Lawrence Berkeley National Laboratory

LBL Publications

Title DC Power Distribution in Buildings

Permalink https://escholarship.org/uc/item/6b4446v1

Author Gerber, Daniel

Publication Date 2019-08-11

Peer reviewed

DC Power Distribution in Buildings

Tesla

War of the Currents: Why We Chose AC

Edison

- Back then, AC made sense
 - Transformers require AC
 - AC generation: coal, nuclear, gas
 - AC loads: fixed speed motors, incandescent lamp, resistive heating

Why We Chose AC Transformers require AC

- Long-distance power distribution requires high voltage to overcome I²R wire loss
- In the 1880s, voltage conversion required transformers

Why We Chose AC AC Generation

- Coal, nuclear, and natural gas plants contain turbines connected rotating equipment
- Induces current in stator (or rotor) coils
- Rotor (or stator) is locked to centralized grid at 60 Hz

Why We Chose AC Traditional AC Loads

- Traditional loads interface well with AC
- Incandescent lights
- Resistive electric heating
- Fixed speed motor loads such as compressors, fans, machinery

Why DC Distribution? Power Electronics

• Allows for DC conversion

- Often more economical than 60 Hz transformer
- Allows precise current control

Why DC Distribution? DC Generation

- Edison
- Renewable Generation: solar and wind are natively DC
- Electrical storage: batteries are natively DC
- Reduces DC/AC conversions in buildings with onsite generation and storage

Why DC Distribution? DC Loads

- LEDs lighting
- Electronics
- EV charging
- Variable speed BLDC motors in HVAC and water heating
- Induction stoves
- Many DC power standards: USB, Ethernet

Edison

Why DC Distribution? Advantages over AC: Efficiency, Cost, Reliability

Edison

- Higher **efficiency** in Zero Net Energy (ZNE) buildings with large solar and storage capacity
- Simple power electronics: better **cost** and **reliability**
- **Reliable** microgrid islanding through power electronics allows for low-cost disaster resiliency
- Improved power quality
- **Communications** via combined data and power
- Plug loads safe to touch, allows cost reduction in wiring

Office Building with AC Distribution

Office Building with DC Distribution

US Department of Energy Clean Energy Research Center (CERC) Program

Research Goal: Compare AC and DC buildings

- <u>Simulations to determine</u>
 <u>efficiency savings</u>
- Conduct techno-economic analysis
- Experimental validation

Efficiency Results

- 12% baseline efficiency savings with DC
- Most savings with large solar and battery
- Dominant AC loss: wall adapters
- Dominant DC loss: grid-tie inverter

US Department of Energy Clean Energy Research Center (CERC) Program

Research Goal: Compare AC and DC buildings

- Simulations to determine efficiency savings
- <u>Conduct techno-economic analysis</u>
- Experimental validation

Techno-Economic Analysis

- Results determined from market cost data, grid tariffs, and Monte-Carlo analysis
- First cost is higher for DC
- With significant efficiency savings, the payback period is less than a year

Description	Network	Average LCC Savings (US\$)
Total First Cost (\$)	AC	252,000
	DC	301,000
Net Annual Electricity	AC	177,000
Consumption (kWh/yr)	DC	101,000
Average LCC Savings (\$)	AC vs. DC	61,000
% Cases with Net Benefit	AC vs. DC	>90%
Average Payback Period (yr)	AC vs. DC	~1

$$LCC = First Cost + \sum_{y=1}^{Lifetime} \frac{Operating Cost(y)}{(1 + Discount Rate)^y}$$

 $Payback = \frac{First Cost_{DC System} - First Cost_{AC System}}{Operating Cost_{AC System} - Operating Cost_{DC System}}$

California Energy Commission (CEC) Direct DC Plug Loads for ZNE Buildings

Research Goals

- Modify AC plug loads for direct-DC input
- Demonstrate savings in consumption and cost

Task Lamp 15 V USB-C ~5% W saved

Bath Fan 48 V PoE 8-15% W saved

Refrigerator, 380 V DC, 1% W saved (since original doesn't have PFC)

Zone Light, 380 V DC, 6% W saved

NREL/LBNL DC Design Tool

Research Goals

- Develop an Energy Design and Scoping Tool for DC systems
- Target audience: building planners, designers, and engineers who are considering deployment of DC distribution systems
- Extends DOE's tools: EnergyPlus and the OpenStudio
- Enable user to assess and compare the energy efficiency and life-cycle cost of a design
- Validate the DC Design Tool using collected experimental and field data

NREL/LBL DC Field Testing

Research Goals

- Establish evaluation methods and metrics for DC-systems
- Measure and evaluate the performance of several buildings with new DC distribution installations
- Assess technical barriers inhibiting robust adoption of DC systems
- Identify opportunities to optimize DC-system performance

Xingye Solar Shenzhen

IBEW Building San Leandro

Marriott Sinclair Fort Worth

IBR Building Shenzhen

Converter AC vs DC Loss Analysis

- Gaps in Prior Research
 - Converter efficiency based on product data
 - Hard to compare AC and DC
 - Requires a lot of data, which is often unavailable
 - Comparing different voltage levels, eg. 120 V AC to 48 V DC
 - Different components with different parasitics
- Project Goal
 - Develop a detailed boost converter loss model
 - Compare AC and DC boost converter with the same voltage and same components

Non-technical Barriers to Adoption of DC Power

- Lack of DC loads, due to lack of DC buildings
 - Chicken and egg problem
- Lack of standards in voltage and connectors
 - IEC is working on this
- Designers and electricians don't understand DC
 - Incorrect safety concerns
 - Optimal design for cost and efficiency

Areas for Further Technical Research in DC Power

- Protection and fault interruption
 - Solid-state, hybrid, converter blocking
- Topology
 - Pulsed
 - Bipolar
 - SST
- Control and stability
 - Current sharing (primary, secondary)
 - Communications, demand response (tertiary)

Protection and Fault Interruption

- Problems with mechanical breakers for DC
 - No zero-crossing to extinguish arcs
 - Mechanical breakers too slow, need < 1 ms
- Possible solutions
 - Solid-state breakers use MOSFET etc. to block
 - Very fast interruption, but on-resistance losses
 - Hybrid breakers parallel solid-state and mechanical
 - Low on-resistance but slightly slower (~1 ms)
 - Converter blocking use DC/DC converters as protection
 - Free functionality
 - Most solutions are more expensive than AC breakers
 - Still require series mechanical disconnect

Topology

- Pulsed Voltserver
 - Pulsing power allows high voltage distribution without conduit
 - Only transfer power after digital handshake
- Bipolar Distribution (+/0/-)
 - Increase power transfer capacity; thinner wiring
 - Pole-neutral loads are resilient to faults on the opposite pole
- SST in Buildings
 - Multiport coupling of solar, storage, grid
 - Isolation between circuits; required for behind-the-meter transactive power

Bus Stability and Control

- Current sharing
 - Primary control decentralized
 - Often uses droop control to regulate bus
 - Virtual series resistance: $V_{ref} = 380 i_{out} * R_{droop}$
 - Secondary control distributed
 - Units communicate to adjust droop parameters to account for network parasitics
- Optimal control for economics or energy
 - Tertiary control centralized
 - Demand response
 - Price-based control
 - Grid services

dgerb@lbl.gov

Thank you!

