the test would not be possible through correla-
tion of the chemical’s in vitro vs. in vivo effects. It rather needs 
to be based on biological plausibility. One of the experimental 
approaches to this issue is the identification of the signaling pro-
cesses governing the test system and their mechanistic relevance 
to signaling processes known to control the corresponding bio-
logical processes in vivo. The relevance and role of such signal-
ing processes could be tested with sets of mechanistically-defined 
tool compounds. This would help to link the underlying biology 
of the test system to TEPs that are produced by genuine DNT 
compounds. 

The third consequence is that the major usefulness of a set of 
positive DNT compounds lies in the establishment and evaluation 
of a test battery, rather than individual assays. The serious lim-
itations that apply to individual tests (see first consequence) do 
not apply to a test battery that aims to cover the majority of DNT 
adverse effects. Compounds that are defined as gold standard pos-
itive controls should be identified as hits in the test battery (or an 

Kleensang et al., 2014). In vitro toxicity testing is the major fo-
cus of the “biomarkers-of-toxicity” concept, which concerns the 
identification of measurable and predictive endpoints that can be 
applied to model systems. For the purpose of compound selection 
for DNT in vitro assays, the concept of “toxicity endophenotypes” 
contributes a useful perspective (Kadereit et al., 2012; Balmer 
and Leist, 2014; Bal-Price et al., 2015a) (Fig. 2). It focuses on 
fundamental biological processes of relevance leading to AO at 
the organismal level that can be modeled by in vitro systems. 

Characteristic AO in the field of DNT are cognitive or psycho-
motor deficits, including reduced IQ, attention deficit, ataxia or 
various sensory disturbances, in addition to malformations (e.g., 
spina bifida or microcephaly). They describe external/apical phe-
notypes that are functionally defined, and which are difficult to 
model using presently-known in vitro systems. Unfortunately, 
most knowledge on human DNT compounds relates to these ex-
ternally manifested functional phenotypes (= exophenotypes). For 
development of relevant model systems, we need approaches to 
link the exophenotype caused by xenobiotic exposure in the intact 
organism to the effects the compound triggers in in vitro test sys-
tems. Such associations are the particular focus of the concept of 
toxicity endophenotypes. Endophenotypes are a description of the 
altered biological state of the nervous system in vivo that underlie 
the exophenotype. In less theoretical terms, toxicity endopheno-
types (TEP) describe the altered functional or structural connec-
tivity or responsiveness of parts of the nervous system triggered 
by xenobiotics, and they represent the level of organization that 
links in vitro test systems for fundamental biological processes to 
apical DNT endpoints (exophenotypes). All developmental neuro-
toxicants are expected to affect at least one fundamental biological 
process in vivo, and this would result in an altered TEP. Thus, TEP 
represent a key link between the known effects of DNT chemicals 
and their effects in in vitro systems (see Tab. 2).

The concept of TEP is also helpful for interpreting test results, 
evaluating their relevance and choosing endpoint-specific tool 
compounds in such systems. In this context, it is important to dis-
tinguish between the TEP (a state that is assessed in vivo) and 
the disturbed biological processes that led to it (and which may 
be assessed in vitro). For instance, a disarray of cells in a certain 
brain region may be the result of inhibited migration, altered pat-
terning or even reduced neurite outgrowth that prevents axons 
from reaching appropriate target regions, and therefore results in 
apoptotic elimination or aberrant wiring. 

1.4  Practical implications for the choice 
of positive-control compounds
The theoretical dissection of various associations relevant for 
the interpretation of DNT test system data (Exophenotype vs 
endophenotype vs biological processes vs test systems) has im-
portant practical significance, for instance to identify research 
gaps and show needs for further biological information. An 
important knowledge gap for DNT toxicants is the link between 
disturbed fundamental biological processes and TEP. This essen-
tial piece of information is difficult to obtain, as there is often 
a delay between chemical disturbance of a neurodevelopmental 
process and the DNT manifestation. Without knowledge on this 
link, it is not possible to define positive control toxicants for 
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measurements used to detect a change induced by a test substance, 
ranging from molecular (e.g., RNAs, proteins) to biochemical 
(e.g., neurotransmitters and their receptors) to morphological 
(e.g., cell size, shape or motility) to functional read-outs (e.g., lo-
comotor activity, receptor function, electrophysiological proper-
ties). These measurements, regardless of the format, should assess 
an endpoint related to a fundamental neurodevelopmental process. 
A particular test system may allow the assessment of multiple ana-
lytical endpoints related to the same neurodevelopmental process. 
For example, the endpoint of proliferation can be assessed using 
both biochemical measurements of the amount of DNA and the 
morphometric assessment of cell numbers. As part of the setup 
and evaluation of a new test method, it should be demonstrated 
that measures for an endpoint are robust, reproducible (Miller, 
2014; Poland et al., 2014) and accurate, and that the dynamic range 
within the test system is characterized. Moreover, different ways 
of measuring the same endpoint should yield similar results (con-
sistency of readout). The next crucial step is the demonstration 

associated integrated approach to testing and assessment (IATA)). 
If they are not identified in the test battery, they would be cor-
rectly classified as false-negatives. Vice versa, negative controls 
should not be identified as hits, or they would be classified as false 
positives. Thus, a set of control compounds would be useful to 
evaluate an IATA approach (Bal-Price et al., 2015b; Rovida et 
al., 2015), and at the same time they would be useful in guiding 
the establishment of a test battery and for identifying data gaps to 
be filled using tests of higher sensitivity for specific compounds.

2  Endpoint-specific control compounds 

2.1  The concept of endpoint-specific  
control compounds
Assays (test methods) for DNT use both in vitro models based on 
neural cell cultures and alternative (non-mammalian) species as 
test systems. This guarantees that there will be a wide variety of 

Tab. 3: Tool compounds/endpoint-specific controls for DNT test systems 
Assays were classified according to the basic biological process they model (left column). The literature was then screened  
for compounds that elicit robust positive responses in respective in vitro test systems. These compounds were classified according to 
their inhibiting or activating effect on the baseline or control readout. For compounds that interfere with cellular differentiation,  
this one-dimensional classification was not attempted. For practical purposes (choice of positive controls useful during assay setup),  
the table contains not only classic endpoint-specific controls but also chemicals/toxicants with unclear mode of action but with a  
robust effect on the targeted endpoint. They were considered useful to evaluate the technical performance of the test system with respect  
to the endpoints measured. For each compound, the original literature documenting the effect on the targeted endpoint is indicated. 

1Zimmer et al., 2011b; 2Krug et al., 2013b; 3Balmer et al., 2012; 4Moors et al., 2009; 5Moors et al., 2010; 6Zimmer et al., 2011a;  
7Zimmer et al., 2012; 8Moors et al., 2007; 9Gassmann et al., 2010; 10Tegenge et al., 2011; 11Mundy et al., 2010; 12Culbreth et al., 2012; 
13Breier et al., 2008; 14Harrill et al., 2011a; 15Harrill et al., 2011b; 16Robinette et al., 2011; 17Hogberg and Bal-Price, 2011;  
18Radio et al., 2008; 19Radio et al., 2010; 20Stiegler et al., 2011; 21Parran et al., 2001; 22Harrill et al., 2010; 23Mandell and Banker, 1998; 
24Schreiber et al., 2010; 25Fritsche et al., 2005

Migration 
 
 
 
 
 
 
Proliferation 
 
 
Synaptogenesis

Network activity

Neurite outgrowth 
 
 
 
 
 

Oligodendrocyte differentiation

Differentiation (compounds known to 
alter this process (adversely) in one of 
many possible ways)

Inhibitory

methylmercury7,8, PP27,8, AG14788,  
PD980598, SU66568, SP6001257, 
pertussis toxin7, lead acetate7, triadimenol7, 
thimerosal7, semaphorin3A7,  
valproic acid7, CK-6667, cytochalasin D7, 
3-methylcholanthrene9, 7NI10, ODQ10

aphidicolin11,12,13, cadmium11,12,13,  
cytosine arabinoside11,12,13, 
5-fluoroacil11,12,13, methylmercury13

mevastatin15, potassium chloride15

bisindolylmaleimide16

methylmercury14,18,19,20,21, U012614,18,19,20,  
bisindolylmaleimide I14,15,18, lithium14,15,20, 
sodium orthovanadate20,22,23,  
retinoic acid14,18, brefeldin A20, 
flavopiridol20, cycloheximide2, paraquat2, 
diquat2, rotenone2, nocodazole2, 
colchicine2, vincristine2, narciclassine2

PBDE-9924, PBDE-4724

Stimulatory

albumax7,  
phorbol myristate acetate (PMA)8 

 

 

 

epidermal growth factor4 

 

domoic acid17

Y-2763220, HA-10772, blebbistatin2 

 

 

 

 

 

thyroxin25, PCB 11825

methylmercury1,2,3,4, mercury chloride5, valproic acid2,3, trichostatin A3, retinoic acid6,  
lead acetate6, cyclopamine6, bone morphogenetic protein (BMP)43
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tools” (Kadereit et al., 2012) would have a high probability of a 
positive effect within the context of a test system for a specific 
system’s endpoint. However, knowledge of the “mechanism” of a 
chemical is not a prerequisite for identifying an endpoint-specific 
control if there is sufficient evidence showing selective effects on 
an endpoint within a test system. The following criteria should 
be considered when identifying chemicals to be used as end-
point-specific controls: 

Peer-reviewed data 
Of primary importance is the previous demonstration in the 
peer-reviewed literature that a chemical alters the endpoint within 
a particular test system. Reliability of the effect is demonstrated 
by showing the full concentration-response behavior, providing 
evidence for the selectivity of the chemical for the endpoint of 
interest compared to other possible outcomes (e.g., cytotoxici-
ty, metabolic competence, etc.). Demonstration of mechanistic 
consistency is highly desirable, e.g., demonstration that a kinase 
inhibitor indeed inhibits the target kinase in the relevant concen-
tration range (in which it affects the system’s endpoint) in the 
given test system. Studies using a single concentration or without 
a concurrent measure of general cell health do not provide suffi-
cient data to identify endpoint-specific controls.

Demonstrated effects in multiple test systems 
The demonstration that a chemical meets the criteria listed above 
in more than one test system (e.g., different cell types) or under 
multiple conditions (e.g., different cell culture media or different 
periods of exposure) increases confidence in its application as 
an endpoint-specific control. Data for the same chemical should 
ideally be available from multiple laboratories.

Knowledge of chemical mechanisms 
Chemicals with a known target MIE or known actions at various 
levels of biological organization increase reliability for a selective 
effect on a particular neurodevelopmental endpoint. Knowledge 
of the signaling pathways underlying a fundamental neurobiolog-
ical process in a given test system can help to identify potential 
endpoint-specific controls. Sometimes test system development 
will require acquisition of this biological knowledge by screening 
of known pathways or identification of new pathways by broad 
screening approaches and use of omics methods.

Chemical causes same qualitative effect in vivo 
Some endpoint-specific controls may cause the same qualitative 
effect in an in vitro test system and in vivo, i.e., they may affect 
the fundamental neurodevelopmental process that is modelled in 
the in vitro test in a live developing mammal. The congruence 
of results from standard (in vivo) and alternative test methods 
(in vitro/lower model organisms) increases confidence that the 
chemical is selectively acting on a fundamental neurodevelop-
mental endpoint. However, this is not a mandatory criterion, as 
several good endpoint-specific controls may not be active in vivo, 
due to metabolism, toxicokinetic reasons or off-target toxicity. 
Based on these criteria, endpoint-specific control compounds for 
fundamental neurodevelopmental processes have been compiled 
(Tab. 3). 

that a chemical-induced change in the biological endpoint can be 
detected. To describe this phase of assay evaluation, the concept of 
endpoint-specific controls has been introduced. Endpoint-specific 
controls (also termed “endpoint-selective controls” or “mech-
anistic tool compounds”) (Crofton et al., 2012; Kadereit et al., 
2012; Leist et al., 2010) are chemicals that are known to reliably 
alter the endpoint of concern in a particular test system. Ideally, 
endpoint-specific control chemicals would be used to demonstrate 
both an increased and decreased response. They are selective 
in that within a known concentration range, the chemical will 
alter the primary test endpoint (e.g., precursor cell proliferation) 
without affecting general test system characteristics, including 
measures of cell viability. To continue with the example of prolif-
eration, an endpoint-specific control would decrease (or increase) 
the measures of DNA and cell number within a test system in the 
absence of a change in cell viability. For neural cell proliferation, 
such chemicals include those with a known mechanism (e.g., the 
DNA polymerase inhibitor aphidicolin or the spindle poison taxol) 
or those where the mechanism is unclear but for which there is 
substantial literature evidence demonstrating selectivity (e.g., 
cadmium for certain systems). 

Endpoint-specific controls are typically used in the initial eval-
uation of assay performance. In this sense, they are considered as 
“positive control” chemicals since they should be chosen based 
on prior knowledge that they alter the endpoint of concern under 
similar conditions using an established measurement. For exam-
ple, studies from multiple laboratories have demonstrated that 
the MEK (MAP kinase kinase) inhibitor U0126 decreases neurite 
length in PC12 cells in a concentration-dependent manner (Kano 
et al., 2002; Liu et al., 2006). Thus, U0126 was used as an end-
point-specific control to determine whether biochemical assess-
ment of GAP-43 was a suitable measurement for neurite outgrowth 
in PC12 cells (Das et al., 2004). In case the test system is capable of 
producing an endpoint response in both directions, endpoint-specif-
ic controls for both an increased response and decreased response 
are desirable. For example, neurite outgrowth in PC12 cells can be 
increased above that measured under standard culture conditions 
by treatment with the IP3 kinase inhibitor C5 (Eva et al., 2012). 
Once an endpoint-specific control for a particular test system has 
been identified and characterized, it can be used as a “within-as-
say” or “within-plate” reference control during chemical testing. 
This internal control helps to identify plate-to-plate or test-to-test 
variability and to establish historical response levels. This is done 
by including one or more replicates containing a concentration of 
the endpoint-specific control known to produce a measurable re-
sponse in the endpoint of interest without altering other outcomes. 
Moreover, such reference measurements can be used to define ac-
ceptability criteria for test results (on a per-plate or per-day basis).

2.2  Selection of endpoint-specific controls
The selection of endpoint-specific control compounds should 
be based both on the fundamental neurodevelopmental event 
being assessed and the test system being used. Prior knowledge 
of developmental neurobiology may identify signaling cascades 
required for the biological process evaluated in the test system 
and/or suggest pharmacological or drug-like chemicals that 
specifically target those signaling pathways. These “mechanistic 
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Tab. 4: Suggestions for negative tool compounds 
A set of potential negative controls has been assembled, and experience from multiple assays will be needed to further refine this list. 
Although absence of activity cannot be proven, compounds with a very high likelihood to not affect DNT assays are found amongst 
sugar derivatives, solvents and polymeric compounds that do not enter cells. These types of relatively trivial negative controls mainly 
provide an indication of assay robustness and background noise levels, but do not provide much information regarding assay specificity. 
Another group of potentially negative control compounds are those with defined pharmacologic effects or other measurable bioactivity 
that are unlikely to trigger DNT or to affect fundamental neurodevelopmental processes. However, compounds for which this information 
is known are not available for every test system. Notably, any compound has the potential to affect biological systems at high enough 
concentrations. Therefore, specific compounds are useful as negative controls only if used at appropriate concentrations. This may be 
the concentration known to be bioactive in other systems (e.g., clinically-observed plasma levels for drugs), the highest non-cytotoxic 
concentration or the highest concentration used for any positive control (e.g., 100 µM - 1 mM), as higher chemical concentrations are 
unlikely to occur in any in vivo situation. Note that compounds like nicotine may be good negative controls for some assays, e.g., cell 
migration, but endpoint-selective positive controls for other assays, e.g., neural network assays. Importantly, the absence of a drug’s 
specific target in a test system (e.g., warfarin), does not mean that there is not another, less characterized (or unspecific) target that still 
leads to effects on test endpoints. 

Compound Comments Reference

Anthracene Polycyclic aromatic hydrocarbon; may act via Ah receptor, but has  1 
 no target in many human DNT/NT test systems 

3-Imino-propionitrile Neurotoxicant requiring metabolic activation. Low toxicity if test  2 
 system lacks activating enzymes 

Metoclopramide, amitryptiline, ibuprofen,  Drugs that are acceptable during pregnancy 10 
metoprolol, sumatriptan, amoxicillin,   
diphenhydramine 

Pomalidomide Thalidomide analog, no DNT up to 200 µM 3

Omeprazole/warfarin Drugs with primary target only in stomach/liver; low likelihood  4, 5 
 to have DNT effects 

Captopril, dabigatran Drugs with extracellular targets –

Solvents: dimethylformamide, DMSO, glycerol Generally low toxicity up to mM range –

Sugar (derivatives): sorbitol, lactose, mannitol,  No pronounced bioactivity, sometimes not entering cells,  
glucosamine, diethylene glycol tolerated to mM level; belongs to “trivial” controls (low usefulness  
 for specificity calculations) with solvents 

Glyphosate Pesticide tested negative for DNT; low cytotoxicity –

Dinotefuran Neonicotinoid pesticide without DNT effects in many systems  6 
 (may however affect neuronal network assays) 

Fipronil Pesticide tested clearly negative for DNT; may be cytotoxic at > 10 µM; 7  
 may have indirect effects through cramp induction (zebrafish) 

Deprenyl Antidepressant/parkinsonian drug, inhibitor of monoamine oxidase-B  
 (1 mM range) –

Acetaminophen/paracetamol Negative in most systems up to mM levels, but has been discussed as  8, 9 
 in vivo DNT toxicant 

Saccharin Artificial sweetener, very low toxicity –

Trolox, zVAD-fmk Water-soluble vitamin E analog; caspase inhibitor (usable at 100 µM) –

Deferoxamine mesylate Iron chelator, tolerated at mM levels –

Furosemide, verapamil, levetiracetam, statins,  Drugs with low likelihood to affect DNT test systems due to their well  
seroquel, naloxon, atropine, ursodeoxycholic  characterized side effects and mode of action (may have direct effects  
acid, tiotropium on neural networks, though) 

RU38486, propylthiourcil, testosterone Hormone modifiers little relevant to in vitro DNT test system targets –

1Pei et al., 2015; 2Ryan et al., 2016; 3Mahony et al., 2013; 4Gill et al., 2009; 5Ekman et al., 1985; 6Sheets et al., 2016;  
7Krug et al., 2013a; 8Burdan, 2003; 9Reel et al., 1992; 10Niebyl and Simpson, 2008
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the test endpoint(s) of primary interest. Therefore, care needs to be 
taken that overall reduced cell viability or decreased cell survival 
is not interpreted as an effect on differentiation, neurite growth, 
migration or synaptic connectivity (all of which may also be af-
fected when viability is reduced). A straight-forward approach to 
this problem is testing of compounds only at concentrations de-
termined to not cause cytotoxicity in that test system. However, 
unambiguous definitions on how non-cytotoxic concentrations 
should be determined do not exist at present. To assess the speci-
ficity of a test system for direct-acting DNT compounds, it is nec-
essary to select a second group of negative control compounds, 
i.e., nonspecific controls known for their general cytotoxicity (Ka-
dereit et al., 2012; Leist et al., 2010). The concentration ratio of 
these compounds concerning specific (e.g., neurite growth) and 
nonspecific (e.g., cytotoxicity) test endpoints can be used to define 
a prediction model for test specificity (Krug et al., 2014; Stiegler 
et al., 2011); (iii) The third problem is related to toxicokinetics 
(including drug metabolism). Several compounds would (based 
on their biochemical activity) affect fundamental neurodevelop-
mental/biological processes relevant to DNT, but they are not rec-
ognized as DNT compounds in the literature or by in vivo testing, 
as they do not reach the fetus or the central nervous system at the 
doses used. Such compounds would be scored as false positives 
in in vitro assays, with respect to in vivo effects, but they would in 
fact be true positives with respect to the biology tested in the assay. 
Thus, a task for the future would be to provide background (toxi-
cokinetic) information on such effects and compounds.

3  Selection of high-quality DNT reference compounds

3.1  Selection procedure and rules
A group of neurotoxicology experts from government, academia 
and industry convened in Konstanz, Germany, (October, 2011) 
to identify chemicals for potential use as positive controls for 
developmental neurotoxicity. The selection was based on two 
major principles: (a) the list of chemicals was intended to be ex-
emplary, and not exhaustive. The initial selection of candidates 
did not follow a defined screening process or data base search 
algorithm, rather it was based on the subjective recall of the ex-
perts of frequently-quoted literature or their own work. The aim 
was to establish a list of 20-30 compounds useful for assay de-
velopment and evaluation; (b) after compilation of a primary list, 
compounds were vetted using pre-defined criteria (Box 2). The 
purpose of the selection criteria was to ensure that the selection 
process was based on scientifically sound studies. Moreover, the 
goal was to increase the likelihood that the selected positive con-
trols act as direct developmental neurotoxicants, and that adverse 
effects are not the indirect consequence of maternal toxicity. The 
supplementary table (https://doi.org/10.14573/altex.1604201s) 
contains extensive information on the low-effect-levels (LOELs) 
and no-effect-levels (NOELs) for offspring, maternal toxicity and 
the DNT endpoints affected. 

Candidate compounds that largely failed to meet these cri-
teria were eliminated from the list. Compounds that met many 
of the criteria were retained, and the criteria that were not met 
are flagged. In general, the supporting documentation for these 

2.3  Selection of negative controls
Once an assay has been established and has been shown to react to 
endpoint-specific controls, some basic evaluation of specificity is 
important. This requires compounds that have no effect in the test 
system. Such negative controls do not perturb the respective fun-
damental neurodevelopmental process or its underlying signaling 
pathways. The ideal negative controls can be defined as chemicals 
that are biologically (pharmacologically) active in other systems, 
but are not expected to have an effect on the endpoints of the test 
system under evaluation. To demonstrate absence of effect, a 
concentration should be used that shows a significant effect in 
other test systems. 

In practice, it is sometimes difficult to identify pharmacologi-
cally potent compounds devoid of any DNT effect. In such cases, 
the simplest type of negative controls are compounds that do not 
cross the cell membrane (such as mannitol). Groups of chemicals 
with good potential as negative controls are nutrients (e.g., ascor-
bic acid), chemicals that target other organ systems (e.g., the liver 
toxicant paracetamol), or chemicals with a known target (MIE) 
that is not expressed in the test system (e.g., the proton pump in-
hibitor omeprazol) (Kadereit et al., 2012). Alternatively, drugs that 
are recommended for use in pregnancy are an important resource, 
but each one requires individual evaluation. A few suggestions for 
negative controls for evaluation of DNT assays have been com-
piled (Tab. 4). For these compounds, no peer-reviewed papers re-
porting on their developmental neurotoxicity could be identified. 
Preference is given to compounds that have been actively tested 
for DNT, but were found experimentally to be negative.

2.4  How to deal with specificity
Many published test systems reach high levels of sensitivity for 
some known DNT compounds, but little information is avail-
able on specificity. This issue is directly related to the topic of 
compound selection for DNT test systems, as specificity of a test 
system is defined as the capacity to classify negatives correctly, 
i.e., specificity correlates with a low rate of false positives. Thus, 
selection and testing of negatives is an essential step in the optimi-
zation cycles of test system establishment. This task is not trivial, 
as it is not sufficient to simply select compounds for which there 
is currently no evidence that they trigger DNT. 

Three considerations are important for the selection of good 
negative controls for specificity testing: (i) First, the biological 
process modeled in a test system is not the same as the pheno-
type resulting from exposure to a DNT chemical in vivo (see TEP 
above). Therefore, ‘non-DNT chemicals’ may specifically affect a 
test system (see endpoint-specific controls above), and the task to 
find real negatives is often difficult, and it needs to be determined 
for each test system; (ii) The second consideration is the potential 
for interaction of test endpoints. For instance, viability and neurite 
growth are two endpoints in a given test system, but they are not 
independent of one another. For example, some xenobiotics may 
affect a specific test endpoint (neurite growth) indirectly by acting 
on cell viability. Thus, such compounds would appear as positive 
hits, although they are true negatives with respect to the primary 
biological process (neurite growth) examined in the test system. 
The most frequent of these phenomena is decreased cell viability 
by a nonspecific test compound, which subsequently influences 

https://doi.org/10.14573/altex.1604201s


    Aschner et Al.

ALTEX 34(1), 2017 61

(a) At least two peer-reviewed papers from two independent 
groups of investigators reporting evidence of DNT. For hu-
man data: only positive meta-analysis of multiple studies.

(b) DNT evidence from in vivo mammalian models with ex-
posures during gestation and/or lactation (either direct pup 
exposure or exposure of the dam) prior to weaning; robust 
human epidemiological data also considered.

(c) Exposure is to the test chemical itself and not to formu-
lations, its metabolites or mixtures (Shafer et al., 2005; 
Shafer and Crofton, 2011).

(d) Outcomes were neurobehavioral, neurophysiological, 
functional (including pharmacologic responses), brain 
anatomic or pathology findings not due to acute effects of 
exposure. Findings based solely on neurochemical, gene 
expression or biochemical endpoints were excluded from 
consideration.

(e) The statistical unit (e.g., individual pups or litters) is re-
ported. For animal studies with gestational or early post- 
natal exposure (either lactational or direct dosing), the 
litter is the experimental unit (DeSesso et al., 2009; Holson 
et al., 2008). Violation of this criterion was accepted but 
flagged, as it was not always possible to distinguish be-
cause of poor study design and/or poor reporting standards.

Box 2: Criteria used to select chemicals as positive DNT controls
Note: the letters refer to the superscripts in Table 5.

(f) Minimal sample size is reported and is at least n = 6 (i.e., 
6 litters/dose group for gestational or early postnatal expo-
sure studies).

(g) Studies were not included if the route of exposure was 
intracerebral injection. Preference was given to studies us-
ing human-relevant routes of exposure (i.e., oral, dermal, 
inhalation).

(h) Studies should be based on at least 2 dose-levels; some 
violation of this criterion was allowed but flagged, since 
single dose studies in one publication may often build on 
previous experience of the group with multiple doses, with 
subsequent studies based on the most appropriate dose.

(i) Relationship of maternal toxicity versus DNT: Ideally, 
DNT should occur at lower doses than maternal toxicity. 
Studies in which maternal toxicity occurred at the same 
dose as DNT, or where this was not reported, were flagged.

(j) Relationship between DNT and general toxicity: ideally, 
DNT should occur at lower/same concentrations than gen-
eral toxicity. Studies in which general toxicity/mortality 
occurred at the same concentration as DNT, or in which 
this was not reported, were flagged/highlighted. Studies 
where this relationship was not reported were also flagged.

Tab. 5: Compounds triggering DNT in vivo 
An initial list of compounds was collected from the literature by way of subject expert suggestions. This list was intended to be exemplary 
and not exhaustive or even complete. In a second step, each compound was scrutinized for published literature supporting its DNT 
activity. The criteria described in Box 2 were applied to evaluate supporting literature (supplementary file at http://dx.doi.org/10.14573/
altex.1604201s). As an additional criterion, we used “strong evidence for DNT effects in humans” as documented by well-recognized 
meta-analyses or well powered studies (column ‘Hu’, for human evidence). Compounds were retained in the list when at least two 
publications from two different laboratories in support of their DNT activity were identified. Published studies were categorized into 
one of four certainty groups: a) animal study that meets all criteria as described in Box 2 (score 3); b) study describes human data with 
statistically representative populations or study represents meta-analysis of human findings (score: 3), c) animal study in which one 
criterion is not met (score: 2); d) animal study in which 2-4 criteria are not met (score 1). For the classification of papers, criteria 5 and 8 
described in Box 2 were not included, but they are indicated for transparency. For the assessment of the certainty of the developmental 
neurotoxic effects of the selected compound, the scores were averaged. Compounds with a score of 2.5 or higher are presented in dark 
green, compounds with a score of 1.5 - 2.5 are presented in light green. Compounds with lower scores were eliminated. The superscript 
numbers (explained in Box 2) for each publication indicate the selection criteria that are not met. The comment field gives an indication of 
the endpoints used in the studies. If different types of endpoints were used they are indicated in the sequence of the listed publications, 
separated by a semicolon. 

Compound  Reference  Additional comments  Hu 

Arsenic  5; 6e,f; 7f,h  Behavior  2 

Cadmium  8e,i; 9  Behavior    

Chlorpromazine  10e; 11f,h,i  Behavior; seizure threshold    

Chlorpyrifos  12; 13  Brain cholinesterase inhibition; brain weight and morphometry  3 

Cocaine  14; 15h,j; 16h,j  Human; behavior and morphology  

Dexamethasone  17 e,f,i; 18e,f  Behavior; behavior, brain chemistry; human: cortisol values,  19 
  stress response   

Diphenylhydantoin (Phenytoin)  20i; 21i  Behavior; behavior, eye opening    

http://dx.doi.org/10.14573/altex.1604201s
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Compound  Reference  Additional comments  Hu 

Domoic acid  22e; 23; 24e,f,h,i  Conditioned place preference, activity; memory, behavior; neurochemistry    

Ethanol  25; 26i,j; 27  Human: behavior; behavior, learning; attention; human: morphology  4, 28 

Haloperidol  29e,f,h; 30h; 31h  Behavior/cognitive    

Heroin  32e,h,i; 33e,h,i; 34h,i  Human: behavior  4 

Hexachlorophene  36e,h,j; 37  Human: neuropathology; vacuolation of brain white matter  35 

Ketamine  38e,j; 39; 40h  Motor activity, learning, memory; increased apoptosis; behavior,  
  spatial learning    

Lead  41f,i; 42e,i; 43f,I,j  Human: behavior; mRNA expression, brain enzymatic activity;  1 
  brain chemistry   

Lindane  44f,I,j; 45e,h  Behavior    

MAM  49h,j; 50f; 51h,i,j  Regional brain weight; increased innervation, neurochemistry;  
  brain morphometry    

Maneb  52e,i; 53h  Behavior; behavior, morphology (in vivo cell count)    

Manganese  46e,f,h,i; 47e,h; 48f,j  Behavior, brain chemistry  3 

MDMA  54; 55h,i  Behavior; neuropathology; human: cognition; human:  56, 57 
  mental/motor development   

Methanol  58h,I,j; 59h; 60e,h,i  Behavior    

Methyl mercury  61; 62e,f,h; 63i  Human: behavior; behavior; neurobiochemistry, transcriptomics  1 

MPTP  64e,h; 65e  Behavior, brain neurochemistry; behavior    

Nicotine  66e,h; 67h  Behavior    

Paraquat  68e,f, 69h  Behavior; brain neurochemistry    

PBDE  70e; 71h; 72e,h  Behavior; behavior, pharmacologic challenge; electrophysiology  3 

PCB  73; 74  Human: behavior, brain morphometry; behavior  1 

Perfluorate - PFOA  75e,f; 76e,h  Behavior    

Perfluorate - PFOS  77e,i,j; 78e,i; 79e,j  Hippocampus structure; behavior, motor activity, learning, memory    

Terbutaline  83h; 84e  Behavior; behavior, neuroinflammation   

Toluene  85e; 86e  Behavior; brain weight  1 

Trans retinoic acid  80i; 81i,j; 82h  Behavior; behavior; motor coordination, learning, brain morphology  

Triethyl-tin  87j; 88sj  Behavior, brain cell count; brain weight, myelin basic protein    

Valproic acid (VPA) 89; 90e  Behavior    

1Grandjean and Landrigan, 2006; 2Tolins et al., 2014; 3Grandjean and Landrigan, 2014; 4Yolton et al., 2014; 5Martinez-Finley et al., 2009; 
6Chattopadhyay et al., 2002; 7Rodriguez et al., 2002; 8Baranski, 1984; 9Ali et al., 1986; 10Robertson et al., 1980;  
11Golub and Kornetsky, 1975; 12Johnson et al., 2009; 13Maurissen et al., 2000; 14Mactutus et al., 2011; 15Kabir et al., 2014;  
16Lu et al., 2012; 17Hossain et al., 2008; 18Benesova et al., 1999; 19O’Connor et al., 2013; 20Weisenburger et al., 1990;  
21McCartney et al., 1999; 22Doucette et al., 2003; 23Levin et al., 2005; 24Dakshinamurti et al., 1993; Lucchi et al., 1983;  
25Oshiro et al., 2014; 26Lucchi et al., 1983 ; 27Brys et al., 2014; 28Fryer et al., 2012; 29Watanabe et al., 1985; 30Wolansky et al., 2004; 
31Rosengarten and Quartermain, 2002; 32Lasky et al., 1977; 33Yanai et al., 1992; 34Wang and Han, 2009; 35Shuman et al., 1974;  
36Ulsamer et al., 1975; 37Itahashi et al., 2015; 38Fredriksson et al., 2007; 39Paule et al., 2011; 40Zhao et al., 2014; 41Petit et al., 1992;  
42Hu et al., 2008; 43Reddy et al., 2007; 44Johri et al., 2007; 45Rivera et al., 1990; 46Lown et al., 1984; 47Kristensson et al., 1986;  
48Deskin et al., 1981; 49Sullivan-Jones et al., 1994; 50Cattabeni et al., 1989; 51de Groot et al., 2005; 52Sobotka et al., 1972;  
53Thiruchelvam et al., 2002; 54Broening et al., 2001; 55Thompson et al., 2012; 56McElhatton et al., 1999; 57Singer et al., 2012;  
58Stern et al., 1997; 59Infurna and Weiss, 1986; 60Aziz et al., 2002; 61Elsner et al., 1988; 62Sakamoto et al., 2002; 63Radonjic et al., 2013; 
64Ochi et al., 1991; 65Fredriksson et al., 1993; 66Levin et al., 1993; 67LeSage et al., 2006; 68Fredriksson et al., 1993;  
69Thiruchelvam et al., 2002; 70Viberg et al., 2003; 71Dufault et al., 2005; 72Dingemans et al., 2007; 73Yang et al., 2009; 74Sable et al., 2006; 
75Johansson et al., 2008; 76Onishchenko et al., 2011; 77Zeng et al., 2011; 78Butenhoff et al., 2009; 79Johansson et al., 2008;  
80Nolen, 1986; 81Holson et al., 1997; 82Coluccia et al., 2008; 83Owens et al., 2011; 84Zerrate et al., 2007; 85Hass et al., 1999;  
86Burry et al., 2003; 87Freeman et al., 1994; 88O’Callaghan et al., 1983; 89Vorhees, 1987; 90Schneider and Przewlocki, 2005
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anisms that may be used to build or optimize other test systems, 
or translation to human studies; and (v) characterizing the MOA 
of known DNT toxicants to evaluate which AOP KE are reflected 
by the test system, and for which types of mechanisms the test 
is applicable. For such activities, a set of highly relevant (i.e., 
high confidence that they indeed trigger DNT in vivo) control 
compounds is essential.

For instance, one traditional way to evaluate predictivity would 
be to split the pool of DNT compounds into a training set and 
a testing set. Using the data generated with the training set plus 
negative controls, a prediction model would be established. The 
validity of this model, and its performance (accuracy, specificity, 
sensitivity) would then be tested by blinded measurement of the 
testing set. In a variation of this approach, the splitting of the com-
pounds into training and test sets would be done in silico in many, 
or in all possible ways, after all compounds have been tested.

Introduction of new endpoints or identification of biomarkers 
(Krug et al., 2014; Stiegler et al., 2011; Zimmer et al., 2012) re-
quires the availability of a relevant set of test compounds that al-
lows correlation studies from one system or from one endpoint to 
another. To an even greater extent, the same holds true for iden-
tification of general toxicity mechanisms (Fritsche et al., 2005; 
Gassmann et al., 2010, 2014; Langeveld et al., 2012; Lein et al., 
2007; Waldmann et al., 2014; Yang et al., 2014; Zimmer et al., 
2011a) or for development of toxicant classifiers (Krug et al., 
2013b; Rempel et al., 2015), as the selected compounds are the 
main anchoring point of such studies.

4  Challenges encountered during the search for  
reference compounds

4.1  Research bias
There are specific challenges in selecting reference compounds 
for DNT based on criteria of high quality data and statistically 
sound human or animal studies. 

Concerning animal data, the studies are often old, and the design 
and reporting standards are not up to current demands for docu-
menting a gold standard reference compound. Some studies only 
show a (non-significant) trend or a possibility that a compound 
is a DNT toxicant. Nevertheless, such data may have important 
implications for further handling of such compounds. Such initial 
findings may have prevented further studies to establish statistical 
significance of the effects and to meet the quality standards estab-
lished here for compound selection. This may have been due to 
several reasons. For instance, institutional or regulatory approv-
al for animal experimentation is hard to obtain if an experiment 
is mainly confirmatory of previous findings (even when these 
are not of high quality). Another reason is that funding is hard to 
obtain for confirmatory studies that differ from earlier findings 
mainly in statistical power and rigor of design.

Concerning human data, a similar situation is frequently ob-
served, i.e., initial weak evidence makes it difficult to obtain fur-
ther, more definite evidence. The major reason here is that once a 
potential hazard has been documented, measures will be taken to 
reduce the risk, i.e., human exposure to the compound in question 
is kept to a minimum. Therefore, obtaining epidemiological data 

compounds derives from published animal studies, but in some 
cases, human epidemiological evidence based on multiple stud-
ies was available as additional supportive evidence. Most of the 
evidence on human effects is derived from authoritative reviews 
(Grandjean and Landrigan, 2006, 2014) that compiled available 
evidence for DNT effects in a systematic way. However, complete 
weight-of-evidence evaluations are lacking for most compounds. 
For example, there is still controversy in the field as to the rele-
vance of DNT effects of chlorpyrifos at human exposure levels 
(Burns et al., 2013; Li et al., 2012; Mount et al., 2009). 

Note, that the list of DNT reference chemicals (Table 5 and 
supplementary table at https://doi.org/10.14573/altex.1604201s) 
should be considered a sample list of positive control chemicals 
that have the potential to cause developmental neurotoxic effects 
in animals at some dose level, which may or may not be rele-
vant to human exposure levels. Of the 33 compounds listed, the 
majority (n = 29) overlap with the more extensive list assembled 
by scientists from the EPA (Mundy et al., 2015). The non-over-
lapping references suggested here are the pesticide lindane, the 
recreational drug 3,4-methylenedioxy-N-methamphetamine, and 
the groups of perfluorinated aliphatic compounds comprising per-
fluoro-octanoic acid (PFOA) and perfluoroactane-sulfonic acid 
(PFOS).

 The list of reference DNT compounds presented here requires 
an evaluation of its applicability by end-users, and this implies 
elimination or addition of compounds for specific purposes or ad-
ditional literature searches on specific compounds within the list. 
A future step may be the compilation of systematic reviews on 
each of the compounds, with respect to the weight of evidence that 
they are developmental neurotoxicants in animals. For instance, 
here only positive evidence for DNT effects was considered. It 
was neither weighed against the entirety of the available literature 
on a given compound (which may also include negative studies), 
nor did we consider that there may be a publication bias (with 
negative findings less likely to be published). A systematic review 
would also provide information on whether a compound acts di-
rectly as a developmental neurotoxicant as well as on the role of 
metabolism in toxifying or detoxifying the listed chemicals. This 
consideration is pivotal for chemical use in in vitro systems as 
well as alternative species models in which metabolism can differ 
from that of humans. For instance, chlorpyrifos may need to be 
converted to chlorpyrifos-oxon (Yang et al., 2008), heroin may 
fail to show effects in systems that lack deacetylases that catalyze 
the formation of the final toxicant morphine, and 1-methyl-4-phe-
nyl-1,2,3,6-tetrahydropyridine (MPTP) will fail to show any ef-
fect unless it is metabolized by astrocytic monoamine oxidase to 
1-methyl-4-phenylpyridinium (MPP+) (Efremova et al., 2015; 
Schildknecht et al., 2015).

3.2  Use of the DNT compound set
After setup of a test, and evaluation of its technical performance 
and reproducibility on the basis of endpoint-specific controls, the 
next steps involve, amongst others: (i) gathering information on 
the predictivity of the test; (ii) establishing a prediction model; 
(iii) introducing additional endpoints and/or adjusting parame-
ters for increased rate of data collection or higher throughput; 
(iv) identifying biomarkers, measurable KE or signaling mech-
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noin can cause great disturbances of embryonic development. It is 
assumed that most effects of isotretinoin (13-cis-retinoic acid) are 
mediated by isomerization to all-trans-retinoic acid. Concerning 
this metabolic prerequisite, the situation has been described as 
follows: “The insensitive species (rat, mouse) eliminate the drug 
rapidly through detoxification to β-glucuronide; also, placental 
transfer is limited in these species. On the other hand, in sensi-
tive species (primates), the drug is predominantly metabolized to 
the active 13-cis-4-oxo-retinoic acid; placental transfer is more 
extensive here” (Nau, 1986). 

The two above examples clearly demonstrate the difficulties 
with compiling a definite and exhaustive list of DNT chemicals. 
Likely there are other compounds that could be included in the 
list, and there are likely many compounds that are DNT toxicants 
but that lack sufficient animal or human data to be considered gold 
standard reference compounds for test evaluation.

4.3  Examples of other compounds not  
considered here
The test set presented here may be complemented by additional 
compounds as determined by personal preference or scientific 
needs. They may be selected from a recently-published 100 com-
pound collection (Mundy et al., 2015) or from newly emerging 
publications on DNT. In all cases, it is advisable to apply the 
criteria delineated in Box 2 to additional compounds. Amongst 
the more recently discussed compounds with a potential to cause 
DNT is paracetamol (Brandlistuen et al., 2013; Liew et al., 2014; 
Viberg et al., 2014), but it is not clear yet whether this effect is 
direct or whether it requires metabolic activation. There are also 
indications that the food-borne non-proteinogenic amino acid 
BMAA affects neurodevelopment (Karlsson et al., 2015). The 
same is true for acrylamide, a chemical generated from amino 
acid precursors during food processing (Duarte-Salles et al., 
2013; Pedersen et al., 2012). However, more information regard-
ing specificity is required; for example, acrylamide’s effects on 
head circumference and brain weight may also be indirect conse-
quences of toxicity. Also, not included here is the developmental 
toxicant cyclopamine (Cooper et al., 1998), a plant ingredient 
with broad developmental effects that is listed amongst the end-
point-specific controls for neurodifferentiation assays.

5  The path forward

5.1  How can we get more mechanistic information  
on DNT compounds?
One of the major problems in developing and evaluating DNT 
assays is the fact that there is a paucity of information regarding 
the effects of DNT compounds on fundamental neurobiologi-
cal processes in humans. This precludes an evaluation of test 
predictivity based solely on the correlation of its results with 
in vivo findings (Leist et al., 2012). One way forward would 
involve the three following activities: (a) obtaining more 
knowledge on modes of action of DNT chemicals by profiling 

on compounds with a suspected DNT hazard is particularly diffi-
cult. A way around the problems described above could be the in-
creased use of a battery of alternative methods that is sufficiently 
evaluated for its performance and predictivity.

4.2  Phenytoin and isotretinoin exemplify challenges 
in obtaining high quality literature data
The above described research bias is demonstrated by two sus-
pected DNT compounds, phenytoin and isotretinoin. They did not 
fully fulfill the statistical and documentation criteria identified in 
Box 2, but they were included (see details below) in our com-
pound collection (Tab. 5) with indication of the limitations of the 
available published literature. 

Diphenylhydantoin (phenytoin) is a sodium channel blocker 
used as an anticonvulsant antiepileptic drug. In the literature, a 
malformation called “fetal hydantoin syndrome” is observed in 
children exposed to phenytoin during fetal development. Fetal 
hydantoin syndrome is associated with cerebellar malformations 
and psychomotor dysfunction after intrauterine exposure (exten-
sively reviewed by Vorhees, 1994). Several animal studies are 
suggestive of hydantoin being a DNT toxicant. Described effects 
range from impaired synapse function (Forcelli et al., 2012) and 
neurodegeneration (Asimiadou et al., 2005) to general neurotox-
icity (Hatta et al., 1999). However, the studies fail to fulfill the full 
set of criteria defined by the workshop participants for a DNT ref-
erence compound (Box 2, Tab. 5). There are also several reports 
that suggest phenytoin is a human DNT toxicant, but a review 
(Nicolai et al., 2008) covering 56 studies concerning teratogenic 
effects of antiepileptic drugs concluded: “The identified studies 
do not allow definite conclusions. The possibility of neurodevel-
opmental delay, behavioural disorders, or learning disabilities 
as an outcome of in utero exposure to AEDs needs to be consid-
ered seriously. The literature however does not provide evidence 
for a valid risk estimate”.

Isotretinoin is one of the isoforms of retinoic acid (usually the 
generic name retinoic acid refers to the all-trans isoform, while 
isotretinoin has one cis-bond at position 13). It is the active in-
gredient in the highly effective antiacne drug Accutane and is 
suspected to cause depression and suicide in adults, and neonatal 
malformations. From 1982 to 2006, more than 2,000 isotretinoin 
users became pregnant. Amongst them, a high frequency of spon-
taneous or elective abortions was observed. As of 2002 – the year 
generic Accutane was approved – the FDA had received reports of 
172 babies born with a congenital defect or anomaly after mater-
nal use of Accutane1, 2. They quote: “Accutane is clearly a potent 
human teratogen that causes malformation of the central ner-
vous system, cardiovascular system and facial structures”. This 
is, however, not supported by animal studies that meet the quality 
criteria set out here. The reason is interesting and very instructive. 
Already in the ’90s it became clear that the teratogenicity of some 
compounds depends on pharmacokinetics (Nau, 1986). Isotreti-
noin (Nau, 2001) is one of the drugs that shows negligible effects 
in mouse and rat (Kochhar and Penner, 1987; Kamm, 1982), while 
in monkeys (Fantel et al., 1977) and (possibly) humans, isoreti-

1 http://www.drugwatch.com/accutane/side-effects.php
2 http://www.cdc.gov/mmwr/preview/mmwrhtml/00000310.htm 
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5.3  How do we link test systems 
in vitro to DNT in vivo? 
The usual evaluation of a test system addresses three domains: 
reproducibility, biological relevance and correlation with in vivo 
data (= predictivity). Determination of predictivity is only pos-
sible to a limited extent because of the lack of large numbers of 
well-characterized DNT chemicals, thus, more focus will need to 
be put on the first two domains (Basketter et al., 2012; Leist et al., 
2012). A significant problem with the existing in vitro test systems 
for the identification of developmental neurotoxicants is the lack 
of explicit guidance on how to standardize DNT endpoints. Clear 
quality control procedures would be required for in vitro models 
to produce results that are comparable across laboratories, and 
with the ultimate goal to use data for regulatory purposes. To 
address biological relevance, several different approaches may 
be combined (Alepee et al., 2014; Hartung et al., 2013; Smirno-
va et al., 2015; van Vliet et al., 2014). One approach is directly 
related to the selection of test compounds: the understanding of 
the response to tool compounds and mechanistically consistent 
responses to chemically-related compounds would be helpful to 
evaluate the biological relevance of the test system. Similar types 
of information for in vivo DNT, including information on the tem-
poral evolution of the damage, would be very helpful.

5.4  How can the information obtained 
using DNT reference compounds be applied 
to develop more predictive assays? 
The selection of chemicals that can serve as endpoint-specific 
controls will facilitate quality control and standardization of in 
vitro models. Systems would be expected to react in a predictable 
manner to positive and negative controls before they can be used 
further for chemical testing. Moreover, the study of DNT refer-
ence compounds compiled here will create an important database 
for the characterization of new test systems, and for elucidating 
whether the molecular machinery present in a cell system is ca-
pable of responding to known developmental neurotoxicants as 
expected. 

The understanding of the pathways-of-toxicity/AOP induced 
by DNT reference chemicals could serve as a template to design 
assays that will be based on the KE that determine outcome. Such 
assays may have reduced complexity and higher throughput, and 
they would directly address selected AOP of relevance for DNT. 
To apply the AOP concept to DNT evaluation, a clear description 
of the measurable parameters is required to study each KE (Bal-
Price et al., 2015a, 2015b; Edwards et al., 2016; Perkins et al., 
2015; Tollefsen et al., 2014).

With respect to the selection of chemicals and their character-
ization in DNT in vitro test systems, applying the AOP concept 
will provide important information for the development of struc-
ture-activity relationships (SAR) and “read-across”, i.e., using 
information from one chemical to predict the effects for another 
one, that is structurally related. This will allow grouping and rank-
ing of chemicals according to their modes of action and potency 
(Dreser et al., 2015; Ramirez et al., 2013). 

Based on comparing data generated across multiple diverse test 
systems, the most sensitive endpoints and the most reliable test 

them in a broad set of well characterized and robust in vitro test 
systems (Behl et al., 2015; Zimmer et al., 2014; Daneshian et 
al., 2016; Hirsch et al., 2016; Pallocca et al., 2016); (b) optimiz-
ing in vitro test systems by using endpoint specific controls and 
already well-characterized DNT compounds; (c) using steps 
(a) and (b) in an iterative fashion to optimize test systems and 
test methods. 

The path forward also involves increased greater understanding 
of the biology underlying the test systems, understanding why 
certain compounds work or do not work, and learning exactly 
why DNT reference compounds work in some systems, but not 
in others. This process requires mechanistic interventions, fol-
low-up on pathways-of-toxicity and studies of groups of related 
compounds (Dreser et al., 2015; Krug et al., 2013a,b; Zimmer et 
al., 2011a). Most likely, test systems will need to be characterized 
by many different analytical approaches to derive the needed in-
formation. Limitation to a single, toxicologically-relevant end-
point will not be sufficient in the establishment and optimization 
phase of a test system.

5.2  How must we deal with adversity vs adaptation?
For all in vitro assays, it is difficult to distinguish between 
changes that are linked to adverse effects in vivo, and alterations 
that are adaptive or counter-regulators (Blaauboer et al., 2012). 
An overall solution to this challenge will be a major issue for 
the future. In the context of compound selection, a few points 
deserve immediate attention and action. The first and foremost 
is compound concentration. The questions of specificity and 
adversity cannot be linked to compounds as such, but only to 
a compound at a given concentration (Waldmann et al., 2014; 
Daston et al., 2014). Although this appears trivial, it has hitherto 
been scarcely considered when specificity and sensitivity of an 
assay have been evaluated. In addition, most screens have up to 
now been performed at fixed compound concentrations that are 
not related to the pharmacological potency of the compounds 
screened. A change of this practice has been suggested for 
the ESNATS test battery (Pallocca et al., 2016; Zimmer et al., 
2014), for which initial concentrations used for testing have 
been based on a biological/mechanistic rationale. In addition, 
for many omics studies the chosen concentration is anchored 
to a biological effect (e.g., maximum non-cytotoxic concentra-
tion). In practice, the task of determining which concentrations 
are meaningful and correspond to in vivo effects is not trivial, 
and they can be quite difficult to determine (Westerink, 2013). 
A future useful step for the field would be the drafting of a con-
sensus document addressing the feasibility of basing concen-
trations for DNT testing on reverse pharmacokinetic modelling 
(Bosgra et al., 2014). One of the approaches for defining adver-
sity would be based on measuring concentration-dependency 
of many endpoints in the system and relating these dependen-
cies to the concentration known to be associated with adverse 
effects in vivo. Another useful approach would be to not only 
rely on measurements at a defined time point at the end of the 
incubation, but to follow the temporal evolution of changes in 
the system in the absence versus presence of test compounds 
(Dreser et al., 2015). 



Aschner et Al.

ALTEX 34(1), 201766

proate syndrome. Hum Mol Genet 21, 4104-4114. https://doi.
org/10.1093/hmg/dds239

Balmer, N. V. and Leist, M. (2014). Epigenetics and transcrip-
tomics to detect adverse drug effects in model systems of hu-
man development. Basic Clin Pharmacol Toxicol 115, 59-68. 
https://doi.org/10.1111/bcpt.12203

Balmer, N. V., Klima, S., Rempel, E. et al. (2014). From transient 
transcriptome responses to disturbed neurodevelopment: Role 
of histone acetylation and methylation as epigenetic switch be-
tween reversible and irreversible drug effects. Arch Toxicol 88, 
1451-1468. https://doi.org/10.1007/s00204-014-1279-6

Baranski, B. (1984). Behavioral alterations in offspring of female 
rats repeatedly exposed to cadmium oxide by inhalation. 
Toxicol Lett 22, 53-61. https://doi.org/10.1016/0378-
4274(84)90045-6

Barone, S., Jr., Das, K. P., Lassiter, T. L. et al. (2000). Vulnerable 
processes of nervous system development: A review of mark-
ers and methods. Neurotoxicology 21, 15-36. 

Basketter, D. A., Clewell, H., Kimber, I. et al. (2012). A roadmap 
for the development of alternative (non-animal) methods for 
systemic toxicity testing – t4 report*. ALTEX 29, 3-91. https://
doi.org/10.14573/altex.2012.1.003

Behl, M., Hsieh, J. H., Shafer, T. J. et al. (2015). Use of alterna-
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retardants for potential developmental and neurotoxicity. 
Neurotoxicol Teratol 52, 181-193. https://doi.org/10.1016/j.
ntt.2015.09.003
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ro-immuno-teratogenicity of drugs used in neonatal pharma-
cotherapy in relation to the ontogenic stage at the time of their 
administration. Gen Physiol Biophys 18, Spec No, 21-27. 

Berger-Sweeney, J. and Hohmann, C. F. (1997). Behavioral 
consequences of abnormal cortical development: Insights 
into developmental disabilities. Behav Brain Res 86, 121-142. 
https://doi.org/10.1016/S0166-4328(96)02251-6

Blaauboer, B. J., Boekelheide, K., Clewell, H. J. et al. (2012). 
The use of biomarkers of toxicity for integrating in vitro hazard 
estimates into risk assessment for humans. ALTEX 29, 411-
425. https://doi.org/10.14573/altex.2012.4.411

Bosgra, S., van de Steeg, E., Vlaming, M. L. et al. (2014). Predict-
ing carrier-mediated hepatic disposition of rosuvastatin in man 
by scaling from individual transfected cell-lines in vitro using 
absolute transporter protein quantification and PBPK model-
ing. Eur J Pharm Sci 65, 156-166. https://doi.org/10.1016/j.
ejps.2014.09.007

Bouhifd, M., Andersen, M. E., Baghdikian, C. et al. (2015). 
The human toxome project. ALTEX 32, 112-124. https://doi.
org/10.14573/altex.1502091

Brandlistuen, R. E., Ystrom, E., Nulman, I. et al. (2013). Prenatal 
paracetamol exposure and child neurodevelopment: A sibling-
controlled cohort study. Int J Epidemiol 42, 1702-1713. https://
doi.org/10.1093/ije/dyt183

Breier, J. M., Radio, N. M., Mundy, W. R. et al. (2008). Devel-
opment of a high-throughput screening assay for chemical 
effects on proliferation and viability of immortalized human 
neural progenitor cells. Toxicol Sci 105, 119-133. https://doi.
org/10.1093/toxsci/kfn115

systems could be selected for a test battery as the basis for an  
IATA (see Box 1). One of the steps forward in this direction would 
be the establishment of high-throughput screening assays. The 
data from such assays could be used for chemical prioritization, 
screening of chemicals for further in vivo testing (Bal-Price et al., 
2012; Crofton et al., 2012, 2014; Judson et al., 2014), obtaining 
information on mixtures of compounds, integration of the data by 
systems toxicology methods (Hartung and McBride, 2011; Sauer 
et al., 2015), and reducing reliance on in vivo testing for regulato-
ry decision-making.
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